Citation
Geological dependence on resistance factors for deep foundation design

Material Information

Title:
Geological dependence on resistance factors for deep foundation design
Creator:
Vu, Cuong Quoc ( author )
Place of Publication:
Denver, CO
Publisher:
University of Colorado Denver
Publication Date:
Language:
English
Physical Description:
1 electronic file. : ;

Subjects

Subjects / Keywords:
Foundations -- Design and construction ( lcsh )
Shafts (Excavations) ( lcsh )
Foundations -- Design and construction ( fast )
Shafts (Excavations) ( fast )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Review:
This research addresses the issue of geological dependence of deep foundation designs resistance factors for driven pile and drilled shaft designs in different locations. For the proof, two sets of databases were used: one from the NCHRP 507 report and another driven pile and drilled shaft database with static load tests and soil profiles from the different locations in Vietnam were used to evaluate resistance factor design for different axial pile capacity prediction methods. Eight different static analysis methods were used for driven pile capacity evaluation: Alpha Tomlinson, Alpha API, Lambda, Beta, Nordlund, Thurman, Meyerhof SPT, and the Shmertmann SPT method. For drilled shafts the FHWA and Reese & Wight methods were used. In the analyses the correlations between Nspt and soil parameters were used. First Order Second Moment (FOSM), First Order Reliability Methods (FORM) and Monte Carlo simulations were used to evaluate the based analyses in the determination of the resistance factors. The following notable benefits were attained in this project: 1) Resistance factors are made available for the LRFD designs of driven piles and drilled shafts in Vietnam; 2) The results show that the resistance factors vary with methods, geomaterial types and geological locations; 3) The found resistance factors for Vietnam give substantially greater factored capacities as compared to the 2012 AASHTO-LRFD recommendations
Thesis:
Thesis (Ph.D.)--University of Colorado Denver. Civil engineering
Bibliography:
Includes bibliographic references.
System Details:
System requirements: Adobe Reader.
General Note:
Department of Civil Engineering
Statement of Responsibility:
by Cuong Quoc Vu.

Record Information

Source Institution:
|University of Colorado Denver
Holding Location:
|Auraria Library
Rights Management:
All applicable rights reserved by the source institution and holding location.
Resource Identifier:
880332157 ( OCLC )
ocn880332157

Downloads

This item is only available as the following downloads:


Full Text

PAGE 1

GEOLOGICAL DEPENDENCE OF RESISTANCE FACTORS FOR DEEP FOUNDATION DESIGN by CUONG VU B.S. Civil Engineering, Hanoi Univ ersity of Civil Engineering, 2001 M.S. Civil Engineering, University of Colorado at Boulder, 2004 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of requirement for degree of Doctor of Philosophy Civil Engineering 2013

PAGE 2

2013 by Cuong Vu All rights reserved

PAGE 3

iiThis thesis for the Doctor of Philosophy degree by Cuong Vu has been approved for the Civil Engineering Program by Nien-Yin Chang, Chair Stein Sture Brian Brady Jimmy Kim Trever Wang Aziz Khan Date: April 18, 2013

PAGE 4

iii Cuong Vu (PhD, Civil Engineering) Geological Dependence of Resistance Factors for Deep Foundation Design Thesis directed by Professor Nien-Yin Chang ABSTRACT This research addresses the issue of geological dependence of deep foundation designs resistance factors for driven pile and drilled shaft designs in different locations. For the proof, two sets of data bases were used: one from the NCHRP 507 report and another driven pile and drilled shaf t database with static load tests and soil profiles from the different locations in Vi etnam were used to evaluate resistance factor design for different axial pile capaci ty prediction methods. Eight different static analysis methods were used for driven pile capacity evaluation: Tomlinson, -API, Nordlund, Thurman, Meyerhof SPT, and the Shmertmann SPT method. For drilled shafts the FHWA and Reese & Wight methods were used. In the analyses the correlations between Nspt and soil paramete rs were used. First Order Second Moment (FOSM), First Order Reliability Methods (F ORM) and Monte Carlo simulations were used to evaluate the based analyses in th e determination of the resistance factors ( ). The following notable benefits were attained in this project: 1) Re sistance factors are made available for the LRFD designs of driven piles and drilled shaf ts in Vietnam; 2) The results show that the resistance factor s vary with methods, geomaterial types and geological locations; 3) Th e found resistance factors ( ) for Vietnam give substantially greater factored capacities as comp ared to the 2012 AASHTO-LRFD recommendations The form and content of this abstract are approved. I reco mmend its publication. Approved: Nien-Yin Chang

PAGE 5

ivACKNOWLEDGEMENTS I am indebted, first and foremost, to my advisor Dr. Nien-Yin Chang for providing me the guidance and support and for his ti reless advice during my study for this dissertation. I would also lik e to thank Dr. Stein Sture, Dr. Brian Brady, Dr. Jimmy Kim, Dr. Trever Wang and Dr. Aziz Khan for serving on the final examination committee. I would like to express my sp ecial thanks to my wife, Lan Anh Nguyen, for many years of her endurance, sacrifice, assistance, and encouragement, which made this accomplishment possible. I also th ank my parents and my brother for their support and all of my friends who helped me in many ways to accomplish this research.

PAGE 6

vCONTENTS Figures........................................................................................................................ v Tables ........................................................................................................................ .vii Chapter 1. Introduction ............................................................................................................1 1.1 Problem statement ................................................................................................1 1.2 Research objective ...............................................................................................2 1.3 Research approach ...............................................................................................2 2. Literature Review ...................................................................................................4 2.1 History of LRFD Development ...........................................................................4 2.2 Review of the Recommended Load Factors for Piles Designs ............................10 2.3 ASD versus LRFD ...............................................................................................16 2.3.1 Allowable Stress Design (ASD) ......................................................................17 2.3.2 Load and Resistance Factor Design (LRFD) ...................................................19 3. Axial Pile Capacity Prediction Methods ................................................................21 3.1. Axial Loading Capacity of a Driven Pile ............................................................21 3.1.1. Side resistance in cohesive soil ........................................................................22 3.1.1.1. -Tomlinson method ....................................................................................22 3.1.1.2. -API revised method (1987) ......................................................................24 3.1.1.3. -Burland method (1973) ............................................................................25 3.1.1.4. -Method .......................................................................................................27 3.1.2. Tip resistance in cohesive soil .........................................................................28 3.1.3 Side resistance in cohesionless soil ...................................................................29 3.1.3.1 -Bushan method (1982) ..............................................................................29 3.1.3.2 Nordlund method ...........................................................................................29 3.1.4. Tip resistance in cohesionl ess soil--Thurman method .....................................33 3.1.5. Empirical Methods ...........................................................................................35 3.1.5.1 Meyerhof method for piles in cohesionless soil ............................................35 3.1.5.2 Schmertmann method for SPT .......................................................................36 3.1.5.3 Nottingham and Schmertmann method for CPT ...........................................39 3.2 Axial Loading Capacity of a Drilled Shaft ..........................................................43 3.2.1 Side resistance in cohesive soils .......................................................................43 3.2.1.1 FHWA method ...............................................................................................43 3.2.2 End bearing in cohesive soils ............................................................................45 3.2.2.1 FHWA method ...............................................................................................45

PAGE 7

vi3.2.3 Skin resistance in cohesionless soil ..................................................................46 3.2.3.1 FHWA method ...............................................................................................46 3.2.3.1 Reese and Wright method ..............................................................................47 3.2.4 End bearing in cohesionless soil .......................................................................47 3.2.4.1 FHWA method ...............................................................................................47 3.2.4.2 Reese and Wright method ..............................................................................48 3.2.5 Side resistance in rock ......................................................................................48 3.2.6 Tip resistance in rock ........................................................................................49 3.3 Piles Dynamic Analysis .......................................................................................51 3.3.1 The Case Method ..............................................................................................51 3.3.2 The Energy Approach .......................................................................................52 3.3.3 PDA Signal Matching Using CAPWAP ...........................................................52 3.4 Static Load Test ...................................................................................................53 3.4.1 ASTM Procedures .............................................................................................53 3.4.1.1 Standard Load Test Procedures .....................................................................53 3.4.1.2 Cyclic Load Test ............................................................................................54 3.4.1.3 Quick Load Test Method for Individual Piles ...............................................54 3.4.1.4 Constant Rate of Penetration .........................................................................55 3.4.2 Vietnamese Load Test Procedures ....................................................................55 3.5 Interpretation of Pile Load Test Results ..............................................................55 3.5.1 DavissonÂ’s Method ...........................................................................................55 3.5.2 The Limit Total Settlement Method .................................................................57 3.5.3 DeBeer's Method ...............................................................................................57 3.5.4 ChinÂ’s Criterion ................................................................................................58 3.6 Soil Properties from Insitu Tests..........................................................................59 3.6.1 Correlations between soil properties and SPT ..................................................60 3.6.1.1 Undrained shear strength Su ..........................................................................60 3.6.1.2 OCR for clay ..................................................................................................61 3.6.1.3 Effective stress friction an gle of cohesionless soil ........................................62 3.6.1.4 Relative Density Dr of Cohensionless Soil ....................................................63 3.6.2 Correlations between soil properties and CPT ..................................................64 3.6.2.1 Undrained shear strength Su ...........................................................................64 3.6.2.2 OCR for cohesive soil Mayne .....................................................................64 3.6.2.3 The effective stress friction angle for cohensionless soil ..............................65 3.6.2.4 Relative Density Dr of Cohensionless SoilJamiolkowski ............................66 3.6.3 Undrained Shear Strength of Clay vs Index Properties ....................................67 4. Evaluation of Resistan ce Factors By Calibration ..................................................68 4.1 Fitting ASD to LRFD ...........................................................................................69 4.2 Reliability Analysis ..............................................................................................69 4.2.1 Resistance bias factor ........................................................................................70

PAGE 8

vii4.2.2 Probability density function ..............................................................................71 4.2.3 The First Order Second Moment (FOSM) Method ..........................................72 4.2.3.1 Reliability index ..........................................................................................72 4.2.3.2 Recommended Target Reliability Index ........................................................79 4.2.3.3. Efficiency of Different Methods ...................................................................80 4.2.3.4 Equivalent Factor of Safety ...........................................................................80 4.2.3.5 Resistance Factor Calibration ........................................................................81 4.2.4 First-Order Reliability Method (FORM) Analysis ...........................................82 4.2.5 Monte Carlo Simulation Method ......................................................................86 5. Resistance Factor Calibration for the Data from Difference Locations in NCHRP Report 507 ..................................................................................................................90 5.1 Introduction .........................................................................................................90 5.2 Calibration Resistant Factor for Driv en Piles Using CAPWAP Method ............90 5.2.1 Resistance Factor for Different Locations by Using CAPWAP (BOR+EOD) Data .............................................................................................90 5.2.2 Resistance Factor for Different Locations by Using CAPWAP (BOR) Data .......................................................................................................94 5.2.3 Resistance Factor for Different Locations by Using CAPWAP (EOD) Data .......................................................................................................96 5.3 Calibration Resistant Factor for Driven Piles Using Static Analysis ..................98 5.3.1 Resistance Factor for Concre te Piles in Cohesionless for Different Locations ...........................................................................................98 5.3.2 Resistance Factor for Concre te Piles in Cohesive for Different Locations ...........................................................................................99 5.3.3 Resistance Factor for Concre te Piles in Mixed soil for Different Locations ...........................................................................................100 6. Data Collection from Vietnam ...............................................................................101 6.1 Introduction .........................................................................................................101 6.2 General description of Vietnam geology .............................................................102 6.2.1 North Vietnam ..................................................................................................102 6.2.2 South Vietnam ..................................................................................................106 6.2.3 Central Vietnam ................................................................................................107 6.3 Static Load Tests and Soil Profile from a site in Vietnam ...................................108 7. Calibration Resistance Factor for Driven Piles in Vietnam ...................................113 7.1 Procedure to Calibrate Resistan ce Factors for Driven Piles ................................113 7.2 Collection of Driven Piles in Vietnam .................................................................114 7.3 Measurement capacity of driven piles .................................................................114 7.4 Nominal Capacity of driven piles ........................................................................114

PAGE 9

viii7.4.1Nominal Capacity of Concrete Piles in Cohesionless Soils ...............................115 7.4.2 Nominal Capacity of Concrete Piles in Cohesive Soils ....................................118 7.4.3 Nominal Capacity of Concre te Piles in Mixed Soils .......................................118 7.5 Calibration of Resistance Factors .......................................................................131 7.5.1 Resistant factor for driven pile in Sand .............................................................132 7.5.2 Resistant factor for driven pile in Clay .............................................................137 7.5.3 Resistant factor for driven pile in Mixed Soil ...................................................143 8. Calibration Resistance Factors for Drilled Shaft in Vietnam ................................161 8.1 Procedure to Calibrate Resistan ce Factors for Drilled Shaft ...............................161 8.2 Collection of Drilled Shaft in Vietnam ................................................................161 8.3 Measurement Capacity of drilled Shaft ...............................................................162 8.4 Nominal Capacity of Drilled Shaft ......................................................................162 8.4.1 Nominal Capacity of Concre te Piles in Mixed Soils ........................................162 8.5 Calibration of Resistance Factors for Drilled Shaft .............................................167 8.5.1 Resistant factor for dri lled shaft in Mixed Soil .................................................167 8.5.2 Statistical sample size requirements fo r calibration the resistance factor for drilled shafts in Vietnam ............................................................................................178 9. Conclusions and Recommendation ........................................................................180 9.1 Summary of Research ..........................................................................................180 9.2 Major Outcomes and Conclusions .......................................................................181 9.3 Recommendations ................................................................................................182 9.4 Future Research ...................................................................................................183 Appendix A. Calibration Resistance Factor by Using FORM for Driven Pile using CAPWAP Method ...............................................................................................184 B. Calibration Resistance Factor by Usi ng FORM for Driven Pile using Static Analysis................................................................................................................211 C. Calibration Resistance Factor by Using FOSM for Driven Pile using CAPWAP Method ...............................................................................................239 D. Calibration Resistance Factor by Usi ng FOSM for Driven Pile using Static Analysis................................................................................................................266 E. Nominal and Measure Capacity of Driven Pile from Vietnam .............................275 F. Histogram and Frequency Distribution of Bias Factor for Driven Piles from Vietnam ................................................................................................................297 G. Nominal and Measure Capacity of Drilled Shaft from Vietnam ..........................390 H. Histogram and Frequenc y Distribution of Bias F actor for Drilled Shaft ..............398 References ..................................................................................................................422

PAGE 10

ix FIGURES Figure 1.1 LRFD implementation for bridge foundations from survey in 2008 ...................9 2.1 Factor of Safety ....................................................................................................13 2.2 LRFD Design Approach ......................................................................................15 3.1a Adhesion values for piles in cohesi ve soils (after Tomlinson, 1979) ...............23 3.1b factors; Tomlinson Method (Tomlinson, 1995) ............................................24 3.2 Comparison between -Factors Calculated form API 1986 and 1987 ................25 3.3 factors (AASHTO 2007) .................................................................................27 3.4 Coefficient for driven pile piles after Vijayvergiya and Focht (1972) ...............28 3.5 Design curve for evaluating K when = 25 (Hannigan et al., after Nordlund, 1979) ..................................................................................................30 3.6 Design curve for evaluating K when = 30 (Hannigan et al., after Nordlund, 1979) ...................................................................................................31 3.7 Design curve for evaluating K when = 35 (Hannigan et al., after Nordlund, 1979) ...................................................................................................31 3.8 Design curve for evaluating K when = 40 (Hannigan et al., after Nordlund, 1979) ..................................................................................................32 3.9 Relation / and pile displacement (Hanniga n et al., after Nordlund, 1979) ......32 3.10 Correction factor (CF) for K (Hannigan et al., after Nordlund, 1979) ..........33 3.11 T coefficient (FHWA--DRIVEN, 1998) ........................................................34 3.12 Bearing capacity factor NqÂ’(FHWA--DRIVEN, 1998) ....................................34 3.13 Relationship between Maximum Unit Pile Toe Resistance qL (kPa) and Friction Angle for Cohesi onless Soils (Meyerhof, 1976/1981). ................35 3.14 Ks and Kc ratio in cohesionless and c ohesive soil, respectively (cited in McVay and Townsend, 1989) ..........................................................................39 3.15 Tip resistance computation procedur e--Nottingham 1975. (cited in McVay and Townsend, 1989) .......................................................................................40 3.16a Ks ratio in cohesionless ....................................................................................41 3.16b Kc ratio in cohesive soil ...................................................................................42 3.17 Explanation of Portions of Drilled Shaft Not Considered in Computing Side Resistance in Clay (OÂ’Neilll and Reese, 1999) .......................................44 3.18 Static pile load testing procedures according to ASTM ....................................53 3.19 Graphical representation of Davisson criterion .................................................55 3.20 Graphical representation of DeBeer method ......................................................56

PAGE 11

x3.21a Load-settlement curve .....................................................................................57 3.21b Replotted results for dete rmination of C1 and QL...........................................57 3.22 Su-SPT N Relationships by Hara 1974 (Kulhawy and Mayne, 1990) ..............60 3.23 OCR--N Relationship (Kul hawy and Mayne, 1990) .........................................61 3.24 by Peck, Hanson and Thornburn (K ulhawy and Mayne, 1990) ...................61 3.25 by Schmertmann (Kulhawy and Mayne, 1990) ............................................62 3.26 Relative Density--N--Stress Relations hip (Kulhawy and Mayne, 1990) ..........62 3.27 p correlated with qc (OCR = p / Â’0) (Kulhawy and Mayne, 1990) ............63 3.28 Â’tc correlated from qc for NC, un cemented quartz sands (Kulhawy and Mayne, 1990) ...................................................................................................64 3.29 Correlation between Dr and qc (uncor rected for boundary effect) (Kulhawy and Mayne, 1990) ............................................................................................65 3.30 Correlation between Normalized Undr ained Shear Strength and Liquidity Index for NC Clays (after Kulhawy and Mayne, 1990) ....................................66 4.1 Distribution of load and resistance and reliability index, .................................75 4.2 Reliability definition based on standa rd normal probability density function .....78 4.3 Comparison of Esteva and Withiam me thods to obtain reliability index, ........79 4.4 Redundant vs. non-redundant pile suppor t, Paikowsky, et al. (2004) ................80 4.5 Limit state function and pdf of basic random variables (Baecher and Christian 2003) ....................................................................................................83 4.6 Transformed basic variable space (Baecher and Christian 2003) ......................83 5.1 Resistance Factor for Driven Piles Using CAPWAP (EOD+BOR) with =2.33 ....................................................................................................................92 5.2 Resistance Factor for Driven Piles Using CAPWAP (EOD+BOR) with =3.0 ...........................................................................................................93 5.3 Resistance Factor for Driven Piles Using CAPWAP (BOR) with =2.33 .........................................................................................................95 5.4 Resistance Factor for Driven Piles Using CAPWAP (BOR) with =3.0 ...........................................................................................................95 5.5 Resistance Factor for Driven Piles Using CAPWAP (EOD) with =2.33 .........................................................................................................97 5.6 Resistance Factor for Driven Piles Using CAPWAP (EOD) with =3.0 ...........................................................................................................97 6.1 Vietnamese Map ..................................................................................................101 6.2 The deep of bearing layer (gravel) in Hanoi ........................................................105 6.2 Red River Shipyard Project Site Plan ..................................................................108

PAGE 12

xi6.4a Static Load Test Data and Chin ’s Method for A5-2 (350x350) Concrete Pile .......................................................................................................................111 6.4b Static Load Test Data and Chin’s Method for A1-5 (350x350) Concrete Pile .......................................................................................................................111 6.4c Static Load Test Data and Chin ’s Method for B1-2 (350x350) Concrete Pile .......................................................................................................................111 6.4d Static Load Test Data and Chin’s Method for B5-2 (350x350) Concrete Pile .......................................................................................................................112 6.4e Static Load Test Data and Chin ’s Method for B10-2 (350x350) Concrete Pile .......................................................................................................................112 7.1a Measure Capacity Davisson’ s versus 80% Chin Method ..................................115 7.1b Measure Capacity Davisson’ s versus 1” settlement ..........................................116 7.2a: Prediction Capacity using Nord lund method vs. Measure Capacity of Concrete Piles in Cohesionless Soils (North and South of Vietnam) .................116 7.2b: Prediction Capacity using Nord lund method vs. Measure Capacity of Concrete Piles in Cohesionless Soils (North and South of Vietnam) .................117 7.2c: Prediction Capacity using Sc hmertmann SPT method vs. Measure Capacity of Concrete Piles in Cohesi onless Soils (North, Central and South of Vietnam) .........................................................................................................117 7.2d: Prediction Capacity using Meyerhof SPT method vs. Measure Capacity of Concrete Piles in Cohesionless Soils (Nor th, Central and South of Vietnam) ...118 7.3a: Prediction Capacity using -Tomlinson method vs. Measure Capacity of Concrete Piles in Cohesive SoilsSu from Terzaghi-Peck in North, Central and South of Vietnam ..........................................................................................119 7.3b: Prediction Capacity using -Tomlinson method vs. Measure Capacity of Concrete Piles in Cohesive Soils-Su fr om Hara in North, Central and South of Vietnam ...........................................................................................................120 7.3c: Prediction Capacity using -API method vs. Measure Capacity of Concrete Piles in Cohesive Soils-Su from Terzaghi-Peck in North, Central and South of Vietnam ..........................................................................................120 7.3d: Prediction Capacity using -API method vs. Measure Capacity of Concrete Piles in Cohesive Soils-Su fr om Hara in North, Central and South of Vietnam ...........................................................................................................121 7.3e: Prediction Capacity using method vs. Measure Capacity of Concrete Piles in Cohesive Soils-Su from Ter zaghi and Peck in North, Central and South of Vietnam .................................................................................................121 7.3f: Prediction Capacity using method vs. Measure Capacity of Concrete Piles in Cohesive Soils-Su from Hara (North, Central and South of Vietnam) ..............................................................................................................................1 22

PAGE 13

xii7.3g: Prediction Capacity using method vs. Measure Capacity of Concrete Piles in Cohesive Soils (North, Ce ntral and South of Vietnam) .........................122 7.3h: Prediction Capacity using Sc hmertmann SPT method vs. Measure Capacity of Concrete Piles in Cohesi ve Soils (North, Central and South of Vietnam) .............................................................................................................123 7.4a1: Prediction Capacity using -Tomlinson, Nordlund, Thurman method vs. Measure Capacity of Concrete Pile s in Mixed SoilsSu from T-P, from PH-T (North, Central and South of Vietnam) .......................................................123 7.4a2: Prediction Capacity using -Tomlinson, Nordlund, Thurman method vs. Measure Capacity of Concrete Pile s in Mixed Soils Su from Hara, from P-H-T(North, Central and South of Vietnam) ....................................................124 7.4a3: Prediction Capacity using -Tomlinson, Nordlund, Thurman method vs. Measure Capacity of Concrete Piles in Mixed Soils (North, Central and South of Vietnam) ...............................................................................................124 7.4a4: Prediction Capacity using -Tomlinson, Nordlund, Thurman method vs. Measure Capacity of Concrete Piles in Mixed Soils (North, Central and South of Vietnam) ...............................................................................................125 7.4b1 Prediction Capacity using -API, Nordlund, Thurman method vs. Measure Capacity of Concrete Piles in Mixed Soils (North, Central and South of Vietnam) ...............................................................................................125 7.4b2: Prediction Capacity using -API, Nordlund, Thurman method vs. Measure Capacity of Concrete Piles in Mixed Soils (North, Central and South of Vietnam .................................................................................................126 7.4b3: Prediction Capacity using -API, Nordlund, Thurman method vs. Measure Capacity of Concrete Piles in Mixed Soils (North, Central and South of Vietnam) ...............................................................................................126 7.4b4: Prediction Capacity using -API, Nordlund, Thurman method vs. Measure Capacity of Concrete Piles in Mixed Soils (North, Central and South of Vietnam) ...............................................................................................127 7.3c1: Prediction Capacity using Nordlund, Thurman method vs. Measure Capacity of Concrete Piles in Mixe d Soils (North, Cent ral and South of Vietnam) .............................................................................................................127 7.4c2: Prediction Capacity using Nordlund, Thurman method vs. Measure Capacity of Concrete Piles in Mixe d Soils (North, Cent ral and South of Vietnam) .............................................................................................................128 7.4c3: Prediction Capacity using Nordlund, Thurman method vs. Measure Capacity of Concrete Piles in Mixe d Soils (North, Cent ral and South of Vietnam) .............................................................................................................128 7.4c4: Prediction Capacity using Nordlund, Thurman method vs. Measure Capacity of Concrete Piles in Mixe d Soils (North, Cent ral and South of Vietnam) .............................................................................................................129

PAGE 14

xiii7.4d1: Prediction Capacity using method vs. Measure Capacity of Concrete Piles in Mixed Soils (North, Cent ral and South of Vietnam) .............................129 7.4d2: Prediction Capacity using method vs. Measure Capacity of Concrete Piles in Mixed Soils (North, Cent ral and South of Vietnam) .............................130 7.4e1: Prediction Capacity using SP T method vs. Measure Capacity of Concrete Piles in Mixed Soils (Nor th, Central and South of Vietnam ................130 7.5a Histogram and frequency di stribution of bias factor 1 for 58 cases of concrete piles in Sand using the Nordlund method ( : Peck, Hanson and Thornbum) in Vietnam ........................................................................................134 7.5b Resistant factor calibration for 58 cases of concrete piles in Sand using the Nordlund method ( : Peck, Hanson and Thornbum) in Vietnam ........................134 7.6a Resistance factor, efficiency factor, eq uivalent factor of safety to ASD for driven pile using Nordlund Shme rtmannSPT and Mayhoft SPT method for Cohesionless Soil in Vietnam with =2.33 .........................................................136 7.6b Resistance factor, efficiency factor, eq uivalent factor of safety to ASD for driven pile using Nordlund ,Shmer tmann SPT and Mayhoft SPT method for Cohesionless Soil in No rth of Vietnam with =2.33 .........................................136 7.7a Histogram and frequency di stribution of bias factor 1 for 50 cases of concrete piles in Clay using the -Tomlinson method (Su: Peck) in Vietnam ...138 7.7b Resistant factor calibration for 50 cases of concrete piles in Clay using the -Tomlinson method (Su: Peck) in Vietnam .......................................................138 7.8a Resistance factor, efficiency factor, eq uivalent factor of safety to ASD for driven pile using -Tomlinson, -API method, method, -Burland, Shmertmann SPT method for Cohe sive Soil in Vietnam with =2.33 ...............142 7.8b Resistance factor, efficiency factor, eq uivalent factor of safety to ASD for driven pile using -Tomlinson, -API method, method, -Burland, Shmertmann SPT method for Cohesive Soil in North of Vietnam with =2.33 ....................................................................................................................142 7.8c Resistance factor, efficiency factor, eq uivalent factor of safety to ASD for driven pile using -Tomlinson, -API method, method, -Burland, Shmertmann SPT method for Cohesive Soil in Central of Vietnam with =2.33 ....................................................................................................................143 7.9a Histogram and frequency di stribution of bias factor 2 for 165cases of concrete piles in Mixed soils using the -Tomlinson and Nordlund/Thurman method (Su: Hara, : P) in Vietnam ....................................................................149 7.9b Resistance factor calibration for 165 cases of concrete piles in Mixed soils using the -Tomlinson and Nordlund/Thurman method (Su: Hara, : Peck, Hanson and Thornburn) in Vietnam ....................................................................149 7.10a Resistance factor, efficiency factor, eq uivalent factor of safety to ASD for driven pile using -Tomlinson, -API method, method, -Burland, Nordlund-Thurman, Shmertmann SP T method in Vietnam with =2.33 ...........154

PAGE 15

xiv7.10b Resistance factor, efficiency factor, eq uivalent factor of safety to ASD for driven pile using -Tomlinson, -API method, method, -Burland, Nordlund-Thurman, Shmertmann SPT me thod in North of Vietnam with =2.33 ....................................................................................................................154 7.11c Resistance factor, efficiency factor, eq uivalent factor of safety to ASD for driven pile using -Tomlinson, -API method, method, -Burland, Nordlund-Thurman, Shmertmann SPT met hod in Central of Vietnam with =2.33 ....................................................................................................................155 7.11d Resistance factor, efficiency factor, eq uivalent factor of safety to ASD for driven pile using -Tomlinson, -API method, method, -Burland, Nordlund-Thurman, Shmertmann SPT me thod in South of Vietnam with =2.33 ....................................................................................................................155 7.12 Number of data versus the resistance factor with T =3.0 for driven piles in mixed soil from North, Central and South of Vietnam using -Tomlinson & Nordlund-Thurman method ( Su from Terzaghi and Peck and from Peck, Hanson and Thornburn) ............................................................................156 7.13 Number of data versus the resistance factor with T =3.0 for driven piles in mixed soil from North, Central and South of Vietnam using Burland & Northlund-Thurman method ( from Peck, Hanson and Thornburn) ...............157 7.14 Number of data versus the resistance factor with T =3.0 for driven piles in mixed soil from North, Ce ntral and South of Vietnam using Shmertmann SPT method ....................................................................................157 7.15 Number of data versus the resistance factor with T =3.0 for driven piles in mixed soil from North, Central and South of Vietnam using -Tomlinson & Nordlund-Thurman ( Su from Terzaghi and Peck) ........................................158 7.16 Number of data versus the resistance factor with T =3.0 for driven piles in mixed soil from North, Ce ntral and South of Vietnam using & Nordlund-Thurman ( Su from Terzaghi and Peck) ............................................158 8.1a Prediction Capacity using FHWA me thod (Su: T-P) vs. Measure Capacity of Drilled Shaft using 1” Criteri on in Mixed Soils in Vietnam ...........................163 8.1b Prediction Capacity using FHWA met hod (Su: Hara) vs. Measure Capacity of Drilled Shaft using 1” Criteri on in Mixed Soils in Vietnam ...........................163 8.1c Prediction Capacity using R&W method (Su: T-P) vs. Measure Capacity of Drilled Shaft using 1” Criteri on in Mixed Soils in Vietnam ...............................164 8.1d Prediction Capacity using R&W met hod (Su: Hara) vs. Measure Capacity of Drilled Shaft using 1” Criteri on in Mixed Soils in Vietnam ...........................164 8.2a Prediction Capacity using FHWA method (Su: Terzaghi & Peck) vs. Measure Capacity of Drilled Shaft us ing 1” Criterion in Mixed Soils in Vietnam ................................................................................................................165

PAGE 16

xv8.2b Prediction Capacity using FHWA met hod (Su: Hara) vs. Measure Capacity of Drilled Shaft using 0.5%D Criterion in Mixed Soils in Vietnam ....................165 8.2c Prediction Capacity using R&W method (Su: T-P) vs. Measure Capacity of Drilled Shaft using 0.5%D Criteri on in Mixed Soils in Vietnam .......................166 8.2d Prediction Capacity using R&W met hod (Su: Hara) vs. Measure Capacity of Drilled Shaft using 0.5%D Criterion in Mixed Soils in Vietnam ...................166 8.3a Histogram and frequency di stribution of bias factor 1 for 92 cases of drilled shaft in Mixed so ils using the FHWA met hod (Su: Terzaghi, Peck) and using 1” criter ion in Vietnam ........................................................................171 8.3b Resistance factor calibration for 92 cas es of drilled shaft in Mixed soils using the FHWA method (Su: Terzaghi Peck) and using 1” criterion in Vietnam ................................................................................................................171 8.4a Resistance factor, efficiency factor, eq uivalent factor of safety to ASD for drilled shaft using FHWA and Reese & Wright method with 1” criterion settlement in North, Center and South of Vietnam ..............................................173 8.4b Resistance factor, efficiency factor, eq uivalent factor of safety to ASD for drilled shaft using FHWA and Reese & Wright method with 1” criterion settlement in North of Vietnam............................................................................174 8.4c Resistance factor, efficiency factor, eq uivalent factor of safety to ASD for drilled shaft using FHWA and Reese & Wright method with 1” criterion settlement in South of Vietnam............................................................................174 8.5a Resistance factor, efficiency factor, eq uivalent factor of safety to ASD for drilled shaft using FHWA and Reese & Wright method with 0.5% D criterion settlement in North, Ce nter and South of Vietnam ...............................176 8.5b Resistance factor, efficiency factor, eq uivalent factor of safety to ASD for drilled shaft using FHWA and Reese & Wright method with 0.5% D criterion settlement in North of Vietnam .............................................................177 8.5c Resistance factor, efficiency factor, eq uivalent factor of safety to ASD for drilled shaft using FHWA and Reese & Wright method with 0.5% D criterion settlement in South of Vietnam .............................................................177 8.6 Number of data versus the resistance factor with T =3.0 for drilled shaft (using the FHWA method and Su from Hara) ....................................................178 8.7 Number of data versus the resistance factor with T =3.0 for drilled shaft using the Reese and Wright method (Su from Terzaghi and Peck) ....................179 8.8 Number of data versus the resistance factor with T =3.0 for drilled shaft using the Reese and Wright method (Su from Hara) ..........................................179

PAGE 17

xviTABLES Table 2.1 Resistance Factor for Driven Piles for Estimating the Axial Geotechnical Pile Capacity Using Reliability-Based Calibration (modified after Barker, et al., 19991) ............................................................................................................10 2.2 Resistance Factors for Drilled Shaf ts for Estimating the Ultimate Axial Shaft Capacity Using Reliability-Based Calibration (Modified Barker, et al., 1991b) .................................................................................................................10 2.3 Reliability Index of Case Method Pr ediction (After McVay et al., 1998) ..........11 2.4 Resistance factor for Case Method pr ediction (After McVay et al., 1998) ........11 2.5 Comparison of Resistance Factors for Geotechnical Strength Limit State in Axial Loaded Piles and Drilled Shaf ts (After McVay et al., 1998) ....................12 2.6 Summary of calibration results for driven piles, static analyses ..........................12 2.7 Relationship between Numbers of Load Tests Conducted per Site and (after Paikowsky, et al., 2004) ............................................................................13 2.8 Number of Dynamic Tests with Signa l Matching Analysis to be Conducted During Production Pile Driving (aft er Paikowsky, et al., 2004) .........................13 2.9 Summary of Resistance Calibration Re sults for Driven Piles, Static Analyses ...............................................................................................................14 2.10 Summary of Calibration Results for Drilled Shaft, Static Analyses ..................15 2.11: Summary of the reported LRFD resi stance factors, sorted according to different pile types, static analysis methods, and soil types (after 2008 Iowa State survey) ........................................................................................................16 2.12. Factor of Safety on Ultimate Axia l Geotechnical Capacity Based on Level of Construction Contro l (AASHTO, 1997) ........................................................18 2.13 Factors of Safety on Ultimate Geot echnical Capacity Based on Design Life and Level of Construction Control (Reese and O'Neill, 1988) ...........................18 3.1 Side resistance-Schmertmann method for SPT ....................................................37 3.2 Tip resistance-Schme rtmann method for SPT .....................................................37 3.3 Critical depth ratio--Schm ertmann method for SPT ............................................38 3.4 Represent CPT Cf values (after the FHWA, 2007) ............................................41 3.5 Methods for calculating axial load ing capacity of a driven pile ..........................42 3.6 Values of Ir and Nc* (Reese, et al, 2006) ...........................................................46 3.7 for Gravelly sands and Grav els (Rollins et al., 2005) .....................................47 3.8 Estimation of E (OÂ’Neil and Reesse, 1999) ......................................................48 3.9 Methods for calculating axial load ing capacity of a drilled shaft ........................49 3.10a: Correlations between SPT N-values and Dr, and soil (after Bowles, 1977) ...................................................................................................................59 3.10b: Correlations between SPT N-values and qu and (after Bowles, 1977) .......59

PAGE 18

xvii3.11 Summary correlations between SPT N-values and soil parameters ..................63 3.12 Summary Correlations between CPT and soil parameters ................................65 4.1 Resistance Factors Calibrate d by Fitting with WSD for D = 1.25 and L = 1.75 (After McVay et al., 1998) ...........................................................................69 4.2 QD, QL, COVQD, COVQL as recommended by AAS HTO (cited in Withiam etal., 1997) ..........................................................................................................71 4.3 Relationship between Probability of Failure and Reliability Index for Lognormal Distribution (After Withiam et al., 1997) .........................................78 5.1a Resistance Factors for Driven Piles using CAPWAP (BOR+EOD) for Different Locations ..............................................................................................89 5.1b Resistance Factors for Driven P iles using CAPWAP (BOR+EOD) for Different Locations ..............................................................................................89 5.2 Resistance Factors for Driven Pile s using CAPWAP (BOR) for Different Locations ..............................................................................................................94 5.3 Resistance Factors for Driven Pile s (EOD) using CAPWAP for Different Locations ..............................................................................................................96 5.4a Resistance Factors for Concrete Piles in Cohesionless Soil ..............................98 5.4b Resistance Factors for Concrete Piles in Cohesionless Soil for Florida Data Only......................................................................................................................98 5.5a Resistance Factors for Concre te Piles in Cohesive Soil .....................................99 5.5b Resistance Factors for Concrete Piles in Cohesive Soil for Louisiana Data Only......................................................................................................................99 5.6a Resistance Factors for Conc rete Piles in Mixed Soil .........................................100 5.6b Resistance Factors for Concrete Piles in Mixed Soil for Florida Data Only .....100 5.6c Resistance Factors for Concrete P iles in Mixed Soil for Louisiana Data Only......................................................................................................................101 6.1 General soil profile in North Vietnam .................................................................103 6.2 Mean Values Properties of E ach Soil Type North Vietnam ................................104 6.3a Properties of Organic Clay Layer in South Vietnam .........................................106 6.3 b Friction Angle and Cohesion of Orga nic Clay Layer in South Vietnam ..........107 6.4a Properties of Non-Organic Cl ay Layer in South Vietnam .................................107 6.4 b Friction Angle and Cohesion of Inor ganic Clay Layer in South Vietnam .......107 6.5 Summary SPT value of each Layer .....................................................................109 6.6 Summary of Soil Properties of Clay Layer ..........................................................109 6.7 Summary of Soil Properties of Sand Layer .........................................................110

PAGE 19

xviii7.1 Bias factor for driven pile in Cohe sionless Soil using Nordlund ,Shmertmann SPT and Mayhoft SPT met hod with DavissionÂ’s criterion in North, Center and South of Vietnam ...................................................................132 7.1a Summary of calibration resistance f actor for driven pile using Nordlund ,ShmertmannSPT and Mayhoft SPT met hod in North, Center and South of Vietnam ................................................................................................................135 7.1b Summary of calibration resistance fact or for driven pile using Nordlund ,Shmertmann SPT and Mayhoft SPT method in North of Vietnam ....................135 7.1c Summary of calibration resistance f actor for driven pile using Nordlund ,Shmertmann SPT and Mayhoft SPT me thod in Center of Vietnam ..................140 7.2 Bias factor for driven pile in cohesive soil using -Tomlinson, -API method, method, -Burland, Shmertmann SPT method with DavissionÂ’s criterion in North, Center and South of Vietnam .................................................139 7.2a Summary of calibration resistan ce factor for driven pile using Tomlinson, -API method, method, -Burland, Shmertmann SPT method in North, Center and South of Vietnam ...............................................................140 7.2b Summary of calibration resistance factor for driven pile using Tomlinson, -API method, method, -Burland, ShmertmannSPT method in North of Vietnam .............................................................................................141 7.2c Summary of calibration resistan ce factor for driven pile using -Tomlinson, -API method, method, -Burland, ShmertmannSPT method in Central of Vietnam ................................................................................................................141 7.3 Summary of calibration resistance factor for driven pile using -Tomlinson, -API method, method, -Burland, Nordlund-Thurman, ShmertmannSPT method in North, Center and South of Vietnam ..................................................144 7.3a Summary of calibration resistan ce factor for driven pile using -Tomlinson, -API method, method, -Burland, Nordlund-Thurman, ShmertmannSPT method in North, Center and South of Vietnam ..................................................150 7.3b Summary of calibration resistance factor for driven pile using -Tomlinson, -API method, method, -Burland, Nordlund-Thurman, ShmertmannSPT method in North of Vietnam ................................................................................151 7.3c Summary of calibration resistan ce factor for driven pile using Tomlinson, -API method, method, -Burland, Nordlund-Thurman, Shmertmann SPT method in Central of Vietnam ................................................152 7.3d Summary of calibration resistance factor for driven pile using Tomlinson, -API method, method, -Burland, Nordlund-Thurman, Shmertmann SPT method in South of Vietnam ...................................................153 7.4 Recommendation of Resistance Factor for Driven Pile in Vietnam with T = 3.0.........................................................................................................................160

PAGE 20

xix8.1 Bias Factor for drilled Shaft in Mixed Soil using FHWA and Reese & Wright method with 1” and 0.5% D settlement criterion ....................................171 8.1a Summary of calibration resistance fact or for drilled shaft using FHWA and Reese & Wright method with 1” criteri on settlement in North, Center and South of Vietnam .................................................................................................176 8.1b Summary of calibration resistance fact or for drilled shaft using FHWA and Reese & Wright method with 1” criteri on settlement in North of Vietnam ........176 8.1c Summary of calibration resistance fact or for drilled shaft using FHWA and Reese & Wright method with 1” criteri on settlement in South of Vietnam ........177 8.1d Summary of calibration resistance fact or for drilled shaft using FHWA and Reese & Wright method with 0.5%D settlement in North, Center and South of Vietnam ...........................................................................................................179 8.1e Summary of calibration resistance fact or for drilled shaft using FHWA and Reese & Wright method with 0.5%D settlement in North of Vietnam ...............179 8.1f Summary of calibration resistance factor for dril led shaft using FHWA and Reese & Wright method with 0.5%D settlement in South of Vietnam ...............180

PAGE 21

11. Introduction 1.1 Problem Statement Since AASHTO introduced the LRFD method to account for uncertainties associated with estimated loads and resistances, bridge superstructures have been designed using the LRFD method in most of the U.S. but the ASD method is still used for bridge foundation design in practice. This can lead to inconsistent levels of reliability between superstructures and substructures. In an effort to maintain a consist level of reliability, the Federal Highway Administration and AASHTO set a mandate date of October 1, 2007 after which all federal-funded new bridges including substructures shall be designed using the LRFD method. The deadline has passed but the implementation of LRFD methodology for bridge foundation design is still experiencing much difficulty since the resistance factors for deep foundation in the AASHTO LRFD specifications are based on commonly use design methods and nationwide general geologic conditions that do not address local specific conditions. For example, the driven pile and drilled shaft database used in the existing AASHTO code is based on the data gathered by the Federal Highway Administration (FHWA) and the Florida DOT and may not reflect the soil conditions of other states with less data. Therefore, the resistance factors recommended in the existing AASHTO code need to be verified before being applied to local soil condition and design practice. Each state or region has its unique geological formation and the methods of analysis given by the AASHTO LRFD specifications do not consider this variance formation. Direct application of the AASHTO LRFD specifications without considering geologic conditions in design methodology could lead to overly conservative or unconservative design. Thus, the resistance factors must be developed for the unique soil types of the region, in which the piles are used, incorporating the many years of pile design and construction experience in that region.

PAGE 22

21.2 Research Objective The objectives of this study are two-fold To assess the geographical locations dependence of resistance factor from difference locations by separating the database in NCHRP 507 report (Paikowsky, et al., 2004) and using it to calibrate the resistance factors of deep foundations for each of the different locations. To assess the geographical locations dependence of resistance factors in Vietnam by calibrating the resistant factors of drilled shafts and driven piles for North, South and Central Vietnam 1.3 Research Approach To achieve the research objectives, the following tasks are to be undertaken: Task 1: Review the different design approaches used for bridge pile foundations including ASD and LRFD methods Task 2: Review the design methods for the bearing capacity of driven piles and drilled shafts Task 3: Review the methods for calibrating the resistance factors including fitting LRFD to ASD, First Order Second Moment Method (FOSM), First Order Reliability Method (FORM) and the Monte Carlo Simulation Method Task 4: Separate the data from the NCHRP Report 507 by different locations and calibrate the resistance factors for deep foundations using dynamic and static analysis methods for each state and other locations in the world. Task 5: Collect the top-down static load test for driven piles and drilled shafts and soil profiles from North, South and Central Vietnam and perform static analyses of pile bearing capacity for each test using the different analysis methods. Task 6: Calibrate the resistance factors by using First Order Second Method (FOSM), First Order Reliability Method (FORM) and Monte Carlo Simulation Method

PAGE 23

3for the different static analysis methods, for the different pile types (drilled shafts and driven piles), and for the different geologic regions: North, South and Central Vietnam. Task 7: Recommend the resistance factors for deep foundation design including driven piles and drilled shafts in Vietnam Task 8: Compare the resistance factors for deep foundations for different locations in the U.S. and Vietnam the draw the conclusions as to the dependency of resistance factors on geological and geographical locations.

PAGE 24

4 2. Literature Review 2.1 History of LRFD Development From the early 1800s until the mid-1950s, the ASD approach has been used in the design of superstructures and substructures, in which all uncertainty in loads and material resistance is combined in a factor of safety or allowable stress. And after the mid-1950s, the LRFD approach has been developed for structural design with the objective of ensuring a uniform degree of reliability throughout the structure. The basic hypothesis of the LRFD is quantifying the uncertainties based on probabilistic approaches, which aims to achieve engineered designs with consistent levels of reliability. In the LRFD approach, different load types and combinations are multiplied by load factors while resistances are multiplied by resistance factors, and the factored loads should not exceed the factored resistances. Until late 1970Â’s the province of Ontario in Canada decided not to use AASHTO Standard Specification for Highway Bridges and started to develop its own bridge design code. It also decided to base its specification on probabilistic limit states. In 1979 the first edition of the Ontario Highway Bridge Design Code (OHBDC) was released to the design community as North AmericaÂ’s first calibrated, reliability based limit state specification. In 1983, the second edition of the LRFD Code with Commentary was adopted in Ontario and its use became mandatory. This code was developed based on a reliability index of 3.5 for superstructure elements. The corresponding results of using similar reliability index in geotechnical engineering were not encouraging since the foundation elements generally became larger and the design became more conservative. The third edition of the Ontario Bridge Code with Commentary was adopted in 1992, and its use yields more reasonable design of

PAGE 25

5foundations but still more conservative than the previous AASHTO-based designs using ASD method. Load and Resistance Factor Design (LRFD) was adopted by the American Association of State Highway and Transportation Officials (AASHTO) as an alternative method for the design of bridge superstructures in the early 1970's. At that time, allowable stress design was the only method available in AASHTO for the design of the bridge foundations. In 1987 AASHTO initiated a research program, administered by the National Cooperative Highway Research Program to develop LRFD method for Bridge Foundations (NCHRP 24-4), and concluded with a report NCHRP 343 (Barker, et al., 1991) "Manuals for the Design of Bridge Foundations". This research provided the basis for development of Section 10-Foundations and Section 11-Abutments, Piers and Walls in the 1994 AASHTO LRFD Specification. The research used a combination of calibration by fitting to ASD, and reliability theory. When reliability theory was used, they used First Order Second Moment (FOSM) method for preliminary analyses and First Order Reliability Method (FORM) for final analyses. The primary source of statistical data was from load test results provided by Reese and OÂ’Neill (1988) and Horvath and Kenney (1979), for a total of 76 load test case histories. For piles in clay, the primary source of statistical data was from Sidi (1986). The number of pile load tests was not specifically reported, but was described as numerous. Th e specific source of statistical data for piles in sand, at least with regard to model error, was reported as from Robertson, et al. (1988) and Horvitz et al. (1981) load test data for the CPT method. For the Meyerhof SPT method in sand, Barker, et al. considered the bias and COV of the SPT test to be adequate for the development of model error statistics for this method. The resistance factor for the driven piles and drilled shafts from NCHRP 343 report are summarized in table 2.1 and 2.2

PAGE 26

6In 1997 the Florida Department of Transportation (FDOT) developed LRFD Code for their bridge design to deal with problems that they encountered in practice such as the unique characteristics of Florida geologysoft limestone formation, lime rock backfi1l materials which were widely used in south Floridaand the FDOT design methods of driven piles and drilled shafts developed through the FDOT research projects were not considered in the NCHRP 24-4 research project in developing the Resistant Factors They performed calibrations of their current ASD practice to the LRFD format usiTO load combinations and load factors. The reliability index was calculated for the safety factor used in their ASD practice, and a target reliability index was chosen. The resis tance factors were then calibrated for the target reliability index. This document makes an important contribution since it represents the thoughts of a progressive geotechnical organization in a transportation agency and it deals with their response to problems they saw with the LRFD Bridge Code. The result from NCHRP report are summarized in table 2.3, 2.4 and 2.5. Withiam et al. (1998) authored a manual titled ‘LRFD for Highway Bridge Substructures’ published by the Federal Highway Administration (FHWA). Using this manual, FHWA offered a National Highway Institute (NHI) training course too many of the state DOT’s in an effort to implement LRFD for foundation design. Kyung Jun Kim et al. (2002) developed the resistance factors for the design of driven piles in North Carolina. The resistance factors were developed for the different static pile capacity analysis methods, for the different pile types, and for the unique geologic coastal and piedmont regions of the state. These factors were developed within the framework of reliability theory utilizing the Pile Driving Analyzer test and static load test data embodying the uncertainties associated with the capacity prediction model, the pile type and geometry, and the soil parameters. The form of probability distribution function describing the pile capacity is studied, and the

PAGE 27

7associated parameters are quantified. The first order reliability method (FORM) was used to evaluate the reliability index of the current design methods and to select the target reliability index, which was then used to develop the resistance factors. Paikowsky et al. (2004) presented calibration resistance factor on deep foundations, published as NCHRP Report 507 for the development of LRFD for bridge foundation design, which became the basis for the 2007 AASHTO bridge design specification. This report gathered an extensive database of load test results for driven piles and drilled shaft and grouped the data in the pile load test database by soil type, resistance prediction method, the type of construction technique used and pile type to develop the statistics needed for the reliability analyses they conducted. Paikowsky, et al. (2004) treated the loads and the resistance as the random variables. They evaluated the distribution of the data, comparing the probability density graphs for the actual data to the theoretical normal and lognormal distributions, to choose which distribution function to use to characterize the data. In most cases, they found that the resistance data was lognormally distributed. Paikowsky, et al. (2004) fully relied upon the results obtained from reliability theory to determine resistance factors, though calibration by fitting to ASD was also checked. For reliability theory, they relied upon the results from the advanced reliability methods (i.e., Hasofer and Lind, 1974), which they termed “First Order Reliability Method (FORM).” While they compared the results from FORM to MVFOSM calibration results, they relied on the FORM results. In 2004, the AASHTO-LRFD Oversight Committee conducted a survey among the State Departments of Transportation (DOTs) to monitor the degree of implementation of the LRFD approach for bridge substructure design (Moore, 2004), with a follow-up survey in 2005. The committee found that 12 states had fully

PAGE 28

8implemented the LRFD method for foundation design in 2004 and increased to 16 in 2005. Nien-Yin Chang el al. (2006) sent a questionnaire to all state DOTs as part of the development of the LRFD strategic plan for foundation design practice in Colorado. Only 28 DOTs responded to the questionnaire, and revealed that less than 22% of the respondents had either implemented or began implementation of LRFD for bridge foundations, while the remaining 78% had not even attempted the LRFD implementation. In 2007, the AASHTO-LRFD Oversight Committee updated the LRFD implementation survey in their progress report (Moore, 2007), which indicated that 44 states would have fully implemented the LRFD approach for all new bridges by the FHWA mandated deadline of October 1, 2007. In 2008 the Iowa State University conducted the survey the current extent of LRFD implementation in the design of bridge foundations in the United States. Among the DOTs who responded as using the LRFD method for foundation design, 46% are using regionally calibrated resistance factors based on SLT database and reliability theory, 23% are using regionally calibrated factors by fitting to ASD, while 31% are using the geotechnical resistance factors as specified in the current AASHTO Specifications (2007) In 2008 LADOT conducted the research to find the resistance factor for driven piles in soft Louisiana soils. Forty two precast prestressed concrete piles with different lengths and sizes that were loaded to failure were investigated in this study. Statistical analyses were conducted to evaluate the different pile design methods, including the static design method ( -method and Nordlund method), three different direct CPT design methods: Schmertmann method, De Ruiter and Beringen method,

PAGE 29

9and Bustamante and Gianeselli (LCPC) method, and dynamic measurement with signal matching analysis (CAPWAP) method. In addition, reliability analyses based on first order second moment (FOSM) method were conducted to calibrate the resistance factors ( ) for the different design methods needed in the LRFD design of single piles. Figure 1.1 LRFD implementation for bridge foundations (after 2008 Iowa State survey) In 2012 IDOT conducted research to calibrate regionally LRFD resistance factors for bridge pile foundations in Iowa based on reliability theory, taking into consideration the current local practices. The resistance factors were developed for general and IowaÂ’s static analysis methods used for the design of pile foundations as well as for dynamic analysis methods and dynamic formulas used for construction control. The report showed a substantial gain in the factored capacity compared to the 2008 AASHTO-LRFD recommendations and gave comprehensive design tables and charts for implementation of the LRFD approach, ensuring uniform reliability and consistency in the design and construction processes of bridge pile foundations

PAGE 30

102.2 Review of the Recommended Load Factors for Piles Designs Table 2.1 Resistance Factor for Driven Piles for Estimating the Axial Geotechnical Pile Capacity Using Reliability-Based Calibration (modified after Barker, et al., 1991). Pile Length (m) T Values by Method of Axial Pile Capacity Estimation CPT SPT Type I Type II Type I Type II 10 2.0 0.78 0.92 0.79 0.53 0.65 0.59 0.48 30 2.0 0.84 0.96 0.79 0.55 0.71 0.62 0.51 10 2.5 0.65 0.69 0.68 0.41 0.56 0.48 0.36 30 2.5 0.71 0.73 0.68 0.44 0.62 0.51 0.38 Average 0.78 0.74 0.56 0.55 0.43 Selected 0.70 0.50 0.55 0.55 0.45 Type I refers to soils with Su < 50 kPa, Type II refers to soils with Su > 50 kPa Table 2.2 Resistance Factors for Drilled Shafts for Estimating the Ultimate Axial Shaft Capacity Using Reliability-Based Calibration (Modified Barker, et al., 1991b) Shaft Length (m) T Value by Method of Axial Shaft Capacity Estimation Reese & O'Neill (1988) Shafts in Clay Horvath & Kenney (1979) Shafts in Rock Carter & Kulhawy (1987) Shafts in Rock 3 2.5 --0.70 0.49 10 2.5 0.72 0.73 0.56 30 2.5 0.80 ----3 3.0 --0.56 0.37 10 3.0 0.72 0.59 0.43 30 3.0 0.71 ----Average 0.74 0.65 0.46 Selected 0.65 0.65 0.55

PAGE 31

11 Table 2.3 Reliability Index of Case Method Prediction (After McVay et al., 1998) QD/QL COVR R COVQDD COVQL L ASD FS EOD BOR EODBOREODBOR 1 3.04 2.40 0.3250.3181.3551 .0520.1 1.050.18 1.15 2.5 2 3.08 2.44 0.3250.3181.3551.052 0.1 1.050.18 1.15 2.5 3 3.10 2.46 0.3250.3181.3551.052 0.1 1.050.18 1.15 2.5 4 3.11 2.47 0.3250.3181.3551.052 0.1 1.050.18 1.15 2.5 5 3.12 2.48 0.3250.3181.3551.052 0.1 1.050.18 1.15 2.5 6 3.13 2.49 0.3250.3181.3551.052 0.1 1.050.18 1.15 2.5 7 3.13 2.49 0.3250.3181.3551.052 0.1 1.050.18 1.15 2.5 8 3.13 2.49 0.3250.3181.3551.052 0.1 1.050.18 1.15 2.5 9 3.14 2.50 0.3250.3181.3551.052 0.1 1.050.18 1.15 2.5 Table 2.4 Resistance Factor for Case Method Prediction (After McVay et al., 1998) QD/DL Resistance Factor EOD BOR =2.0 =2.5 =3.0 =2.0 =2.5 =3.0 1 0.85 0.70 0.58 0.66 0.55 0.46 2 0.81 0.67 0.56 0.64 0.53 0.44 3 0.79 0.66 0.54 0.62 0.52 0.43 4 0.78 0.65 0.54 0.61 0.51 0.42 5 0.77 0.64 0.53 0.61 0.51 0.42 6 0.77 0.64 0.53 0.60 0.50 0.42 7 0.77 0.63 0.53 0.60 0.50 0.41 8 0.76 0.63 0.52 0.60 0.50 0.41 9 0.76 0.63 0.52 0.60 0.50 0.41

PAGE 32

12 Table 2.5 Comparison of Resistance Factors for Geotechnical Strength Limit State in Axial Loaded Piles and Drilled Shafts (After McVay et al., 1998) Method/Soil/Condition Resistance Factor AASHTO (1994) FDOT RESEARCH Reliability Fitting Ultimate Bearing Resistance of Single Piles Skin Friction and End Bearing: Sand SPT-method 0.45 0.65 0.70 Skin Friction and End Bearing All Soils Load Test Pile Driving Analyzer 0.80 0.75 0.70 0.70 0.65 0.55 Drilled Shaft All Soils 0.45-0.65 0.50-0.65 0.55 Table 2.6 Summary of Calibration Results for Bearing of Driven Piles, Dynamic Analyses Condition /Resistance Determination Method ASD FS Current Practice from Calibration by fitting to ASD (Current Practice) Reliability Theory, NCHRP 507 AASHTO 2007 Driving criteria established by static load test(s), production pile quality control by calibrated wave equation, or minimum driving resistance combined with minimum delivered hammer energy from the load test(s). For the last case, the hammer used for the test pile(s) shall be used for the production piles. 2.0 0.69 See Table 2.9 Values in Table 2.7 (0.55 to 0.90) Driving criteria established by dynamic test with signal matching at BOR, of at least one production pile per pier, but no less than the number of tests per site provided in Table 2.8 Production pile quality control of remaining piles by calibrated wave equation. 2.25 0.61 0.65 0.65 Wave equation analysis at EOD without pile dynamic measurements or load test. 2.75 0.5 0.39 0.40 FHWA-Modified Gates pile formula at EOD. 3.5 0.39 0.38 0.40 Engineering News Record dynamic pile formula at EOD, with built in FS of 6 removed from formula. 3.5 0.39 0.26 0.10

PAGE 33

13 Table 2.7 Relationship between Numbers of Load Tests Conducted per Site and (after Paikowsky, et al., 2004) Number of Load Tests per Site Resistance Factor, Site Variability Low Medium High 1 0.80 0.70 0.55 2 0.90 0.75 0.65 3 0.90 0.85 0.75 4 0.90 0.90 0.80 Table 2.8 Number of Dynamic Tests with Signal Matching Analysis to be Conducted During Production Pile Driving (after Paikowsky, et al., 2004) Site Variability Low Medium High Number of Piles Located within Site Number of Piles with Dynamic Tests and Signal Matching Analysis Required (BOR) 15 3 4 6 16-25 3 5 8 26-50 4 6 9 51-100 4 7 10 101-500 4 7 12 > 500 4 7 12

PAGE 34

14 Table 2.9 Summary of Resistance Calibration Results for Driven Piles, Static Analyses. Soil type Design Method Pile Type ASD FS Used NCHRP 343 Calibration by fitting To ASD NCHRP 343 Reliability Theory NCHRP 343 AASHTO 96/2004 Reliability Theory, NCHRP 507 AASHTO 2007 Clay -Tomlinson method concrete 2.5 0.61 0.700.900.7 0.36 0.35 pipe 0.25 H-Pile 0.40 -method concrete 2.5 0.61 0.49-0.620.55 0.48 0.40 pipe 0.24 H-Pile 0.37 -method concrete 2.5 0.61 0.68 0.5 0.32 0.25 pipe 0.14 H-Pile 0.19 Sand Nordlund/ Thurman concrete 0.42 0.45 pipe 0.56 H-Pile 0.46 Meyerhof SPT concrete 4.0 0.38 0.46-0.490.45 0.19 0.30 pipe 0.31 H-Pile 0.42 Schmertn CPT All piles 2.5 0.61 0.54-0.570.55 0.51 0.50 Rock Canadian Geo. Society 1985 All piles 3.0 0.4 0.45

PAGE 35

15 Table 2.10 Summary of Calibration Results for Drilled Shaft, Static Analyses Soil type Condition and Location Design Method ASD FS Used NCHRP 343 Calibration by fitting to ASD NCHRP 343 Reliability Theory NCHRP 343 AASHTO 96/98/04 from Reliability Theory, Recommended in N CHRP 507 AASHTO 2007 Clay Side Resistance method (Reese and O'Neill 1988) 2.5 0.612 0.72 0.65 0.24 to 0.28 recommended 0.30 0.45 Base Resistance Total Stress (Reese and O'Neill 1988) 2.75 0.55 0.55 0.24 to 0.28 recommended 0.30 0.40 Sand Side Resistance method (Reese and O'Neill 1988) 2.5 0.61 0.25 to 0.73 recommended 0.40 0.55 Base Resistance (Reese and O'Neill 1988) 2.75 0.55 0.25 to 0.73 recommended 0.40 0.50 Mixed Soil Side and Base Resistance sand/clay Reese and O'Neill 1988 0.52 to 0.69 recommended 0.50 to 0.70 0.55 for side, 0.50 for base IGM's O'Neill and Reese 1999 0.57 to 0.65 0.60 for side, 0.55 for base Rock Side Resistance Carter and Kulhawy (1988) 2.5 0.61 0.43 0.55 0.45 to 0.49 0.50 Horvath and Kenney (1979) 2.5 0.61 0.73 0.65 0.55 Base Resistance Canadian Geotechnical Society (1985) 3.0 0.51 0.50 0.50 Pressure Method (Canadian Geotechnical Society 1985) 3.0 0.51 0.50 0.50 Bearing Block failure Clay 2.3 0.67 0.65 0.55

PAGE 36

16 Table 2.11: Summary of the reported LRFD resistance factors, sorted according to different pile types, static analysis methods, and soil types (after 2008 Iowa State survey) State Pile Type Static analysis methods Resistance Factors Cohesive Cohesionless Sand Clay Mixed AK CIDH(1) -method SPT-method 0.45 N/A N/A CA* Steel H-piles CPT-method Nordlund 0.45 0.35 N/A CO CIDH SPT-method SPT-method 0.1 0.9 0.5 CT* Prestressed Iowa blue book Iowa blue book 0.65 0.65 0.65 FL* CIDH CPT-method Nordlund 0.65 0.65 0.65 HI Steel H-piles -method -method 0.65 0.65 0.65 IA* Steel H-piles Iowa blue book Iowa blue book 0.725 0.725 0.725 ID* Steel H-piles -method SPT-method 0.45 0.45 0.45 IL Openpipe -method Nordlund 0.7 0.7 0.7 MA* Open end pipe Iowa blue book Nordlund 0.65 0.65 0.65 NH* Closed-pipe -method Nordlund 0.45 0.35 N/A NJ* CIDH -method Nordlund 0.45 0.35 0.4 NM* Steel H-piles -method Nordlund 0.35 0.45 N/A NV Steel H-piles -method Nordlund 0.35 0.25 N/A PA* Steel H-piles -method Nordlund 0.5 0.5 0.5 PA Steel H-piles -method SPT-method 0.45 0.55 0.55 UT* Steel H-piles -method Nordlund 0.5 0.7 0.7 WA Steel H-piles Iowa blue book Iowa blue book 0.5 0.5 0.5 WY Steel H-piles CPT-method Nordlund 0.45 0.35 0.35 *State DOTs having pile static load test database; (1) CIDH: Cast-In-Drilled-Hole Shafts; 2.3 ASD versus LRFD According to surveying from Paikowsky et al. (2004) the averaging the responses for driven piles and drilled shafts, about 90% of the respondents used ASD,

PAGE 37

1735% used AASHTO Load Factor Design (LFD), and 28% used AASHTO Load and Resistance Factors Design (LRFD). 2.3.1 Allowable Stress Design (ASD) The design of deep foundations has traditionally been based on the allowable stress design (ASD), which involves applying a factor of safety (FS) to account for uncertainties in the applied loads and soil resistance. The magnitude of FS depends on the importance of the structure, the conf idence level of the material properties, and design methodology. From NCHRP 507 report, among the respondents using ASD to evaluate capacity, 95% used a global safety factor ranging from 2.0 to 3.0, depending on construction control and 5% used partial safety factors of 1.5 to 2.0 for side friction (3.0 for drilled shafts) and 3.0 for end bearing (2.0 to 3.0 for drilled shafts). For the strength limit state in ASD, the estimated loads (or stresses) Q i are restricted as shown bellow: n R FS Q i (2.1) where: Rn = Nominal resistance Fs = Factor of safety Qi = Load effect (dead, live and environmental loads). For the Service Limit State, un-factored loads are used to calculate deformations, and these deformations are compared to the maximum tolerable values. The advantage of ASD is its simplicity but the shortcomings of this approach are: Does not account for variability of loads and resistances. Does not embody a reasonable measure of strength The FS is applied only to resistance and selection of a FS is subjective, and does not provide a measure of reliability in terms of probability of failure.

PAGE 38

18 Figure 2.1 Factor of Safety Table 2.12.Factor of Safety on Ultimate Axial Geotechnical Capacity Based on Level of Construction Control (AASHTO, 1997). Basis for Design and Type of Construction Control Increasing Design/Construction Control Subsurface Exploration X X X X X Static Calculation X X X X X Dynamic Formula X Wave Equation X X X X CAPWAP Analysis X X Static Load Test X X Factor of Safety (FS) 3.50 2.75 2.25 2.0 1.90 Table 2.13 Factors of Safety on Ultimate Geotechnical Capacity Based on Design Life and Level of Construction Control (Reese and O'Neill, 1988) Design Life (Type of Structure) Required Minimum Factor of Safety (FS)(1) Poor Quality Control Normal Quality Control Good Quality Control 200 to 500 years (large bridges & monumental structures) 3.5 2.3 1.7 75 to 100 years (typical rail & road bridges & large buildings) 2.8 1.9 1.5 25 to 50 years (industrial buildings) 2.3 1.7 1.4 (1) Assumes good-quality geotechnical information and reliable model.

PAGE 39

192.3.2 Load and Resistance Factor Design (LRFD) The LRFD specifications as approved by AASHTO (AASHTO, 1994/2007) recommend the use of load factors to account for uncertainty in the loads, and resistance factors for the uncertainty in the material resistances. This safety criterion can be written as: Rn i Qi (2.2) where: Rn = Nominal resistance, = Load modifier to account for effects of ductility, redundancy and operational importance. The value of usually ranges from 0.95 to 1.00. In this research, = 1.00 is used Qi = Load effect i = Load factor. Based on current AASHTO recommendation, the following factors are used D = 1.25 for dead load L = 1.75 for live load = Resistance factor--Usually ranges from 0.25 to 0.8. For driven piles and drilled shaft, we have Rn 1.25 QD + 1.75 QL (2.3) If different resistance factors are used for tip and side resistance, then sRs + pRp 1.25 QD + 1.75 QL (2.4) where: Rs = Side resistance Rp = Tip resistance s; p= Resistance factors for side and tip resistance, respectively.

PAGE 40

20 Figure 2.2 LRFD Design Approach The LRFD Approach Has The Following Advantages: It accounts for variability in both resistance and load. It provides more consistent levels of safety in the superstructure and substructure as both are designed using the same loads for known probabilities of failure. Using load and resistance factors provided in the code, no complex probability and statistical analysis is required. The Limitations of The LRFD Approach Include: Requires a change in design procedures for engineers accustomed to ASD. Resistance factors vary with design methods and are not constant. Rerequires the availability of statistical data and probabilistic design algorithms.

PAGE 41

213. Axial Pile Capacity Prediction Methods 3.1. Axial Loading Capacity of a Driven Pile The ultimate resistance of a pile, Rult (or Rn-Norminal resistance), is given below: Rult = RP + Rs (3.1) where: pile tip resistance Rp = qp Ap, pile side resistance Rs = qsi zi a, qp = unit tip resistance. qs = unit side resistance, which is regarded as constant along segment zi of the pile. a= perimeter of the pileÂ’s shaft. Ap = area of the tip of the pile. According to surveying from Iowa State (2008), the most common static analysis method used for piles in cohesive soils is the -method at 42% (Tomlinson, 1957; API, 1974). About 32% respondents claim to be using the -method (Esrig and Kirby, 1979), 11% use the CPT method (Nottingham and Schmertmann, 1988), and 9% follow the -method (US Army Corps of Engineers, 1992). The most popular static analysis method for piles in cohesionless soils is the NordlundÂ’s method at 63% (Nordlund and Thurman, 1963). About 40% of the respondents use the SPT method (Meyerhof, 1976/1981). Semi-empirical Methods -method Total stress static method of analysis for estimating the ultimate unit side resistance, qs, as a function of the undrained shear strength, Su, of cohesive soil -method Effective stress method of analysis for estimating qs in soil as a function of the effective overburden pressure -method Effective stress method of analysis for estimating qs in soil as a function of the passive effective lateral earth pressure In-Situ Methods

PAGE 42

22SPT-method developed by Meyerhof (1976/1981) which correlates qs and qp with the SPT blow count for cohesionless soils and by Schmertmann for all soil types and rock CPT-method developed by Nottingham and Schmertmann (1975) which correlates qs and qp with CPT results for all soil type soils Methods Based on Field Testing of Pile PDA Method A method for estimating total load capacity based on monitored performance of driven piles and wave equation analyses Static Load Test A method for estimating total load capacity based on tests (ASTM, 1996) representative of pile, load and subsurface conditions expected for the prototype piles 3.1.1. Side Resistance in Cohesive Soil In cohesive soil, the side resistance of a pile is usually predicted using the undrained shear strength, Su, or the over-consolidation ratio, OCR. This section reviews different methods predicting the side resistance in cohesive soil. 3.1.1.1. -Tomlinson Method The -Tomlinson method (Tomlinson, 1979/1995), based on total stress analysis, is used to relate the adhesion between the pile and clay to the undrained shear strength of the clay, Su and has been widely used especially in stiff clays. This method accounts for different pile materials (i.e., concrete, timber, or steel piles) and provides reasonable capacity estimates for large displacement piles. The method relies on the -values, which in turn depend on the bearing embedment in stiff clay and the width of the pile. The ultimate unit side resistance may be taken as: qs = Su (3.2) where:

PAGE 43

23 = adhesion factor (Fig 3.1), which depends on the bearing embedment in stiff clay and the width of the pile. Su = average undrained shear strength of the soil in the segment of interest. Figure 3.1a Adhesion values for piles in cohesive soils (after Tomlinson, 1979)

PAGE 44

24 Figure 3.1b factors; Tomlinson method (Tomlinson, 1995) 3.1.1.2. -API Revised Method (1987) The -method (API-1974) is a semi-empirical, total stress approach for calculating the pile skin friction using the soil undrained shear strength (Su). This method was mainly developed for cohesive or clayey soils. It has been used for many years and has proven to provide reasonable design capacities for displacement and

PAGE 45

25non-displacement piles. The -API method is similar to the -Tomlinson method, and the ultimate unit side resistance, in the same unit as Su, is taken as: qs = Su (3.3) where: = 0.5 -0.5 if 1.0 = 0.5 -0.25 if >1.0, and max = 1.0 = Su / v', and vÂ’ = the vertical effective overburden pressure at the depth of interest. Figure 3.2 Comparison between -factors calculated form API 1986 and 1987 (Reese, 2006) The -API method is a mixed method between total stress analysis (Su) and effective stress analysis ( vÂ’). It is much easier to use than the Tomlinson method. The -API method has simple equations and no issue with considering other layers that lie above the bearing layer a thus it is easy to be automated. 3.1.1.3. -Burland Method (1973) The -method (Burland, 1973) is a semi-empirical approach based on effective stresses calculated from the vertical effective overburden stress. The method was

PAGE 46

26developed to model the long-term drained shear strength. It can be used for different soil types such as clay, silt, sand, or gravel, and can even be used for layered soil profiles. According to Fellenius (1991), the beta factor ( ) is affected by the soil type, mineralogy, density, strength, pile insulation technique, and other factors. The values of range between 0.23 and 0.8, but cannot exceed 2 for over-consolidated soils as suggested by Esrig and Kirby (1979). The -method has been found to work best for piles in normally consolidated and lightly over-consolidated soils. However, the method tends to overestimate the pile capacity for heavily over-consolidated soils (AASHTO-interim 2006). This method, suggested by Burland (1973), makes the following assumptions: Soil remolding adjacent to the pile during driving reduces the effective stress cohesion intercept on a MorhrÂ’s circle to zero The effective stress acting on the pile surface after dissipation of excess pore pressures generated by volume displacement is at least equal to the horizontal effective stress (K0) prior to the pile installation The major shear distortion during pile loading is confined to relatively thin zone around the pile shaft, and drainage of this thin zone either occurs rapidly loading or has already occurred in the delay between the driving and loading. With these assumptions Burland (1973) develop the simple equation: qs = K (tan ) vÂ’ (3.4) where: K = horizontal stress ratio = adhesion angle between soil and piles vÂ’ = vertical effective stress Taking = K (tan ), the equation can be rewritten as: qs = vÂ’ (3.5) where: = factor depended on the over-consolidation ratio OCR.

PAGE 47

27 Figure 3.3 factors (AASHTO 2007) 3.1.1.4. -Method The method, proposed by Vijayvergiya and Focht (1972), is an empirical approach based on the assumption that the displacement of soil caused by pile driving results in a passive lateral pressure at any depth and that the unit skin resistance is: qs = ( Â’+2Su) (3.6) Where: Â’+2Su = Passive lateral earth pressure Â’ = Effective vertical stress at midpoint of soil layer under consideration Su = Undrained shear strength of soil = an empirical coefficient, which can be obtained form Figure 3.4, is pile lengthdependent and applies over the total pile embedment depth. The value of was empirically determined by examining the results attained from various load tests that were conducted on steel pipe piles in cohesive soils, and thus, this method is more accurate if used for same soil and pile conditions.

PAGE 48

28 Figure 3.4 Coefficient for driven pile piles after Vijayvergiya and Focht (1972) 3.1.2. Tip Resistance in Cohesive Soil OÂ’Neill and Reese (1999) have developed a bearing capacity factor (Nc) to calculate the end bearing resistance of deep foundations in cohesive soil based on the soil undrained shear strength as follows: qp = Nc Su (3.7) where: qp = Net unit end bearing resistance Su = average undrained shear strength in the range from 2B to 3.5B below the tip, and B is the diameter of the pile. B = Pile diameter

PAGE 49

293.1.3 Side Resistance in Cohesionless Soil In cohesionless soil, the side resistance of a pile is usually predicted using the adhesion angle, or the relative density, Dr. The adhesion angle, is related to the internal friction angle of the soil, through the volume displacement, the material, the shape of the pile and the roughness of the pile. This section reviews different methods predicting the side resistance in cohesionless soil. 3.1.3.1 -Bushan Method (1982) Bushan (1982) suggests the unit side resistance for the large-displacement piles (close end piles, concrete piles) is related to effective stress as: qs = vÂ’ (3.8) where: = 0.18 + 0.65 Dr, and Dr = Relative density in decimals 3.1.3.2 Nordlund Method The Nordlund method (Nordlund and Thurman, 1963) is a semi-empirical approach based on field observations from pile static load tests. It accounts for different pile shapes (i.e., constant diameter or tapered piles), as well as pile materials and types, including steel H-piles, closed and open-ended pipe piles, and timber piles, Monotubes and Raymond step taper piles. According to Hannigan et al. (2005), this method is preferred in cohesionless soils, such as sandy and gravelly soils, as the pile load tests used to develop the NordlundsÂ’ design curves were conducted in sandy soils. Moreover, the load tests were conducted for piles with diameters (widths) less than 500mm (19.6 inches), which meant that the method over predicted the capacity for piles with widths larger than 500mm (19.6 inches). Nordlund Method equation for computing the ultimate capacity of pile is as follow: cos ) sin( v F sC K q (3.9)

PAGE 50

30where: K = coefficient of lateral earth pressure at the depth of interest. = friction angle between pile and soil. For non-taper piles: CF = correction factor for K when CF 0.6 to 1.0. vÂ’ = effective over-burden pressure at the center of the layer of interest, and = angle of the pile taper from vertical. For a uniform cross section pile ( = 0), the Nordlund equation becomes 'sinsFvqKC (3.10) Figure 3.5 Design curve for evaluating K when = 25(after Nordlund, 1979)

PAGE 51

31 Figure 3.6 Design curve for evaluating K when = 30 (after Nordlund, 1979) Figure 3.7 Design curve for evaluating K when = 35(after Nordlund, 1979)

PAGE 52

32 Figure3.8 Design curve for evaluating K when = 40 (after Nordlund, 1979) / a. Pipe piles d. Raymond step taper piles b. Timber piles e. Raymond uniform taper piles c. Concrete piles f. H piles g. Tapered portion of monotube piles Figure 3.9 Relation / and pile displacement (after Nordlund, 1979)

PAGE 53

33 Figure3.10 Correction factor (CF) for K (after Nordlund, 1979) 3.1.4. Tip Resistance in Cohesionless Soil--Thurman Method From bearing capacity theory, Thurman related the unit tip resistance in sand with effective stress as: qp = t NÂ’q vÂ’ (3.12) where: t = dimensionless factor NÂ’q =bearing capacity factor vÂ’ = effective overburden pressure at the pile tip. vÂ’ is limited to 150 kPa (tip resistance reaches a limiting value at some distance below the ground), qp also has a limit as shown in NÂ’q is very high at high internal friction angles (NÂ’q>250 when >42o). Therefore, some software, e.g. DRIVEN (FHWA, 1998) recommends the limit of only 36o for

PAGE 54

34 Figure 3.11 T coefficient (FHWA--DRIVEN, 1998) Figure 3.12 Bearing capacity factor NqÂ’(FHWA--DRIVEN, 1998)

PAGE 55

35 Figure 3.13 Relationship between Maximum Unit Pile Toe Resistance qL (kPa) and Friction Angle for Cohesionless Soils (Meyerhof, 1976/1981). 3.1.5. Empirical Methods 3.1.5.1 Meyerhof Method for Piles in Cohesionless Soil The SPT-Meyerhof method (Meyerhof, 1976/1981) is an empirical approach for calculating the pile capacity based on SPT tests conducted in cohesionless soils such as sands and non-plastic silts. According to the FHWA-LRFD reference manual (2007), the SPT method should be only used for preliminary estimates of the pile capacity, not for final design recommendations. This is due to the non-reproducibility of SPT N-values and simplified assumptions contained in the method. Meyerhof (1976) reported different correlations and provided some limitations on shaft and tip resistance according to the pile type (displacement or non-displacement pile). Meyerhof original paper (Meyerhof, 1976/1981) qs = k N60 (kPa) 100 kPa (3.13)

PAGE 56

36 qp = 0.4 N60t D/B (bar) (3.14) qp 4 N60t in sand and qp 3 N60t in silt. ASHTO provision (AASHTO 1996/2007) qs = k1 N60 (kPa) 100 kPa (3.15) qp = 0.38 N60t' D/B (bar) (3.16) qp 4 N60t' in sand and qp 3 N60t' in silt. Bowles (Bowles, 1996) qs = kN'60 (kPa) 100 kPa (3.17) qp = 0.4 N60(8+3B)' D/B 3.8 N60(8+3B)' (bar). (3.18) U.S. Army CORPS of Engineers, 1992: qp = 0.38 N60(8+3B) D/B 3.8 N60(8+3B) (3.19) where: k = 2 or 1.9 if use AASHTO for c oncrete piles and close end pipe piles k = 1 or 0.96 if use AASHTO for H piles, open end pipe piles N60 = uncorrected blow count and N'60 = corrected blow count N60t = uncorrected blow count near the pile tip N60t' = corrected blow count near the pile tip N60(8+3B) = uncorrected N in the depth of 8B above tip and 3B below tip N60(8+3B)' = corrected N in the depth of 8B above tip and 3B below tip D = the embedment of the pile in cohesionless soil B = the diameter or width of the pile cross-section 3.1.5.2 Schmertmann Method for SPT The SPT-Schmertmann method (Lai and Graham, 1995) is an empirical approach based on SPT N-values, which is applicable in sand, clay, and mixed soils. This method is conservative, as it ignores the shaft resistance when the N-value is less than 5 blows/ft, and also limits the N-value to 60 blows/ft. The correlations used for calculating the skin friction for different piles and soil types are presented in Table 3.1. It is clear from Table 3.1 that all the correlations depend on the uncorrected SPT

PAGE 57

37N-values. The procedure of the Schmertmann method for SPT described below. First of all, the SPT blow count N is adjusted as shown below: If N < 5 then N = 0 (ignores side resistance in weak soil) If N 60 then N = 60 (limit on side resistance) Table 3.1 Side resistance-Schmertmann method for SPT TyDescription Ultimate unit side resistance qs(KPa) pe Concrete Steel H piles pipe piles 1 Plastic clay 0.0478N(110-N) 0.0359N(110-N) 18.58+20.93lnN 2 Clay-silt-sand mixtures Very silty sand, silts 0.0418N(110-N) -2.174+3.16N0.044N2 +2.36x10-4 N3 23.27+14.08lnN 3 Clean sands 1.82N 1.11N 5.55+14.56lnN 4 Soft limestone, very shelly sand 0.96N 0.73N 1.72+12.83lnN At any point A, the unit tip resistance is qp@A = 2 A below 3.5B q of average weighted A above 8B q of average weightedp p The weighted average of qp is based on values calculated from Table (3.2) Table 3.2 Tip resistance-Schmertmann method for SPT Type Description Ultimate unit end bearing qp (KPa) Concrete and H piles Pipe piles 1 Plastic clay 67 N 0.46 N 2 Clay-silt-sand mixtures Very silty sand, silts 153 N 92 N 3 Clean sands 306 N 126 N 4 Soft limestone, very shelly sand 345 N 184 N For concrete and H piles, the mobilized tip resistance is expected to be one third (1/3) of the ultimate tip resistance. For pipe piles, the mobilized tip resistance is expected

PAGE 58

38to be one half (1/2) of the ultimate tip resistance. The ultimate resistance is only fully mobilized when the bearing embedment is sufficient, i.e. DA = DC where: Da = actual bearing embedment, and Dc = critical bearing embedment Table 3.3 Critical depth ratio--Schmertmann method for SPT Soil Type Description Critical depth ratio (DC/B) 1 Plastic clay 2 2 Clay-silt-sand mixtures Very silty sand, silts 4 3 Clean sands N = 12 or less N = 30 or less N greater than 30 6 9 12 4 Soft limestone, very shelly sand 6 If DA < DC and the bearing layer is stronger than the overlying layer, then: ()a pLCTLC cD qqqq D (3.20) () 2ioa iLCTLC TcfD fqqq qD (3.21) If DA > DC and the bearing layer is stronger than the overlying layer, then: 0.5()ioLCD iLCDLCCDLC CDf fqqq q (3.22) where: qp = Corrected tip resistance qLC = Unit tip resistance at layer change qT = Uncorrected unit tip resistance at pile tip fi = Corrected side resistance in the bearing layer fio= Uncorrected side resistance in the bearing layer fiLC-D = Corrected side resistance between the top of the bearing layer and the critical depth fioLC-D= uncorrected side resistance in the bearing layer from the top of the bearing layer to the critical depth

PAGE 59

39qCD = uncorrected unit tip resistance at D Figure 3.14 Corrected side and tip resistance 3.1.5.3 Nottingham and Schmertmann Method for CPT Nottingham and Schmertmann (1975) developed an empirical approach for calculating the pile capacity based on the CPT, which is applied to cohesive and cohesionless soils. Correlations to CPT provide accurate pile design capacities, especially with driven piles. Moreover, it provides continuous readings for the soil profile and can take the effect of different soil layers into consideration. The cone penetration resistance, qc, is used to determine the tip resistance of piles and sleeve friction, fs, is used to determine the skin friction resistance. The ultimate tip resistance of piles may be taken as: qp = 22 1 c cq q (3.23) where: qc1 = the average qc over a distance of yD below the tip (path a-b-c); sum qc values in both the downward (path a-b) and upward (path b-c) directions; use actual qc value along path a-b and the minimum path rule along path b-c; compute qc1 for y value from 0.7 to 4.0 and use the minimum qc1 value obtained

PAGE 60

40qc2= average qc over distance of 8D above the pile tip (path c-e); use minimum path rule as for path b-c in qc1, computation; ignore any minor “x” peak depression if in sand but include in minimum path if in clay Figure 3.15 Tip resistance computation procedure--Nottingham 1975 Similarly, the nominal side resistance of piles may be taken as: 12, 118NN i sscsisiisisii ii iL RKfahfah D (3.24) Where: Ks,c= correction factor, Kc for clays, Ks for sands from figure (3.16a, 3.16b) Li=depth to middle of length interval at the point consider (mm) Di=pile width or diameter at the point considered (mm)

PAGE 61

41 fsi= unit local sleeve friction resistance at the point considered (MPa) asi=pile perimeter at the point consider (mm) hi= length interval at the point considered (mm) N1= number of interval between the ground surface and a point 8D below the ground surface N2=number of interval between 8D below the ground surface and the tip of the pile For a pile of constant cross-section (nontapered) equation (3.24) can be written as: 12, 118NN s s scisiissii iia R KLfhafh D (3.25) Figure 3.16a Ks ratio in cohesionless

PAGE 62

42 Figure 3.16b Kc ratio in cohesive soil Table 3.5 Methods for calculating axial loading capacity of a driven pile Soil Type Methods Side resistance Tip resistance Parameters required Cohesive Soil -Tomlinson (Tomlinson,1980/1995) qs = Su qp = 9 Su Su -API (Reese et al., 1998) Su in cohesive (AASHTO, 1996/2000) qs = Â’ OCR (US Army Corps of Engineers, 1992) qs = ( Â’+2Su) Su Cohesionless Soil in cohesionless (Bowles, 1996) Â’ Dr Nordlund and Thurman (Hannigan et al., 1995) cos ) sin( F sC K q qp = t NÂ’q Â’ Meyerhof SPT (Meyerhof, 1976/1981) qs = k N qp = 0.4D/BNÂ’ SPT-N value Cohesion/cohe sionless Soil Schmertmann SPT (Lai and Graham, 1995) qs = function(N) qp = fn(N) SPT-N value Schmertmann CPT (McVay and Townsend, 1989) qs = function(fs) qp = fn(qc) qc, fs

PAGE 63

433.2 Axial Loading Capacity of a Drilled Shalf The ultimate resistance of a pile, Rult (or Rn--Norminal resistance), is given below: Rult = RP + Rs (3.26) where: pile tip resistance Rp = qp Ap, pile side resistance Rs = qsi zi a qp = unit tip resistance. qs = unit side resistance, which is regarded as constant along segment zi of the pile. a = perimeter of the pileÂ’s shaft, and Ap = area of the tip of the pile. 3.2.1 Side Resistance in Cohesive Soils 3.2.1.1 FHWA method The following equation gives the method for the evaluation of the skin (side or frictional) resistance of drilled shafts in cohesive soils at depth z: s uqs (3.27) where s q = ultimate skin resistance at depth z uS = undrained shear strength (cohesion) at depth z = empirical adhesion factor depends on undrained cohesion. The values of varies from 0.3 to 1.0 and the following best-fit functional relationship (Eq. 3.28) shows that the values decrease with the increasing undrained shear strength (Kulhawy and Jackson (1989): 0.210.25a u p S (3.28) where a p = atmospheric pressure. In other words, the soft normally consolidated clay has a higher value than the hard overconsolidated clay.

PAGE 64

44OÂ’Neill and Reese (1999) recommended the following equation for the average value of : 0.55 for 1.5u aS p (3.29) and 0.550.11.5u aS p for 1.52.5u aS p (3.30) For the case of 2.5uaSp skin resistance should be calculated as the methods for cohesive intermediate geomaterials (OÂ’Neill and Reese, 1999) The total skin resistance, s Q is equal to the peripheral area of the shaft multiplied by the unit side resistance shown as follows: iii suQDSL (3.31) where D = pile diameter iL = thickness of layer i, where the values of and uS are constants. Figure3.17 Explanation of Portions of Drilled Shaft Not Considered in Computing Side Resistance in Clay (OÂ’Neilll and Reese, 1999)

PAGE 65

45The peripheral areas over which side resistance in clay is computed are show in Figure 3.17. The upper portion of the shaft is excluded for compression to account for soil shrinkage in the zone of seasonal moisture change. The lower portion of shaft is exclusion when the shaft is loaded is compression because downward movement of the base will generate tensile stress in soil that will be relieved by cracking of soil and porewater suction will be relieved by inward movement of ground water. 3.2.2 End Bearing in Cohesive Soils 3.2.2.1 FHWA method The prediction of end bearing capacity of drilled shaft in clays is much less uncertain than is the prediction of skin resistance (Reese et al. 2006). The equation below is used for calculating the net base resistance: ppucQASN (3.32) where p A = area of the base; uS = an average undrained shear strength of the clay calculated over a depth of two time of diameter below the base (Reese et al., 2006); cN = bearing capacity factor usually taken to be 9 when the ratio bLD is 4 or more (Das, 1999). According to OÂ’Neill and Reese (1999), for the straight shaft, the full value of *9cN is obtained when the base movement of about 20% of D If the base movement is unknown, the bearing capacity factor cN can be calculated by (Reese et al., 2006): *1.33ln1crNI (3.33) where r I is the rigidity index of saturated clay under undrained condition: 3 s r uE I S (3.34) where s E is undrained YoungÂ’s modulus. If s E is not measured, cN and r I can be estimated from:

PAGE 66

46 Table 3.6 Values of r I and cN (Reese, et al, 2006) uS 3 s uES cN 24 kPa (500 lb/ft2) 50 6.5 48 kPa (1000 lb/ft2) 150 8.0 96 (2000 lb/ft2) 250-300 9.0 3.2.3 Side Resistance in Cohesionless Soil 3.2.3.1 FHWA method The following equation is used to calculate the ultimate unit skin resistance in sand at depth z: tanszqK (3.35) Where: -K = a parameter that includes the effect of the lateral pressure coefficient and a correlation factor -z = vertical effective stress in soil at depth z = friction angle at the interface of pile surface and soil. The total side resistance calculated from the summation of each layer of unit side resistance multiplied by perimeter and layer thickness is shown as follow: taniii s zciQDKL (3.36) OÂ’Neill and Reese (1999) suggested the expression for the ultimate unit skin resistance in sand: 200szq kPa (3.37) and ii s ziQDL (3.38) Where: In sands 0.51.50.135() zft (0.251.20 ) for SPT 1560 N (blows/ft)

PAGE 67

47 0.5 60151.50.135() Nzft for SPT 6015 N (blows/ft) In gravelly sands or gravels when, use the method for sands if 6015 N (blows/ft) (OÂ’Neill and Reese, 1999) Table 3.7 for Gravelly sands and Gravels (Rollins et al., 2005) Percentage Gravel Smaller than 25% 0.51.50.135 z ; 0.251.20 Between 25% and 50% 0.752.00.0615 z ; 0.251.80 Greater than 50% 0.02653.4ze ; 0.253.0 3.2.3.2 Reese and Wright method Reese and Wright (1977) proposed a semi-empirical method to estimate the unit skin friction (qs) and unit bearing (qp) for drilled shafts founded in sands using uncorrected SPT blow count, N Unit skin friction for, qs, for sands: For N<53 qs = 0.0028N (Mpa) For 53
PAGE 68

48 600.59' 'a pv vp qN (3.40) Where: pa = atmospheric pressure Â’v = vertical effective stress at th e tip elevation of the shaft (MPa) N60 =should be limited to 100 in Eq if higher values are measured 3.2.4.2 Reese and Wright method Unit end bearing, qp for sands: For N < 60 qp = 0.064*N (Mpa) For N > 60 qp = 3.8 (Mpa) N: is the uncorrected Nspt value 3.2.5 Side Resistance in Rock Drilled shaft in rock subject to compressive loading shall be designed to support factored load in:Side-wall shear comprising skin friction on the wall of the rock socket; or End bearing on the material below the tip of the drilled shaft or a combination of both. For the drilled shafts socket in to rock, shaft resistance, In MPa, may be taken as (Horvath and Kenney 1979) 0.50.50.65(/)7.8('/)sEauaacaqpqppfp (3.41) Where: qs = uniaxial compressive rock (MPa) pa= atmospheric pressure E = reduction factor to account for jointing in rock as provide in table (3.6) fÂ’c= concrete compressive strength (MPa) Table 3.8 Estimation of E (OÂ’Neil and Reesse, 1999) Em/Ei ( a ) E 1.0 1.0 0.5 0.8

PAGE 69

490.3 0.7 0.1 0.55 0.05 0.45 (a) Em: rock mass modulus Ei: intact rock modulus 3.2.6 Tip Resistance in Rock End bearing for drilled shafts in rock may be taken as follows: If the rock below the base of the drilled shaft to depth of 2.0B is either intact or tightly joints, i.e., no compressible or gouge filled seams and the depth of the socket is greater than 1.5 B 2.5puqq (3.42) If rock below the base of the shaft to a depth of 2.0B is joints have random orientation and the condition of joints can be evaluated as: (puqsmssq (3.43) Where: s, m= fractured rock mass parameters and are specified in table () qu= unconfined compressive strength of roc (MPa) Table 3.9 Methods for calculating axial loading capacity of a drilled shaft Soil Condition Resistance Component Equations Parameters Cohesive Soil Skin Friction FHWA method: s zuzqs iii suQDSL : shear strength reduction factor Suzi: undrained shear strength at depth z qsz: ultimate load transfer in skin friction at z dA: differential area of the shaft L: penetration depth of the drilled shaft below ground surface End Bearing FHW method ppucQASN Nc: bearing capacity factor Su: average undrained shear strength of the clay between the base and a depth of 2B Ir: rigidity index of the soil Es: YoungÂ’s modulus of the soil Cohesionless Soil Skin Friction FHWA method: 200szq kPa : vertical effective stress in soil at depth z z: depth below the ground surface

PAGE 70

50ii s ziQDL 0.51.50.135()zft (0.251.20 ) if 1560N 0.5 60151.50.135() Nzft if 6015N (blows/ft) Reese and Wright method: For N<53 qs = 0.0028N (Mpa) For 53 60 qp = 3.8 (Mpa) NSPT: average blow count from the zone between the base and a depth of 2B Rock Skin Friction 0.5 0.50.65(/) 7.8('/)sEaua acaqpqp pfp qs = uniaxial compressive rock (MPa) pa= atmospheric pressure E = reduction factor to account for jointing in rock as provide in table (3.6) fÂ’c= concrete compressive strength (MPa) End Bearing 2.5puqq (puqsmssq 3.3 Piles Dynamic Analysis

PAGE 71

513.3.1 The Case Method Static pile bearing capacity can be calculated by Case method using following equation: 112111 22MMMM sccFZuFZu RJJ (3.44) Where: 1 M F is measured force at time 1t 2 M F is measured force at time 12/tLc 1 M u is measured velocity at time 1t 2 M u is measured velocity at time 12/tLc cJ is Case damping Z: Impedance The impedance, Z, of a pile is a function of the dynamic modulus, E, the wave speed, c, and the pile cross-sectional area, A. EA Z c (3.45) The wave speed can be calculated by the following equation 2L c t (3.46) Where: L: Length of the Pile t: Time Required for the Pulse to Travel Twice the Pile Length The dynamic modulus of the pile material, E, is presented in the following equation 2Ec (3.47) Where: : mass density of the pile material c: the wave speed. Since the Case damping constant is assumed, the static capacity will be known from above equation.

PAGE 72

523.3.2 The Energy Approach The Energy Approach method or “Paikowsky” is a simplified energy approach formulation for the prediction of pile resistance based on the dynamic measurements recorded during driving. The basic assumption of the method is an elasto-plastic load displacement pile-soil reaction. The Paikowsky method uses as input parameters the maximum calculated transferred energy and maximum pile displacement from the measured data together with the field blow count. Equation () presents the solution for the dynamic pile capacity Ru (Paikowsky, 1994). max max() 2uE R DSet Set (3.48) Where: Ru: maximum pile resistance Emax: measured maximum energy delivered to the pile Dm:ax: measured maximum pile top displacement Set: permanent displacement of the p ile at the end of the analyzed blow, or 1/measured blow count. 3.3.3 The Signal Matching The Case Pile Wave Analysis Program (CAPWAP) is a computer program that combines the wave equation’s pile and soil model with the Case method of forces and velocities from PDA. The CAPWAP solution includes the static total resistance, skin friction and toe bearing of the pile, in addition to the soil resistance distribution, damping factors, and soil stiffness. The program calculates acceleration, velocities, displacements, waves up, waves down and forces at all points along the pile. The procedure used by CAPWAP includes inputting the force trace obtained from PDA and adjust the soils parameters until the velocity trace obtained from PDA can be recreated. It should be noticed that the opposite procedure (i.e. input velocity trace and generate the force trace) can also be performed. When the match obtained is unsatisfactory, it is necessary to modify the soil parameters, until reaching a

PAGE 73

53satisfactory match results. The process of running CAPWAP is considered an iterative one. 3.4 Static Load Test Static Load Tests (SLTs) accurately measure the actual pile behavior under axial vertical compressive loading and characterize the load-settlement relationship at the pile head. Load testing is the most definitive method for determining the nominal capacity of a pile. Testing a pile to failure provides valuable information to the design engineer and is recommended for design verification purposes. In difficult soil and bedrock conditions, the SLT results are the only means of identifying the actual pile capacity and also helps in generating databases to find the resistant factors. 3.4.1 ASTM Procedures The American Standard for Testing and Materials (ASTM) have four static load test procedures including the standard loading procedure, cyclic loading, quick load test, and constant rate of penetration. 3.4.1.1 Standard Loading Procedure The standard ASTM method calls for piles to be loaded to 200% of the anticipated design load, unless failure occurs first. The pile shall be loaded in increments of 25% of the total test load. Each load increment will be held until the rate of settlement is not greater than 0.25 mm/hr (0.01 inches per hour) but no longer than two hours per increment. In the event the pile has not failed, hold the total load on the test pile between 12 and 24 hours until the settlement is not greater than 0.25 mm/hr (0.01 inches per hour). After the settlement rates have been satisfied, remove the load in decrements of 25% of the total test load with one hour between decrements. 3.4.1.2 Cyclic Loading

PAGE 74

54The pile is loaded in a series of four cycles. The first cycle is loaded in increments of 25% of the total design load up to 50% and each load increment is held for one hour. At 50% the pile is unloaded in decrements of 25% until the entire load is removed from the pile with 20 minutes between decrements. Cycles two, three, and four are loaded to 100%, 150%, and 200%, respectively in increments of 50% of the total design load. Each load increment is held for one hour during each cycle. Once the maximum load is reached per cycle, the pile is unloaded to zero in decrements of 50% of the maximum applied load with 20 minutes between each unloading. Figure 3.18 Static pile load testing procedures according to ASTM (Paikowsky, 2004) 3.4.1.3 Quick Load Test Method for Individual Piles The load is applied in increments of 10 to 15% of the design load with a constant time interval of 2.5 minutes between loading increments. Load increments are added until continuous jacking is required to hold the test load or until the

PAGE 75

55specified capacity of the loading device is reached. After one of these criteria is reached, the load is held for five minutes and the full load is removed from the pile. 3.4.1.4 Constant Rate of Penetration The pile is loaded at a constant rate of penetration 0.3 to 1.3 mm/min (0.01 to 0.05 in/min) for cohesive soils or 0.8 to 2.5 mm/hr (0.03 to 0.1 in/min) for granular soils. The pile is continually loaded until no further increase in load is necessary for the constant rate of penetration of the pile under the predetermined rate or the capacity of the pile is reached. If the pile continues to settle under the constant load, the load is held until the pile has moved at least 15% of the pile diameter and then the pile is unloaded completely. If maximum capacity of the pile is reached before failure, the total load is released. 3.4.2 Vietnamese Procedures Most of static load data from Vietnam use the same standard load procedure from ASTM and cyclic load procedure but in Vietnam the pile is loaded in a series of two cycles instead of four cycles in ASTM. The first cycle is loaded up to 100% of the anticipated design load in increments of 25% and each load increment is held for one hour. At 100% the pile is unloaded in decrements of 25% until the entire load is removed from the pile with 20 minutes between decrements. Cycles two is loaded to 200%, respectively in increments of 25% of the total design load. Each load increment is held for one hour during each cycle. Once the maximum load is reached per cycle, the pile is unloaded to zero in decrements of 50% of the maximum applied load with 20 minutes between each unloading. 3.5 Interpretation from Static Load Tests 3.5.1 DavissonÂ’s Method The Davisson method (Davisson 1972) is one of the most popular methods and it is based on the elastic compression of the pile. This method takes into account the elastic shortening of pile under the axial load, the required relative movement 0.15 in

PAGE 76

56between the soil and the pile for full mobilization of side friction, and the amount of tip movement (1/120th of pile diameter in inches) for mobilization of tip resistance. The ultimate load of a pile can express in the following form: 0.004 120ult ultR P PQL B wL AE (3.49) Figure 3.19 Graphical representation of DavissonÂ’s criterion where: Qult= ultimate load wult=settlement ( in the same unit as Lr) observed for the pile when Q=Qult Lr = reference length =1m B= pile diameter (or width) in the same units as Lr Ap = cross sectional area of the pile (in unit of Lr) Ep = pile YoungÂ’s modulus (in units consistent with those of load and length) L = pile length in the same unit as Lr DavissonÂ’s criterion was used in the NCHRP report-507 by Paikowsky et al. (2004), and was found to perform best overall. One of the main advantages of this method is that it is an objective method and it can be used as an acceptance criterion

PAGE 77

57for the static load test. However, Hannigan et al. (2005) supposed some limitations of this method, as it under-predicts the pile capacity for piles with diameters larger than 24 inches. 3.5.2 The Limited Total Settlement Methods The Limited Total Settlement methods, = 25.4 mm and = 0.1B (Terzaghi, 1942), define the failure load as the load corresponding to settlements of 25.4 mm and 0.1B, respectively, where B is the diameter of the pile. These methods are not applicable in many cases. For example, the elastic compression for a very long steel pile often exceeds 25.4 mm and/or 0.1B without inducing any plastic deformation in the soil. 3.5.3 DeBeer's Method DeBeer (1970) defines the failure load as the load corresponding to the intersection of two distinct slopes created by the load-settlement data plotted using logarithmic scales. The two slopes are especially visible for piles that experience plunging failures, yet when using DeBeer's method piles that undergo local failures, the result may be a range of values, such as illustrated here Figure 3.20 Graphical representation of DeBeer method

PAGE 78

583.5.4 ChinÂ’s Method (1970) for Estimate the Ultimate Load of Piles from the Test not Carried to Failure It is usually very expensive and often impractical to extend a load test on a large pile or a pile group until collapse .The ultimate load of a pile can be obtained from the results of a load test without having to load the pile to failure. The ChinÂ’s method (1970) is base on the results of an experiment study of the shear deformation characteristics obtained from shear box and triaxial tests and from the tests carried out with the model piles in both the field and in laboratory. The load test show that the deformation and load relation ship is hyperbolic and the plot of () () wdeformation Pload versus w( deformation) is liner and the inverse of this line therefore gives the ultimate value of load P (Chin 1970) The pile load-settlement (Q-w) curve can be express by following equation: w Q abw (3.50) Where a and b are constant with very specific physical meanings Figure 3.21a Load-settlement curve Figure 3.21b Replotted results for determination of C1 and QL

PAGE 79

59If we rewrite equation (3.50) as 1 w Q a abw b w (3.51) As the settlement w approaches infinity, Q approaches 1/b. And by definition the load at infinite settlement is the ultimate load Qult so it follows that 1ultQ b (3.52) If dividing Q/w, we obtain the equation for the pile head stiffness Kt 1tQ K wabw (3.53) As w=0, 1tK a is the initial pile head stiffness The flowing equation will be used for plotting the () () wdeformation Pload versus w (0)11ulttww bwaw QQK (3.54) From plotting we find out the Qult of static load test of pile. 3.6 Soil Properties Correlated from Insitu Tests Most of the static methods directly or indirectly utilize the soil shear strength parameters when calculating the capacity of pile foundations. These parameters could be determined using laboratory tests or correlations to field tests such as the SPT or CPT. From the IowaÂ’s survey result ( 2008), 94% of the respondents claimed to be using the Standard Penetration Test (SPT), 52% use the Cone Penetration Test (CPT), 16% follow the Vane Shear Test (VST), and around 20% perform other methods. The survey confirmed that the majority of respondents depend on SPT or CPT tests to determine the basic soil parameters. The SPT has been used in correlations for soil unit weight ( ), relative density (Dr), angle of internal friction ( ), and unconfined compressive strength (Su). There

PAGE 80

60are several correlations between the SPT N-values and different soil parameters and presented in Table 3.8. According to Paikowsky et al. (2004), the best correlation for determining in cohesionless soils is provided by Peck Hanson and Thornburn (1974), and it is recommended to limit below 36. The most common correlation used to estimate the Su from SPT is also the one provided by Terzaghi and Peck (1967) using the uncorrected N-values. Tables 3.7a and 3.7b after Bowles (1977) summarize different ranges of Dr, qu and with respect to corrected and uncorrected N-values, respectively. On the other hand, there are many empirical correlations to estimate the soil shear strength parameters from the CPT test. As shown in Table 3.9, the Su and were mainly calculated based on the CPT cone tip resistance (qc), as well as the soil effective overburden pressure ( ’v). According to Paikowsky et al. (2004), the best correlation for determining Su is by Hara (1974), while the correlation used by Robertson and Campanella (1983) was most commonly used for calculating the soil internal friction angle. Table 3.10a: Correlations between SPT N-values and Dr, and soil (after Bowles, 1977)* Description Very Loose Loose Medium Dense Very Dense Corrected SPT N-value 0 to 4 4 to 10 10 to 30 30 to 50 50+ Relative density, Dr 0 – 0.15 0.15 – 0.35 0.35 – 0.65 0.65 – 0.85 0.85 – 1.00 Internal friction Angle, 25 – 30o 27 – 32o 30 – 35o 35 – 40o 38 – 43o Unit weight, (kN/m3) 11.0 – 15.7 14.1 – 18.1 17.3 – 20.4 17.3 – 22.0 20.4 – 23.6 *Use 5% larger values for granular material. Table 3.10b: Correlations between SPT N-values and qu and (after Bowles, 1977)* Description Very soft Soft Medium Stiff Very Stiff Hard Un-corrected SPT N-value 0 to 2 2 to 4 4 to 8 8 to 16 16 – 32 32+ Su (kPa) 0 – 24 24 – 48 48 – 96 96 – 192 192 – 384 384+ (kN/m3) 15.8 – 18.8 15.8 – 18.8 17.3 – 20.4 18.8 – 22.0 18.8– 22.0 18.8 – 22.0 *Correlations should be used for preliminary estimates only

PAGE 81

613.6.1 Correlations of Soil Properties from SPT 3.6.1.1 Undrained Shear Strength Su Terzaghi and Peck (1967): Su/pa = 0.06 N (3.53) Hara (1974): Su/pa = 0.29 N0.72 (3.54) where: N is the uncorrected blow counts Figure 3.22 Su-SPT N Relationships by Hara 1974 (Kulhawy and Mayne, 1990) 3.6.1.2 OCR for Clay Mayne and Kemper: OCR = 0.58 Npa / Â’o (3.55) where: N is the uncorrected blow counts

PAGE 82

62 Figure 3.23 OCR-N Relationships (Kulhawy and Mayne, 1990) 3.6.1.3 The Effective Stress Friction Angle for Cohesionless Soil Peck, Hanson and Thornburn: Figure 3.24 Â’-N Relationships by Peck, Hanson and Thornburn (Kulhawy and Mayne, 1990) Schmertmann: tan-1 [N / (12.2 + 20.3 'vo/pa)] 0.34 (3.57) where: N is the uncorrected blow count, vo': vertical stress

PAGE 83

63 Figure 3.25 Â’-N Relationships by Schmertmann (Kulhawy and Mayne, 1990) 3.6.1.4 Relative Density Dr of Cohensionless Soil Figure 3.26 Relative Density--N--Stress Relationships (Kulhawy and Mayne, 1990)

PAGE 84

64Table: 3.11 Summary correlations between SPT N-values and soil parameters Soil Properties SPT – N value Correlation Reference 54 27.6 exp(-0.014N’) Peck, Hanson and Thornburn (1974) tan-1 [ N / (12.2 + 20.3 ') ] 0.34 Schmertmann (1975) Su (bar) 0.06 N Terzaghi and Peck (1967) 0.29 N0.72 Hara (1974) OCR for clay 0.5 N / ’o ( ’o in bar) Mayne and Kemper Dr Gibbs and Holtz’s Figures Kulhawy and Mayne, 1990 3.6.2 Correlations of Soil Properties from CPT 3.6.2.1 Undrained Shear Strength Su The theoretical relationship for the cone tip resistance in clay is given by: Su/pa = (qc o) /Nk (3.58) where: qc= cone tip resistance, o= total overburden stress and Nk= cone bearing factor. The application of classical plastic theory to this bearing capacity problem suggests Nk=on the order of 9 for general shear model 3.6.2.2 OCR for Cohesive Soil Mayne Figure 3.27 p-qc Relationships (OCR = p / ’0) (Kulhawy and Mayne, 1990)

PAGE 85

65The cone penetration test (CPT) tip resistant, qc, has been used effectively to profile the preconsolidation stress in clay. Figure presents the available data from 49 clays. OCR= 0.29 qc / Â’o (3.59) where: qc= cone tip resistance, o= total overburden stress 3.6.2.3 The Effective Stress Friction Angle for Cohensionless Soil Robertson and Campanella Â’= tan-1(0.1+0.38log(qc/ vo')) (3.60) where: qc= cone tip resistance o= total overburden stress Figure 3.28 Â’tc correlated from qc for NC, uncemented quartz sands (Kulhawy and Mayne, 1990)

PAGE 86

663.6.2.4 Relative Density Dr of Cohensionless SoilJamiolkowski Dr (%) = 0' 68log1 'c aq p (3.61) 0.9/300c c rq q D where: qc= cone tip resistance, o= total overburden stress Figure 3.29 Correlation between Dr and qc by Jamiolkowski (uncorrected for boundary effect) (Kulhawy and Mayne, 1990) Table 3.12 Summary Correlations between CPT and soil parameters Properties From CPT Reference (deg.) atan(0.1+0.38*Log(qc/ ')) Robertson and Campanella (1983) Su (bar) ( qc o ) / N k ; qc and o in bars. Hara (1974) OCR for clay 0.29 qc / ’o; qc and o in bars. Mayne Dr 68 log(qcn) – 68 ; qcn = 0' 'a cP q q'c = qc / K q K q = 0.9 + Dr/300, qc and 'o in bars. Jamiolkowski

PAGE 87

673.6.3 Soil Properties Correlated from Laboratory Tests For cohesive soils, Atterberg limits and their relationship to the in-situ water content are most commonly used for such correlations. Figure 3.30 shows one correlation between the Liquidity Index, LI, and the ratio of undrained shear strength to vertical effective stress level in triaxial compression, Su/ 'vo. Figure 3.30 Correlation between Normalized Undrained Shear Strength and Liquidity Index for NC Clays (after Kulhawy and Mayne, 1990)

PAGE 88

68 4. Determination of Resistance Factors by Calibration 4.1 Calibration by fitting ASD to LRFD Calibration by fitting to ASD is used if the data required for the statistical analysis is not available. In this case, the LRFD resistance factors obtained by fitting to the ASD method should be only used as a benchmark to provide the same degree of safety that was provided by the ASD. However, this does not satisfy the LRFD reliability based requirements. Divide the LRFD equation: Rn = ii Qi by the ASD equation: Rn =Fs Q i iii n niQ R R FSQ (4.1) From which, with i = 1.0 ii iQ FSQ (4.2) If the loads consist only of dead load QD and live load QL, then Eq (4.2) becomes () (1)D DL DDLLL D DL LD DDD D FSQQ FS D (4.3) Table 4.1 shows the resistance factors, calibrated by fitting with ASD after McVay et al., 1998; depend on the DL to LL ratio. The DL/LL ratio could range between 1.0 and 4.0 for bridge structures depending on the bridge span and other factors. Barker et al., (1991), recommended a DL/LL ratio of 3.0 for bridge structures and Paikowsky et al., (2004), suggested that the ratio should be within the range of 2.0 to 2.5, since it is reasonable and applicable for long span bridges. According to Allen (2005) and Paikowsky et al. (2004), the DL/LL ratio has a small influence on the LRFD resistance factors when calibrated based on the reliability theory. Allen (2005) considered a DL/LL

PAGE 89

68 ratio of 3.0 to be consistent with the previous work done by Barker (1991), and thus it can directly compare with the developed resistance factors Table 4.1 Resistance Factors Calibrated by Fitting with ASD for D = 1.25 and L = 1.75 (After McVay et al., 1998). QD/QL Resistance Factor, FS FS=1.5 FS=2.0FS=2.5FS=3.0FS=3.5 FS=4.0 1 1.00 0.75 0.60 0.50 0.43 0.38 2 0.94 0.71 0.57 0.47 0.40 0.35 3 0.92 0.69 0.55 0.46 0.39 0.34 4 0.90 0.68 0.54 0.45 0.39 0.34 5 0.89 0.67 0.53 0.44 0.38 0.33 6 0.88 0.66 0.53 0.44 0.38 0.33 7 0.88 0.66 0.53 0.44 0.38 0.33 8 0.87 0.65 0.52 0.44 0.37 0.33 9 0.87 0.65 0.52 0.43 0.37 0.33 Median 0.94 0.70 0.56 0.47 0.39 0.34 Recommended 0.90 0.65 0.55 0.45 0.35 0.30 4.2 Calibration by Using Reliability Theory The objective of the reliability theory is to limit the probability of failure (Pf), probability of loads exceeding the resistances, of structures to a certain acceptable extent. As shown in Figure 4.1, Q and R are two PDFs representing the loads and resistances, respectively and the area of overlap between the two PDFs is considered as failure. By subtracting the two PDFs (R Q), the area to the left of the zero axis is considered to be the failure region and the probability of failure can be determine by using the reliability index ( ). The reliability index stands for the number of standard deviations ( ) representing the distance between the zero axis and the mean of R Q. The general process used by Barker, et al. (1991) and Paikowsky, et al. (2004) to develop the regionally calibrated LRFD resistance factors based on the reliability theory is as follows: Collect data required for statistical analysis

PAGE 90

69 Calculate statistical param eters for load and resistance PDFs: the Mean, Standard Deviation, and Coefficient of Variation (COV) Determine the best-fit distribution for each PDF Choose the appropriate statistical method for calibration (FOSM, FORM, Monte Carlo Simulation Method) Use the recommended load factors provided in the design code Select a reliability index based on the margin of safety required in design specifications, and by considering the recommended levels of reliability used for geotechnical designs Calculate resistance factors for design 4.2.1 Load, Resistance Bias Factor The load, resistance bias factor is defined as: ()() ()iimm RorQ nn R orQ R orQ (4.4) where: Rm = measured resistance, Qm = measured load Rn = predicted resistance, Qn = predicted load The mean, standard deviation and coefficient of variation of the set of bias data Ri(or Qi) are: Mean: () ()iRiorQ RorQN (4.5) Standard deviation: 2 ()() ()1RiorQiRorQ RorQN (4.6) Coefficient of variation: () () () RorQ RorQ RorQCOV (4.7) The bias factors and coefficients of variation for load components can be developed in a fairly straightforward manner. Physical measurements can be made of various

PAGE 91

70 weights of materials and their statistics calculated. Vehicle live loads and their variations can be measured without interference to vehicles using weigh-in-motion instrumentation. From this load data, the load statistics can be compiled and tabulated. The results of statistical analysis of highway dead and live loads are summarized in Table 4.2 (Nowak, 1993). The largest variation is the weight of the wearing surface placed on bridge decks. Also of interest, as indicated by the bias factor, is that the observed actual loads are greater than the specified nominal values. Table 4.2 QD, QL, COVQD, COVQL as recommended by AASHTO (cited in Withiam etal., 1997) Load component COV Dead load (QD) Factory-made 1.03 0.08 Cast in Place (CIP) 1.05 0.10 Asphalt wearing surface 1.00 0.25 Live load (QL) 1.15 0.18 4.2.2 Probability Density Function Based on the distribution of the resistance data, a lognormal probability distribution was recommended for the resistance data by the AASHTO Specification. Equation (4.8) presents the lognormal probability density equation using to calibrate the resistance factor for depth foundation in design. 211ln ()exp 2 2 x fx x (4.8) In Equation (4.8) the values of and are the lognormal mean and lognormal standard deviation respectively,

PAGE 92

71 2 2 2ln1 (4.9a) 21 ln 2 (4.9b) Where: and are the standard deviation and the mean of the resistance or load as defined in prior sections. 4.2.3 The First Order Second Moment (FOSM) Method In design practice, there are usually two types of limit states: ultimate limit states and serviceability limit state. Each can be represented by a performance function of the form, g(X) = g(X1, X2, ..., Xn) in which X is a vector of basic random variables (X1, X2, ..., Xn) for strengths and loads. The performance function g(X) is sometimes called the limit state function. It relates th e random variables for the limit-state of interest. The limit state is defined when g(X) = 0, and therefore, the failure occurs when g(X) < 0.This method uses the first terms of a Taylor series expansion of the performance function to estimate the expected value and variance of the performance function. 11111 1 2 11 3 1111 (,,....,)(,,....,)() 1! 1 ()() 2! 1 ()()()...... 3!n nXXXniX i i nn iXiiXj ij ij nnn iXiiXjiXk ijk ijkg gxxxgx x g xx xx g xxx xxx (4.10a) By assuming all the ()iiXx terms are small, their squares and cubes and higher powers will be smaller and can be ignored. Then, the first order terms give: 11111 1(,,....,)(,,....,)()n nXXXniX i ig gxxxgx x (4.10b)

PAGE 93

72 Since only first order term is included, methods based on this assumption are called first order method. To find the expected value of g, it needs to integrate g multiplied by the joint probability density function of the variables X1 through Xn from -to +. 11111 1(,,....,)()(,,....,)()()n g nXiiiXXXniXXiii i g xxxfxdxgxfxdx (4.11) Since 11(,,....,)XXXng is constant,()1Xiiifxdx and 1 1()()0n iXXiii ixfxdx The expected value of g can be expressed by following equation: 11(,,....,) g XXXng (4.12) The variance of function g is: 22()ggVargEg (4.13) And from equation (4.10b) and (4.13) 2 2 1()in giX i ig Ex x (4.14) Multiplying the expression in brackets by probability density function and integrating over the complete range of probabilities leads to an expression for the variance: 2 11ijijnn gXXXX ij ijgg x x (4.15) 2 22 11(,)innn gXij iiji iijggg CovXX x xx (4.16) Since the variance in form of the second moment and is the highest order statistical result used in analysis, it is also called a second moment method. If g is a linear function of the variable xi: 111122 1(,,....,)......n nnnii igxxxaxaxaxax (4.17)

PAGE 94

73 Mean and variance of function g could be expressed by following equation 1212 1......nin g XXnXiX iaaaa (4.18) 2 11ijijnn g ijXXXX ijaa (4.19) 4.2.3.1 Reliability index If the performance function g has two variables which are load Q and resistant R: g = R Q (4.20) from the equation (4.18) and (4.19), the mean and variance of g is g RQ (4.21) 2222 g RQRQRQ (4.22) The reliability index, is defined as: 222gRQ g RQRQRQ (4.23) If the load and resistance are uncorrelated, the correlation coefficient is zero and 22 gRQ g RQ (4.24) In this study, the load (Q) and the resistance (R), are assumed to be lognormally distributed. The limit state function in this case is defined as: g (R, Q) = ln (R) – ln (Q) = ln (R/Q) (4.25)

PAGE 95

74 Figure 4.1 Distribution of load and resistance and reliability index, Since R and Q are lognormally distributed, ln(R) and ln(Q) are normal distribution. Thus, the mean value of g (R, Q) can be expressed as: ln()ln() gRQ (4.26) Where: 220.51 ln()ln()ln(1)ln()ln(1) 2RRRRCOVRCOV 2ln()ln 1RR R COV (4.27) 220.51 ln()ln()ln(1)ln()ln(1) 2QQQQCOVQCOV 2ln()ln 1QQ Q COV (4.28) From equation (4.26), (4.27) and (4.28) 2 2 222 21 1 lnlnlnln 111 1Q R RQR QR COV COV RQR g QQ COVCOVCOV COV or 2 21 ln 1Q RCOV R g COV Q (4.29) And its standard deviation is:

PAGE 96

75 22 ln()ln() g RQ (4.30) where: 22 ln()ln(1)R RCOV (4.31a) 22 ln()ln(1)Q QCOV (4.31b) From equation (4.30), (4.31a) and (4.31b) 22ln(1)ln(1) g RQCOVCOV or 22ln(1)(1)gRQCOVCOV (4.32) where : R and Q: mean values of resistance and load COVR, COVQ : coefficient of variation of R and Q The reliability index is defined as the ratio between the lognormal mean, g, and the lognormal standard deviation, of the ln(R/Q) series: g g or g = g 22 22ln(/)(1)/(1) ln(1)(1)QR g QRRQCOVCOV g COVCOV (4.33) The mean values of the load resistance can be expresses in terms of nominal load and resistance and their respective bias factors such that: QnQQ and Rn R R The equation (4.33) can be written as: 22 22ln/(1)/(1) (1)/(1)RnQnQR RQRQCOVCOV COVCOV (4.34) Rn and Qn can be expressed in terms of factor of safety (FS) such that Rn=FSxQn Consider the load combination of dead load (QD) and live load (QL) for AASHTO Strength Case I. Then, QQn = QDQD + QLQL and Rn = FS (QD + QL).

PAGE 97

76 Also, QD and QL are assumed to be mutually independent and COVQ 2= COVQD 2+ COVQL 2 Therefore, Equation (4.34) can be rewritten in the following format: 222 222() ln(1)/(1) ln(1)(1)RDL QDQLR QDDQLL RQDQLFSQQ COVCOVCOV QQ COVCOVCOV (4.36) Or can be written as 222 222(/1) ln(1)(1) / ln(1)(1)RDL QDQLR QDDLQL RQDQLFSQQ COVCOVCOV QQ COVCOVCOV (4.37) It is seen from this equation that the reliability index is a function of FS, QD/QL, the load statistics ( QD, QL, COVQD, COVQL) and the resistance statistics ( R, COVR). Hansell and Viest, 1971 developed the following empirical equation for the QD/QL ratio: QD/QL = (1+ IM) 0.0132 L (4.38) Where: IM = Dynamic load allowance factor (usually equal to 0.33) L = Span length (feet) QD/QL usually ranges from 1.0 to 3.0 (corresponding to L = 57-170 ft). In LRFD specifications, the targeted reliability index ( ) is defined as the measure of safety associated with a probability of failure (Pf). The probability of failure represents the probability of the condition, at which the resistance multiplied by the resistance factors will be less than the load multiplied by the load factors. A very precise definition of probability of failure, pf, is in terms of reliability index, Fu( ) (Withiam et al. 1997). 1()fupF (4.39)

PAGE 98

77 -4-3-2-1012 3 4 0 5 10 15 20 25 30 35 40 Reliablity Index, Probability (%)f(x)= e-x222F () u p = 1f F () u = 1exp( )-x222dxFigure 4.2 Reliability definition based on standard normal probability density function Fu(x) is the standard normal cumulative distribution function. 211 ()1exp 2 2uFxdx (4.40) The shaded area in Figure (4.2) represents the probability of failure, pf, to achieve a target reliability index, T. Table 4.3 Relationship between Probability of Failure and Reliability Index for Lognormal Distribution (After Withiam et al., 1997). Reliability Index Probability of Failure pf Probability of Failure pf Reliability Index 2.5 0.99x10-210-11.96 3.0 1.15x10-3 1.10-22.50 3.5 1.34x10-4 1.10-3 3.03 4.0 1.56x10-5 1.10-4 3.57 4.5 1.82x10-6 1.10-5 4.10 5.0 2.12x10-7 1.10-6 4.64 5.5 2.46x10-8 1.10-7 5.17 Another commonly accepted relationship between the reliability index, and the probability of failure, pf, has been developed by Rosenblueth and Esteva (1972) using the relationship for values between 2 and 6.

PAGE 99

78 pf = 460 e(-4.3 ) (2 < < 6) (4.41) Figure 4.3 Comparison of Esteva and Withiam methods to obtain reliability index, For civil engineering project, usually ranges from 2.0 to 4.0. However, due to the redundancy of pile groups, AASHTO and FHWA recommend using from 2.0 to 3.0 for pile foundations (cited in Withiam et al., 1997), and it is called the target reliability index T. 4.2.3.2 Recommended Target Reliability Index For depth foundation design, the target reliability index, T, could range from 2.5 to 3.0, which is corresponding to the range of approximate failure possibility of 1% to 0.1%, according to Barker et al. (1991a). However, Paikowsky, et al. (2004) indicated the more accurate failure probability for target reliability index of 2.5 and 3.0 is 0.62% and 0.14%, respectively. Additionally, for axially loaded pile, Paikowsky, et al. (2004) recommended a T of 2.33, which is corresponding to failure probability of 1%, for redundant piles, defined as 5 or more piles per pile cap, and a T of 3.0 for non-redundant piles, defined as 4 or less piles per pile cap.

PAGE 100

79 Figure 4.4 Redundant vs. non-redundant pile support, Paikowsky, et al. (2004) 4.2.3.3. Efficiency of Different MethodsMcVay (2000) suggested an efficiency factor to determine the efficiency of different static methods that are relative to the actual pile behavior and to each other. This efficiency factor ( / ) is equal to the ratio of the resistance factor to the mean bias of the method. The / factor ranges from 0 to 1.0, in which a higher / is proportional to a higher efficiency. The efficiency factor reflects the economy of the design. The efficiency of a static method is not dependent on the corresponding LRFD resistance factor. For example, the factored pile design capacity, calculated using a specific static method, can be lower than that calculated using another static method, although the resistance factor of the first method may be higher than the second. This is essential because the first method might be underestimating the nominal pile capacity, while the second method could be overestimating it. By multiplying both methods with the corresponding LRFD resistance factors, the method with the lower resistance factor could yield a higher pile capacity overall. 4.2.3.4 Equivalent Factor of Safety The economy of the LRFD resistance factors can also be measured by means of the equivalent factor of safety (FS) corresponding to the ASD. This equivalent FS is calculated based on the simplified relation provided in equation in Chapter 2. The equivalent FS is presented for each group based on a DL/LL = 2, L = 1.75, and D =

PAGE 101

80 1.25, the FS=1.4167/ On the other hand, the actual FS is calculated by multiplying the mean bias by the equivalent FS. The actual FS represents the overall economy of the method, meaning that whenever the actual FS is lower, the foundation cost is reduced and vice versa. 4.2.3.5 Resistance Factor Calibration The basic equation for LRFD was expressed as equation (2.2) and is rewritten here in the following format: iiQ R (4.42) The nominal resistance R can be replace by the mean value ( R ) and the resistance bias factor (R ) then, RiiQ R (4.43) From equation (4.33) R can be replaced by the following equation: 22 22exp(ln11 1/1RQ QRQCOVCOV R COVCOV (4.44) The equation (4.44) can be rewritten in the following form: 22 221/1 exp(ln11RiiQR RQQCOVCOV QCOVCOV (4.45) The mean values of the load resistance can be expressed in terms of nominal load and resistance and their respective bias factors such that: QnQQ and Rn R R 222 221/1 exp(ln11LDDL LDRQLQDQQR QLQDRQQQCOVCOVCOV QQCOVCOV (4.46)

PAGE 102

81 Diving the 222 2221/1 exp(ln11DLDL DL DLD RQQQQR L D QQTRQQ LQ COVCOVCOV Q Q COVCOVCOV Q (4.47) As recommend in AASHTO, the following parameters: dead load factorD = 1.25, live load factorL = 1.75, dead load bias factorQD = 1.08, live load bias factorQL =1.15, dead load coefficients of variation-COVQD = 0.13 and live load coefficients of variation COVQL= 0.18 could be used in equation 4.46 to calibrate the resistance factor Sine dead to live load ratio QD/QL changes from 1-3 and has almost no effect on the resistance factor, this study uses QD/QL = 1. 4.2.4 First-Order Reliability Method (FORM) Analysis The basic concepts and analytical procedures of the The First Order Reliability Method (FORM) methods were developed by Ditlevsen (1974), Ellingwood, et al. (1980), Hasofer and Lind (1974). The first step in the Hasofer-Lind approach is to reformulate the problem with dimensionless variables. If the performance function g has n uncertain variables (X1, X2,Â…Xn ) and each variable Xi is defined in terms of its Xi and its standard deviation Xi, a primed variable, which is dimensionless and has the mean value of zero and unit standard deviation of primed variables could be defined by the following equation: 'i iiX i Xx x (4.48)

PAGE 103

82 Figure 4.5 Limit state function and pdf of basic random variables (Baecher and Christian 2003) Figure 4.6 Transformed basic variable spaces. (Baecher and Christian 2003) From the above definition, the basic case of reliability of a system with loading Q (or X1) and resistance R (or X2) can be expressed in form of prime variables

PAGE 104

83 'R RR R (4.49) 'Q QQ Q (4.50) The performance function g for the margin of safety becomes: ''RQRQgRQRQ (4.51) The origin point at which both R and Q equal their values and the distance d between the origin and the line g = 0 is: 22 RQ RQd (4.52) The distance d is identical to the definition of the reliability index This result suggests that the reliability index can be interpreted geometrically as the distance between the point defined by expected values of the variables and the closest point on the failure criterion. The following step-by-step procedure, proposed by Ang and Tang 1984, could be used to find the reliability index (dmin). Step 1: Assume an initial value for the design poi nt. It is common to start with the mean values of the basic random variables. The design point in the reduced coordinates should then be computed as *'i iiX i Xx x (4.53) Where: iX = mean value of the basic random variable Xi, iX = standard deviation of the basic random variable Xi. The notations x*and x Â’* are used to denote the design point in the regular coordinates and in the reduced coordinate system, respectively.

PAGE 105

84 Step 2: If the distribution of basic random variables is non-normal, approximate this distribution with an equivalent normal distribution at the design point, having the same tail area and ordinate of the density function with equivalent mean, 1*((*))iiiNN XXXxFx (4.54) and equivalent standard deviation 1(((*))) (*)i i iX N X XFx fx (4.55) Where: iN X = mean value of the equivalent normal distribution iN X= standard deviation of the equivalent normal distribution (*)Fx = original cumulative distribution function (CDF) of Xi evaluated at the design point (*) f x = original PDF of Xi evaluated at the design point (•) = CDF of the standard normal distribution (•) = PDF of the standard normal distribution. Step 3: Set '**ix in which the *i are direction cosines. Compute the directional cosines (*i i = 1, 2,….., n) using 2 1 *' 'i i n i ig x g x (4.56)

PAGE 106

85 Where *'iN X iigg xx Step 4: WithiN X ,iN X, *i now known, the following equation is solved for : 111[(*),.....,(*)]nnnNNNN XXXXXXg =0 (4.57) Step 5: Use the obtained from step 4, a new design point is obtained from *iiiNN iXXXx (4.58) Step 6: Repeat steps1 to 6 until convergence of is achieved. In this study, the limit state function, g, could be expressed by following equation: lnlnlni i R gRQ Q (4.59) If we only consider the dead loads and live loads, the limit state function can be rewritten in terms of bias factors of the load and resistance as follows: lnR QDDQLLR g QQ (4.60) QDDQLL R QQ (4.61) Substituting R from Equation (4.36) to Equation (4.35) yields the following limit state function in terms of the random variables ,RQD and QL (/) ln (/)RQDDLQL QDDLQLQQ g QQ (4.62) 4.2.5 Monte Carlo Simulation Method

PAGE 107

86 For more complicated limit state functions, the application of the general statistical method for the calculation of the reliability index is either extremely difficult or impossible. Under this circumstance, the Monte Carlo simulation provides the only feasible way to determine the reliability index or the probability of failure. The Monte Carlo method is a technique by which a random number generator is used to extrapolate CDF values for each random variable. Extrapolation of CDF makes estimating possible; otherwise, a limited quantity of data would restrict the reliable estimate of Once the reliability index, is estimated, the probability of failure can be estimated by assuming the distribution of g(x). The steps of the Monte Carlo simulation method are as follows: Step1: Generate random numbers for each set of variables. Here there are three variables (resistance, dead load and live load bias factor), so three sets of random variable have to be generated independently for each one. The number of simulations required is found using the following equation: 21 ()ptruePtrue N VP (4.63) Where, Ptrue is the lowest magnitude of probability that is to be determined using Monte Carlo, and Vp is the desired coefficient of variation of the simulation result. To estimate a probability as low as 10-2 and keep variance under 10 percent, the number of points to be generated in the Monte-Carlo simulation is 9900. For each normal variable, the sample value xi= is estimated as: xi(random) = x(1+ ziCOVx) (4.64) For each lognormal variable, the sample value xi(random) is estimated as:

PAGE 108

87 xi(random) = exp( lnx+zilnx) (4.65) Where: lnx = ln(COVx 2+1)0.5 lnx= ln( x)-0.5 2 lnx (4.66) x: the mean of x COVx: the covariance of x lnx : the equivalent lognormal mean of x lnx: the equivalent lognormal standard deviation of x zi =NORMSINV(RAND())i is the random standard normal variable generated using the Matlab function. In the Monte Carlo simulation, the program generated N groups of random numbers. Each group consisted of 3 random numbers z1, z2, and z3 are normally distributed from 0 to 1. The dead load (DL) and live load (LL) bias factor is normal distribution and resistant bias factor is lognormal distribution. The program then calculated random live load LLrandom, dead load DLrandom, and resistance Rrandom using the following equations: LLrandom=LL. LL.(1+z1.COVLL) (4.67) DLrandom=DL. DL.(1+z2.COVDL) (4.68) Rradom = exp( lnR+z3lnR) (4.69) where: lnR = Ln(COVR 2+1)0.5 (4.70) 2 lnRRlnR.. Ln(.)0.5LLDLLLDL (4.71) Step 2: Define the limit state function. From each group of random loads and resistance, the safety margin was calculated using equation

PAGE 109

88 g = Rrandom LLrandom– DLrandom (4.72) Step 3: Find the number of cases where g 0. In this equation is a trial resistance factor. LL and DL are the nominal live load and dead load. LL DL LL DL COVLL and COVDL are listed in the Table The values for R and COVR are calculated from the measure capacity and nominal capacity. Paikowsky et al. (2004) found out that the calibrated resistance factor is not sensitive to the change of DL/LL. So in this study the DL/ LL ratio of 2.0 was selected. The only unknown variable is the nominal live load LL. In the Monte Carlo simulation, the magnitude of the nominal load would not affect the result so that LL was simply set to one. The probability of failure is then defined as: (0)fcountg P N (4.73) and reliability index is estimated as: = -1(Pf) (4.74) If the calculated reliability index ( ) is different from the selected target reliability index ( T), the trial resistance factor ( ) in step 1 should be changed and iteration needs to be done until | T| < tolerance. Prior to the Monte Carlo simulation, a target reliability index T and a ratio of dead load must be selected. To be consistent with the AASHTO LRFD Specifications, T = 3.0 for a common design and T = 2.33 for a shaft group with five or more drilled shafts were considered.

PAGE 110

895. Resistance Factor Calibration for the Data from Difference Locations in NCHRP Report 507 5.1 Introduction When design depth foundation in specific location, If we use the resistance factor from report 507, itÂ’s may be too low since the author of report 507 use all the data from different locations to calibrate the resistance factors for depth foundation. The purpose of this chapter is to investigate the geo-materials dependence of resistance factor from difference locations by separating the data from NCHRP report 507 and calibrating the resistance factor for different locations. In the NCHRP report 507, Paikowsky collected numerous static load and dynamic load tests for driven piles from different states in US and different locations in the world. 368 dynamic measurements with signal matching analysis (CAPWAP) cases including 240 cases of end of driving (EOD) and 128 cases of beginning of retrike (BOR) were found in report 507 to be usable in this study. Beside PDA data, 131 concrete piles have soil profile and static load test including 19 cases in cohesive soil, 37 cases in cohesionless soil and 85 cases in mixed soil are also useful for calibration resistance factor for concrete piles using static methods Two methods, including First Order Second Moment Method (FOSM) and FirstOrder Reliability Method (FORM), are using to calibrate the resistance factor for driven piles. In data base some places have small data, 1 to 6 pile cases, in order to have enough data to calibrate resistance factor this study only consider for the locations have more than 7 pile cases 5.2 Calibration Resistant Factor for Driven Piles Using CAPWAP Method 5.2.1 Resistance Factor for Different Locations by Using CAPWAP (BOR+EOD) Data Table 5.1a and 5.1b show the resistance factor calibration by using both FOSM and FORM with reliability index =2.33 and =3.0 for driven piles using CAPWAP method with both BOR and EOD data. The detail calibration resistance factor by

PAGE 111

90using FORM is in the appendix A (from Fig A-1a to Fig A-13b) and by using FOSM method is in the appendix C (from table C-1 to table C-13). Figure 5.1 and 5.2 show the different resistance factor for different location with reliability index =2.33 and =3.0. The resistance factor varies with different locations. S Carolina has the lowest resistance factor whereas Oakland, CA has the highest resistance factor Table 5.1a Resistance Factors for Driven Piles using CAPWAP (BOR+EOD) for Different Locations Location Total Florida WinconsinLousianaMassachusetts S Carolina Number of Cases-N 368 107 27 22 17 16 Mean1.426 1.324 1.353 2.743 1.515 1.411 Standard deviation0.912 0.571 0.742 2.502 0.758 0.930 COV 0.639 0.431 0.548 0.912 0.500 0.659 (FOSM) =2.33 0.386 0.564 0.446 0.425 0.555 0.306 =3.0 0.254 0.412 0.307 0.247 0.392 0.199 (FORM) =2.33 0.406 0.611 0.478 0.443 0.595 0.388 =3.0 0.277 0.467 0.340 0.266 0.433 0.261 Table 5.1b Resistance Factors for Driven Piles using CAPWAP (BOR+EOD) for Different Locations Location OrtanrioAlabamaPennsyvaniaOakland, CA Nebraska CanadaOklahoma Number of Cases-N 15 14 12 13 9 8 7 Mean1.160 1.397 0.881 1.843 1.237 0.967 1.529 Standard deviation0.294 0.383 0.201 0.671 0.423 0.209 0.635 COV 0.254 0.274 0.228 0.364 0.342 0.216 0.415 (FOSM) =2.33 0.715 0.828 0.570 0.908 0.638 0.640 0.675 =3.0 0.573 0.656 0.462 0.688 0.489 0.521 0.498 (FORM) =2.33 0.809 0.931 0.652 0.996 0.704 0.736 0.733 =3.0 0.779 0.675 0.767 0.779 0.558 0.626 0.558

PAGE 112

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000 1.100Total Florida Winconsin Lousiana Massachusetts S Carolina Oakland, CA Ortanrio Alabama Pennsyvania Nebraska Canada Oklahoma FOSM FORM368 cases 107 cases 27 cases 22 cases 17 cases 16 cases 13 cases 15 cases 14 cases 12 cases 9 cases 8 cases 7 casesResistance factor Figure 5.1 Resistance Factors for Driven Piles Using CAPWAP (EOD+BOR) with =2.33 91

PAGE 113

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900Total Florida Winconsin Lousiana Massachusetts S Carolina Oakland, CA Ortanrio Alabama Pennsyvania Nebraska Canada Oklahoma FOSM FORM 368 cases 107 cases 27 cases 22 cases 17 cases 16 cases 15 cases 14 cases 12 cases9 cases 8 cases 7 cases 13 casesResistance factor Figure 5.2 Resistance Factors for Driven Piles Using CAPWAP (EOD+BOR) with =3.0 92

PAGE 114

93 5.2.2 Resistance Factor for Different Locations by Using CAPWAP (BOR) Data Table 5.2 shows the resistance factor calibration by using both FOSM and FORM with reliability index =2.33 and =3.0 for driven piles using CAPWAP with BOR data. The detail calibration resistance factor by using FORM is in the appendix A (from Fig A-14a to Fig A-20b) and by using FOSM method is in the appendix C (from table C-14 to table C19). Figure 5.3 and 5.4 show the different resistance factor for different locations with reliability index =2.33 and =3.0. The resistance factor varies with different locations. Wisconsin has the lowest resistance factor whereas Louisiana and Ontario have the highest resistance factor. Table 5.2 Resistance Factors for Driven Piles using CAPWAP (BOR) for Different Locations LocationTotalFloridaWisconsinLouisianaCaronilaAlabamaOntario Number of Cases-N 2408518151398 Mean1.2201.2430.9641.6981.1581.2301.118 Standard deviation0.4540.4750.2860.5920.2850.3510.180 COV 0.3720.3820.296 0.3490.2460.2850.161 (FOSM) =2.330.5900.5890.5470.8630.7030.7130.809 =3.0 0.4450.442 0.429 0.659 0.565 0.562 0.675 (FORM) =2.33 0.6520.645 0.610 0.950 0.824 0.802 0.953 =3.00.5050.498 0.497 0.750 0.688 0.655 0.836

PAGE 115

94 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000 1.100TotalFloridaWisconsinLouisianaCaronilaAlabamaOntario FOSM FORM240 cases85 cases 18 cases 15 cases 13 cases 8 cases 9 casesResistance Factor Figure 5.3 Resistance Factors for Driven Piles Using CAPWAP (BOR) with =2.33 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900TotalFloridaWisconsinLouisianaCaronilaAlabamaOntario FOSM FORM240 cases85 cases18 cases 15 cases 13 cases 8 cases 9 casesResistance Factor Figure 5.4 Resistance Factors for Driven Piles Using CAPWAP (BOR) with =3.0

PAGE 116

95 5.2.3 Resistance Factor for Different Locations by Using CAPWAP (EOD) Data Table 5.3 shows the resistance factor calibration by using both FOSM and FORM with reliability index =2.33 and =3.0 for driven piles using CAPWAP with EOD data. The detail calibration resistance factor by using FORM is in the appendix A (from Fig A-21a to Fig A-27b) and by using FOSM method is in the appendix C (from table C-20 to table C25). Figure 5.5 and 5.6 show the different resistance factor for different location with reliability index =2.33 and =3.0. The resistance factor varies with locations. Pittsburgh, PA has the lowest resistance factor whereas Oakland, CA and Wisconsin have the highest resistance factor. If including all the EOD data from different location, the resistance factor will be the lowest one Table 5.3 Resistance Factors for Driven Piles (EOD) using CAPWAP for Different LocationsLocation Total FloridaMassachusettsPittsburgh, PAOakland, CA WisconsinOntario Number of Cases-N 128 18 11 9 8 8 7 Mean1.789 1.503 1.728 0.820 2.191 2.294 1.208 Standard deviation1.337 0.650 0.904 0.192 0.629 0.637 0.399 COV 0.748 0.433 0.523 0.235 0.287 0.278 0.330 (FOSM) =2.33 0.385 0.638 0.602 0.524 1.265 1.349 0.639 =3.0 0.241 0.467 0.419 0.423 0.997 1.068 0.493 (FORM) =2.33 0.456 0.654 0.644 0.596 1.416 1.515 0.706 =3.0 0.265 0.498 0.462 0.503 1.154 1.243 0.565

PAGE 117

96 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000 1.100TotalFloridaWisconsinLouisianaCaronilaAlabamaOntario FOSM FORM240 cases85 cases 18 cases 15 cases 13 cases 8 cases 9 casesResistance Factor Figure 5.5 Resistance Factors for Driven Piles Using CAPWAP (EOD) with =2.33 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900TotalFloridaWisconsinLouisianaCaronilaAlabamaOntario FOSM FORM240 cases85 cases18 cases 15 cases 13 cases 8 cases 9 casesResistance Factor Figure 5.6 Resistance Factors for Driven Piles Using CAPWAP (EOD) with =3.0

PAGE 118

97 5.3 Calibration Resistant Factor for Driven Piles Using Static Analysis 5.3.1 Resistance Factor for Concrete Piles in Cohesionless from Different Locations The resistance factor calibration from all 37 data for concrete in cohesionless soil by using different static method, Nordlund, beta, Meyerhof, Schmertmann SPT are showed in table 5.4a and for the Florida data only is showed in table 5.4b. Table 5.4a Resistance Factors for Concrete Piles in Cohesionless Soil Method Nordlund Meyerhof Schmertmann SPT Number of Cases-N 37 37 37 37 Mean1.06 1.17 0.64 1.25 Standard deviation0.55 0.56 0.42 0.62 COV 0.52 0.48 0.65 0.49 (FOSM) =2.33 0.37 0.45 0.17 0.46 =3.0 0.26 0.32 0.11 0.33 (FORM) =2.33 0.4 0.483 0.183 0.5 =3.0 0.289 0.356 0.125 0.364 Table 5.4b Resistance Factors for Concrete Piles in Cohesionless Soil for Florida Data Only Method Nordlund Meyerhof SchmertmannSPT Number of Cases-N 27 27 27 27 Mean1.113 1.216 0.591 1.191 Standard deviation0.525 0.545 0.358 0.508 COV 0.471 0.448 0.606 0.427 (FOSM) =2.33 0.43 0.50 0.17 0.51 =3.0 0.31 0.36 0.12 0.38 (FORM) =2.33 0.469 0.54 0.183 0.557 =3.0 0.347 0.403 0.125 0.42

PAGE 119

98 5.3.2 Resistance Factor for Concrete Piles in Cohesive for Different Locations The resistance factor calibration from all 19 data for concrete in cohesive soil by using different static method, -API revised, -Tomlinson, are showed in table 5.5a and for the Louisiana data only is showed in table 5.5b. Table 5.5a Resistance Factors for Concrete Piles in Cohesive Soil Method -API revised -Tomlinson Number of Cases-N 19 19 19 Mean0.89 0.94 0.79 Standard deviation0.31 0.50 0.25 COV 0.35 0.54 0.32 (FOSM) =2.33 0.45 0.32 0.30 =3.0 0.34 0.22 0.21 (FORM) =2.33 0.498 0.34 0.342 =3.0 0.393 0.243 0.243 Table 5.5b Resistance Factors for Concrete Piles in Cohesive Soil for Louisiana Data Only Method -API revised -Tomlinson Number of Cases-N 12 12 12 Mean0.818 0.718 0.833 Standard deviation0.236 0.322 0.201 COV0.289 0.449 0.241 (FOSM) =2.33 0.47 0.29 0.53 =3.0 0.37 0.21 0.42 (FORM) =2.33 0.527 0.319 0.598 =3.0 0.4310.241 0.50

PAGE 120

99 5.3.3 Resistance Factor for Concrete Piles in Mixed soil for Different Locations The resistance factor calibration from all 85 data for concrete in mixed soil by using different static method are showed in table 5.6a, from Florida and Louisiana data only is showed in table 5.6b and 5.6c Table 5.6a Resistance Factors for Concrete Piles in Mixed Soil Method Tomlinson Nordlund Thurman API Nordlund Thurman Thurman Schmertmann SPT CPT Number of Cases-N 34 85 85 74 32 Mean1.00 0.88 0.93 1.97 0.90 Standard deviation0.52 0.47 0.55 1.21 0.35 COV 0.52 0.54 0.59 0.61 0.39 (FOSM) =2.33 0.35 0.30 0.28 0.57 0.42 =3.0 0.25 0.21 0.19 0.38 0.31 (FORM) =2.33 0.381 0.348 0.3 0.6 0.45 =3.0 0.275 0.228 0.208 0.41 0.354 Table 5.6b Resistance Factors for Concrete Piles in Mixed Soil for Florida Data Only Method -Tomlinson Nordlund Thurman -API Nordlund Thurman Thurman Schmertmann SPT Number of Cases-N 12 42 42 55 Mean0.95 0.97 1.11 1.87 Standard deviation0.57 0.52 0.61 1.10 COV 0.60 0.54 0.54 0.59 (FOSM) =2.33 0.28 0.33 0.37 0.56 =3.0 0.19 0.23 0.26 0.38 (FORM) =2.33 0.296 0.352 0.395 0.595 =3.0 0.201 0.253 0.282 0.41

PAGE 121

100Table 5.6c Resistance Factors for Concrete Piles in Mixed Soil for Louisiana Data Only Method -Tomlinson Nordlund Thurman -API Nordlund Thurman Thurman Schmertmann CPT Number of Cases-N 16 31 31 25 Mean1.09 0.68 0.64 0.87 Standard deviation0.52 0.23 0.16 0.33 COV 0.48 0.34 0.26 0.38 (FOSM) =2.33 0.42 0.35 0.39 0.41 =3.0 0.30 0.27 0.31 0.31 (FORM) =2.33 0.45 0.39 0.446 0.455 =3.0 0.329 0.309 0.371 0.354

PAGE 122

1016. Data Collection from Vietnam 6.1 Introduction Vietnam is the developing country in Southeast Asia. Now in Vietnam, they start to build many highways and highrise building to develop the country. When design the deep foundations for bridge and building, they still use the allowable stress design (ASD), but most of the highways and buildings from the foreigner investors, who require using the load resistant factor design (LRFD). For this reason, this research collected soil profile and static and dynamic load tests for driven pile and drilled shafts in North, Central and South of Vietnam to calibrate the first LRFD for deep foundation in Vietnam In this study, Vietnam is divided into three regions: North, South and Central, as shown in Figure 6.1 Figure 6.1 Vietnamese Map

PAGE 123

102 Each region is divided into mountain, alluvia plain and coastal. Most driven pile and drilled shaft load test data are from cities in the Red River delta in the North, such as Hanoi, Hai Phong and Hai Duong, in the Mekong River Delta in the South, such as Sai Gon, Vung Tau, and along the Central coast, such as Vinh, Hue, Danang. Most highways, high rises are located in these areas. 275 static load tests for driven piles and 92 static load tests for drilled shafts have been collected from Vietnam. Each set of pile test data also comes with detailed soil profile. Tables E-1 and E-2 in Appendix E show the data collected. 6.2 General description of Vietnam geology 6.2.1 North Vietnam This region is characterized by large formations of Red River depositional units of clay, sand, very soft clay, soft sandy clay and clayey sand, the entire region has the soft soil. Table 6.1 provides the general stratification of the sub-soils North Vietnam, and Table 6.2 gives the average properties of each soil type. Figure 6.2 shows the six regions including A, B, C, D, E, F which have different depth of the gravel layer in Hanoi. The depth gravel layer is very important factor to determine the depth of drilled shaft. -The depth of gravel in region A: h 30m -The depth of gravel in region B: h = 30-35m -The depth of gravel in region C: h = 35-40m -The depth of gravel in region D: h = 40-45m -The depth of gravel in region E: h = 45-50m -The depth of gravel in region F: h > 50m

PAGE 124

103 Table 6.1 General soil profile in North Vietnam

PAGE 125

104Table 6.2 Mean Values Properties of Each Soil Type North Vietnam Layer <0.005mm (%) W (%) wet (g/cm3) solid (g/cm3) dry (g/cm3) e S (%) LL PI degree C (kg/cm3) 1a Very Fine Sand 30 1.82 2.7 1.4 0.93 87.5 27 0.08 1b Muddy Sandy Clay 17 44 1.7 2.69 1.18 1.26 92.5 37 1314 0.01 1c Clayey Sand 6 28 1.82 2.67 1.42 0.88 85.5 27 6 19 0.07 2 Sandy Clay 18 29 1.88 2.71 1.46 0.85 91.5 36 1415 0.24 3 Clay 40 33 1.85 2.71 1.39 0.95 94.3 44 2112 0.38 4a1 Muddy Peat 38 76 1.49 2.69 0.85 2.07 95.6 60 236 0.14 4a2 Muddy Clay 45 59 1.65 2.7 1.04 1.699.5 51 258 0.11 4b Muddy Sandy Clay 23 42 1.73 2.69 1.22 1.293.8 37 1316 0.05 4c Muddy Clayey Sand 7 36 1.78 2.69 1.31 1.05 92.2 32 6 19 0.03 5a Fine Sand 26 1.81 2.67 1.46 0.83 84 28 0.04 5b Clayey Sand 6 29 1.85 2.68 1.14 0.87 85.8 27 7 20 0.08 5c Coble 6a Clay (multi color) 25 32 1.86 2.72 1.41 0.93 93.5 38 1613 0.19 6b Clay (gray) 44 42 1.87 2.72 1.32 1 100 46 2110 0.22 7 Sandy Clay 21 28 1.85 2.7 1.48 0.83 91.5 32 1315 0.16 8a Muddy Clay 42 62 1.58 2.63 0.97 1.71 94.8 55 2411 0.16 8b Muddy Sandy Clay 22 43 1.74 2.69 1.22 1.21 95.7 37 1217 0.09 8c Muddy Clayey Sand 8 39 1.84 2.7 1.32 1.04 100 32 5 25 0.05 9 Clayey Sand 9 29 1.85 2.67 1.43 0.86 90 28 5 27 0.1 10 Medium to Coarse Sand 26 1.87 2.67 1.19 0.886.6 33 0.02

PAGE 126

105 Figure 6.2 the depth of bearing layer (gravel) in Hanoi

PAGE 127

106 6.2.2 South Vietnam This region is characterized by low relief and large formations of Mekong River depositional units of soft soil, including: clay, sand, very soft clay, and soft clayey sand clay in the upper layer, coarse sand to gravel in the lower layer underlain by moderately to highly weathered bedrock. The thickness of soft soil usually ranges from 3m to 30 m, however, in some areas it can be as thick as 300m. The soft soil stratification in this region starts with 0.5 to 1.5m of top soil, below which are inorganic clay, organic clay, very soft clay, soft clayey sand, and the lacustrine clay with interbeded layers of thin sand and clay. The thickness of organic layers range from 3m to 4m in Long An, from 9 to 10m in Thach Anh, Hau Giang and from18-20m in Long Phu, Hau Giang. This layer has very high moisture content, 40% to 70% in clay with 2% to 8% organic materials. Table 6.3a and 6.3b summarize the properties of this layer. The nonorganic clay usually 3-4m below the surface in Long An, 9-10m in Thach Anh, Hau Giang, 15-16 m in Vinh Qui, Tan Long, Hau Giang, 25-26m in My Thanh, Hau Giang, and much deeper near the coastal margin. Table 6.4a and 6.4b summarize the properties of this layer. Between organic clay and inorganic clay is a sandy clay with thickness about 3 to 5m. The water table is at 0.5m to 2m below the ground surface. Table 6.3a Properties of Organic Clay Layer in South Vietnam Moisture content – 50-100% (some area >100%) Liquid limit – L 50-100% Plastic Limit – P 20-70% Void Ratio – e 1.2-3.0 (some area e>3.0) Unit Weight – w 1.35-1.65 g/cm3 Dry Unit Weight – c 0.64-0.95 g/cm3

PAGE 128

107Table 6.3 b Friction Angle and Cohesion of Organic Clay Layer in South Vietnam Void ration – e 1.2 – 2.0 1.2 – 2.0 1.4 – 3.0 1.4 – 4.0 1.4 – 4.0 Mean of 10o 9o 8o 7o 5o STD of 1o45’ 1o30’ 1o12’ 1o15’ 1o30’ Mean of C (Kg/cm2) 0.12 0.10 0.08 0.06 0.05 STD of C (Kg/cm2) 0.02 0.03 0.02 0.02 0.02 Table 6.4a Properties of Non-Organic Clay Layer in South Vietnam Moisture content – 22-55% (some area >100%) Liquid limit – L 40-65% Plastic Limit – P 20-30% Void Ratio – e 0.7-1.5 (some area e>3.0) Unit Weight – w 1.65-1.95 g/cm3 Dry Unit Weight – c 1.05-1.55 g/cm3 Table 6.4 b Friction Angle and Cohesion of Inorganic Clay Layer in South Vietnam Void ratio e 0.75 – 1.00.85 – 1.2 0.85 – 1.2 1.1 – 1.4 1.2 – 1.5 Mean of 17o 13o 11o 9o30’ 8o30’ STD of 2o12’ 1o45’ 3o 1o12’ 9o45’ Mean of C (Kg/cm2) 0.28 0.22 0.18 0.15 0.10 STD of C (Kg/cm2) 0.03 0.04 0.04 0.04 0.03 6.2.3 Central Vietnam This region is characterized by low relief and large formations of shallow marine depositional units of soft soil, including fine sand, sandy clay and clay in the upper layer, coarse sand to gravel in the lower layer underlain by moderately to highly weathered bedrock. The thickness of upper layer ranges from 15m to 40m with SPT blow count, N, from 2 to 15 and the moisture content is very high from 35 to 70%. The lower layer has

PAGE 129

108higher SPT blow count from 20 to 45 or higher with the thickness of 4m to 10m. This layer is good for resting the tip of driven piles and drilled shafts. 6.3 Static Load Tests and Soil Profile from a site in Vietnam The name of this project is Red River Shipyard and the location of project in Hoang MaiHanoi. Figures 6.1, 6.2a, 6.2b, 6.2c, 6.2d show the site plan and four boring logs for this project. Tables 6.5, 6.6 and 6.7 show the summary of SPT and the properties of each soil layer. Figures 6.3a, 6.3b, 6.3c, 6.3d and 6.3e show static load test data for 5 (350mm x350mm) prestressed concrete piles. As can be seen, all load tests were carried out to a vertical load twice the design capacities, instead of failure. Thus, ChinÂ’s method was used to extend the load settlement curve in an attempt to estimate ultimate capacities. Figure 6.2 Red River Shipyard Project Site Plan

PAGE 130

109Table 6.5 Summary SPT value of each Layer No Layer Soil Type Average Thickness of Layer (m) NSPT Number of SPT tests Max Mean Min 1 Layer 1a 0.83 2 Layer 1b 0.38 3 Layer 2 CL 2.13 4 3 3 6 4 Layer 3 CL 7.50 7 5 5 6 5 Layer 4 SC 4.86 9 7 6 17 6 Layer 5 CL 4.50 5 3 3 14 7 Layer 6 SC 7.48 9 7 5 24 8 Layer 7 SC 10.49 29 25 11 40 9 Layer 8 SP 2.62 28 22 20 10 10 Layer 9 CL 2.80 8 7 6 4 11 Layer 10 CL 4.30 14 11 11 9 12 Layer 11 SC 42 34 30 24 Table 6.6 Summary of Soil Properties of Clay Layer Properties Unit Layer Layer 2 Layer 3 Layer 5 Layer 9 Layer 10 5.0-2.0 (mm) % 3.2 2.0-1.0 (mm) % 0.3 1.1 1.9 1.0-0.5 (mm) % 1.3 1.0 2.8 1.6 2.1 0.5-0.25 (mm) % 4.9 4.4 5.9 3.4 4.1 0.25-0.1 (mm) % 21.2 8.2 22.7 7.4 6.8 0.1-0.05 (mm) % 22.7 13.1 21.5 16.5 13.0 0.05-0.01(mm) % 25.2 34.6 23.4 26.2 27.3 0.01-0.005(mm) % 15.6 23.8 15.0 21.0 21.3 <0.005 (mm) % 9.2 15.3 8.9 24.6 25.3 W % 40.8 28.4 29.0 29.7 26.4 LL % 43.9 33.4 30.8 36.1 35.2 PL % 28.1 19.61 20.5 20.8 19.8 PI % 15.8 13.8 10.2 15.3 15.4 wet g/cm3 1.72 1.81 1.72 1.93 1.94

PAGE 131

110Table 6.6 (cont.) dr y g/cm3 1.22 1.40 1.33 1.49 1.53 solid g/cm3 2.67 2.69 2.65 2.73 2.72 n % 54.3 47.8 49.8 45.4 43.7 1.187 0.915 0.994 0.830 0.777 S % 91.8 83.5 77.5 97.6 92.4 C kG/cm2 0.045 0.196 0.083 0.139 0.259 6055Â’ 11057Â’ 9010Â’ 10052Â’ 14012Â’ 0.25 kG/cm2 0.077 0.236 0.134 0.077 0.5 kG/cm2 0.103 0.319 0.167 0.245 0.391 0.75 kG/cm2 0.137 0.232 1.0 kG/cm2 0.399 0.298 0.506 2.0 kG/cm2 0.710 0.768 Table 6.7 Summary of Soil Properties of Sand Layer Properties Unit Layer Layer 4 Layer 6 Layer 7 Layer 8 Layer 11 20.0-10.0 (mm) % 16.8 10.0-5.0 (mm) % 31.7 5.0-2.0 (mm) % 13.6 2.0-1.0 (mm) % 1.1 4.4 1.0-0.5 (mm) % 2.4 2.8 5.2 0.5 0.5-0.25 (mm) % 2.9 4.4 5.0 4.2 2.3 0.25-0.1 (mm) % 11.8 21.0 57.0 4.1 18.7 0.1-0.05 (mm) % 80.3 69.7 33.6 21.3 74.3 <0.05 (mm) % 5.3 4.6 3.4 2.2 4.9 0.01-0.005 (mm) % <0.005 (mm) % wet g/cm3 1.23 1.23 1.33 1.26 dr y g/cm3 1.47 1.46 1.48 1.46 solid g/cm3 2.67 2.67 2.68 2.68 2.70 n % max 1.176 1.165 1.010 1.126 min 0.818 0.825 0.811 0.825

PAGE 132

111 0 25 50 75 100 125 150 175 051015202530Settlement (mm)Static Load (ton) Static Load Test Data Chin's Method y = 0.0055x + 0.0426 R2 = 0.8120 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0246810Settlement (mm) Figure 6.4a Static Load Test Data and ChinÂ’s Method for A5-2 (350x350) Concrete Pile 0 25 50 75 100 125 150 175 0510152025303540Settlement (mm)Static Load (ton) Static Load Test Data Chin's Method y = 0.0049x + 0.042 R2 = 0.8630 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 012345678Settlement (mm)Settlement Static Load Figure 6.4b Static Load Test Data and ChinÂ’s Method for A1-5 (350x350) Concrete Pile 0 25 50 75 100 125 150 175 200 0510152025303540Settlement (mm)Static Load (ton) Static Load Test Data Chin's Method y = 0.0047x + 0.04 R2 = 0.89140 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08012345678Settlement (mm)Settlement Static Load Figure 6.4c Static Load Test Data and ChinÂ’s Method for B1-2 (350x350) Concrete Pile

PAGE 133

112 0 25 50 75 100 125 150 051015202530Settlement (mm) Static Load Test Data Chin's Method y = 0.006x + 0.0332 R2 = 0.9778 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0123456789Settlement (mm)Settlement Static Load Figure 6.4d Static Load Test Data and ChinÂ’s Method for B5-2 (350x350) Concrete Pile 0 25 50 75 100 125 150 051015202530Settlement (mm)Static Load (ton) Static Load Test Data Chin's Method y = 0.0076x + 0.023 R2 = 0.97840 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0123456789Settlement (mm)Settlement Static Load Figure 6.4e Static Load Test Data and ChinÂ’s Method for B10-2 (350x350) Concrete Pile

PAGE 134

113 7. Calibration Resistant Factors for Driven Piles in Vietnam In this chapter, resistance factors for driven piles in Vietnam are developed for different statics methods. Calibration of the resistance factors for each analysis method is presented separately and discussed in detail, including histograms and frequency distribution for each case attained using database was collected in Vietnam by author. For the resistance factors corresponding to a wide range of target reliability indices, a sensitivity analysi s is considered in order to provide the designer the freedom to select and determine the degree of conservatism in the design. Efficiency factors are also provided to appropriately compare the economy of different methods. Equivalent factors of safety were back calculated from the developed LRFD resistance factors to compare the ASD approach and determine the percentage of gain in the pile capacity when using the LRFD approach. All the regionally developed resistance factors are thus compared with the current design specifications. 7.1Procedure to Calibrate Resistance Factors for Driven Piles -Collect the static load tests and soil profile for driven piles in North, Central and South Vietnam. -Calculate the nominal capacity by using different methods -Interpret the static load tests to find the real capacity of driven piles by using the ChinÂ’s method and DavissionÂ’s method. -Calculate the bias factor Ri = Rmi / Rni -Calculate the mean, R, and the coefficient of variation, COV, of the random series Ri. -Calibrate the resistance factor by using First Order Second Method (FORM), First Order Reliability Method (FORM) and Monte Carlo simulation

PAGE 135

114 7.2Collection of Driven Piles in Vietnam The calibration resistance factor process for driven piles in Vietnam requires an extensive data base. From 2008 to 2012 the author collected 275 static load tests and soil profiles for driven pile from North, Central and South of Vietnam. The list of all piles including locations, depth and cross section of piles can be found in table E1 in appendix E. Almost data for driven pile from the North Plain (NP), Central Plain (CP) and South Plain (SP) of Vietnam. 7.3Measurement capacity of driven piles Chin method, 1” settlement’s criterion and Davission’s criterion were used to interpret the static load test data for driven pile in North, Central and South of Vietnam and the result shown detail in Table E1 in appendix E. The Fig 7.1a and Fig 7.1b show the relationship among 80% Chin method, 1” settlement and Davission’s criterion for 275 driven piles statics load test. Davission’s criterion is used to determine the capacity for the driven piles, since Davission’s capacity is closed to both 80% Chin and 1” settlement’s capacity. 7.4 Nominal Capacity of driven piles As mentioned in Chapter 3, eight different pile static analysis methods were used for predicting the design nominal capacity of concrete piles in this research. These methods included: Tomlinson, -API, Nordlund, Thurman, Meyerhof SPT, and Shmertmann SPT method. The Nordlund and Thurman method use the friction angle and/or the undrained shear strength Su or the overconsolidation ratio OCR, but most of the soil data from the database are from SPT tests. Therefore, the soil parameters were mainly calculated based on the corrected SPT N-values and using the soil correlations previously mentioned in Chapter 3. Spreadsheets were created for each method in order to predict the capacity of the 273 concrete piles.

PAGE 136

115 7.4.1Nominal Capacity of Concrete Piles in Cohesionless Soils The Nordlund and Thurman method were used to get the nominal capacity of driven pile in sand by using the correlation between Nspt and the friction angle of sand by Peck, Hanson & Thornburn and Schmertmann and the result can be found in table E-3 in appendix E. Fig 7.1a and 7.1b show the prediction capacity by using the correlation from Peck is closer to DavissionÂ’s capacity than Schmertmann Fig 7.1c and 7.1d show the prediction capacity from empirical method including Schmertmann SPT and Meyerhof SPT and measure capacity are closed Figure 7.1a Measure Capacity DavissonÂ’s versus 80% Chin Method y = 1.082x R = 0.924 0 100 200 300 400 500 010020030040050080% Chin 's CapacityDavission's Capacity80% Chin's Vs Davission Capacity

PAGE 137

116 Figure 7.1b Measure Capacity Davisson’s versus 1” settlement Figures 7.2a: Prediction Capacity using Nordlund method vs. Measure Capacity of Concrete Piles in Cohesionless Soils (North and South of Vietnam) y = 0.981x R = 0.934 0 100 200 300 400 500 01002003004005001" CapacityDavission's Capacity1" Vs Davission Capacity y = 1.586x R = 0.915 y = 1.550x R = 0.62 0 100 200 300 400 500 600 700 800 0100200300400500Northlund Method from Terzaghi & PeckDavission's CapacityNordlund method Vs Davission Capacity North South Linear (North) Linear (South)

PAGE 138

117 Figures 7.2b: Prediction Capacity using Nordlund method vs. Measure Capacity of Concrete Piles in Cohesionless Soils (North and South of Vietnam) Figures 7.2c: Prediction Capacity using Schmertmann SPT method vs. Measure Capacity of Concrete Piles in Cohesionless Soils (North, Central and South of Vietnam) y = 2.628x R = 0.871 y = 2.283x R = 0.64 0 200 400 600 800 1000 1200 1400 0100200300400500Nordlund method from SchmertmannDavission's CapacityNordlund and Thurman method North South Linear (North) Linear (South) y = 0.942x R = 0.878 y = 0.851x R = 0.69 0 50 100 150 200 250 300 350 400 450 0100200300400500Schmertmann SPT MethodDavission's CapacitySchmertmann SPT Vs Davission Capacity North South Linear (North) Linear (South)

PAGE 139

118 Figures 7.2d: Prediction Capacity using Meyerhof SPT method vs. Measure Capacity of Concrete Piles in Cohesionless Soils (North, Central and South of Vietnam) 7.4.2Nominal Capacity of Concrete Piles in Cohesive Soils The -Tomlinson method, -API method, method, -Burland, Schmertmann SPT method were used to get the nominal capacity of driven pile in cohesive soil by using the correlation between Nspt and the un-drain shear strength Su of clay by Terzaghi and Peck (1967) and Hara (1974). The prediction capacity of driven piles in cohesive soil can be founded in table E-3 in appendix E. Fig 7.2a to 7.2g show the prediction capacity by using the correlation between Nspt and Su from Terzaghi and Peck is underestimate and from Hara is over estimate with all method using in calculate the nominal capacity for driven piles in cohesive soil. Fig 7.2h shows the prediction capacity from empirical Schmertmann SPT method is closed to measure capacity 7.4.3Nominal Capacity of Concrete Piles in Mixed Soils Seven different pile static analysis methods were used for predicting nominal capacity of concrete piles in mixed soil including: -Tomlinson, -API, Burland, Nordlund, Thurman, Schmertmann SPT method by using the correlation y = 0.883x R = 0.748 y = 0.739x R = 0.56 0 50 100 150 200 250 300 350 400 0100200300400500Meyhoft SPTDavission's CapacityMeyhoft SPT Vs Davission Capacity North South Linear (North) Linear (South)

PAGE 140

119 between Nspt and the un-drain shear strength Su of clay by Terzaghi and Peck (1967) or Hara (1974) and friction angle of sand by Peck, Hanson and Thornburn or Schmertmann. The predicted capacity of driven piles in mixed soil is in table E-5 in appendix E. Fig 7.3a to 7.2g show the prediction capacity by using the correlation friction angle from Peck, Hanson and Thornburn is closer to measure capacity and from Schmertmann is over estimate. Figures 7.3a: Prediction Capacity using -Tomlinson method vs. Measure Capacity of Concrete Piles in Cohesive SoilsSu from Terzaghi-Peck in North, Central and South of Vietnam y = 0.978x R = 0.787 y = 0.724x R = 0.53 y = 0.735x R = 0.635 y = 0.865x R = 0.654 0 50 100 150 200 250 300 050100150200250300 Tomlinson andNordlundDavission's Capacity Tomlinson method (Su:Terzaghi Peck ) North South Central Total Linear (North) Linear (South) Linear (Central) Linear (Total)

PAGE 141

120 Figures 7.3b: Prediction Capacity using -Tomlinson method vs. Measure Capacity of Concrete Piles in Cohesive Soils-Su from Hara in North, Central and South of Vietnam Figures 7.3c: Prediction Capacity using -API method vs. Measure Capacity of Concrete Piles in Cohesive Soils-Su from Terzaghi-Peck in North, Central and South of Vietnam y = 1.436x R = 0.837 y = 1.161x R = 0.960 y = 0.801x R = 0.752 y = 1.184x R = 0.551 0 50 100 150 200 250 300 050100150200250300 Tomlinson/NordlundDavission's Capacity Tomlinson method (Su: Hara) North South Central Total Linear (North) Linear (South) Linear (Central) Linear (Total) y = 0.719x R = 0.717 y = 0.685x R = 30.2 y = 0.485x R = 0.703 0 50 100 150 200 250 300 050100150200250300 Tomlinson/NordlundDavission's Capacity API method (Su: Terzaghi Peck) North South Central Linear (North) Linear (South) Linear (Central)

PAGE 142

121 Figures 7.3d: Prediction Capacity using -API method vs. Measure Capacity of Concrete Piles in Cohesive Soils-Su from Hara in North, Central and South of Vietnam Figures 7.3e: Prediction Capacity using method vs. Measure Capacity of Concrete Piles in Cohesive Soils-Su from Terzaghi and Peck in North, Central and South of Vietnam y = 1.389x R = 0.602 y = 1.076x R = 3.02 y = 0.876x R = 0.754 0 50 100 150 200 250 300 050100150200250300 Tomlinson/NordlundDavission's Capacity API method (Su: Hara ) North South Central Linear (North) Linear (South) Linear (Central) y = 0.871x R = 0.619 y = 0.634x R = 16.3 y = 0.517x R = 0.621 0 50 100 150 200 250 300 050100150200250300 Tomlinson/NordlundDavission's Capacity Nordlund (Su: Terzaghi Peck ) North South Central Linear (North) Linear (South) Linear (Central)

PAGE 143

122 Figures 7.3f: Prediction Capacity using method vs. Measure Capacity of Concrete Piles in Cohesive Soils-Su from Hara (North, Central and South of Vietnam) Figures 7.3g: Prediction Capacity using method vs. Measure Capacity of Concrete Piles in Cohesive Soils (North, Central and South of Vietnam) y = 1.452x R = 0.546 y = 1.039x R = 5.56 y = 0.978x R = 0.719 0 50 100 150 200 250 300 050100150200250300 Tomlinson/NordlundDavission's Capacity Nordlund (Su Hara ) North South Central Linear (North) Linear (South) Linear (Central) y = 1.003x R = 0.689 y = 0.821x R = 450. y = 0.464x R = 0.742 0 50 100 150 200 250 300 050100150200250300 Tomlinson/NordlundDavission's Capacity method North South Central Linear (North) Linear (South) Linear (Central)

PAGE 144

123 Figures 7.3h: Prediction Capacity using Schmertmann SPT method vs. Measure Capacity of Concrete Piles in Cohesive Soils (North, Central and South of Vietnam) Figures 7.4a1: Prediction Capacity using -Tomlinson, Nordlund, Thurman method vs. Measure Capacity of Concrete Piles in Mixed SoilsSu from T-P, from P-H-T ( North, Central and South of Vietnam) y = 1.099x R = 0.597 y = 0.783x R = 0.983 y = 0.739x R = 0.393 0 50 100 150 200 250 300 050100150200250300 Tomlinson/NordlundDavission's CapacitySchmertmann SPT North South Central Linear (North) Linear (South) Linear (Central) y = 1.358x R = 0.739 y = 1.125x R = 0.722 y = 1.092x R = 0.698 0 100 200 300 400 500 600 700 800 0100200300400500600700 Tomlinson/NordlundDavission's Capacity Tomlinson Nordlund (Su: Terzaghi Peck; : Peck, Hanson & Thornburn) North South Central Linear (North) Linear (South) Linear (Central)

PAGE 145

124 Figures 7.4a2: Prediction Capacity using -Tomlinson, Nordlund, Thurman method vs. Measure Capacity of Concrete Piles in Mixed Soils Su from Hara, from P-H-T (North, Central and South of Vietnam) Figures 7.4a3: Prediction Capacity using -Tomlinson, Nordlund, Thurman method vs. Measure Capacity of Concrete Piles in Mixed Soils Su from T-P, from Schmertmann (North, Central and South of Vietnam) y = 1.564x R = 0.752 y = 1.162x R = 0.722 y = 1.515x R = 0.678 0 100 200 300 400 500 600 700 800 0100200300400500600700 Tomlinson/NordludDavission's Capacity Tomlinson Nordlund (Su Hara; : Peck, Hanson & Thornburn ) North South Central Linear (North) Linear (South) Linear (Central) y = 1.870x R = 0.662 y = 1.488x R = 0.41 y = 1.185x R = 0.679 0 200 400 600 800 1000 1200 0100200300400500600700 Tomlinson/NordlundDavission's Capacity Tomlinson Nordlund (Su: Terzaghi &Peck; : Schmertmann) North South Central Linear (North) Linear (South) Linear (Central)

PAGE 146

125 Figures 7.4a4: Prediction Capacity using -Tomlinson, Nordlund, Thurman method vs. Measure Capacity of Concrete Piles in Mixed Soils Su from Hara, from Schmertmann (North, Central and South of Vietnam) Figures 7.4b1 Prediction Capacity using -API, Nordlund, Thurman method vs. Measure Capacity of Concrete Piles in Mixed Soils-Su from T-P, from P,H &T(North, Central and South of Vietnam) y = 2.100x R = 0.730 y = 1.522x R = 0.379 y = 1.500x R = 0.576 0 200 400 600 800 1000 1200 0100200300400500600700 Tomlinson/NordlundDavission's Capacity Tomlinson Nordlund (Su: Hara; : Schmertmann) North South Central Linear (North) Linear (South) Linear (Central) y = 1.278x R = 0.708 y = 1.204x R = 0.762 y = 0.942x R = 0.657 0 100 200 300 400 500 600 700 800 0100200300400500600700 API/NordlundDavission's Capacity API Nordlund (Su: Terzaghi &Peck; : Peck, Hanson & Thornburn) North South Central Linear (North) Linear (South) Linear (Central)

PAGE 147

126 Figures 7.4b2: Prediction Capacity using -API, Nordlund, Thurman method vs. Measure Capacity of Concrete Piles in Mixed Soils-Su from Hara, from P,H &T (North, Central and South of Vietnam) Figures 7.4b3: Prediction Capacity using -API, Nordlund, Thurman method vs. Measure Capacity of Concrete Piles in Mixed Soils-Su from T-P, : from Schmertmann (North, Central and South of Vietnam) y = 1.516x R = 0.804 y = 1.368x R = 0.811 y = 1.421x R = 0.620 0 100 200 300 400 500 600 700 800 900 0100200300400500600700 API/NordlundDavission's Capacity API Nordlund (Su Hara; : Peck, Hanson & Thurnburn) North South Central Linear (North) Linear (South) Linear (Central) y = 1.822x R = 0.641 y = 1.564x R = 0.529 y = 1.071x R = 0.686 0 200 400 600 800 1000 1200 0100200300400500600700 API/NordlundDavission's Capacity API Nordlund (Su: Terzaghi &Peck : Schmertmann) North South Central Linear (North) Linear (South) Linear (Central)

PAGE 148

127 Figures 7.4b4: Prediction Capacity using -API, Nordlund, Thurman method vs. Measure Capacity of Concrete Piles in Mixed Soils-Su: Hara; : Schmertmann (North, Central and South of Vietnam) Figures 7.3c1: Prediction Capacity using Nordlund, Thurman method vs. Measure Capacity of Concrete Piles in Mixed Soils-Su: Terzaghi & Peck; : Peck, Hanson & Thornburn (North, Central and South of Vietnam) y = 2.068x R = 0.739 y = 1.728x R = 0.646 y = 1.345x R = 0.658 0 200 400 600 800 1000 1200 0100200300400500600700 API/NordlundDavission's Capacity API Nordlund (Su: Hara; : Schmertmann) North South Central Linear (North) Linear (South) Linear (Central) y = 1.238x R = 0.692 y = 1.137x R = 0.744 y = 0.982x R = 0.677 0 100 200 300 400 500 600 700 800 0100200300400500600700 /NordlundDavission's Capacity Nordlund (Su: Terzaghi &Peck; : Peck, Hanson & Thornburn ) North South Central Linear (North) Linear (South) Linear (Central)

PAGE 149

128 Figures 7.4c2: Prediction Capacity using Nordlund, Thurman method vs. Measure Capacity of Concrete Piles in Mixed Soils-Su: Hara; : Peck, Hanson & Thornburn (North, Central and South of Vietnam) Figures 7.4c3: Prediction Capacity using Nordlund, Thurman method vs. Measure Capacity of Concrete Piles in Mixed Soils-Su: Terzaghi& Peck; : Schmertmann (North, Central and South of Vietnam) y = 1.474x R = 0.790 y = 1.257x R = 0.846 y = 1.467x R = 0.609 0 100 200 300 400 500 600 700 800 0100200300400500600700 /NordlundDavission's Capacity Nordlund (Su: Hara; : Peck, Hanson &Thornburn ) North South Central Linear (North) Linear (South) Linear (Central) y = 1.462x R = 0.533 y = 1.497x R = 0.450 y = 1.152x R = 0.676 0 200 400 600 800 1000 1200 0100200300400500600700 /NordlundDavission's Capacity Nordlund (Su: Terzaghi &Peck; : Schmertmann) North South Central Linear (North) Linear (South) Linear (Central)

PAGE 150

129 Figures 7.4c4: Prediction Capacity using Nordlund, Thurman method vs. Measure Capacity of Concrete Piles in Mixed Soils-Su: Hara; : Schmertmann (North, Central and South of Vietnam) Figures 7.4d1: Prediction Capacity using method vs. Measure Capacity of Concrete Piles in Mixed Soils: Peck, Hanson, Thornburn: Peck, Hanson, Thornburn (North, Central and South of Vietnam) y = 2.009x R = 0.719 y = 1.640x R = 0.572 y = 1.085x R = 0.657 0 200 400 600 800 1000 1200 0100200300400500600700 /NordlundDavission's Capacity Nordlund (Su: Hara; : Schmertmann) North South Central Linear (North) y = 1.414x R = 0.747 y = 1.364x R = 0.787 y = 1.096x R = 0.661 0 100 200 300 400 500 600 700 050100150200250300350400 MethodDavission's Capacity method ( : Peck, Hanson, Thornburn) North South Central Linear (North) Linear (South) Linear (Central)

PAGE 151

130 Figures 7.4d2: Prediction Capacity using method vs. Measure Capacity of Concrete Piles in Mixed Soils: Schmertmann (North, Central and South of Vietnam) Figures 7.4e1: Prediction Capacity using SPT method vs. Measure Capacity of Concrete Piles in Mixed Soils (North, Central and South of Vietnam y = 1.955x R = 0.693 y = 1.724x R = 0.652 y = 1.166x R = 0.674 0 100 200 300 400 500 600 700 050100150200250300350400 MethodDavission's Capacity method ( : Schmertmann) North South Central Linear (North) Linear (South) Linear (Central) y = 0.883x R = 0.762 y = 1.302x R = 0.639 y = 0.726x R = 0.779 0 50 100 150 200 250 300 350 400 050100150200250300350400Schmertmann SPT MethodDavission's CapacitySchmertmann SPT Vs Davission Capacity North Central South Linear (North) Linear (Central) Linear (South)

PAGE 152

131 7.5Calibration of Resistance Factors As discussed in Chapter 4, there are tree statistical methods used for the LRFD resistance factor calibration including First Order Second Moment (FOSM), First Order Reliability Methods (FORM) and other advanced methods, such as the Monte Carlo simulation, have been used for performing the reliability analyses with assuming a lognormal distribution of the load and resistance Probability Density Functions (PDFs).The author conducted the analysis using both the FOSM and the FORM methods using the data from NHCRP 507 report and the result showed that the difference between FOSM and FORM is relatively small (did not exceed 10% on average) as the FOSM provides slightly conservative resistance factors. Using the equation 7.1 for FOSM and writing the Matlab program by using the theory in chapter 4 for FORM and Monte Carlo simulation to find the resistance factor with the following parameters: dead load factorD = 1.25, live load factorL = 1.75, dead load bias factorQD = 1.08, live load bias factorQL =1.15, dead load coefficients of variation-COVQD = 0.13 and live load coefficients of variation COVQL= 0.18. Sine dead to live load ratio QD/QL changes from 1-3 and has almost no effect on the resistance factor, this study uses QD/QL = 1. 222 2221/1 exp(ln11DLDL DL DLD RQQQQR L D QQTRQQ LQ COVCOVCOV Q Q COVCOVCOV Q (7.1) As commented in Chapter 4, the targeted values in this study were chosen to be similar to those used in the 2012 AASHTO-LRFD specifications and the NCHRP report 507, i.e., = 2.33 (Pf = 1%) for redundant pile groups (consisting of five or more piles/cap), and = 3.0 (Pf = 0.1%) for non-redundant pile groups (less than five piles/cap). However, the LRFD resistance factors will be calculated herein for a wider range of providing the freedom of selecting any other target reliability and corresponding resistance factors for pile design.

PAGE 153

132 7.5.1Resistant factors for driven piles in Sand Table 7.1, 7.1a, 7.1b, 7.1c shows the bias factor and the calibration resistance factor as well as efficiency factor ( / ),equivalent factor of safety to ASD and actual mean factor of safety for driven pile in cohesionless soil by different method for calculating the nominal capacity in North, Central and South of Vietnam. The resistant factors by using FORM method and Monte Carlo simulation are almost the same and about 10% higher than FOSM method. Figure 7.5a and 7.5b is an example of the histogram and frequency distribution of bias factor 1 and an example of resistant factor calibration for 58 cases of concrete piles in Sand using the Nordlund and Thurman method with correlation between the friction angle and SPT value buy Peck, Hanson and Thurman by using all data for cohesionless soil in Vietnam. The other histograms and frequency distributions of bias factor: 1 to 4 and resistant factor calibration: 1to 4 for All data, North data, and South data can be found in figure F-S1-a to F-S4d in appendix F Table.7.1 Bias factor for driven pile in Cohesionless Soil using Nordlund Shmertmann SPT and Mayhoft SPT method with DavissionÂ’s criterion in North, Center and South of Vietnam Nordlund SPT : Peck, Hanson and Thornburn :Schmertmann Schmertmann SPT Mayhoft SPT 1 2 3 4 NP-S1 0.80 0.49 0.89 0.94 NP-S2 0.75 0.46 0.82 0.87 NP-S3 0.83 0.51 0.91 0.97 NP-S4 0.64 0.41 0.82 0.79 NP-S5 0.66 0.42 0.85 0.82 NP-S6 0.61 0.39 0.79 0.76 NP-S7 0.69 0.44 0.88 0.85 NP-S8 0.67 0.43 0.87 0.83 NP-S9 0.67 0.42 0.86 0.83 NP-S10 0.69 0.44 0.89 0.85 NP-S11 0.70 0.44 0.90 0.86 NP-S12 0.63 0.40 0.81 0.78 NP-S13 0.70 0.44 0.89 0.86 NP-S14 0.69 0.44 0.88 0.85

PAGE 154

133 Table 7.1 (cont.) NP-S15 0.74 0.47 0.95 0.91 NP-S16 0.72 0.46 0.92 0.89 NP-S17 0.73 0.46 0.93 0.90 NP-S18 0.71 0.45 0.91 0.87 NP-S19 0.69 0.44 0.89 0.86 NP-S20 0.57 0.39 0.92 0.94 NP-S21 0.67 0.46 1.09 1.11 NP-S22 0.76 0.51 1.23 1.26 NP-S23 0.51 0.34 0.82 0.84 NP-S24 0.57 0.39 0.93 0.95 NP-S25 0.66 0.45 1.08 1.10 NP-S26 0.84 0.57 1.38 1.40 NP-S27 0.64 0.44 1.05 1.07 NP-S28 0.71 0.49 1.16 1.19 NP-S29 0.63 0.43 1.03 1.05 NP-S30 0.73 0.50 1.19 1.22 NP-S31 0.59 0.40 0.96 0.98 NP-S32 0.61 0.34 1.21 1.42 NP-S33 0.53 0.30 1.04 1.23 NP-S34 0.46 0.26 0.91 1.07 NP-S35 1.11 0.40 1.10 1.03 NP-S36 1.28 0.47 1.27 1.19 NP-S37 1.22 0.44 1.20 1.13 NP-S38 1.16 0.42 1.15 1.08 NP-S39 1.21 0.44 1.19 1.12 NP-S40 0.94 0.68 1.15 1.04 NP-S41 1.13 0.63 0.81 0.65 NP-S42 1.15 0.64 0.82 0.66 NP-S43 1.19 0.66 0.85 0.69 NP-S44 1.50 0.75 1.80 1.94 NP-S45 1.35 0.67 1.62 1.75 NP-S46 1.43 0.72 1.72 1.86 NP-S47 0.78 0.65 1.83 2.14 NP-S48 0.80 0.67 1.88 2.21 NP-S49 0.78 0.65 1.81 2.13 NP-S50 0.70 0.59 1.64 1.93 NP-S51 1.11 0.71 1.05 0.99 NP-S52 1.18 0.75 1.12 1.05 NP-S53 1.26 0.80 1.19 1.12 NP-S54 1.18 0.75 1.12 1.05 SP-S1 0.76 0.58 1.35 1.80 SP-S2 0.84 0.56 1.42 2.09 SP-S3 0.58 0.38 1.10 1.02 SP-S4 0.46 0.30 0.88 0.90

PAGE 155

134 Fig 7.5a Histogram and frequency distribution of bias factor 1 for 58 cases of concrete piles in Sand using the Nordlund method ( : Peck, Hanson and Thornbum) in Vietnam Fig7.5b Resistant factor calibration for 58 cases of concrete piles in Sand using the Nordlund method ( : Peck, Hanson and Thornbum) in Vietnam 0.5 1 1.5 0 0.5 1 1.5 2 2.5 3 Bias FactorDensity Lamda1AllSand data Normal Lognormal 0 1 2 3 4 5 6 7 8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 156

135 Table 7.1a Summary of calibration resistance factor for driven pile using Nordlund ,Shmertmann SPT and Mayhoft SPT method in North, Center and South of Vietnam Data from North, Central and South of Vietnam Nordlund-Thurman SPT Peck, Hanson and Thornburn from Schmertmann Schmertmann SPT Mayhoft SPT 1 2 3 4 Total Mean 0.83 0.50 1.10 1.13 58 cases Stand 0.26 0.13 0.29 0.41 cov 0.32 0.26 0.27 0.36 =2.33 FOSM 0.448 0.306 0.662 0.564 FORM 0.490 0.342 0.732 0.610 Monte4 0.493 0.344 0.729 0.607 / 1 0.60 0.69 0.66 0.54 FS2 2.8 4.0 1.9 2.3 FS x 3 2.3 2.0 2.1 2.6 =3 FOSM 0.347 0.244 0.527 0.429 FORM 0.390 0.289 0.598 0.470 Monte 0.397 0.290 0.604 0.473 / 0.48 0.58 0.55 0.42 FS 3.5 4.7 2.3 2.9 FS x 2.9 2.4 2.5 3.3 Good result good good good 1 Efficiency factor 2Equivalent factor of safety to ASD 3 Actual mean factor of safety 4 Monte Carlo simulation Table 7.1b Summary of calibration resistance factor for driven piles using Nordlund ,Shmertmann SPT and Mayhoft SPT method in North of Vietnam Data from North Nordlund-Thurman SPT Peck, Hanson and Thornburn from Schmertmann Schmertmann SPT Mayhoft SPT 1 2 3 4 Total avera 0.84 0.50 1.09 1.11 54 cases stand 0.27 0.13 0.30 0.39 cov 0.32 0.26 0.27 0.35 =2.33 FOSM 0.456 0.309 0.652 0.563 FORM 0.490 0.342 0.720 0.603 Monte 0.489 0.343 0.712 0.601 / 1 0.58 0.68 0.65 0.54 FS2 3.0 4.5 2.1 2.4 FS x 3 2.5 2.2 2.3 2.7 =3 FOSM 0.354 0.247 0.517 0.430 FORM 0.395 0.285 0.590 0.700 Monte 0.394 0.287 0.586 0.466 / 0.47 0.57 0.54 0.42 FS 3.9 5.6 2.7 3.2 FS x 3.3 2.8 2.9 3.5 Good result good good good

PAGE 157

136 Figure 7.6a Resistance factor, efficiency factor, equivalent factor of safety to ASD for driven pile using Nordlund, Shmertmann SPT and Mayhoft SPT method for Cohesionless Soil in Vietnam with =2.33 Figure 7.6b Resistance factor, efficiency factor, equivalent factor of safety to ASD for driven pile using Nordlund, Shmertmann SPT and Mayhoft SPT method for Cohesionless Soil in North of Vietnam with =2.33 0.45 0.31 0.66 0.56 0.60 0.69 0.66 0.54 0.83 0.50 1.10 1.13 1234North South and Central of Vietnam phi phi/lamda lamda 0.456 0.309 0.652 0.563 0.58 0.68 0.65 0.54 0.84 0.50 1.09 1.11 1234North of Vietnam phi phi/lamda lamda

PAGE 158

137 7.5.2Resistant factors for driven piles in Clay Table 7.2, 7.2a, 7.2b, 7.2c shows the bias factor and the calibration resistance factor as well as efficiency factor ( / ), equivalent factor of safety to ASD and actual mean factor of safety for driven pile in Cohesive Soil by different methods for calculating the nominal capacity in North, Central and South of Vietnam. The resistant factors by using FORM method and Monte Carlo simulation are almost the same and about 10% lower than FOSM method. Figure 7.7a and 7.7b is an example of the histogram and frequency distribution of bias factor 1 and an example of resistant factor calibration for 50 cases of concrete piles in Clay using the -Tomlinson method with correlation between the undrain shear strength Su and SPT value buy Terzaghi and Peck by using all data for cohesionless soil in Vietnam. The other histograms and frequency distribution of bias factor: 1 to 8 and resistant factor calibration: 1 to 8 corresponding to different methods for all data, north data, and south data are in the figure F-C1-a to F-C8-d in appendix E

PAGE 159

138 Fig 7.7a Histogram and frequency distribution of bias factor 1 for 50 cases of concrete piles in Clay using the -Tomlinson method (Su: Peck) in Vietnam Fig7.7b Resistant factor calibration for 50 cases of concrete piles in Clay using the -Tomlinson method (Su: Peck) in Vietnam 0 0.5 1 1.5 2 2.5 3 3.5 0 0.2 0.4 0.6 0.8 1 1.2 Bias FactorDensity Lamda1AllClay data Normal Lognormal 0 1 2 3 4 5 6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 160

139 Table 7.2 Bias factor for driven pile in cohesive soil using -Tomlinson, -API method, method, -Burland, Shmertmann SPT method with DavissionÂ’s criterion in North, Center and South of Vietnam Data from North, Central and South of Vietnam -Tomlinson method -API method method Burland Schmertmann SPT SuTerzaghi, Peck SuHara SuTerzaghi, Peck SuHara SuTerzaghi, Peck SuHara 1 2 3 4 5 6 7 8 NP-C1 0.80 0.40 1.28 0.62 1.01 0.49 1.33 0.75 NP-C2 1.03 0.52 1.64 0.80 1.30 0.63 1.71 0.97 NP-C3 1.07 0.56 1.38 0.77 1.40 0.76 1.27 0.92 NP-C4 0.98 0.52 1.27 0.71 1.28 0.70 1.16 0.85 NP-C5 1.21 0.64 1.56 0.87 1.58 0.86 1.44 1.05 NP-C6 1.26 0.67 1.63 0.91 1.65 0.90 1.50 1.09 NP-C7 1.00 0.53 1.29 0.72 1.31 0.71 1.18 0.86 NP-C8 1.09 0.80 1.35 0.90 1.48 0.99 1.07 1.21 NP-C9 1.08 0.79 1.34 0.89 1.47 0.98 1.06 1.20 NP-C10 0.82 0.60 1.01 0.68 1.11 0.74 0.80 0.91 NP-C11 0.83 0.61 1.03 0.69 1.13 0.75 0.82 0.92 NP-C12 0.79 0.58 0.98 0.65 1.07 0.71 0.77 0.87 NP-C13 0.85 0.62 1.05 0.70 1.15 0.77 0.83 0.94 NP-C14 1.03 0.77 1.37 0.77 1.21 0.64 1.14 0.93 NP-C15 0.63 0.47 0.83 0.47 0.74 0.39 0.69 0.57 NP-C16 1.03 0.77 1.37 0.78 1.22 0.64 1.14 0.93 NP-C17 1.26 0.85 1.76 0.81 1.35 0.66 1.48 0.97 NP-C18 1.20 0.81 1.68 0.77 1.29 0.63 1.41 0.93 NP-C19 1.01 0.71 1.44 0.69 1.13 0.56 1.33 0.82 NP-C20 0.89 0.62 1.27 0.61 1.00 0.49 1.17 0.72 NP-C21 0.67 0.50 1.36 0.42 0.80 0.44 0.62 0.63 NP-C22 1.03 0.78 2.10 0.65 1.23 0.69 0.96 0.98 NP-C23 0.76 0.74 0.75 0.66 0.79 0.72 0.66 1.06 NM-C24 1.47 0.85 2.17 1.18 1.58 0.87 1.68 1.28 NM-C25 1.47 0.85 2.18 1.18 1.58 0.87 1.69 1.28 NM-C26 1.65 0.95 2.43 1.32 1.76 0.97 1.88 1.43 NM-C27 1.40 0.81 2.07 1.12 1.50 0.83 1.60 1.22 NM-C28 1.10 0.82 1.73 0.54 0.86 0.50 0.85 0.75 NM-C29 0.88 0.66 1.38 0.43 0.69 0.40 0.68 0.60 NM-C30 0.87 0.65 1.37 0.43 0.68 0.40 0.68 0.60 NM-C31 0.92 0.69 1.45 0.46 0.72 0.42 0.72 0.63 NM-C32 0.90 0.67 1.41 0.44 0.70 0.41 0.70 0.61 NM-C33 1.48 0.94 1.86 1.13 1.57 0.91 1.81 0.88 NM-C34 0.46 0.29 0.58 0.35 0.49 0.28 0.56 0.27 NM-C35 1.13 0.71 1.41 0.86 1.19 0.69 1.37 0.67 NM-C36 1.18 0.75 1.48 0.90 1.25 0.73 1.44 0.70 NM-C37 1.16 0.73 1.45 0.89 1.23 0.71 1.41 0.69 NM-C38 1.11 0.70 1.39 0.85 1.17 0.68 1.35 0.66

PAGE 161

140 Table 7.2 (cont.) CP-C1 2.45 1.33 1.84 1.14 1.64 0.93 1.20 1.07 CP-C2 2.65 1.44 1.99 1.23 1.77 1.01 1.17 1.16 CP-C3 3.16 1.71 2.37 1.46 2.11 1.20 1.35 1.38 CP-C4 2.40 1.30 1.80 1.11 1.60 0.91 1.10 1.05 CP-C5 2.96 1.61 2.22 1.37 1.97 1.12 1.19 1.29 CP-C6 0.82 0.83 1.45 0.77 1.38 0.71 0.71 0.99 CP-C7 1.35 1.37 2.38 1.28 2.28 1.18 1.18 1.63 CP-C8 1.04 1.05 1.83 0.98 1.75 0.90 0.94 1.25 CP-C9 1.29 1.30 2.27 1.21 2.17 1.12 1.13 1.55 CP-C10 1.16 1.17 2.04 1.09 1.95 1.01 1.04 1.39 SP-C1 1.51 0.88 1.68 1.04 1.80 1.08 1.44 1.30 SP-C2 0.71 0.68 0.59 0.43 0.65 0.43 0.45 1.08 Table 7.2a Summary of calibration resistance factor for driven pile using -Tomlinson, -API method, method, -Burland, Shmertmann SPT method in North, Center and South of Vietnam Data from North, South and Central of Vietnam -Tomlinson method -API method method Burland Schmertmann SPT Su-T,P SuH Su-T,P SuH Su-T,P SuH Total mean 1.22 0.81 1.55 0.83 1.31 0.74 1.14 0.97 50 stand 0.57 0.30 0.46 0.28 0.42 0.23 0.35 0.28 cov 0.47 0.37 0.29 0.34 0.32 0.31 0.31 0.29 =2.33 FOSM 0.481 0.391 0.884 0.435 0.706 0.411 0.625 0.554 FORM 0.498 0.420 0.975 0.470 0.775 0.450 0.680 0.605 Monte 0.508 0.417 1.008 0.478 0.782 0.455 0.706 0.599 / 0.42 0.51 0.65 0.57 0.60 0.61 0.62 0.62 FS 2.7 3.3 1.4 2.9 1.8 3.0 1.9 2.3 FS x 3.3 2.7 2.1 2.4 2.3 2.2 2.2 2.2 =3 FOSM 0.345 0.295 0.694 0.334 0.547 0.320 0.487 0.435 FORM 0.375 0.325 0.790 0.378 0.612 0.365 0.550 0.490 Monte 0.373 0.322 0.836 0.382 0.630 0.368 0.571 0.486 / 0.31 0.40 0.54 0.46 0.48 0.50 0.50 0.50 FS 3.7 4.3 1.6 3.6 2.2 3.7 2.4 2.8 FS x 4.5 3.5 2.6 3.0 2.9 2.8 2.7 2.7 Good result good good good good good 1 Efficiency factor 2Equivalent factor of safety to ASD 3 Actual mean factor of safety 4 Monte Carlo simulation

PAGE 162

141 Table 7.2bSummary of calibration resistance factor for driven pile using -Tomlinson, -API method, method, -Burland, Shmertmann SPT method in North of Vietnam Data from North of Vietnam -Tomlinson method -API method method Burland Schmertmann SPT Su-T,P SuH Su-T,P SuH Su-T,P SuH Total mean 1.04 0.68 1.45 0.75 1.18 0.67 1.16 0.88 38 stand 0.25 0.14 0.40 0.23 0.32 0.18 0.38 0.24 cov 0.24 0.21 0.27 0.31 0.27 0.27 0.33 0.27 =2.33 FOSM 0.654 0.455 0.859 0.418 0.704 0.398 0.617 0.520 FORM 0.725 0.510 0.946 0.450 0.775 0.436 0.670 0.575 Monte 0.730 0.509 0.940 0.448 0.770 0.434 0.653 0.578 / 0.70 0.75 0.65 0.59 0.66 0.65 0.56 0.66 FS 2.1 3.0 1.6 3.3 2.0 3.5 2.2 2.6 FS x 2.2 2.1 2.3 2.5 2.3 2.3 2.6 2.3 =3 FOSM 0.526 0.372 0.681 0.326 0.559 0.316 0.476 0.412 FORM 0.610 0.435 0.775 0.370 0.633 0.362 0.530 0.475 Monte 0.610 0.438 0.777 0.363 0.634 0.355 0.521 0.474 / 0.59 0.64 0.54 0.48 0.54 0.53 0.45 0.54 FS 2.6 3.7 2.0 4.2 2.5 4.4 2.9 3.3 FS x 2.7 2.5 2.9 3.2 2.9 2.9 3.3 2.9 Good result good good good good good Table 7.2c Summary of calibration resistance factor for driven pile using -Tomlinson, -API method, method, -Burland, Shmertmann SPT method in Central of Vietnam Data from Central of Vietnam -Tomlinson method -API method method Burland Schmertmann SPT Su-T,P SuH Su-T,P SuH Su-T,P SuH Total avera 1.93 1.31 2.02 1.17 1.86 1.01 1.10 1.28 11 stand 0.88 0.26 0.30 0.20 0.28 0.15 0.17 0.21 cov 0.46 0.19 0.15 0.17 0.15 0.15 0.16 0.17 =2.33 FOSM 0.779 0.901 1.491 0.834 1.367 0.743 0.801 0.916 FORM 0.830 1.100 1.750 0.965 1.590 0.860 0.925 1.035 Monte 0.879 1.023 1.754 0.966 1.602 0.872 0.937 1.030 / 0.46 0.78 0.87 0.83 0.86 0.87 0.85 0.81 FS 1.8 1.5 0.9 1.6 1.0 1.9 1.7 1.5 FS x 3.4 2.0 1.9 1.9 1.9 1.9 1.9 1.9 =3 FOSM 0.563 0.742 1.250 0.694 1.145 0.623 0.669 0.762 FORM 0.610 0.880 1.550 0.840 1.400 0.750 0.820 0.920 Monte 0.650 0.882 1.557 0.851 1.422 0.778 0.825 0.901 / 0.34 0.67 0.77 0.73 0.76 0.77 0.75 0.71 FS 2.4 1.9 1.1 2.0 1.2 2.2 2.1 1.8 FS x 4.7 2.4 2.2 2.3 2.2 2.2 2.3 2.3 Good result good good good good good

PAGE 163

142 Figure 7.8a Resistance factor, efficiency factor, equivalent factor of safety to ASD for driven pile using -Tomlinson, -API method, method, -Burland, Shmertmann SPT method for Cohesive Soil in Vietnam with =2.33 Figure 7.8b Resistance factor, efficiency factor, equivalent factor of safety to ASD for driven pile using -Tomlinson, -API method, method, -Burland, Shmertmann SPT method for Cohesive Soil in North of Vietnam with =2.33 0.51 0.42 1.01 0.48 0.78 0.46 0.71 0.60 0.42 0.51 0.65 0.57 0.60 0.61 0.62 0.62 1.22 0.81 1.55 0.83 1.31 0.74 1.14 0.9712345678North, Centraland South of Vietnam phi phi/lamda lamda 0.73 0.51 0.94 0.45 0.77 0.43 0.65 0.58 0.70 0.75 0.65 0.59 0.66 0.65 0.56 0.66 1.04 0.68 1.45 0.75 1.18 0.67 1.16 0.8812345678North of Vietnam phi phi/lamda lamda

PAGE 164

143 Figure 7.8c Resistance factor, efficiency factor, equivalent factor of safety to ASD for driven pile using -Tomlinson, -API method, method, -Burland, Shmertmann SPT method for Cohesive Soil in Central of Vietnam with =2.33 7.5.3Resistant factors for driven piles in Mixed Soil Table 7.3, 7.3a, 7.3b, 7.3c, 7.3d shows the bias factor and the calibration resistance factor as well as efficiency factor ( / ), equivalent factor of safety to ASD and actual mean factor of safety for driven pile in Mixed soil by different methods for calculating the nominal capacity in North, Central and South of Vietnam. The resistant factors by using FORM method and Monte Carlo simulation are almost the same and about 10% lower than FOSM method. Figure 7.9a and 7.9b is an example of the histogram and frequency distribution of bias factor 1 and an example of resistant factor calibration for 165 cases of concrete piles in mixed soil. The other histogram and frequency distribution of bias factor from 1 to 15 and resistant factor calibration from 1 to 15 for different method and with all data, north data, and south data are in the figure F-M1-a to F-M8-d in appendix F 0.88 1.02 1.75 0.97 1.60 0.87 0.94 1.03 0.46 0.78 0.87 0.83 0.86 0.87 0.85 0.81 1.93 1.31 2.02 1.17 1.86 1.01 1.10 1.2812345678Central of Vietnam phi phi/lamda lamda

PAGE 165

Table 7.3 Summary of calibration resistance factor for driven pile using -Tomlinson, -API method, method, Burland,Nordlund-Thurman, Shmertmann SPT method in North, Center and South of Vietnam Data from North, Central and South of Vietnam from Peck, Hanson and Thornburn from Schmertmann -Tomlinson &Nordlund -API &Nordlund &Nordlund Burland/ Nordlund -Tomlinson &Nordlund -API &Nordlund &Nordlund Burland& Nordlund Schmertm ann SPT Su-T,P SuH Su-T,P SuH Su-T,P SuH Su-T,P SuH Su-T,P SuH Su-T,P SuH 1 2 3 4 5 6 7 8 9 10 11 12 11 14 15 NP-M1 218.3 236.4 178.9 267.2 180.5 269.7 203.6 271.2 289.3 231.8 320.1 144.0 322.6 256.5 153.7 NP-M2 241.3 261.3 197.7 295.3 199.5 298.0 225.0 299.8 319.8 256.2 353.8 159.2 356.5 283.5 169.9 NP-M3 146.9 190.9 138.2 154.7 138.6 157.1 137.6 115.8 320.2 267.5 284.0 267.9 286.4 266.9 142.1 NP-M4 154.6 201.0 145.5 162.8 145.9 165.4 144.9 121.9 337.1 281.6 298.9 282.0 301.5 280.9 149.6 NP-M5 162.3 211.0 152.8 171.0 153.2 173.7 152.1 128.0 353.9 295.6 313.9 296.1 316.5 295.0 157.1 NP-M6 213.1 361.2 210.7 278.1 201.1 258.3 260.6 314.0 462.1 311.7 379.0 302.1 359.2 361.5 162.5 NP-M7 207.5 351.7 205.2 270.7 195.9 251.5 253.7 305.8 450.0 303.5 369.0 294.1 349.7 352.0 158.2 NP-M8 224.3 380.2 221.8 292.7 211.7 271.9 274.3 330.6 486.5 328.1 398.9 318.0 378.1 380.5 171.1 NP-M9 229.9 389.7 227.4 300.0 217.0 278.7 281.1 338.8 498.6 336.3 408.9 325.9 387.6 390.0 175.4 NP-M11 144.6 153.0 129.3 149.0 127.6 149.1 134.8 227.9 236.4 212.6 232.3 211.0 232.4 218.2 119.9 NP-M12 148.5 157.1 132.8 153.0 131.1 153.1 138.5 234.1 242.7 218.4 238.6 216.7 238.7 224.1 123.1 NP-M13 152.4 161.3 136.3 157.0 134.5 157.1 142.1 240.3 249.1 224.1 244.9 222.4 245.0 230.0 126.4 NP-M14 156.3 165.4 139.7 161.0 138.0 161.1 145.7 246.4 255.5 229.9 251.2 228.1 251.3 235.9 129.6 NP-M15 160.2 169.5 143.2 165.1 141.4 165.2 149.4 252.6 261.9 235.6 257.4 233.8 257.6 241.8 132.8 NP-M16 164.1 173.7 146.7 169.1 144.9 169.2 153.0 258.7 268.3 241.4 263.7 239.5 263.8 247.7 136.1 NP-M17 168.0 177.8 150.2 173.1 148.3 173.2 156.7 264.9 274.7 247.1 270.0 245.2 270.1 253.6 139.3 NP-M18 89.5 102.2 71.8 93.5 65.7 86.1 78.6 124.7 137.4 106.9 128.6 105.9 121.2 103.4 82.9 NP-M19 94.5 107.8 75.8 98.7 69.4 90.8 83.0 131.6 145.0 112.9 135.8 111.8 128.0 109.2 87.5 NP-M20 99.5 113.5 79.7 103.8 73.1 95.6 87.3 138.6 152.6 118.8 142.9 117.7 134.7 114.9 92.1 NP-M21 104.5 119.2 83.7 109.0 76.7 100.4 91.7 145.5 160.2 124.8 150.1 123.6 141.4 120.7 96.7 NP-M22 109.4 124.9 87.7 114.2 80.4 105.2 96.1 152.4 167.9 130.7 157.2 129.5 148.2 126.4 101.3 NP-M23 112.4 128.3 90.1 117.3 82.6 108.1 98.7 156.6 172.5 134.3 161.5 133.0 152.2 129.9 104.0 NP-M24 33.9 42.2 28.5 33.3 29.3 34.8 27.6 42.6 50.9 37.2 42.0 34.0 43.5 36.3 38.5 NP-M25 30.6 38.0 25.6 30.0 26.4 31.4 24.9 38.4 45.8 33.4 37.8 30.6 39.2 32.7 34.6 NP-M26 182.1 178.6 128.7 231.1 130.9 240.7 137.3 182.1 178.6 128.7 231.1 130.9 240.7 137.3 191.7 NP-M27 192.2 188.5 135.9 243.9 138.2 254.0 144.9 192.2 188.5 135.9 243.9 138.2 254.0 144.9 202.4 NP-M28 202.3 198.4 143.0 256.8 145.5 267.4 152.5 202.3 198.4 143.0 256.8 145.5 267.4 152.5 213.1 NP-M29 212.4 208.3 150.2 269.6 152.7 280.8 160.1 212.4 208.3 150.2 269.6 152.7 280.8 160.1 223.7 144

PAGE 166

Table 7.3(cont.) NP-M30 222.5 218.3 157.3 282.4 160.0 294.1 167.8 222.5 218.3 157.3 282.4 160.0 294.1 167.8 234.4 NP-M31 330.8 374.4 314.5 340.5 312.4 338.0 320.0 381.1 424.7 364.8 390.8 362.7 388.3 370.2 183.0 NP-M32 323.0 365.5 307.0 332.4 305.0 330.0 312.3 372.0 414.6 356.1 381.5 354.0 379.0 361.4 178.6 NP-M33 315.1 356.6 299.6 324.3 297.5 321.9 304.7 362.9 404.4 347.4 372.2 345.4 369.8 352.6 174.3 NP-M34 307.2 347.7 292.1 316.2 290.1 313.9 297.1 353.9 394.3 338.7 362.9 336.7 360.5 343.8 169.9 NP-M35 299.3 338.8 284.6 308.1 282.7 305.8 289.5 344.8 384.2 330.0 353.6 328.1 351.3 334.9 165.6 NP-M36 291.5 329.8 277.1 300.0 275.2 297.8 281.9 335.7 374.1 321.4 344.3 319.5 342.0 326.1 161.2 NP-M41 685.6 681.7 680.3 707.8 668.6 691.2 689.6 1096.1 1092.3 1090.9 1118.4 1079.2 1101.7 1100.2 305.9 NP-M42 623.2 619.8 618.5 643.4 607.8 628.3 626.9 996.5 993.0 991.7 1016.7 981.1 1001.6 1000.2 278.1 NP-M43 560.9 557.8 556.6 579.1 547.0 565.5 564.2 896.8 893.7 892.6 915.0 883.0 901.4 900.2 250.3 NP-M44 529.7 526.8 525.7 546.9 516.6 534.1 532.9 847.0 844.1 843.0 864.2 833.9 851.4 850.2 236.4 NP-M45 498.6 495.8 494.8 514.7 486.3 502.7 501.5 797.2 794.4 793.4 813.4 784.9 801.3 800.1 222.5 NP-M46 64.9 77.5 49.6 67.3 54.7 79.9 51.0 94.8 107.4 79.4 97.2 84.6 109.8 80.9 57.2 NP-M47 66.6 79.6 50.9 69.1 56.2 82.0 52.4 97.3 110.3 81.6 99.8 86.9 112.7 83.1 58.8 NP-M48 68.4 81.7 52.3 70.9 57.6 84.2 53.8 99.9 113.2 83.7 102.4 89.1 115.7 85.3 60.3 NP-M49 70.1 83.8 53.6 72.7 59.1 86.4 55.2 102.4 116.1 85.9 105.0 91.4 118.7 87.5 61.8 NP-M50 71.9 85.8 54.9 74.6 60.6 88.5 56.5 105.0 119.0 88.0 107.7 93.7 121.6 89.6 63.4 NP-M51 73.6 87.9 56.3 76.4 62.1 90.7 57.9 107.6 121.9 90.2 110.3 96.0 124.6 91.8 64.9 NP-M52 75.4 90.0 57.6 78.2 63.6 92.8 59.3 110.1 124.8 92.3 112.9 98.3 127.6 94.0 66.5 NP-M53 55.4 79.1 46.5 56.4 46.9 59.1 44.7 73.8 76.2 64.8 74.7 65.3 77.5 63.1 45.2 NP-M54 110.8 169.8 98.3 125.2 100.6 128.7 111.4 146.6 205.7 134.1 161.1 136.5 164.5 147.3 86.1 NP-M55 120.0 179.4 107.2 134.2 101.5 122.5 119.7 147.6 207.0 134.8 161.8 129.1 150.1 147.3 93.2 NP-M56 231.2 262.7 205.9 232.3 206.5 238.7 201.6 266.9 298.5 241.7 268.1 242.2 274.5 237.3 130.2 NP-M57 211.3 229.8 192.9 208.2 193.9 213.6 186.1 268.5 286.9 250.1 265.4 251.0 270.8 243.3 134.0 NP-M58 56.5 56.3 50.3 58.2 50.7 59.5 50.9 104.2 103.9 98.0 105.9 98.4 107.1 98.5 75.1 NP-M59 62.8 62.5 55.9 64.7 56.3 66.1 56.5 115.7 115.5 108.8 117.6 109.3 119.0 109.5 83.4 NP-M60 69.1 68.8 61.5 71.1 62.0 72.7 62.2 127.3 127.0 119.7 129.4 120.2 130.9 120.4 91.7 NP-M61 150.6 150.6 150.6 150.6 150.6 150.6 150.6 198.4 198.4 198.4 198.4 198.4 198.4 198.4 77.5 NP-M62 136.9 136.9 136.9 136.9 136.9 136.9 136.9 180.4 180.4 180.4 180.4 180.4 180.4 180.4 70.5 NP-M63 41.9 45.7 36.5 41.2 38.0 45.8 34.7 39.8 43.6 34.4 39.1 35.9 43.7 32.6 37.1 NP-M64 38.1 41.5 33.2 37.4 34.5 41.6 31.6 36.2 39.6 31.3 35.5 32.6 39.7 29.7 33.8 NP-M65 34.3 37.4 29.9 33.7 31.1 37.4 28.4 32.6 35.7 28.2 32.0 29.4 35.7 26.7 30.4 NP-M66 31.9 31.9 31.9 31.9 31.9 31.9 31.9 43.3 43.3 43.3 43.3 43.3 43.3 43.3 26.1 NP-M67 35.3 35.3 35.3 35.3 35.3 35.3 35.3 47.9 47.9 47.9 47.9 47.9 47.9 47.9 28.8 NP-M68 113.1 113.1 113.1 113.1 113.1 113.1 113.1 152.7 152.7 152.7 152.7 152.7 152.7 152.7 69.7 NP-M69 119.1 119.1 119.1 119.1 119.1 119.1 119.1 160.7 160.7 160.7 160.7 160.7 160.7 160.7 73.3 145

PAGE 167

Table 7.3 (cont.) NP-M70 125.0 125.0 125.0 125.0 125.0 125.0 125.0 168.8 168.8 168.8 168.8 168.8 168.8 168.8 77.0 NP-M71 117.8 191.3 88.2 88.2 68.1 113.1 111.0 114.5 183.0 84.9 152.7 64.8 104.8 107.7 92.4 NP-M72 120.9 196.3 90.5 90.6 69.8 116.1 113.9 117.5 187.8 87.1 156.7 66.5 107.6 110.6 94.9 NP-M73 124.0 201.3 92.8 92.9 71.6 119.0 116.9 120.5 192.6 89.4 160.7 68.2 110.3 113.4 97.3 NP-M74 130.2 211.4 97.4 97.5 75.2 125.0 122.7 126.6 202.2 93.8 168.8 71.6 115.8 119.1 102.2 NP-M75 300.3 288.2 287.9 364.7 256.7 313.9 384.8 363.3 351.2 350.9 427.7 319.7 376.9 447.8 178.3 NP-M76 316.1 303.4 303.1 383.9 270.2 330.4 405.0 382.4 369.7 369.4 450.2 336.5 396.7 471.3 187.7 NP-M77 331.9 318.6 318.2 403.1 283.7 347.0 425.3 401.5 388.2 387.9 472.7 353.3 416.6 494.9 197.0 NM-M78 133.5 221.3 162.1 218.3 168.6 232.5 145.7 138.6 138.6 138.6 138.6 138.6 138.6 138.6 174.9 NP-M81 78.2 87.8 90.7 111.5 82.9 104.1 96.2 142.4 152.0 155.0 175.7 147.2 168.3 160.5 58.0 NP-M82 70.7 79.4 82.1 100.9 75.0 94.2 87.1 128.8 137.5 140.2 159.0 133.1 152.3 145.2 52.5 NP-M83 52.2 53.3 43.4 55.1 49.5 68.2 40.5 85.4 86.5 76.6 88.3 82.7 101.4 73.7 63.6 NP-M84 47.2 48.2 39.3 49.8 44.8 61.7 36.6 77.3 78.3 69.3 79.9 74.9 91.8 66.7 57.6 NP-M85 90.4 93.8 89.0 97.6 85.8 93.5 94.0 257.0 260.4 255.6 264.2 252.3 260.1 260.6 55.2 NP-M86 81.8 84.8 80.5 88.3 77.6 84.6 85.1 232.5 235.6 231.3 239.1 228.3 235.3 235.8 50.0 NP-M87 69.1 85.2 56.5 74.4 59.2 77.4 61.3 67.1 83.1 54.5 72.4 57.2 75.3 59.3 68.5 NP-M88 76.4 94.1 62.4 82.2 65.4 85.5 67.7 74.1 91.9 60.2 80.0 63.2 83.3 65.5 75.7 NP-M89 25.7 27.8 25.7 25.7 25.7 25.7 25.7 50.4 52.5 50.4 50.4 50.4 50.4 50.4 28.6 NP-M90 28.4 30.7 28.4 28.4 28.4 28.4 28.4 55.7 58.0 55.7 55.7 55.7 55.7 55.7 31.6 NP-M91 98.5 107.5 99.7 129.1 90.6 109.1 127.7 129.8 138.8 131.1 160.4 121.9 140.4 159.0 63.3 NP-M92 103.6 113.1 105.0 135.9 95.4 114.8 134.4 136.6 146.1 138.0 168.9 128.3 147.8 167.4 66.7 NP-M93 108.8 118.8 110.2 142.7 100.1 120.6 141.2 143.4 153.4 144.9 177.3 134.8 155.2 175.8 70.0 NP-M94 69.3 65.3 50.3 67.5 59.1 87.9 48.9 123.9 119.8 104.9 122.1 113.7 142.4 103.5 68.9 NP-M95 73.0 68.7 53.0 71.1 62.2 92.5 51.5 130.4 126.1 110.4 128.5 119.6 149.9 108.9 72.5 NP-M96 76.6 72.1 55.6 74.7 65.3 97.1 54.1 136.9 132.4 115.9 134.9 125.6 157.4 114.3 76.1 NP-M97 52.7 69.4 44.3 54.2 46.2 59.8 42.7 79.6 96.2 71.2 81.1 73.1 86.6 69.5 44.9 NP-M98 58.2 76.7 49.0 59.9 51.1 66.1 47.2 87.9 106.4 78.7 89.6 80.8 95.8 76.9 49.6 NP-M99 214.6 523.3 226.3 336.7 181.5 285.2 377.7 207.5 504.3 219.3 317.7 174.4 266.1 370.6 178.0 NP-M102 198.9 485.3 207.9 311.4 166.2 263.0 343.3 191.9 466.3 200.8 292.4 159.2 244.0 336.3 165.2 NP-M103 43.1 47.9 42.0 42.0 42.6 67.9 48.1 48.3 53.2 47.2 67.4 47.8 67.9 53.3 61.1 NP-M104 47.9 53.3 46.7 46.7 47.3 75.5 53.4 53.7 59.1 52.5 74.9 53.1 75.5 59.2 67.9 NP-M105 52.6 58.6 51.3 51.3 52.0 83.0 58.7 59.0 65.0 57.7 82.4 58.4 83.0 65.1 74.7 NP-M106 247.4 280.3 251.9 290.0 238.4 265.4 311.0 331.3 364.1 335.8 373.9 322.3 349.3 394.9 137.3 NP-M107 222.9 251.1 229.2 265.8 216.0 241.5 289.3 333.5 361.7 339.8 376.4 326.6 352.1 399.9 135.3 NP-M108 252.5 278.9 258.5 295.2 244.3 270.2 318.4 361.4 387.9 367.4 404.1 353.2 379.1 427.3 129.4 CP-M1 170.8 225.2 154.4 242.7 159.2 254.1 169.2 174.2 192.3 174.2 192.3 192.3 174.2 174.2 226.1 146

PAGE 168

Table 7.3 (cont.) CP-M2 179.7 237.0 162.6 255.4 167.6 267.4 178.1 183.4 202.4 183.4 202.4 202.4 183.4 183.4 238.0 CP-M3 188.7 248.9 170.7 268.2 176.0 280.8 187.0 192.6 212.6 192.6 212.6 212.6 192.6 192.6 249.9 CP-M4 195.3 259.1 177.0 278.8 182.4 291.6 193.6 199.2 222.1 199.2 222.1 222.1 199.2 199.2 263.6 CP-M5 215.9 286.4 195.6 308.1 201.6 322.3 214.0 220.2 245.5 220.2 245.5 245.5 220.2 220.2 291.3 CP-M6 248.4 329.4 231.7 361.7 237.6 379.0 263.9 252.5 279.3 252.5 279.3 279.3 252.5 252.5 330.7 CP-M7 303.6 402.6 283.2 442.1 290.4 463.2 322.5 308.6 341.3 308.6 341.3 341.3 308.6 308.6 404.2 CP-M8 248.4 329.4 231.7 361.7 237.6 379.0 263.9 252.5 279.3 252.5 279.3 279.3 252.5 252.5 330.7 CP-M9 276.0 366.0 257.4 401.9 264.0 421.1 293.2 280.5 310.3 280.5 310.3 310.3 280.5 280.5 367.4 CP-M10 289.8 384.3 270.3 422.0 277.2 442.1 307.8 294.6 325.8 294.6 325.8 325.8 294.6 294.6 385.8 CP-M11 220.8 292.8 205.9 321.5 211.2 336.9 234.5 224.4 248.2 224.4 248.2 248.2 224.4 224.4 293.9 CP-M12 303.6 402.6 283.2 442.1 290.4 463.2 322.5 308.6 341.3 308.6 341.3 341.3 308.6 308.6 404.2 CP-M13 289.8 384.3 270.3 422.0 277.2 442.1 307.8 294.6 325.8 294.6 325.8 325.8 294.6 294.6 385.8 CP-M14 276.0 366.0 257.4 401.9 264.0 421.1 293.2 280.5 310.3 280.5 310.3 310.3 280.5 280.5 367.4 CP-M15 303.6 402.6 283.2 442.1 290.4 463.2 322.5 308.6 341.3 308.6 341.3 341.3 308.6 308.6 404.2 CP-M16 303.6 402.6 283.2 442.1 290.4 463.2 322.5 308.6 341.3 308.6 341.3 341.3 308.6 308.6 404.2 CP-M17 248.4 329.4 231.7 361.7 237.6 379.0 263.9 252.5 279.3 252.5 279.3 279.3 252.5 252.5 330.7 CP-M20 257.6 370.9 207.5 303.5 220.9 309.0 250.4 299.2 412.6 249.1 345.1 262.5 246.9 292.0 279.2 CP-M21 263.4 379.4 212.2 310.4 225.9 316.0 256.1 306.0 421.9 254.8 352.9 268.5 252.5 298.7 285.6 CP-M22 269.3 387.8 216.9 317.3 230.9 323.0 261.8 312.8 431.3 260.5 360.8 274.4 258.1 305.3 291.9 CP-M23 275.1 396.2 221.7 324.2 235.9 330.1 267.5 319.6 440.7 266.1 368.6 280.4 263.7 312.0 298.2 CP-M24 281.0 404.7 226.4 331.0 240.9 337.1 273.2 326.4 450.1 271.8 376.5 286.3 269.3 318.6 304.6 CP-M25 286.8 413.1 231.1 337.9 245.9 344.1 278.9 333.2 459.5 277.4 384.3 292.3 274.9 325.2 310.9 CP-M26 292.7 421.5 235.8 344.8 251.0 351.1 284.6 340.0 468.8 283.1 392.2 298.3 280.5 331.9 317.3 CP-M27 298.6 429.9 240.5 351.7 256.0 358.2 290.2 346.8 478.2 288.8 400.0 304.2 286.1 338.5 323.6 CP-M28 304.4 438.4 245.2 358.6 261.0 365.2 295.9 353.6 487.6 294.4 407.8 310.2 291.8 345.1 330.0 CP-M29 310.3 446.8 249.9 365.5 266.0 372.2 301.6 360.4 497.0 300.1 415.7 316.2 297.4 351.8 336.3 CP-M30 316.1 455.2 254.7 372.4 271.0 379.2 307.3 367.2 506.3 305.8 423.5 322.1 303.0 358.4 342.7 CP-M31 322.0 463.7 259.4 379.3 276.1 386.3 313.0 374.0 515.7 311.4 431.4 328.1 308.6 365.1 349.0 CP-M32 327.8 472.1 264.1 386.2 281.1 393.3 318.7 380.8 525.1 317.1 439.2 334.1 314.2 371.7 355.4 CP-M33 333.7 480.5 268.8 393.1 286.1 400.3 324.4 387.6 534.5 322.7 447.1 340.0 319.8 378.3 361.7 CP-M34 95.1 126.9 81.3 106.0 81.7 108.1 84.1 85.9 117.7 72.1 96.8 72.5 98.9 74.9 95.3 CP-M35 98.2 130.9 83.9 109.4 84.3 111.6 86.8 88.6 121.4 74.4 99.9 74.8 102.1 77.3 98.4 CP-M36 101.2 135.0 86.5 112.8 86.9 115.0 89.5 91.4 125.2 76.7 103.0 77.1 105.2 79.7 101.4 CP-M37 103.2 137.7 88.3 115.1 88.6 117.3 91.3 93.2 127.7 78.2 105.1 78.6 107.3 81.3 103.4 CP-M38 105.2 140.4 90.0 117.3 90.4 119.6 93.1 95.0 130.2 79.8 107.1 80.2 109.4 82.9 105.5 CP-M39 107.3 143.1 91.7 119.6 92.1 121.9 94.9 96.9 132.7 81.3 109.2 81.7 111.5 84.5 107.5 147

PAGE 169

Table 7.3 (cont.) CP-M40 73.7 123.1 62.0 99.0 57.5 95.2 78.4 78.7 128.1 67.0 104.0 62.5 100.2 83.4 72.3 CP-M41 77.7 130.0 65.4 104.5 60.7 100.5 82.7 83.0 135.2 70.7 109.8 66.0 105.8 88.0 76.3 CP-M42 81.8 136.8 68.9 110.0 63.9 105.8 87.1 87.4 142.4 74.4 115.6 69.4 111.4 92.6 80.3 CP-M43 90.0 150.5 75.8 121.0 70.3 116.4 95.8 96.1 156.6 81.9 127.1 76.4 122.5 101.9 88.3 SP-M1 165.5 165.5 165.5 165.5 165.5 165.5 165.5 296.2 296.2 296.2 296.2 296.2 296.2 296.2 102.8 SP-M2 169.1 169.1 169.1 169.1 169.1 169.1 169.1 302.7 302.7 302.7 302.7 302.7 302.7 302.7 105.0 SP-M3 172.7 172.7 172.7 172.7 172.7 172.7 172.7 309.1 309.1 309.1 309.1 309.1 309.1 309.1 107.2 SP-M4 176.3 176.3 176.3 176.3 176.3 176.3 176.3 315.5 315.5 315.5 315.5 315.5 315.5 315.5 109.5 SP-M5 179.9 179.9 179.9 179.9 179.9 179.9 179.9 322.0 322.0 322.0 322.0 322.0 322.0 322.0 111.7 SP-M6 183.5 183.5 183.5 183.5 183.5 183.5 183.5 328.4 328.4 328.4 328.4 328.4 328.4 328.4 113.9 SP-M7 187.1 187.1 187.1 187.1 187.1 187.1 187.1 334.9 334.9 334.9 334.9 334.9 334.9 334.9 116.2 SP-M8 190.7 190.7 190.7 190.7 190.7 190.7 190.7 341.3 341.3 341.3 341.3 341.3 341.3 341.3 118.4 SP-M9 194.3 194.3 194.3 194.3 194.3 194.3 194.3 347.7 347.7 347.7 347.7 347.7 347.7 347.7 120.7 SP-M10 62.1 71.4 57.3 80.0 61.9 92.6 54.1 66.9 76.2 62.0 84.8 66.6 97.3 58.9 75.4 SP-M11 63.4 72.9 58.5 81.7 63.2 94.5 55.3 68.3 77.8 63.4 86.6 68.0 99.4 60.1 77.0 SP-M12 64.8 74.4 59.7 83.4 64.5 96.5 56.4 69.7 79.4 64.7 88.4 69.5 101.5 61.4 78.6 SP-M14 67.4 77.5 62.2 86.8 67.1 100.4 58.7 72.6 82.6 67.3 92.0 72.3 105.6 63.9 81.8 SP-M16 70.1 80.5 64.6 90.2 69.8 104.4 61.0 75.4 85.9 70.0 95.6 75.1 109.7 66.4 85.0 SP-M17 570.2 568.9 648.7 757.4 587.6 674.4 788.2 653.9 652.6 732.4 841.1 671.3 758.1 871.9 348.3 SP-M18 630.3 628.7 717.0 837.2 649.4 745.3 871.2 722.8 721.2 809.5 929.7 741.9 837.9 963.7 385.0 SP-M19 78.3 111.2 63.5 78.4 68.5 90.7 61.6 104.0 136.9 89.2 104.1 94.2 116.4 87.3 73.8 SP-M20 82.6 117.4 67.1 82.7 72.3 95.7 65.0 109.8 144.6 94.2 109.9 99.4 122.8 92.2 77.9 SP-M21 87.0 123.6 70.6 87.1 76.1 100.7 68.5 115.5 152.2 99.2 115.6 104.7 129.3 97.0 82.0 SP-M22 95.7 136.0 77.7 95.8 83.7 110.8 75.3 127.1 167.4 109.1 127.2 115.1 142.2 106.7 90.2 SP-M23 232.5 266.0 243.9 275.4 230.3 254.2 266.6 343.0 376.4 354.3 385.8 340.7 364.6 377.0 165.0 SP-M24 271.3 273.0 274.5 296.3 265.2 281.7 295.2 368.5 370.2 371.7 393.5 362.4 378.9 392.4 141.8 SP-M25 134.4 177.1 166.9 249.1 163.4 219.4 189.5 166.1 189.1 178.9 261.2 175.5 231.5 201.5 189.5 SP-M26 293.1 303.1 291.4 296.1 289.6 294.0 291.8 454.9 465.0 453.2 457.9 451.5 455.9 453.7 181.8 SP-M27 262.7 263.1 265.5 279.5 258.9 270.6 272.5 369.0 369.4 371.8 385.8 365.2 376.8 378.8 89.0 SP-M28 349.4 364.2 349.4 370.1 333.2 353.5 369.0 482.1 497.0 482.1 502.9 465.9 486.3 501.8 173.2 148

PAGE 170

149 Fig 7.9a Histogram and frequency distribution of bias factor 2 for 165cases of concrete piles in Mixed soils using the -Tomlinson and Nordlund/Thurman method (Su: Hara, : P) in Vietnam Fig 7.9bResistance factor calibration for 165 cases of concrete piles in Mixed soils using the Tomlinson and Nordlund/Thurman method (Su: Hara, : Peck, Hanson and Thornburn) in Vietnam 0 0.5 1 1.5 2 2.5 3 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Bias FactorDensity Lamda2AllMixed data Normal Log-Normal -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 171

Table 7.3a Summary of calibration resistance factor for driven pile using -Tomlinson, -API method, method, -Burland, Nordlund-Thurman, Shmertmann SPT method in North, Center and South of Vietnam Data from North, South and Central of Vietnam from Peck, Hanson and Thornburn from Schmertmann -Tomlinson &NordlundThurman -API &NordlundThurman &NordlundThurman Burland &Nordlu ndThurm an -Tomlinson &NordlundThurman -API &NordlundThurman &NordlundThurman Burland &Nordlu ndThurm an SchSPT SuT, P SuH SuT, P SuH SuT, P SuH SuT, P SuH SuT, P SuH SuT, P SuH All 165 cases No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 avera 0.91 0.86 1.02 0.80 1.02 0.78 0.95 0.74 0.63 0.81 0.65 0.81 0.68 0.76 1.04 stand 0.28 0.53 0.35 0.27 0.34 0.23 0.35 0.30 0.24 0.37 0.25 0.37 0.26 0.35 0.32 cov 0.31 0.61 0.34 0.33 0.33 0.30 0.37 0.41 0.38 0.45 0.39 0.45 0.39 0.46 0.30 =2.33 FOSM 0.50 0.25 0.53 0.42 0.54 0.43 0.46 0.33 0.30 0.33 0.30 0.33 0.32 0.30 0.58 FORM 0.55 0.26 0.57 0.46 0.58 0.48 0.49 0.35 0.32 0.35 0.33 0.34 0.35 0.32 0.64 Monte 0.56 0.25 0.57 0.46 0.59 0.47 0.50 0.35 0.32 0.35 0.33 0.35 0.35 0.32 0.64 / 0.61 0.29 0.56 0.57 0.57 0.61 0.52 0.48 0.51 0.43 0.50 0.43 0.51 0.42 0.61 FS 2.5 5.5 2.4 3.0 2.3 2.9 2.8 3.9 4.3 3.9 4.2 4.0 4.0 4.3 2.2 FS x 2.2 4.7 2.4 2.4 2.4 2.2 2.6 2.9 2.7 3.2 2.7 3.2 2.7 3.3 2.3 =3.00 FOSM 0.39 0.16 0.40 0.33 0.42 0.34 0.35 0.24 0.22 0.24 0.23 0.24 0.24 0.22 0.45 FORM 0.45 0.17 0.45 0.37 0.47 0.39 0.39 0.27 0.25 0.26 0.25 0.26 0.27 0.24 0.51 Monte 0.45 0.17 0.46 0.37 0.47 0.38 0.38 0.27 0.24 0.26 0.25 0.25 0.27 0.24 0.51 / 0.50 0.20 0.45 0.46 0.46 0.50 0.40 0.36 0.39 0.32 0.39 0.31 0.39 0.31 0.49 FS 3.0 8.2 3.0 3.7 2.9 3.6 3.6 5.2 5.6 5.3 5.5 5.4 5.1 5.8 2.7 FS x 2.8 7.0 3.1 3.0 3.0 2.8 3.4 3.8 3.5 4.3 3.6 4.4 3.5 4.4 2.8 Good result good good good good good 150

PAGE 172

Table 7.3b Summary of calibration resistance factor for driven pile using -Tomlinson, -API method, method, -Burland, Nordlund-Thurman, ShmertmannSPT method in North of Vietnam Data from North of Vietnam from Peck, Hanson and Thornburn from Schmertmann -Tomlinson &NordlundThurman -API &NordlundThurman &NordlundThurman Burland &Nordlu ndThurm an -Tomlinson &NordlundThurman -API &NordlundThurman &NordlundThurman Burland Nordlund Thurman SPT Sch SuT, P SuH Su-T, P SuH Su-T, P SuH SuT, P SuH SuT, P SuH SuT, P SuH North 99 cases No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 avera 0.86 0.75 0.97 0.80 0.99 0.77 0.91 0.66 0.57 0.71 0.58 0.74 0.59 0.67 1.07 stand 0.25 0.24 0.31 0.25 0.31 0.23 0.31 0.24 0.21 0.29 0.19 0.31 0.20 0.27 0.31 cov 0.29 0.32 0.32 0.32 0.32 0.29 0.34 0.36 0.37 0.40 0.33 0.42 0.33 0.40 0.29 =2.33 FOSM 0.491 0.400 0.526 0.4370.537 0.4400.474 0.3 28 0.2810.325 0.3110.322 0.3110.309 0.612 FORM 0.533 0.433 0.570 0.4750.583 0.4780.512 0.355 0.2950.348 0.3350.345 0.3350.328 0.670 Monte 0.537 0.434 0.572 0.4740.582 0.4800.515 0.3 51 0.3000.346 0.3390.340 0.3350.330 0.665 / 0.63 0.58 0.59 0.59 0.59 0.62 0.57 0.53 0.52 0.49 0.58 0.46 0.57 0.49 0.62 FS 2.6 3.2 2.4 2.9 2.4 2.9 2.7 3.9 4.6 4.0 4.1 4.0 4.1 4.2 2.1 FS x 2.2 2.4 2.3 2.3 2.3 2.2 2.4 2.6 2.6 2.8 2.4 3.0 2.4 2.8 2.2 =3.00 FOSM 0.386 0.309 0.407 0.3390.417 0.3450.364 0.2 49 0.2120.241 0.2400.236 0.2400.230 0.482 FORM 0.438 0.350 0.453 0.3820.465 0.3900.405 0.275 0.2350.273 0.2700.260 0.2700.255 0.542 Monte 0.434 0.348 0.459 0.3860.468 0.3900.406 0.2 77 0.2320.271 0.2670.256 0.2670.255 0.539 / 0.51 0.47 0.47 0.48 0.47 0.51 0.45 0.42 0.41 0.38 0.46 0.35 0.45 0.38 0.51 FS 3.2 4.0 3.0 3.6 2.9 3.5 3.4 5.0 5.9 5.1 5.2 5.4 5.1 5.4 2.5 FS x 2.7 3.0 2.9 2.9 2.9 2.7 3.1 3.3 3.4 3.6 3.0 4.0 3.0 3.6 2.7 Good result good good good good good 151

PAGE 173

Table 7.3c Summary of calibration resistance factor for driven pile using -Tomlinson, -API method, method, -Burland, Nordlund-Thurman, Shmertmann SPT method in Central of Vietnam Data from Central of Vietnam from Peck, Hanson and Thornburn from Schmertmann -Tomlinson NordlundThurman -API Nordlund& Thurman NordlundThurman Burland Nordlund Thurman -Tomlinson Nordlund Thurman APINordlund Thurman Nordlund Thurman Burland/ Nordlund Thurman SPT Sch Su-T, P SuH Su-T, P SuH Su-T, P SuH Su-T, P SuH Su-T, P SuH Su-T, P SuH Central 41 cases No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 mean 0.98 0.71 1.14 0.77 1.12 0.76 1.00 0.95 0.74 1.06 0.83 1.02 0.95 0.98 0.87 stand 0.24 0.18 0.29 0.23 0.31 0.24 0.29 0.29 0.23 0.36 0.26 0.39 0.22 0.35 0.28 cov 0.24 0.26 0.25 0.30 0.28 0.31 0.29 0.31 0.31 0.34 0.31 0.38 0.23 0.36 0.33 =2.33 FOSM 0.618 0.434 0.703 0.4330.661 0.4160.573 0.5 24 0.4140.547 0.4540.483 0.6150.488 0.483 FORM 0.685 0.480 0.780 0.4700.720 0.4510.628 0.562 0.4500.588 0.4900.510 0.6820.525 0.495 Monte 0.688 0.480 0.776 0.4670.717 0.4460.624 0.5 63 0.4510.581 0.4910.503 0.6970.520 0.494 / 0.70 0.68 0.68 0.60 0.64 0.59 0.62 0.59 0.61 0.55 0.59 0.49 0.73 0.53 0.57 FS 2.0 2.9 1.8 2.9 1.9 3.1 2.2 2.4 3.0 2.4 2.8 2.7 2.0 2.6 2.8 FS x 2.0 2.0 2.0 2.3 2.1 2.3 2.2 2.3 2.3 2.5 2.3 2.8 1.9 2.6 2.4 =3.00 FOSM 0.497 0.347 0.563 0.3380.524 0.3230.451 0.408 0.3230.419 0.3530.362 0.4980.370 0.359 FORM 0.575 0.398 0.645 0.3800.590 0.3600.508 0.453 0.3700.460 0.3900.392 0.5820.408 0.397 Monte 0.578 0.402 0.645 0.3770.589 0.3600.504 0.4 50 0.3670.451 0.3920.387 0.5910.405 0.398 / 0.59 0.57 0.56 0.49 0.53 0.48 0.50 0.47 0.49 0.42 0.47 0.38 0.62 0.41 0.46 FS 2.4 3.4 2.1 3.6 2.3 3.8 2.7 3.1 3.7 3.1 3.5 3.5 2.3 3.4 3.5 FS x 2.3 2.4 2.4 2.8 2.6 2.9 2.7 2.9 2.8 3.2 2.9 3.6 2.2 3.3 3.0 Good result good good good good good 152

PAGE 174

Table 7.3d Summary of calibration resistance factor for driven pile using -Tomlinson, -API method, method, -Burland, Nordlund-Thurman, ShmertmannSPT method in South of Vietnam Data from South of Vietnam from Peck, Hanson and Thornburn from Schmertmann -Tomlinson NordlundThurman -API NordlundThurman NordlundThurman Burland Nordlund Thurman -Tomlinson Nordlund Thurman -API Nordlund Thurman Nordlund Thurman Burland Nordlund Thurman SPT Sch SuT,P SuH SuT,P SuH SuT,P SuH SuT,P SuH SuT,P SuH SuT,P SuH South 25 cases No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 mean 0.97 1.53 1.03 0.87 1.00 0.83 1.03 0.72 0.65 0.76 0.65 0.74 0.62 0.76 1.25 stand 0.39 1.01 0.51 0.36 0.45 0.27 0.56 0.40 0.31 0.46 0.33 0.42 0.27 0.49 0.27 cov 0.40 0.66 0.50 0.41 0.45 0.32 0.54 0.55 0.47 0.60 0.51 0.57 0.44 0.64 0.21 =2.33 FOSM 0.439 0.397 0.377 0.3880.409 0.4440.344 0.2 40 0.2660.222 0.2310.236 0.2570.206 0.818 FORM 0.472 0.405 0.390 0.4100.425 0.4750.353 0.2 53 0.2600.225 0.2450.245 0.2700.210 0.925 Monte 0.492 0.403 0.391 0.4100.427 0.4780.357 0.2 59 0.2610.227 0.2500.242 0.2680.210 0.936 / 0.51 0.26 0.38 0.47 0.43 0.58 0.35 0.36 0.40 0.30 0.39 0.33 0.43 0.28 0.75 FS 2.8 3.4 3.5 3.4 3.2 2.9 3.9 5.3 5.3 6.0 5.5 5.7 5.1 6.6 1.5 FS x 2.7 5.2 3.6 2.9 3.2 2.4 4.0 3.8 3.4 4.6 3.6 4.2 3.2 5.0 1.8 =3 FOSM 0.326 0.259 0.266 0.2870.296 0.3440.238 0.1 65 0.1790.149 0.1620.161 0.1870.135 0.676 FORM 0.362 0.268 0.280 0.3120.320 0.3800.253 0.1 81 1.1900.155 0.1750.175 0.2000.140 0.790 Monte 0.381 0.266 0.281 0.3080.318 0.3830.250 0.1 83 0.1890.155 0.1800.167 0.2010.138 0.801 / 0.39 0.17 0.27 0.35 0.32 0.46 0.24 0.25 0.29 0.20 0.28 0.22 0.33 0.18 0.64 FS 3.6 5.2 4.9 4.5 4.3 3.6 5.5 7.5 7.3 8.9 7.6 8.3 6.8 9.9 1.7 FS x 3.5 7.9 5.0 3.9 4.3 3.0 5.7 5.4 4.7 6.7 4.9 6.1 4.2 7.6 2.1 Good result good good good good good 153

PAGE 175

Figure 7.10a Resistance factor, efficiency factor, equivalent factor of safety to ASD for driven pile using -Tomlinson, -API method, method, -Burland, Nordlund-Thurman, Shmertmann SPT method in Vietnam with =2.33 Figure7.10b Resistance factor, efficiency factor, equivalent factor of safety to ASD for driven pile using -Tomlinson, -API method, method, -Burland, Nordlund-Thurman, Shmertmann SPT method in North of Vietnam with =2.33 0.56 0.25 0.57 0.46 0.59 0.47 0.50 0.35 0.32 0.35 0.33 0.35 0.35 0.32 0.64 0.61 0.29 0.56 0.57 0.57 0.61 0.52 0.48 0.51 0.43 0.50 0.43 0.51 0.42 0.61 0.91 0.86 1.02 0.80 1.02 0.78 0.95 0.74 0.63 0.81 0.65 0.81 0.68 0.76 1.04 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 North South and Central of Vietnam phi phi/lamda lamda 0.54 0.43 0.57 0.47 0.58 0.48 0.51 0.35 0.30 0.35 0.34 0.34 0.33 0.33 0.66 0.63 0.58 0.59 0.59 0.59 0.62 0.57 0.53 0.52 0.49 0.58 0.46 0.57 0.49 0.62 0.86 0.75 0.97 0.80 0.99 0.77 0.91 0.66 0.57 0.71 0.58 0.74 0.59 0.67 1.07123456789101112131415North of Vietnam phi phi/lamda lamda 154

PAGE 176

Figure7.11c Resistance factor, efficiency factor, equivalent factor of safety to ASD for driven pile using -Tomlinson, -API method, method, -Burland, Nordlund-Thurman, Shmertmann SPT method in Central of Vietnam with =2.33 Figure7.11d Resistance factor, efficiency factor, equivalent factor of safety to ASD for driven pile using -Tomlinson, -API method, method, -Burland, Nordlund-Thurman, Shmertmann SPT method in South of Vietnam with =2.33 0.69 0.48 0.78 0.47 0.72 0.45 0.62 0.56 0.45 0.58 0.49 0.50 0.70 0.52 0.49 0.70 0.68 0.68 0.60 0.64 0.59 0.62 0.59 0.61 0.55 0.59 0.49 0.73 0.53 0.57 0.98 0.71 1.14 0.77 1.12 0.76 1.00 0.95 0.74 1.06 0.83 1.02 0.95 0.98 0.87123456789101112131415Central of Vietnam phi phi/lamda lamda 0.49 0.40 0.39 0.41 0.43 0.48 0.36 0.26 0.26 0.23 0.25 0.24 0.27 0.21 0.94 0.51 0.26 0.38 0.47 0.43 0.58 0.35 0.36 0.40 0.30 0.39 0.33 0.43 0.28 0.75 0.97 1.53 1.03 0.87 1.00 0.83 1.03 0.72 0.65 0.76 0.65 0.74 0.62 0.76 1.25123456789101112131415South of Vietnam phi phi/lamda lamda 155

PAGE 177

156 7.5.4Statistical sample size requirements for calibration the resistance factor for driven piles in Vietnam To calibrate the resistance factor for driven piles requires collecting a certain number of the static load tests and soil profiles data. To find out how many data are needed for calibration the resistance factor, a number of bias factor data sets from 5 data to 100 data with increment of one data was randomly picked up 100 times from 165 data for driven piles in mixed soil and each time pick up the resistance factors was calibrated by using Monte-Carlo simulation method and mean value for each set of data was calculated. Figure 7.12, 7.13, 7.14, 7.15 and 7.16 show the number of data sets versus the resistance factor for driven piles in mixed soil using different methods. From the result, number of data is need for calibration for resistance factor is 40 data for driven piles since the number of data more than 40 data the resistance factor calculated is almost the same. Fig 7.12 Number of data versus the resistance factor with T =3.0 for driven piles in mixed soil from North, Central and South of Vietnam using -Tomlinson & NordlundThurman method ( Su from Terzaghi and Peck and from Peck, Hanson and Thornburn) 0 10 20 30 40 50 60 70 80 90 100 0.42 0.44 0.46 0.48 0.5 0.52 0.54 Number of dataResistance Factor

PAGE 178

157 Fig 7.13 Number of data versus the resistance factor with T =3.0 for driven piles in mixed soil from North, Central and South of Vietnam using Burland & NorthlundThurman method ( from Peck, Hanson and Thornburn) Fig 7.14 Number of data versus the resistance factor with T =3.0 for driven piles in mixed soil from North, Central and South of Vietnam using Shmertmann SPT method 0 10 20 30 40 50 60 70 80 90 100 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0 10 20 30 40 50 60 70 80 90 100 0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 Number of caseResistance factor

PAGE 179

158 Fig 7.15 Number of data versus the resistance factor with T =3.0 for driven piles in mixed soil from North, Central and South of Vietnam using -Tomlinson & NordlundThurman ( Su from Terzaghi and Peck) Fig 7.16 Number of data versus the resistance factor with T =3.0 for driven piles in mixed soil from North, Central and South of Vietnam using & Nordlund-Thurman ( Su from Terzaghi and Peck) 0 10 20 30 40 50 60 70 80 90 100 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 Number of caseResistance factor 0 10 20 30 40 50 60 70 80 90 100 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 Number of caseResistance Factor

PAGE 180

159 7.5.5Recommendations resistance factor for driven pile in Vietnam The following correlation between SPT and undrain shear strength Su and friction angle are recommended for calculate the nominal capacity of driven pile in Vietnam For piles in Cohesionless soil: using the correlation between friction and SPT by Peck, Hanson & Thornburn For piles in Cohesive soil: using the correlation between Su and SPT by Hara For piles in Mixed soil: using the correlation between Su and SPT by Terzaghi and Peck and the correlation between friction and SPT by Peck, Hanson & Thornburn Table 7.4 shows the recommendation resistance factors for driven piles design in Vietnam including North, Central and South of Vietnam and comparing with the AASHTO current design specifications to determine the percent increase (+%) or decrease (-%) in the factored capacity. For example, the developed resistance factor of the SPT-Meyerhof method in sand soil was about 56% greater than the factor provided in 2012 AASHTO specifications. For clay soils, the developed resistance factor for -method using all data from Vietnam was found to be around 130% or 230%using data from South of Vietnam greater than those recommended by AASHTO. For mixed soils, a significant increase of about, 64%, 80% or 54% in the resistance factors was observed for -Nordlund & Thurman method in North, Central or all data in Vietnam compared to AASHTO. Moreover, an increase in the resistance factors of about 51%, 37%, 9% and 29% was obtained for the -Tomlinson, Nordlund &Thurman in North, Central, South and All in Vietnam.

PAGE 181

160 Table 7.4 Recommendation of Resistance Factor for Driven Pile in Vietnam with T = 3.0 Soil Type Static Method AASHTO 2012 Total North Central South Sand Nordlund&Thurman 0.45 0.40 (-11%) 0.39(-13%) Schmertmann SPT 0.60 0.58 Meyerhof SPT 0.3 0.47 (+56%) 0.47 (+56%) Clay -Tomlinson 0.35 0.32 (+8% ) 0.44 (+26%) 0.88 (+152%)API 0.38 0.36 0.85 0.4 0.63 (+58%) 0.35 (-38%) 0.78 (+95%) 0.25 0.57 (+128%)0.52 (+1.08%) 0.82 (+228%)Schmertmann SPT 0.49 0.47 0.91 Mixed -Tomlinson, Nordlund&Thurman 0.35 0.45 (+29%) 0.43 (+51% ) 0.58 (+37%) 0.38 (+9%) API, Nordlund& Thurman 0.46 0.46 0.65 0.28 Nordlund&Thurman 0.4 0.47 (+18%) 0.47 (+18% ) 0.59 (+48%) 0.32 (-20%) Nordlund&Thurman 0.25 0.38 (+52%) 0.41 (+64% ) 0.45 (+80%) 0.25 (0%) Schmertmann SPT 0.51 0.54 0.4 0.80

PAGE 182

161 8. Calibration Resistance Factor for Drilled Shafts Vietnam In this chapter, resistance factors for drilled Shaft in Vietnam are developed for FHWA method and Reese & Wight method. Also the same with driven pile, calibration of the resistance factors for each analysis method is presented separately and discussed in detail, including histograms and frequency distribution for each case attained using database was collected in Vietnam by author. For the resistance factors corresponding to a wide range of target reliability indices, a sensitivity analysis is considered in order to provide the designer the freedom to select and determine the degree of conservatism in the design. Efficiency factors are also provided to appropriately compare the economy of different methods. Equivalent factors of safety were back calculated from the developed LRFD resistance factors to compare the ASD approach and determine the percentage of gain in the pile capacity when using the LRFD approach. All the regionally developed resistance factors are thus compared with the current design specifications. 8.1Procedure to Calibrate Resistance Factors for Drilled Shaft -Collect the static load tests and soil profile for Drilled Shaft in North, Central and South of Vietnam. -Calculate the nominal capacity by using FHWA and Reese & Wright method. -Interpret the static load tests to find the real capacity of drilled shaft and driven piles by using 1” and 0.5% D settlement criterion. -Calculate the bias factor Ri = Rmi / Rni -Calculate the mean, R, and the coefficient of variation, COV, of the random series Ri. -Calibrate the resistance factor by using First Order Second Method (FORM) and First Order Reliability Method (FORM) and Monte Carlo simulation 8.2Collection of Drilled Shaft in Vietnam The calibration resistance factor process for drilled shaft in Vietnam requires an extensive data base. From 2008 to 2012 the author collected 92 static load test and soil profiles for drilled shaft from North, Central and South of Vietnam. The list of all piles including locations, depth and cross section of piles can be found in table G1 in appendix G. All data for drilled shaft from big city in Vietnam such as Hanoi, Haiphong and Saigon

PAGE 183

162 8.3Measurement Capacity of drilled Shaft 1” and 0.5%D settlement’s criterion were used to interpret the static load test data for driven pile in North, Central and South of Vietnam and the result is shown detail in Table G2 in appendix G. 8.4Nominal Capacity of Drilled Shaft 8.4.1Nominal Capacity of Concrete Piles in Mixed Soils FHWA method and Reese and Wight methods were used for predicting the design nominal capacity of drilled shaft in this researchby using the correlation, previously mentioned in Chapter 3, between Nspt and the un-drain shear strength Su of clay by Terzaghi and Peck (1967) or Hara (1974) The predicted capacity of driven piles in mixed soil is in table G-3 in appendix G.

PAGE 184

163 Figures 8.1a: Prediction Capacity using FHWA method (Su: T-P) vs. Measure Capacity of Drilled Shaft using 1” Criterion in Mixed Soils in Vietnam Figures 8.1b: Prediction Capacity using FHWA method (Su: Hara) vs. Measure Capacity of Drilled Shaft using 1” Criterion in Mixed Soils in Vietnam y = 0.733x R = 0.3830 500 1000 1500 2000 2500 05001,0001,5002,0002,5003,0003,500FHWA method1" Capacity FHWA method (Su: Terzaghi & Peck ) y = 0.937x R = 0.4380 500 1000 1500 2000 2500 3000 3500 0500100015002000250030003500R & W method1" Capacity FHWA method (Su: Hara )

PAGE 185

164 Figures 8.1c: Prediction Capacity using R&W method (Su: T-P) vs. Measure Capacity of Drilled Shaft using 1” Criterion in Mixed Soils in Vietnam Figures 8.1d: Prediction Capacity using R&W method (Su: Hara) vs. Measure Capacity of Drilled Shaft using 1” Criterion in Mixed Soils in Vietnam y = 0.980x R = 0.6530 500 1000 1500 2000 2500 3000 3500 0500100015002000250030003500R & W method1" Capacity R & W method (Su: Terzaghi & Peck ) y = 1.176x R = 0.6540 500 1000 1500 2000 2500 3000 3500 4000 0500100015002000250030003500R & W method1" Capacity R & W method (Su: Hara )

PAGE 186

165 Figures 8.2a: Prediction Capacity using FHWA method (Su: Terzaghi&Peck) vs. Measure Capacity of Drilled Shaft using 1” Criterion in Mixed Soils in Vietnam Figures 8.2b: Prediction Capacity using FHWA method (Su: Hara) vs. Measure Capacity of Drilled Shaft using 0.5%D Criterion in Mixed Soils in Vietnam y = 0.571x R = 0.0700 500 1000 1500 2000 2500 050010001500200025003000350040004500FHWA method1" Capacity FHWA method (Su: Terzaghi & Peck ) y = 0.733x R = 0.227 0 500 1000 1500 2000 2500 3000 3500 050010001500200025003000350040004500FHWA method0.5%D Capacity FHWA method (Su: Hara )

PAGE 187

166 Figures 8.2c: Prediction Capacity using R&W method (Su: T-P) vs. Measure Capacity of Drilled Shaft using 0.5%D Criterion in Mixed Soils in Vietnam Figures 8.2d: Prediction Capacity using R&W method (Su: Hara) vs. Measure Capacity of Drilled Shaft using 0.5%D Criterion in Mixed Soils in Vietnam y = 0.766x R = 0.455 0 500 1000 1500 2000 2500 3000 3500 050010001500200025003000350040004500R & W method0.5%D Capacity R & W method (Su: Terzaghi & Peck ) y = 0.921x R = 0.487 0 500 1000 1500 2000 2500 3000 3500 4000 4500 050010001500200025003000350040004500R & W method0.5%D CapacityR & W method (Su: Hara )

PAGE 188

167 8.5Calibration of Resistance Factors for Drilled Shaft The same with driven pile, there are three statistical methods including First Order Second Moment (FOSM), First Order Reliability Methods (FORM) and other advanced methods, such as the Monte Carlo simulation, have been used for performing the reliability analyses to find the resistance factor for drilled shaft by assuming a lognormal distribution of the load and resistance Probability Density Functions (PDFs).Using the E.q 4.47 for FOSM to find the resistance and using Matlab program for FORM and Monte Carlo simulation by following the theory discussed in chapter 4. 8.5.1Resistant factor for drilled shaft in Mixed Soil Table 8.1, 8.1a to 8.1f shows the bias factor and the calibration resistance factor as well as efficiency factor ( / ), equivalent factor of safety to ASD and actual mean factor of safety for drilled shaft in Mixed soil by FHWA method and Reese& Wright for calculating the nominal capacity in North, Central and South of Vietnam with 1” and 0.5%D settlement criterion. Figure 8.3a and 8.3b is an example of the histogram and frequency distribution of bias factor 1 and an example of resistant factor calibration 92 cases of drilled shaft in mixed soils using the FHWA method with correlation between undrain shear strength Su and SPT by Terzaghi and Peck and using 1” settlement criterion in Vietnam. The other histograms and frequency distributions of bias factor: 1 to 8 and resistant factor calibration: 1 to 8 corresponding to different method for All data, North data, and South data can be found in the figure G-M1-a to G-M8-d in appendix G Table.8.1 Bias Factor for drilled Shaft in Mixed Soil using FHWA and Reese & Wright method with 1” and 0.5% D settlement criterion. 1” settlement Criterion 0.5 % D settlementCriterion FHWA method Reese and Wright method FHWA method Reese and Wright method Su (T, P) Su (Hara) Su (T,P) Su (Hara)Su (T,P) Su (Hara) Su (T,P) Su (Hara) 1 2 3 4 5 6 7 8 NP-M1 1.35 1.18 1.26 1.11 1.44 1.26 1.34 1.18 NP-M2 1.39 1.22 1.29 1.14 1.47 1.29 1.37 1.21

PAGE 189

168 Table 8.1 (cont.) NP-M3 1.05 0.94 0.99 0.89 1.33 1.19 1.26 1.13 NP-M4 1.07 0.95 1.01 0.91 1.33 1.19 1.26 1.13 NP-M5 1.23 1.10 1.16 1.04 1.40 1.25 1.32 1.19 NP-M6 1.37 1.28 0.92 0.88 1.98 1.85 1.33 1.27 NP-M7 1.36 1.27 0.91 0.87 1.57 1.47 1.06 1.01 NP-M9 1.15 0.96 1.06 0.90 1.52 1.26 1.40 1.18 NP-M10 1.30 1.08 1.20 1.01 1.59 1.32 1.47 1.23 NP-M11 1.37 1.25 1.27 1.56 1.71 1.56 1.59 1.95 NP-M12 1.24 1.13 1.15 1.41 1.41 1.29 1.31 1.60 NP-M13 1.49 1.36 1.40 1.28 1.72 1.57 1.62 1.48 NP-M14 1.02 0.80 1.06 0.83 1.14 0.90 1.19 0.93 NP-M15 1.01 0.79 1.06 0.82 1.14 0.89 1.20 0.93 NP-M16 1.50 0.96 1.45 0.94 1.66 1.06 1.59 1.04 NP-M17 1.55 1.00 1.50 0.97 1.69 1.08 1.63 1.06 NP-M18 1.54 1.10 1.15 0.88 1.94 1.38 1.45 1.11 NP-M19 1.39 1.00 1.04 0.80 1.79 1.28 1.34 1.03 NP-M20 1.54 1.10 1.15 0.88 1.92 1.37 1.43 1.10 NP-M21 1.30 0.93 0.97 0.74 1.65 1.18 1.23 0.95 NP-M22 1.15 0.85 0.77 0.63 1.46 1.08 0.98 0.79 NP-M23 1.27 1.13 0.86 0.79 1.59 1.42 1.07 0.99 NP-M27 1.11 0.90 0.79 0.67 1.40 1.12 0.99 0.85 NP-M28 1.34 1.10 0.95 0.83 1.61 1.33 1.15 1.00 NP-M29 1.02 0.72 1.14 0.78 1.09 0.77 1.23 0.84 NP-M30 1.73 1.09 1.29 1.09 2.52 1.58 1.88 1.58 NP-M31 0.85 0.76 0.69 0.63 0.94 0.84 0.76 0.69 NP-M32 0.83 0.74 0.67 0.61 0.95 0.85 0.77 0.70 NP-M35 1.04 0.92 0.89 0.80 1.17 1.04 1.00 0.90 NP-M36 0.90 0.80 0.77 0.70 1.09 0.97 0.93 0.85 NP-M37 1.24 1.11 1.06 0.96 1.55 1.38 1.33 1.20 NP-M38 0.99 0.89 0.85 0.77 1.11 0.99 0.95 0.86 NP-M39 1.28 1.14 1.09 0.99 1.64 1.46 1.40 1.27 NP-M40 1.65 1.21 0.92 0.76 1.86 1.36 1.03 0.86 NP-M41 1.55 1.14 0.86 0.72 1.79 1.32 1.00 0.83 NP-M42 1.27 1.23 0.88 0.86 1.45 1.40 1.00 0.98 NP-M43 1.26 1.22 0.87 0.85 1.44 1.39 1.00 0.97 NP-M44 1.23 1.19 0.85 0.84 1.42 1.38 0.98 0.96 NP-M45 1.29 1.25 0.89 0.87 1.47 1.42 1.02 0.99 NP-M46 1.25 1.21 0.87 0.85 1.43 1.39 0.99 0.97 NP-M47 1.36 1.32 0.94 0.92 1.51 1.46 1.04 1.02 NP-M48 1.07 1.04 0.74 0.72 1.17 1.14 0.81 0.80

PAGE 190

169 Table 8.1 (cont.) NP-M49 1.17 1.14 0.81 0.80 1.39 1.35 0.96 0.94 NP-M50 1.21 1.00 0.88 0.77 1.54 1.28 1.12 0.98 NP-M51 1.33 1.14 1.23 1.06 1.69 1.44 1.55 1.34 NP-M52 1.13 0.97 1.26 1.08 1.35 1.17 1.52 1.29 NP-M53 1.23 0.91 1.10 0.83 1.43 1.05 1.28 0.97 NP-M54 0.94 0.87 0.83 0.77 1.03 0.95 0.91 0.84 NP-M55 1.10 0.98 0.80 0.74 1.23 1.10 0.89 0.82 NP-M56 1.09 0.97 0.79 0.73 1.23 1.10 0.89 0.82 NP-M57 0.98 0.87 0.71 0.65 1.11 0.99 0.81 0.74 NP-M58 1.08 0.92 0.87 0.76 1.30 1.11 1.05 0.92 NP-M59 0.78 0.66 0.63 0.55 0.88 0.75 0.71 0.62 NP-M60 1.66 1.39 1.11 0.98 2.36 1.98 1.59 1.40 NP-M61 2.53 2.12 1.70 1.50 3.15 2.64 2.11 1.87 NP-M62 1.92 1.61 1.29 1.14 2.36 1.98 1.59 1.40 NP-M63 1.73 1.34 1.08 0.92 2.20 1.70 1.38 1.16 NP-M64 1.66 1.32 1.05 0.90 2.26 1.79 1.43 1.23 NP-M65 1.55 1.23 0.98 0.85 2.14 1.70 1.36 1.17 NP-M66 1.78 1.47 1.15 1.01 2.22 1.84 1.43 1.26 NP-M67 1.90 1.55 1.23 1.08 2.23 1.83 1.45 1.27 NP-M68 1.61 1.11 1.39 1.01 2.13 1.48 1.85 1.34 NP-M69 1.23 0.88 1.06 0.79 2.16 1.54 1.87 1.39 NP-M70 1.87 1.63 1.09 1.00 2.39 2.08 1.40 1.29 NP-M71 1.49 1.28 0.83 0.76 1.68 1.44 0.94 0.86 NP-M72 1.68 1.08 1.36 0.94 2.09 1.34 1.69 1.16 NP-M73 2.10 1.47 1.85 1.34 2.12 1.48 1.86 1.35 NP-M74 1.66 1.04 1.38 0.92 2.12 1.32 1.75 1.17 NP-M75 1.45 1.08 1.13 0.90 1.62 1.21 1.26 1.00 NP-M76 1.41 1.07 1.07 0.87 1.57 1.19 1.19 0.96 NP-M77 1.43 1.09 1.09 0.88 1.58 1.20 1.20 0.97 NP-M78 1.44 1.09 1.09 0.88 1.62 1.23 1.23 0.99 NP-M79 0.96 0.51 0.81 0.46 1.12 0.60 0.94 0.54 NP-M80 1.00 0.62 0.75 0.52 1.05 0.65 0.79 0.54 NP-M81 1.37 1.01 0.89 0.72 1.65 1.22 1.07 0.87 NP-M82 1.27 0.88 1.06 0.77 1.51 1.05 1.27 0.93 NP-M83 1.34 0.93 1.12 0.82 1.57 1.09 1.31 0.96 NP-M84 1.37 0.95 1.15 0.84 1.53 1.07 1.29 0.94 NP-M85 1.04 0.63 0.93 0.58 1.20 0.72 1.07 0.67 NP-M86 0.84 0.50 0.93 0.47 0.91 0.55 1.00 0.51 CP-M1 1.63 1.04 1.26 0.88 2.51 1.60 1.94 1.35 CP-M2 1.94 1.22 1.24 0.90 2.93 1.85 1.88 1.36

PAGE 191

170 Table 8.1 (cont.) SP-M3 1.04 0.94 1.17 1.05 1.23 1.12 1.39 1.25 SP-M4 1.10 0.98 1.24 1.09 1.15 1.02 1.29 1.13 SP-M11 0.90 0.51 0.90 0.51 0.97 0.54 0.97 0.54 SP-M12 1.64 1.06 0.93 0.71 1.89 1.22 1.07 0.82 SP-M13 1.02 0.66 0.58 0.44 1.26 0.81 0.71 0.54 SP-M14 1.07 0.71 0.67 0.51 0.88 0.59 0.56 0.42 SP-M15 0.86 0.57 0.55 0.41 1.08 0.71 0.68 0.51 SP-M16 0.89 0.71 0.73 0.61 1.01 0.81 0.83 0.69 SP-M17 0.93 0.74 0.76 0.63 1.10 0.88 0.91 0.75

PAGE 192

171 Figure 8.3a. Histogram and frequency distribution of bias factor 1 for 92 cases of drilled shaft in Mixed soils using the FHWA method (Su: Terzaghi, Peck) and using 1” criterion in Vietnam Figure 8.3b. Resistance factor calibration for 92 cases of drilled shaft in Mixed soils using the FHWA method (Su: Terzaghi, Peck) and using 1” criterion in Vietnam 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Bias FactorDensity Lamda1AllMixed data Normal Lognormal 0 1 2 3 4 5 6 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 Reliability Index, Resistance Factor,

PAGE 193

172 Table 8.1aSummary of calibration resistance factorfor drilled shaft using FHWA and Reese & Wright method with 1” criterion settlement in North, Center and South of Vietnam FHWA method Reese and Wright method Su (Terzaghi, Peck)Su (Hara) Su (Terzaghi, Peck) Su (Hara) 1 2 3 4 Total Mean 1.31 1.04 1.02 0.86 92 cases stand 0.32 0.27 0.24 0.21 cov 0.24 0.25 0.23 0.25 =2.33 FOSM 0.826 0.641 0.658 0.530 FORM 0.920 0.710 0.736 0.585 MC 0.924 0.714 0.742 0.591 / 1 0.71 0.68 0.72 0.69 FS2 1.49 1.93 1.85 2.33 FS x 3 1.95 2.01 1.90 1.99 =3 FOSM 0.665 0.513 0.532 0.425 FORM 0.770 0.592 0.622 0.490 MC 0.775 0.597 0.629 0.493 / 0.51 0.49 0.52 0.50 FS 2.07 2.68 2.58 3.23 FS x 2.71 2.79 2.65 2.77 1 Efficiency factor 2Equivalent factor of safety to ASD 3 Actual mean factor of safety 4 Monte Carlo simulation Table8.1b Summary of calibration resistance factor for drilled shaft using FHWA and Reese & Wright method with 1” criterion settlement in North of Vietnam FHWA method Reese and Wright method Su (Terzaghi, Peck) Su (Hara) Su (Terzaghi, Peck) Su (Hara) 1 2 3 4 North Mean 1.33 1.07 1.04 0.88 92 cases stand 0.31 0.26 0.23 0.20 cov 0.23 0.24 0.22 0.23 =2.33 FOSM 0.853 0.676 0.681 0.562 FORM 0.950 0.755 0.758 0.625 MC 0.966 0.778 0.765 0.641 / 0.73 0.73 0.74 0.73 FS 1.42 1.77 1.80 2.15 FS x 1.89 1.89 1.87 1.88 =3 FOSM 0.690 0.545 0.554 0.455 FORM 0.804 0.625 0.640 0.528 MC 0.822 0.625 0.649 0.543 / 0.62 0.58 0.62 0.62 FS 1.67 2.20 2.12 2.53 FS x 2.22 2.35 2.20 2.22

PAGE 194

173 Table 8.1c Summary of calibration resistance factor for drilled shaft using FHWA and Reese & Wright method with 1” criterion settlement in South of Vietnam FHWA method Reese and Wright method Su (Terzaghi, Peck)Su (Hara) Su (Terzaghi, Peck) Su (Hara) 1 2 3 4 South Mean 1.05 0.77 0.84 0.66 10 cases stand 0.24 0.19 0.25 0.25 cov 0.23 0.25 0.29 0.38 =2.33 FOSM 0.682 0.476 0.478 0.317 FORM 0.760 0.534 0.525 0.350 Monte 0.763 0.514 0.518 0.336 / 0.73 0.67 0.62 0.51 FS 1.80 2.68 2.65 4.09 FS x 1.89 2.05 2.22 2.71 =3 FOSM 0.553 0.382 0.375 0.238 FORM 0.640 0.445 0.427 0.265 Monte 0.648 0.431 0.426 0.259 / 0.62 0.56 0.51 0.39 FS 2.12 3.19 3.23 5.30 FS x 2.23 2.44 2.70 3.52 Figure 8.4a. Resistance factor, efficiency factor, equivalent factor of safety to ASD for drilled shaft using FHWA and Reese & Wright method with 1” criterion settlement in North, Center and South of Vietnam 0.92 0.71 0.74 0.59 0.71 0.68 0.72 0.69 1.31 1.04 1.02 0.86 1234North South and Center of Vietnam Phi phi/lamda bias factor

PAGE 195

174 Figure 8.4b. Resistance factor, efficiency factor,equivalent factor of safety to ASD for drilled shaft using FHWA and Reese & Wright method with 1” criterion settlement in North of Vietnam Figure 8.4c. Resistance factor,efficiency factor,equivalent factor of safety to ASD for drilled shaft using FHWA and Reese & Wright method with 1” criterion settlement in South of Vietnam 0.97 0.78 0.77 0.64 0.73 0.73 0.74 0.73 1.33 1.07 1.04 0.88 1234North of Vietnam Phi Phi/Lamda Lamda 0.76 0.51 0.52 0.34 0.73 0.67 0.62 0.51 1.05 0.77 0.84 0.66 1234South of Vietnam Phi Phi/Lamda Lamda

PAGE 196

175 Table 8.1d Summary of calibration resistance factor for drilled shaft using FHWA and Reese & Wright method with 0.5%D settlement in North, Center and South of Vietnam. FHWA method Reese and Wright method Su (Terzaghi, Peck) Su (Hara) Su (Terzaghi, Peck) Su (Hara) 5 6 7 8 Total Mean 1.58 1.25 1.23 1.03 92 cases stand 0.46 0.37 0.32 0.29 cov 0.29 0.29 0.26 0.28 =2.33 FOSM 0.900 0.718 0.743 0.604 FORM 0.975 0.780 0.820 0.660 Monte 0.988 0.786 0.824 0.623 / 0.63 0.63 0.67 0.61 FS 1.39 1.75 1.67 2.21 FS x 2.20 2.19 2.05 2.27 =3 FOSM 0.707 0.564 0.592 0.478 FORM 0.795 0.635 0.675 0.542 Monte 0.801 0.641 0.679 0.548 / 0.51 0.51 0.55 0.53 FS 1.72 2.15 2.02 2.51 FS x 2.71 2.69 2.49 2.58 Table 8.1eSummary of calibration resistance factor for drilled shaft using FHWA and Reese & Wright method with 0.5%D settlement in North of Vietnam. FHWA method Reese and Wright method Su (Terzaghi, Peck) Su (Hara) Su (Terzaghi, Peck) Su (Hara) 5 6 7 8 North Mean 1.60 1.29 1.25 1.05 80 cases stand 0.43 0.35 0.30 0.27 cov 0.27 0.27 0.24 0.26 =2.33 FOSM 0.957 0.768 0.787 0.647 FORM 1.050 0.850 0.875 0.713 Monte 1.072 0.850 0.873 0.730 / 0.67 0.66 0.70 0.69 FS 1.28 1.62 1.58 1.88 FS x 2.05 2.08 1.96 1.98 =3 FOSM 0.761 0.610 0.634 0.517 FORM 0.865 0.693 0.725 0.586 Monte 0.887 0.697 0.731 0.615 / 0.56 0.54 0.59 0.59 FS 1.55 1.97 1.88 2.24 FS x 2.48 2.54 2.34 2.35

PAGE 197

176 Table 8.1f Summary of calibration resistance factor for drilled shaft using FHWA and Reese & Wright method with 0.5%D settlement in South of Vietnam. FHWA method Reese and Wright method Su (Terzaghi, Peck) Su (Hara) Su (Terzaghi, Peck) Su (Hara) 5 6 7 8 South Mean 1.17 0.86 0.93 0.74 10 cases stand 0.29 0.23 0.28 0.29 cov 0.25 0.27 0.30 0.39 =2.33 FOSM 0.728 0.512 0.528 0.348 FORM 0.798 0.560 0.580 0.365 Monte 0.807 0.563 0.574 0.364 / 0.69 0.66 0.61 0.49 FS 1.70 2.44 2.39 3.78 FS x 2.00 2.09 2.24 2.79 =3 FOSM 0.584 0.407 0.414 0.261 FORM 0.678 0.460 0.460 0.280 Monte 0.671 0.464 0.465 0.282 / 0.57 0.54 0.50 0.38 FS 2.05 2.96 2.96 4.88 FS x 2.41 2.53 2.76 3.61 Figure 8.5a. Resistance factor, efficiency factor, equivalent factor of safety to ASD for drilled shaft using FHWA and Reese & Wright method with 0.5% D criterion settlement in North, Center and South of Vietnam 0.99 0.79 0.82 0.62 0.63 0.63 0.67 0.61 1.58 1.25 1.23 1.03 5678North South and Center of Vietnam Phi phi/lamda bias factor

PAGE 198

177 Figure 8.5b. Resistance factor, efficiency factor, equivalent factor of safety to ASD for drilled shaft using FHWA and Reese & Wright method with 0.5% D criterion settlement in North of Vietnam Figure 8.5c. Resistance factor, efficiency factor, equivalent factor of safety to ASD for drilled shaft using FHWA and Reese & Wright method with 0.5% D criterion settlement in South of Vietnam 1.07 0.85 0.87 0.73 0.67 0.66 0.70 0.69 1.60 1.29 1.25 1.05 5678North of Vietnam Phi Phi/Lamda Lamda 0.81 0.56 0.57 0.36 0.69 0.66 0.61 0.49 1.17 0.86 0.93 0.74 5678South of Vietnam Phi Phi/Lamda Lamda

PAGE 199

178 8.5.2 Statistical sample size requirements for calibration the resistance factor for drilled shafts in Vietnam To calibrate the resistance factor for drilled shafts requires collecting a certain number of the static load tests and soil profiles data. To find out how many data are needed for calibration the resistance factors, a number of bias factor data sets from 5 data to 80 data with increment of one data was randomly picked up 100 times from 92 data for drilled shafts and each time pick up the resistance factors was calibrated by using Monte-Carlo simulation method and mean value for each set of data was calculated. Figure 8.4, 8.5 and 8.6 show the number of data sets versus the resistance factor for drilled shafts using FHWA method with Su from Hara, Reese and Wright method with Su from Terzaghi and Peck and FHWA method with Su from Hara. From the result, a number of data is need for calibration for resistance factor is 30 data for drilled shafts since a number of data more than 30 data, the resistance factors calculated are almost the same. Fig 8.6 Number of data versus the resistance factor with T =3.0 for drilled shaft (using the FHWA method and Su from Hara) 0 10 20 30 40 50 60 70 80 0.58 0.6 0.62 0.64 0.66 0.68 0.7 Number of dataResistance Factor

PAGE 200

179 Fig 8.7 Number of data versus the resistance factor with T =3.0 for drilled shaft using the Reese and Wright method (Su from Terzaghi and Peck) Fig 8.8 Number of data versus the resistance factor with T =3.0 for drilled shaft using the Reese and Wright method (Su from Hara) 0 10 20 30 40 50 60 70 80 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.7 Number of data Resistance Factor 0 10 20 30 40 50 60 70 80 0.48 0.5 0.52 0.54 0.56 0.58 0.6 Number of dataResistance Factor

PAGE 201

1809. Conclusions and Recommendation 9.1 Summary of Research Deep foundation data from different locations in NCHRP 507 report including 368 dynamic load tests in which 240 cases with end of driving (EOD) capacities and 128 cases with beginning of strike (BOR) capacities, and 131 static load tests for concrete piles with 19 cases in cohesive soils, 37 cases in cohesionless soils, and 85 cases in mixed soil. The U.S. database was used to calibrate the resistant factors of piles to examine the location dependency. Eight different static analysis methods: Tomlinson, -API, Nordlund, Thurman, Meyerhof SPT, and the Shmertmann SPT method were used for calculating the design nominal capacity of driven piles. Resistance factor calibration was conducted based on the Vietnamese database includes 273 static load tests and soil profiles for driven piles in different soil types in North, Central and South Vietnam. Chin’s method, Davisson’s method, and the 1” settlement criterion were used in the interpretation of load test results for driven piles capacity in Vietnam. The FHWA method and Reese & Wright method were used to calculate the design nominal capacities of drilled shafts in Vietnam. The LRFD calibration was conducted based on 92 static load tests and soil profiles for drilled shafts in mixed soil in North, Central, and South Vietnam. The 1” and 0.5% of the pile diameter settlement criterions were used to determine the capacity of drilled shafts. The calibration of resistance factors for deep foundations was performed using NCHRP 507 and Vietnamese database. Reliability based analyses using the First Order Second Moment (FOSM) method, the First Order Reliability Method (FORM), and the Monte Carlo (MC) simulation method were conducted to calibrate the resistance factors ( ). Following ASSHTO 2012, the resistance

PAGE 202

181factors were evaluated at the target reliability index ( T) of 2.33 for redundant piles (defined as 5 or more piles per pile cap (group)), which corresponds to a failure probability of 1%, and for the target reliability index ( T) of 3.0 for nonredundant piles (defined as 4 or less piles per pile cap), which corresponds to a failure probability of 0.1%. 9.2Major Outcomes and Conclusions Resistance factors are calibrated using three reliability analysis methods, including FOSM, FORM, and Monte Carlo Simulations. Of the three methods used the Monte Carlo and FORM methods yielded close results that encourage assurance. This being the case, the resistance factors given by the Monte Carlo simulations are chosen for the development of deep foundation design in this work. The resistance factors evaluated for PDA-CAPWAP data, using the NCHRP 507 data at EOD and BOR, vary with location. In general, the resistance factors found in this work for a specific/separate location are much different from the resistance factors given by the “lumped” or combined locations from the NCHRP 507 report and AASHTO specifications. When using semi-empirical methods and in-situ methods, the resistance factors for concrete pile design from Florida and Louisiana are only slightly different from the resistance factors recommended in NCHRP 507 report since most of the collected data is from Florida and Louisiana. For deep foundation design, no LFFD codes are available in Vietnam. This study provides the first development of resistant factors for driven piles and drilled shafts in Vietnam. The resistance factors evaluated in this study should be reliable

PAGE 203

182since they based on extensive collections of static load tests and soil profiles in North, South, and Central Vietnam. In chapter 7 the resistance factors were developed for driven pile design based upon detailed calibration with eight different methods for the capacities of piles in sand, clay, and mixed soil from different locations in Vietnam. The resistance factors for drilled shaft capacities may be found in chapter 8 and were developed based upon calibration with the FHWA and Reese & Wright methods in sand, clay and mixed Soil. The resistance factors, calibrated from the NCHRP 507 report and Vietnamese data, were determined to be strongly dependent upon design methods, deep foundation types, methods of exploration, testing of geo-materials, geo-material types, and geological formation. The regionally developed resistance factors were also compared to those provided in the design specifications to determine the percent increase or decrease in the factored capacity. 9.3Recommendations AASHTO’s resistance factors for application to all state DOTs or Vietnam will lead to under or over design of deep foundations. “So one size does not fit all” and different regions must have their own set of resistance factors. The resistance factors ( ) for driven piles and drilled shafts in Vietnam, given in chapter 7 and 8, are recommended for design of deep foundations in Vietnam.

PAGE 204

1839.4Recommendations for Future Research Continue to collect more static load tests (preferably with strain gauge instrumentation), PDA, and soil profiles for driven piles and drilled shafts in Central and South Vietnam in cohesive and cohesionless soil. Use the collected load test and soil exploration data to validate a well verified finite element analysis (FEA) program that may be used to study the loaddeformation behavior of deep foundations. Develop/calibrate resistance factors for deep foundation service limit states using both the finite element method (FEM) and the collected deep foundation test data for both vertical and horizontal displacements.

PAGE 205

APPENDIX A Calibration Resistance Factor by Using FORM for Driven Pile using CAPWAP Method

PAGE 206

184 Figure A-1a Frequency Distribution for All 365 CAPWAP (BOR+EOD) Cases Figure A-1b Resistance Factor Calibration from 365 CAPWAP (BOR+EOD) Case

PAGE 207

186 Figure A-2a Frequency Distribution for 14 CAPWAP (BOR+EOD) Cases in Alabama Figure A-2b Resistance Factor Calibration from 14 CAPWAP (BOR+EOD) Cases in Alabama

PAGE 208

187 Figure A-3a Frequency Distribution for 13 CAPWAP (BOR+EOD) Cases in California Figure A-3b Resistance Factor Calibration from 13 CAPWAP (BOR+EOD) Cases in California

PAGE 209

188 Figure A-4a Frequency Distribution for 8 CAPWAP (BOR+EOD) Cases in Canada Figure A-4b Resistance Factor Calibration from 8 CAPWAP (BOR+EOD) Cases in Canada

PAGE 210

189 Figure A-5a Frequency Distribution for 16 CAPWAP (BOR+EOD) Cases in S Carolina Figure A-5b Resistance Factor Calibration from 16 CAPWAP (BOR+EOD) Cases in S Carolina

PAGE 211

190 Figure A-6a Frequency Distribution for 107 CAPWAP (BOR+EOD) Pile-Cases in Florida Figure A-6b Resistance Factor Calibration from 107 CAPWAP (BOR+EOD) pile-cases in Florida

PAGE 212

191 Figure A-7a Frequency Distribution for 22 CAPWAP (BOR+EOD) Cases in Louisiana Figure A-7b Resistance Factor Calibration from 22 CAPWAP (BOR+EOD) Cases in Louisiana

PAGE 213

192 Figure A-8a Frequency Distribution for 17 CAPWAP (BOR+EOD) Cases in Massachusetts Figure A-8b Resistance Factor Calibration from 17 CAPWAP (BOR+EOD) Cases in Massachusetts

PAGE 214

193 Figure A-9a Frequency Distribution for 9 CAPWAP (BOR+EOD) Cases in Nebraska Figure A-9b Resistance Factor Calibration from 9 CAPWAP (BOR+EOD) Cases in Nebraska

PAGE 215

194 Figure A-10a Frequency Distribution for 7 CAPWAP (BOR+EOD) Cases in Oklahoma Figure A-10b Resistance Factor Calibration from 7 CAPWAP (BOR+EOD) Cases in Oklahoma

PAGE 216

195 Figure A-11a Frequency distribution for 15 CAPWAP (BOR+EOD) Cases in Ortanrio Figure A-11b Resistance Factor Calibration from 15 CAPWAP (BOR+EOD) Cases in Ortanrio

PAGE 217

196 Figure A-12a Frequency Distribution for 12 CAPWAP (BOR+EOD) Cases in Pennsylvania Figure A-12b Resistance Factor Calibration from 12 CAPWAP Cases in Pennsylvania

PAGE 218

197 Figure A-13a Frequency Distribution for 27 CAPWAP (BOR+EOD) Cases in Wisconsin Figure A-13b Resistance Factor Calibration from 27 CAPWAP (BOR+EOD) Cases in Wisconsin

PAGE 219

198 Figure A-14a Frequency Distribution for All 240 CAPWAP (BOR) Cases Figure A-14b Resistance Factor Calibration from 240 CAPWAP (BOR) Cases

PAGE 220

199 Figure A-15a Frequency Distribution for 9 CAPWAP (BOR) Cases in Alabama Figure A-15b Resistance Factor Calibration from 9 CAPWAP (BOR) Cases in Alabama

PAGE 221

200 Figure A-16a Frequency Distribution for 85 CAPWAP (BOR) Cases in Florida Figure A-16b Resistance Factor Calibration from 85 CAPWAP (BOR) Cases in Florida

PAGE 222

201 Figure A-17a Frequency Distribution for 15 CAPWAP (BOR) Cases in Louisiana Figure A-17b Resistance Factor Calibration from 15 CAPWAP (BOR) Cases in Louisiana

PAGE 223

202 Figure A-18a Frequency Distribution for 15 CAPWAP (BOR) Cases in Ontario Figure A-18b Resistance Factor Calibration from 15 CAPWAP (BOR) Cases in Ontario

PAGE 224

203 Figure A-19a Frequency Distribution for 13 CAPWAP (BOR) Cases in S. Carolina Figure A-19b Resistance Factor Calibration from 13 CAPWAP (BOR) Cases in S. Carolina

PAGE 225

204 Figure A-20a Frequency Distribution for 15 CAPWAP (BOR) Cases in Wisconsin Figure A-20b Resistance Factor Calibration from 15 CAPWAP-BOR Cases in Wisconsin

PAGE 226

205 Figure A-21a Frequency Distribution for All 128 CAPWAP (EOD) Cases Figure A-21b Resistance Factor Calibration from 128 CAPWAP (EOD) Cases

PAGE 227

206 Figure A-22a Frequency Distribution for 20 CAPWAP-EOD Cases in Florida Figure A-22b Resistance Factor Calibration from 20 CAPWAP-EOD Pile in Florida

PAGE 228

207 Figure A-23a Frequency Distribution for 8 CAPWAP-EOD Cases in California Figure A-23b Resistance Factor Calibration from 8 CAPWAP-EOD pile-cases in California

PAGE 229

208 Figure A-24a Frequency Distribution for 11 CAPWAP-EOD Cases in Massachusetts Figure A-24b Resistance Factor Calibration from 11 CAPWAP-EOD pile-cases in Massachusetts

PAGE 230

209 Figure A-25a Frequency Distribution for 7 CAPWAP-EOD Cases in Ontario Figure A-25b Resistance Factor Calibration from 7 CAPWAP-EOD pile-cases in Ontario

PAGE 231

210 Figure A-26a Frequency Distribution for 9 CAPWAP-EOD Cases in Pittsburgh, PA Figure A-26b Resistance Factor Calibration from 8 CAPWAP-EOD pile-cases in Pittsburgh, PA

PAGE 232

211 Figure A-27a Frequency Distribution for 8 CAPWAP-EOD Cases in Wisconsin Figure A-27b Resistance Factor Calibration from 8 CAPWAP-EOD pile-cases in Wisconsin

PAGE 233

APPENDIX B Calibration Resistance Factor by Using FORM for Driven Pile using Static Analysis

PAGE 234

212 RDavisson/RAPI methodFigure B-1a Frequency Distribution for All 19 Concrete Pile Cases in Clay by Using API Method Figure B-1b Resistance Factor Calibrations from All 19 Concrete Pile Cases in Clay by Using API Method

PAGE 235

213 RDavisson/R Tomlinson methodFigure B-2a Frequency Distribution for All 19 Concrete Pile Cases in Clay by Using Tomlinson Method Figure B-2b Resistance Factor Calibration by FORM from All 19 Concrete Pile Cases in Clay by Using Tomlinson Method

PAGE 236

214 RDavisson/RmethodFigure B-3a Frequency Distribution for All 19 Concrete Pile Cases in Clay by Using Method Figure B-3b Resistance Factor Calibration from All 19 Concrete Pile Cases in Clay by Using Method

PAGE 237

215 RDavisson/R API methodFigure B-4a Frequency Distribution for 12 Concrete Pile Cases in Clay in Louisiana by Using API method Figure B-4b Resistance Factor Calibration from 12 Concrete Pile Cases in Clay in Louisiana by Using API method

PAGE 238

216 Rdavisson/R Tomlinson methodFigure B-5a Frequency Distribution for 12 Concrete Pile Cases in Clay in Louisiana by Using Tomlinson Method Figure B-5b Resistance Factor Calibration from 12 Concrete Pile Cases in Clay in Louisiana by Using Tomlinson Method

PAGE 239

217 RDavisson/RmethodFigure B-6a Frequency Distribution for 12 Concrete Pile Cases in Clay in Louisiana by Using Method Figure B-6b Resistance Factor Calibration from 12 Concrete Pile Cases in Clay in Louisiana by Using Method

PAGE 240

218 RDavisson/RNordlundFigure B-7a Frequency Distribution for All 37 Concrete Pile Cases in Sand by Using Nordlund Method Figure B-7b Resistance Factor Calibration from all 37 Concrete Pile Cases in Sand by Using Nordlund Method

PAGE 241

219 RDavisson/RmethodFigure B-8a Frequency Distribution for All 37 Concrete Pile Cases in Sand by Using Method Figure B-8b Resistance Factor Calibration from all 37 Concrete Pile Cases in Sand by Using Method

PAGE 242

220 RDavisson/RMeyerhofFigure B-9a Frequency Distribution for All 37 Concrete Pile Cases in Sand by Using Meyerhof Figure B-9b Resistance Factor Calibration from All 37 Concrete Piles Cases in Sand by Using Meyerhof Method

PAGE 243

221 RDavisson/RSchmertmannFigure B-10a Frequency Distribution for All 37 Concrete Pile Cases in Sand by Using Schmertmann Method Figure B-10b Resistance Factor Calibration for All 37 Concrete Pile Cases Method in Sand by Using Schmertmann Method

PAGE 244

222 RDavisson/RNordlundFigure B-11a Frequency Distribution for 27 Concrete Pile Cases in Sand in Florida by Using Nordlund Method Figure B-11b Resistance Factor Calibration from 27 Concrete Pile Cases in Sand in Florida by Using Nordlund Method

PAGE 245

223 RDavisson/RmethodFigure B-12a Frequency Distribution for 27 Concrete pile Cases in Sand in Florida by Using Method Figure B-12b Resistance Factor Calibration from 27 Concrete Pile Cases in Sand in Florida by Using Method

PAGE 246

224 RDavisson/RMeyerhofFigure B-13a Frequency Distribution for 27 Concrete Pile Cases in Sand in Florida by Using Meyerhof Method Figure B-13b Resistance Factor Calibration from 27 Concrete Pile Cases in Sand in Florida by Using Meyerhof Method

PAGE 247

225 RDavisson/RSchmertmannFigure B-14a Frequency Distribution for 27 Concrete Pile Cases in Sand in Florida by Using Schmertmann Method Figure B-14b Resistance Factor Calibration from 27 Concrete Pile Cases in Sand in Florida by Using Schmertmann Method

PAGE 248

226 RDavisson/RTomlinson-Nordlund -ThurmanFigure B-15a Frequency Distribution for All 34 Concrete Pile Cases in Mixed Soil by Using Tomlinson-Nordlund Â…Thurman Method Figure B-15b Resistance Factor Calibration from All 34 Concrete Pile Cases in Mixed Soil by Using Tomlinson-Nordlund Â…Thurman Method

PAGE 249

227 RDavisson/RAPI-Nordlund -ThurmanFigure B-16a Frequency Distribution for all 85 Concrete Pile Cases in Mixed Soil by Using API-Nordlund Â…Thurman Method Figure B-16b Resistance Factor Calibration from All 85 Concrete Pile Cases in Mixed Soil by Using R API-Nordlund Â…Thurman Method

PAGE 250

228 Rdavisson/R -Thurman Figure B-17a Frequency Distribution for all 85 Concrete Pile Cases in Mixed Soil by Using -Thurman Method Figure B-17b Resistance Factor Calibration from All 85 Concrete Pile Cases in Mixed Soil by Using -Thurman Method

PAGE 251

229 RDavisson/R Schmertmann SPTFigure B-18a Frequency Distribution for All 74 Concrete Pile Cases in Mixed Soil by Using Schmertmann SPT Method Figure B-18b Resistance Factor Calibration from all 74 Concrete Pile Cases in Mixed Soil by Using Schmertmann SPT Method

PAGE 252

230 RDavisson/RSchmertmann CPTFigure B-19a Frequency Distribution for all 32 Concrete Pile Cases in Mixed Soil by Using Schmertmann CPT Method Figure B-19b Resistance Factor Calibration from all 32 Concrete Pile Cases in Mixed Soil by Using Schmertmann CPT Method

PAGE 253

231 RDavisson/RTomlinson-Nordlund -ThurmanFigure B-20a Frequency Distribution for 12 Concrete Pile Cases in Mixed Soil in Florida by Using Tomlinson-Nordlund Â…Thurman Method Figure B-20b Resistance Factor Calibration from 12 concrete pile cases in mixed soil in FL by Using Tomlinson-Nordlund Â…Thurman Method

PAGE 254

232 RDavisson/RAPI-Nordlund -ThurmanFigure B-21a Frequency Distribution for 42 Concrete Pile Cases in Mixed Soil in Florida by Using API-Nordlund -Thurman Figure B-21b Resistance Factor Calibration from 42 Concrete Pile Cases in Mixed Soil in Florida by Using API-Nordlund -Thurman

PAGE 255

233 RDavisson/R-ThurmanFigure B-22a Frequency Distribution for 42 Concrete Pile Cases in Mixed Soil in Florida by Using -Thurman Method Figure B-22b Resistance Factor Calibration by FORM for 42 Concrete Pile Cases in Mixed Soil in Florida by Using -Thurman Method

PAGE 256

234 RDavisson/RSchmertmann SPTFigure B-23a Frequency Distribution for 55 Concrete Pile Cases in Mixed Soil in Florida by Using Schmertmann SPT Method Figure B-23b Resistance Factor Calibration from 55 Concrete Pile Cases in Mixed Soil in Florida by Using Schmertmann SPT Method

PAGE 257

235 RDavisson/RTomlinson-Nordlund -ThurmanFigure B-24a Frequency Distribution for 16 Concrete Pile Cases in Mixed Soil in Louisiana by Using Tomlinson-Nordlund Â…Thurman Method Figure B-24b Resistance Factor Calibration from 16 Concrete Pile Cases in Mixed soil in Louisiana by Using Tomlinson-Nordlund -Thurman Method

PAGE 258

236 RDavisson/RAPI-Nordlund -ThurmanFigure B-25a Frequency Distribution for 31 Concrete Pile Cases in Mixed Soil in Louisiana by Using API-Nordlund Â…Thurman Method Figure B-25b Resistance Factor Calibration from 31 Concrete pile Cases in Mixed Soil in Louisiana by Using API-Nordlund Â…Thurman Method

PAGE 259

237 Rdavisson/R -Thurman Figure B-26a Frequency Distribution for 31 Concrete Pile Cases in Mixed Soil in Louisiana by Using -Thurman Method Figure B-26b Resistance Factor Calibration by FORM from 31 Concrete Pile Cases in mixed soil in Louisiana by Using -Thurman Method

PAGE 260

238 Rdavisson/R Schmertmann SPT Figure B-27a Frequency Distribution for 25 Concrete Pile Cases in Mixed Soil in Louisiana by Using Schmertmann SPT Method Figure B-27b Resistance Factor Calibration from 25 Concrete Pile Cases in Mixed Soil in Louisiana by Using Schmertmann SPT Method

PAGE 261

APPENDIX C Calibration Resistance Factor by Using FOSM for Driven Pile using CAPWAP Method

PAGE 262

239 Table C-1 Total CAPWAP (EOD+BOR) Data No. Pile-Case Number Location Pile Type Penetr Depth (m) Soil Type Davisson's Criteria (kN) Rdavission Rcapwap Side Tip 1 FN1-EOD Omaha NE HP1Ox42 21.95 silty clay till 1352 1.322 2 FNI-BOR1 Omaha NE HPIOx42 21.98 silty clay till 1352 0.811 3 FN1-BOR2 Omaha NE HPIOx42 22 .25 silty clay till 1352 0.705 4 FN2-EOD Omaha NE PSC12"sq 19.81 silty clay till 1592 1.584 5 FN2-BOR Omaha NE PSC12"sq 19.81 silty clay till 1592 1.173 6 FN3-EOD Omaha NE PSC14"sq 17.07 silty clay till 1681 2.112 7 FN3-BOR Omaha NE PSC14"sq 17.07 silty clay till 1681 1.273 8 FN4-EOD Omaha NE CEP12.75"20 .12 silty clay till 1263 1.164 9 FN4-BOR Omaha NE CEP12.75" 20.12 silty clay till 1263 0.986 10 FIA-EOD Iowa HP14x89 34.78 clayey sand sand 4128 2.529 11 FIA-BOR Iowa HP14x89 34.78 clayey sand sand 4128 1.269 12 FIB-EOD Iowa CEP 14" 28.68 clayey sand sand 2891 1.272 13 FIB-BOR Iowa CEP 14" 28.68 clayey sand sand 2891 1.247 14 FOl-EOD Oklahoma CEP 26" 18.35 s ilty sand silty sand 2660 1.206 15 FO1-BOR Oklahoma CEP 26" 18.35 s ilty sand silty sand 2660 0.854 16 FO2-EOD Oklahoma PSC24"oct19.2 s ilty sand silty sand 3381 1.434 17 FO2-BOR Oklahoma PSC24"oct19.23 s ilty sand silty sand 3381 1.040 18 FO3-EOD Oklahoma HP14x117 19.42 sa-si-clay clayey sand 3452 1.371 19 FO4-EOD Oklahoma RC24"sq 13.72 sa-si-clay clayey sand 7562 2.584 20 F04-BOR Oklahoma RC24"sq 17.01 sa-si-clay clayey sand 7562 2.216 21 FOR1-EOD Oregon PSC20"sq 38.25 sand & silt siltstone 6050 2.433 22 FORT-BOR Oregon PSC20"sq 38.28 sand & silt siltstone 6050 1.866 23 FM5-EOD Maine CEP 18" 30 .18 clay & sand sand 1957 1.272 24 FM5-BOR Maine CEP 18" 30.21 clay & sand sand 1957 0.882 25 FM17-EOD Maine CEP 18" 21.67 till till 1815 0.962 26 FM17-BOR Maine CEP 18" 21.73 till till 1815 0.776 27 FM23-EOD Maine CEP 18" 15.45 till till 1521 1.058 28 FM23-BOR Maine CEP 18" 15.48 till till 1521 1.006 29 FC1-EOD Colorado CEP12.75"10.21 sand sand 1406 1.171 30 FC1-BOR Colorado CEP12.75"10.33 sand sand 1406 1.193 31 FC2-EOD Colorado CEP12.75"8.08 sand sand 1637 0.981 32 FC2-BOR Colorado CEP12.75"8.2 sand sand 1637 1.083 33 FMI1-EOD Missouri CEP 14" 25.3 sand-gravel sand 1468 1.158 34 FMI1-BOR Missouri CEP 14" 25.33 sand-gravel sand 1468 1.035 35 FMI2-EOD Missouri CEP 14" 18.59 sand-gravel sand 930 1.137 36 FMI2-BOR Missouri CEP 14" 18.59 sand-gravel sand 930 0.964 37 FWA-EOD Washingtn CEP 48" 7.56 till-gravel till 5783 4.408 38 FWA-BOR Washingtn CEP 48" 7.59 till-gravel till 5783 1.994 39 FWB-EOD Washingtn CEP 48" 33.22 till-gravel till 4448 40 FWB-BOR Washingtn CEP 48" 33.31 till-gravel till 4448 41 FA1-EOD Alabama PSC 18"sq 19.51 s ilty sand silty sand 1646 1.805 42 FA1-BOR1 Alabama PSC 18"sq 19.66 silty sand silty sand 1646 1.440 43 FAI-BOR2 Alabama PSC 18"sq 19.75 silty sand silty sand 1646 0.969

PAGE 263

240 Table C-1 (cont.) 44 FA2-EOD Alabama PSC 18"sq 22.86 s ilty sand silty sand 2447 1.285 45 FA2-BORI Alabama PSC 18"sq 22.95 silty sand silty sand 2447 1.125 46 FA2-BOR2 Alabama PSC 18"sq 23.01 silty sand silty sand 2447 0.919 47 FA3-EOD Alabama PSC 24"sq 19.51 s ilty sand silty sand 2780 1.839 48 FA3-BORI Alabama PSC 24"sq 19.54 silty sand silty sand 2780 2.035 49 FA3-BOR2 Alabama PSC 24"sq 19.66 silty sand silty sand 2780 1.065 50 FA4-EOD Alabama PSC 24"sq 22.86 s ilty sand silty sand 3634 1.832 51 FA4-BOR1 Alabama PSC 24"sq 22.89 silty sand silty sand 3634 1.352 52 FA4-BOR2 Alabama PSC 24"sq 22.92 silty sand silty sand 3634 0.959 53 FA5-EOD Alabama PSC 36"sq 22.25 s ilty sand silty sand 5071 1.722 54 FA5-BOR Alabama PSC 36"sq 22.28 silty sand silty sand 5071 1.206 55 FV15-EOD Vermont HP14x73 22.86 silt-d.sand sand gravel 1401 1.623 56 FV15-BOR Vermont HP14x73 23.1 s ilt-d.sand sand gravel 1401 1.590 57 FV10-EOD Vermont HP14x73 27.43 silt-d.sand sand gravel 1535 2.171 58 FV10-BOR Vermont HP14x73 27.55 s ilt-d.sand sand gravel 1535 1.928 59 FMN2-EOD Minnesota HP14x73 29.26 sa-si-clay fat clay 3403 2.237 60 FMN2-BOR Minnesota HP14x73 29.29 sa-si-clay fat clay 3403 1.173 61 FP5-EOD Penn. Monotube 7.19 sandy grvl sandy grvl 1081 1.157 62 FP5-BOR Penn. Monotube 7.25 sandy grvl sandy grvl 1081 1.017 63 FKG-EOD Kentucky PSC14"sq 10.58 soft clay dense 1628 1.271 64 FKG-BOR Kentucky PSC14"sq 10.58 soft clay dense 1628 1.241 65 FL3-EOD Louisiana PSC24"sq 25.69 silty clay silty sand 1779 2.940 66 FL3-BORI Louisiana PSC24"sq 25.69 silty clay silty sand 1779 1.470 67 FL3-BOR2 Louisiana PSC24"sq 25.69 silty clay silty sand 1779 1.143 68 CAI-EOD O.S. Ont CEP 9.6" 47 .03 si-sa-clay si-sa-till 2402 1.317 69 CA1-BOR O.S. Ont CEP 9.6" 47 .03 si-sa-clay si-sa-till 2402 1.080 70 CA2-BOR O.S. Ont CEP 9.6" 33 .56 si-sa-clay si-sa-clay 1628 1.070 71 CA5-BORI N.Y. Ont CEP11.73" 19.26 fill-sand sand 2082 1.145 72 CA5-BOR2 N.Y. Ont CEP11. 73"19.99 fill-sand sand 2082 0.957 73 CA3/8-BOR Bar. Ont CEP10.24" 19.63 sand-silt silt 841 0.785 74 CA24-BOR Tor. Ont CEP12.75"11.77 sand sand 1076 1.168 75 CA6-BOR1 Ham. Ont CEP12.75"16.46 sa-si-till silt-till 2936 1.082 76 CA6-BOR2 Ham. Ont CEP12.75"16.46 sa-si-till silt-till 2936 1.130 77 CA6-EOR Ham. Ont CEP12.75" 16.46 sa-si-till silt-till 2936 1.183 78 WC3-EOD Florida PSC24"sq 8.32 Is.-d.sand dense 2713 1.198 79 WC3-BORI Florida PSC24"sq 8.38 Is.-d.sand dense 2713 1.205 80 WC3-BOR2 Florida PSC24"sq 8.38 Is: d.sand dense 2713 1.138 81 WC6-EOD Florida PSC24"sq 8.63 Is.-dsand dense 2015 1.006 82 WC6-BOR1 Florida PSC24"sq 8.69 ls.-d.sand dense 2015 0.944 83 WC6-BOR2 Florida PSC24"sq 8.38 Is.-d.sand dense 2015 1.022 84 WB9-BOR Florida PSC30"sq 39 .17 clayey sand clayey 4003 0.956 85 WB15-BOR Florida PSC30"sq 31.58 sand silt-clay 3648 1.019 86 T1/A-EOD Israel OEP 60 16.09 clcr sand sand 8825 1.118 87 T1/A-ALT Israel OEP 60" 16.4 cler sand sand 8825 1.102 88 T1B-EOD Israel OEP 60" 31 clcr sand sand 12749 1.211 89 T2/A-EOD Israel OEP 48" 16 cler sand sand 5983 1.074 90 T2/B-EOD Israel OEP 48" 55.5 clcr sand sand 14612 1.182 91 35-1-BOR Toronto HP 12x74 14.78 cl-sa-silt silty sand 1432 1.238

PAGE 264

241 Table C-1 (cont.) 92 35-4-BOR Toronto CEP12.75"14.69 cl-sa-silt silty sand 1468 0.917 93 35-5-BOR Toronto HP 12x74 27.58 cl-sa-silt silty sand 2722 0.942 94 35-6-BOR Toronto CEP12.75"27.43 cl-sa-silt silty sand 2669 1.034 95 35-7-BOR Toronto T.Timber 12.68 cl-sa-silt silty sand 543 0.879 96 35-10-BOR Toronto PSC 12"sq 14 .63 cl-sa-silt silty sand 1788 1.203 97 E2-BOR Raleigh PSC 12"sq 13.56 cl-sa-silt cl-sa-silt 1846 0.988 98 63S-BOR Penn. HP12x53 20 .12 sand-silt silt 1263 1.018 99 LB21-BOR NA PSC 20"sq 10.97 silt-sand silt-sand 1690 1.052 100 LB20-BOR NA PSC 20"sq 16.76 sand sand 2580 1.224 101 LC3-BOR NA PSC 20"sq 26.21 cl-sa-silt cl-sa-silt 2758 1.013 102 LIN16-BOR NA PSC 20"sq 28 .65 cl-sa-silt cl-sa-silt 2669 1.031 103 LE37-BOR NA PSC 10"sq 15.24 cl-sa-silt limestone 1112 1.269 104 LE64-BOR NA PSC 10"sq 17.68 cl-sa-silt sa-cl-silt 1201 1.164 105 ST1-EOD Florida PSC 18"sq 13.41 carb sand 1530 0.681 106 ST2-EOD Florida PSC 18"sq 12.19 carb sand 2269 0.828 107 ST9-BOR Virginia PSC 54"sq 33.22 silt-clay 4092 1.140 108 ST46-EOD New York CEP 10" 11.58 silt-sand silt-sand 109 GZA3-EOD Prov. RI CEP13.38"38.25 silt-sand gr-sa-silt 1957 1.205 110 GZA5-EOD Prov. RI CEP 9.75" 28 .59 silt-sand till-shale 1139 0.874 111 GZA6-EOD Prov. RI CEP 9.75" 47.55 silt-sand gr-sa-silt 836 0.684 112 GZBBC-EOD Prov. RI CEP 10" 30.33 silt-sand silt 1957 1.065 113 GZBP2-EOD Prov. RI CEP13.38"32. 31 silt-sand gr-sa-silt 1246 0.884 114 GZB6-EOD Prov. RI CEP13.38"28 .13 silt-sand si-sa-till 1690 1.114 115 GZZ5-EOD Boston MA CEP 14" 26.52 till-clay till 2064 2.168 116 GZO5-EOD Boston MA CEP 14" 16.46 till-clay till 2135 2.341 117 GZCC5-EOD Boston MA CEP 14" 24.38 till-clay till 2002 0.915 118 GZL2-EOD Boston MA CEP 14" 25.3 till-clay till 2847 2.396 119 GZP14-EOD Boston MA CEP 14" 18.44 till-clay till 1735 1.279 120 GZP11-EOD Boston MA CEP 14" 17.22 till-clay till 1112 1.046 121 GZP12-EOD Boston MA CEP 14" 21.03 till-clay till 2224 0.962 122 GZB22-EOD Colt Neck OEP 36" 35.97 sand-clay silt-clay 4982 1.010 123 GZW 1-EOR Vermont CP12.75" 30.33 silty sand sand 1601 1.440 124 A54-EOD Australia RC10.8"sq 20.6 silty clay clay 2900 1.702 125 A54-BOR Australia RC10.8"sq20 .6 silty clay clay 2900 1.067 126 A147-EOD Australia RCI0.8"sq 20.6 silty clay clay 2482 2.155 127 A147-BOR Australia RC10.8"sq 20.6 silty clay clay 2482 0.989 128 GF19-EOD Pgh. PA HP1Ox42 15.09 grvl-snd-slt shale 1468 0.829 129 GF110-EOD Pgh. PA HP12x74 15.15 grvl-snd-slt shale 2224 1.094 130 GF222-EOD Pgh. PA HP12x74 18.62 grvl-snd-slt shale 2580 1.133 131 GF224-EOD Pgh. PA Monotube 9.02 grvl-snd-slt grvl-snd-slt 132 GF312-EOD Pgh. PA HP12x74 8.6 snd-grvl-shl shale 1512 0.839 133 GF313-EOD Pgh. PA HP10x57 9.6 snd-grvl-shl claystone 1486 0.749 134 GF412-EOD Pgh. PA HP12x74 10.24 grvl-snd-slt claystone 1068 0.528 135 GF413-EOD Pgh. PA HP10x57 10.55 grvl-snd-slt claystone 1334 0.701 136 GF414-EOD Pgh. PA HPIOx57 10.58 grvl-snd-slt claystone 1601 0.687 137 GF415-EOD Pgh. PA HP12x74 10.39 grvl-snd-slt claystone 2046 0.820 138 EF62-EOD Canada CP 9.625" 18.99 si-sa-clay till 2233 0.962 139 EF167-BOR Canada CP 9.625" 21 si-sa-clay till 1205 0.565

PAGE 265

242 Table C-1 (cont.) 140 A3-EOD2 Florida VC 24"sq 27.52 clayey sand sand 4261 2.603 141 A3-BOR2 Florida VC 24"sq 27.55 clayey sand sand 4261 2.073 142 A3-BOR3 Florida VC 24"sq 27.61 clayey sand clayey sand 4261 1.035 143 A14-DD1 Florida VC 24"sq 13.72 sandy clay sand 144 A14-DD2 Florida VC 24"sq 14.33 sandy clay sand 145 A14-BOR1 Florida VC 24"sq 17.83 clayey sand sand 146 A14-BOR2 Florida VC 24"sq 17.92 clayey sand sand 147 A25-EOD Florida VC 24"sq 16.79 clayey sand sand 3180 1.557 148 A25-BOR1 Florida VC 24"sq 16.82 clayey sand sand 3180 1.288 149 A25-BOR2 Florida VC 24"sq 16.89 clayey sand sand 3180 1.581 150 A25-BOR3 Florida VC 24"sq 16.92 clayey sand sand 3180 1.617 151 AI6-EOD Florida PSC18"sq 18.47 sandy clay sand 1401 1.407 152 A16-BOR1 Florida PSC18"sq 18.47 sandy clay sand 1401 1.117 153 A16-BOR2 Florida PSC18"sq 18.59 sandy clay sand 1401 1.064 154 A41-EOD Florida VC 24"sq 15.85 clay sand 2331 1.216 155 A41-BOR1 Florida VC 24"sq 15.85 clay sand 2331 1.042 156 A41-BOR2 Florida VC 24"sq 16.09 clay sand 2331 0.928 157 A101-EOD Florida VC 24"sq 18.84 clay clayey sand 3612 1.570 158 A101-BORI Florida VC 24"sq 18.84 clay clayey sand 3612 1.214 159 A101-BOR2 Florida VC 24"sq 18.93 clay clayey sand 3612 1.011 160 A133-EOD Florida VC 24"sq 31.67 clayey sand sandy clay 3594 2.599 161 A133-BOR Florida VC 24"sq 31.97 clayey sand sandy clay 3594 1.036 162 A145-EOD Florida VC 24"sq 31.36 clayey sand sand 4341 2.765 163 A145-BOR1 Florida VC 24"sq 31.36 clayey sand sand 4341 1.523 164 A145-BOR2 Florida VC 24"sq 31.39 clayey sand sand 4341 1.282 165 CB3-BOR Florida PSC24"sq 23.47 clayey sand sand 2224 0.886 166 CB3-BORL Florida PSC24"sq 23.71 clayey sand sand 2224 0.996 167 CB5-BOR Florida VC 30"sq 16.18 clayey sand sand 5560 2.200 168 CB5-BORL Florida VC 30"sq 16.46 clayey sand sandy clay 5560 2.140 169 CBI 1-BORL Florida VC 30"sq 26 .12 clayey sand clayey sand 6383 1.763 170 CB11-EORL Florida VC 30"sq 26.15 clayey sand clayey sand 6383 2.246 171 CB17-BOR1 Florida VC 30"sq 23.68 clayey sand clayey sand 6739 1.847 172 CB17-BOR2 Florida VC 30"sq 23.71 clayey sand clayey sand 6739 2.023 173 CB17-BORL Florida VC 30"sq 23.74 clayey sand clayey sand 6739 2.218 174 CB17-DRL Florida VC 30"sq 23.84 clayey sand clayey sand 6739 1.793 175 CB23-BOR Florida VC 30"sq 24.48 clayey sand sand 2860 1.039 176 CB23-BORE Florida VC30"sq 25.21 clayey sand sand 2860 1.448 177 CB29-BORL Florida VC 30"sq 25.76 clayey sand clayey sand 4079 1.182 178 CB29-EORL Florida VC 30"sq 25.76 clayey sand clayey sand 4079 2.043 179 CB35-BOR1 Florida VC 30"sq 23.93 clayey sand clayey sand 6508 1.802 180 CB35-BOR2 Florida VC 30"sq 24.05 clayey sand clayey sand 6508 1.542 181 CB35-BORL Florida VC 30"sq 24.11 clayey sand clayey sand 6508 1.610 182 CB41-EOR Florida VC 30"sq 19.72 sandy clay sandy clay 6272 1.645 183 CB41-BOR Florida VC 30"sq 19.72 sandy clay sandy clay 6272 1.659 184 CB41-BORL Florida VC 30"sq 19.93 sandy clay sandy clay 6272 2.908 185 CB26-EOD Florida PSC24"sq 19.05 clayey sand sand 4270 1.967 186 CB26-BOR Florida PSC24"sq 19.08 clayey sand sand 4270 1.551 187 CB26-EOR Florida PSC24"sq 19.75 clayey sand sandy clay 4270 1.341

PAGE 266

243 Table C-1 (cont.) 188 CB26-BOR2 Florida PSC24"sq 19.81 sandy clay sandy clay 4270 1.705 189 33P1-EOD Ontario HP 12x74 34.87 cl-sa-silt silty sand 3559 1.822 190 33P1-BOR Ontario HP 12x74 34.87 cl-sa-silt silty sand 3559 1.119 191 33P1-EOR Ontario HP 12x74 34 .87 cl-sa-silt silty sand 3559 1.231 192 33P2-EOD Ontario CP 12.75" 32 .67 cl-sa-silt silty sand 2180 1.690 193 33P2-BOR Ontario CP 12.75" 32 .67 cl-sa-silt silty sand 2180 1.381 194 33P2-EOR Ontario CP 12.75" 32 .67 cl-sa-silt silty sand 2180 1.222 195 33P4-EOD Ontario PSC 12"sq 16.52 cl-sa-silt cl-silt-till 2073 1.165 196 33P5-EOD Ontario #14 Timber8.6 6 cl-sa-silt cl-silt-till 730 1.148 197 TRD22-EOD Ontario HP 12x74 6.13 sand till 1575 0.819 198 TRD22-BOR Ontario HP 12x74 6.13 sand till 1575 1.204 199 TRE22-EOD Ontario HP 12x74 7.83 sand rock 2473 0.967 200 TRE22-BOR Ontario HP 12x74 7.83 sand rock 2473 0.903 201 TRP5X-EOD Ontario HP 12x53 7.68 sand rock 1824 0.847 202 TRP5X-BOR Ontario HP 12x53 7.68 sand rock 1824 1.038 203 TR131-BOR Ontario CP 7.063" NA sand rock 623 0.844 204 TRAH-EOR Brunswick HP 12x89 38.4 clayey silt sandy gravel 3247 3.347 205 TRBH-BOR Brunswick HP 12x89 31.12 clayey silt sandy gravel 1446 3.249 206 TRBP-EOR Brunswick CP 12.75" 31.7 clayey silt sandy gravel 1512 1.371 207 CHAT-EOD Wisconsin CEP 12.75"37 .49 sa-si clay silty sand 2909 1.677 208 CHAT-BOR1 Wisconsin CEP 12.75"37 .52 sa-si clay silty sand 2909 1.407 209 CHA1-BOR2 Wisconsin CEP 12.75"37.52 sa-si clay silty sand 2909 1.263 210 CHA4-EOD Wisconsin CE P 12.75"35.66 sa-si clay silty sand 2251 1.868 211 CHB2-EOD Wisconsin HP12x63 47.34 sa-si clay silty sand 1343 2.746 212 CHB2-BOR1 Wisconsin HP12x63 47.34 sa-si clay silty sand 1343 1.118 213 CHB2-BOR3 Wisconsin HP12x63 47.4 sa-si clay silty sand 1343 0.888 214 CHB2-BOR4 Wisconsin HP12x63 47.43 sa-si clay silty sand 1343 0.671 215 CHB2BOR5a Wisconsin HP12x63 47.46 sa-si clay silty sand 1343 0.586 216 CHB2BOR5b Wisconsin HP12x63 47.46 sa-si clay silty sand 1343 0.632 217 CHB3-EOD Wisconsin HP12x63 43.31 sa-si clay silty sand 890 1.906 218 CHB3-BOR1 Wisconsin HP12x63 43.31 sa-si clay silty sand 890 0.852 219 CHB3-BOR2 Wisconsin HP12x63 43.43 sa-si clay silty sand 890 0.909 220 CHB3-BOR3 Wisconsin HP12x63 43.53 sa-si clay silty sand 890 0.597 221 CHC3-EOD Wisconsin CEP14" 47.3 sa-si clay silty sand 836 1.710 222 CHC3-BOR Wisconsin CEP14" 47.3 sa-si clay silty sand 836 223 CHC3-BORL Wisconsin CEP14" 47.34 sa-si clay silty sand 836 0.482 224 CH4-EOD Wisconsin CEP9.63" 43.43 silty clay 1601 2.400 225 CH4-BOR Wisconsi n CEP9.63" 43.43 silty clay 1601 1.059 226 CH39-EOD Wisconsin CEP9.63" 43.28 silty clay silty clay 2936 3.529 227 CH39-BOR Wisconsin CEP9.63 43 .28 silty clay silty clay 2936 1.435 228 CH39-BORL Wisconsi n CEP9.63" 43.37 silty clay silty clay 2936 1.148 229 CH6-5BEOD Wisconsin CEP9.63" 43.89 silty clay silty sand 1673 230 CH6-5BBOR Wisconsin CEP9.63" 43.89 silty clay silty sand 1673 0.940 231 CH95B-EOD Wisconsin CEP9 .63" 42.37 silty clay sand & grvl 2473 2.516

PAGE 267

244 Table C-1 (cont.) 232 CH95B-BOR Wisconsin CEP9 .63" 42.37 silty clay sand & grvl 2473 1.049 233 CH256BOR3 Wisconsin CEP9.63" 42.67 si-sa clay si-sa & grvl 2651 1.192 234 CH351BOR2 Wisconsin CEP9.63" 47.55 si-sa clay si-sa & grvl 2669 1.132 235 PO2-BOR1 Florida PSC18"sq 5.73 sand dense sand 1219 0.902 236 PO2-BOR2 Florida PSC18"sq 6.07 sand dense sand 1219 1.038 237 PO2-BORL Florida PSC18"sq 6.28 sand dense sand 1219 0.975 238 PO19-BOR Florida PSC18"sq 4.63 sand dense sand 1023 0.767 239 PO19-EOD Florida PSC18"sq 5.24 sand dense sand 1023 0.939 240 PO19-EORL Florida PSC18"sq 5.36 sand dense sand 1023 0.979 241 ER5-BOR1 Florida PSC24"sq 25.97 sand sand 3803 1.299 242 ER5-BOR2 Florida PSC24"sq 26.03 sand sand 3803 0.922 243 ER5-BORL Florida PSC24"sq 26.15 sand sand 3803 1.457 244 ER77-BOR Florida PSC24"sq 18.56 clayey sand cl-si-sand 7433 2.210 245 ER77-BORL Florida PSC24"sq 18.68 clayey sand cl-si-sand 7433 1.658 246 BB13-EOD Florida VC 30"sq 28.29 clayey sand sand 4475 1.437 247 BB13-BOR1a Florida VC 30"sq 28.32 clayey sand sand 4475 1.094 248 BB13-BORIb Florida VC 30"sq 28.32 clayey sand sand 4475 1.130 249 BB 13BOR2a Florida VC 30"sq 28.71 clayey sand sand 4475 0.940 250 BB13-BOR2b Florida VC 30"sq 28.71 clayey sand sand 4475 0.958 251 BB I3-BORL Florida VC 30"sq 28.8 clayey sand sand 4475 1.117 252 BB19-BORa Florida VC 30"sq 27.13 sand sand 5169 1.244 253 BB19-BORb Florida VC 30"sq 27.13 sand sand 5169 1.108 254 BB19-BORL Florida VC 30"sq 27.19 sand sand 5169 0.794 255 BB24-EOD Florida VC 30"sq 24.44 sand clay 4955 0.857 256 BB24-BOR1a Florida VC 30"sq 24.48 sand clay 4955 0.659 257 BB24-BORIb Florida VC 30"sq 24.48 sand clay 4955 0.654 258 BB24-BOR2a Florida VC 30"sq 24.63 sand clay 4955 0.588 259 I31324BOR2b Florida VC 30"sq 24.63 sand clay 4955 0.629 260 BB24-BORL Florida VC 30"sq 24.69 sand clay 4955 0.794 261 BB29-BOR Florida VC 30"sq 23.90 sand sand 5053 0.926 262 BB29-BORL Florida VC 30"sq 23.96 sand sand 5053 0.988 263 ABF6-BOR Florida PSC 24" sq17.54 si/clayey sand clayey sand 3345 1.995 264 ABF6-BORL Florida PSC 24" sq17.84 si/clayey sand clayey sand 3345 0.963 265 ABG13BORL Florida PSC 24" sq14.08 clayey sand limestone 4742 0.983 266 ABH2-BOR Florida PSC 24" sq10.9 silt/silty clay limestone 2518 0.701 267 ABH2-BORL Florida PSC 24" sq10.96 silt/silty clay limestone 2518 0.615 268 BC79-EOD S.Carolina PSC 24" oct23.47 si-cl-sand calcar sand 2277 269 BC79-BORL S.Ca rolina PSC 24" oct23.5 si-clsand calcar sand 2277 0.931 270 BC64-EOD S.Carolina PSC 24" oct18.59 si-cl-sand calcar sand 5071 271 BC64-BORL S.Ca rolina PSC 24" oct18.62 si-clsand calcar sand 5071 1.013 272 DI-BORI Holland PSC 9.7"sq1 0.91 clay-sand sand 302 0.714

PAGE 268

245 Table C-1 (cont.) 273 D2-BOR1 Holland PSC 9.7"sq1 4.3 clay-sand clay 556 0.850 274 D3-BORa Holland PSC 9.7"sq1 8.29 clay-sand sand 1005 1.229 275 D3-BORb Holland PSC 9.7"sq1 8.29 clay-sand sand 1005 1.448 276 D5-BORa Holland PSC 9.7"sq1 8.29 clay-sand sand 1050 0.787 277 D5-BORb Holland PSC 9.7"sq1 8.29 clay-sand sand 1050 0.797 278 MB1-EOD S. Carolina PSC 16"sq 18.9 sand silty sand 3590 4.749 279 MB1-BOR S. Carolin a PSC 16"sq 19.2 sand silty sand 3590 1.543 280 MB2-BOR S. Carolin a HP14x89 20.12 silty sand calcar. silt 3990 1.689 281 MB3-BOR S. Carolina OEP 16" 20.12 silty sand calcar. silt 4146 1.632 282 S1-EOD S. Carolina OEP 24" 24.84 clayey sand sandy silt 2651 1.296 283 SI-BOR S. Carolina OEP 24" 24 .84 clayey sand sandy silt 2651 0.987 284 S2-EOD S. Carolina HP14x73 23.77 clayey sand sandy silt 1415 1.480 285 S2-BOR S. Carolina HP14x73 23 .77 clayey sand sandy silt 1415 1.036 286 DD22-EOD Florida PSC 14"sq 27.43 clay sand 3745 3.302 287 DD22-BOR Florida PSC 14"sq 27.74 clay sand 3745 1.622 288 DD23-EOD Florida CEP 12.7524.99 clay sand 2206 3.239 289 DD23-BOR Florida CEP 12.7525.09 clay sand 2206 1.791 290 JR17-EOD Richmond, VA PSC 24" sq10.76 cl-si-sand silty sand 5422 1.947 291 LB3-EOD Kenner, LA PSC 24" sq24.84 clay Sand 1842 6.848 292 LB3-BOR1 Kenner, LA PSC 24" sq24.99 clay Sand 1842 2.020 293 LB3-BOR2 Kenner, LA PSC 24" sq24.99 clay Sand 1842 1.201 294 LB3-BOR3 Kenner, LA PSC 24" sq24.99 clay Sand 1842 1.098 295 LB4-EOD Kenner, LA PSC 30" sq24.99 clay Sand 2273 11.252 296 LB4-BOR1 Kenner, LA PSC 30" sq25.21 clay Sand 2273 2.563 297 LB4-BOR2 Kenner, LA PSC 30" sq25.27 clay Sand 2273 1.750 298 LB4-BOR3 Kenner, LA PSC 30 sq25.3 clay Sand 2273 1.494 299 LB4-BOR4 Kenner, LA PSC 30 sq25.3 clay Sand 2273 1.418 300 LB5-EOD Kenner, LA PS C 30" sq24.99 clay Sand 301 LB5-BOR1 Kenner, LA PSC 30" sq24.99 clay Sand 302 LB5-BOR2 Kenner, LA PSC 30" sq24.99 clay Sand 303 LB5-BOR3 Kenner, LA PSC 30" sq25.3 clay Sand 304 LB5-BOR4 Kenner, LA PSC 30" sq25.3 clay Sand 305 LB6-EOD Kenner, LA PSC 36" cyl24.69 clay Sand 2411 5.968 306 LB6-BOR1 Kenner, LA PSC 36" cyl24.69 clay Sand 2411 2.730 307 LB6-BOR2 Kenner, LA PSC 36" cyl24.69 clay Sand 2411 1.824 308 LB6-BOR3 Kenner, LA PSC 36" cyl24.99 clay Sand 2411 1.364 309 LB6-BOR4 Kenner, LA PSC 36" cyl24.99 clay Sand 2411 1.048 310 LB7-EOD Kenner, LA PSC 36" cyl24.6 clay Sand 2402 5.256 311 LB7-BOR1 Kenner, LA PSC 36" cyl24.69 clay Sand 2402 2.745 312 LB7-BOR2 Kenner, LA PSC 36" cyl24.69 clay Sand 2402 1.878 313 LB7-BOR3 Kenner, LA PSC 36" cyl24.69 clay Sand 2402 1.270 314 LB7-BOR4 Kenner, LA PSC 36" cyl24.69 clay Sand 2402 1.063 315 DI221-EOD Massachusetts PSC 14 sq19.2 sa-si-clay fine sand & silt 1477 316 DI221-2DR Massachusetts PSC 14 sq19.2 sa-si-clay fine sand & silt 1477 1.182 317 TW488-EOD Massachusetts PSC 14" sq 23.16 stiff clay stiff clay 1423 3.899

PAGE 269

246 Table C-1 (cont.) 318 TW488-3DR Massachusetts PSC 14" sq 23.16 stiff clay stiff clay 1423 1.524 319 NBTP2-EOD Massachusetts HP12X74 34.14 si-sa-clay glacial till 1806 1.336 320 NBTP2-1DR Massachusetts HP12X74 34.14 si-sa-clay glacial till 1806 1.128 321 NBTP2-6DR Massachusetts HP12X74 34.14 si-sa-clay glacial till 1806 1.071 322 NBTP3-EOD Massachusetts HP12X74 33.07 si-sa-clay silty 2126 1.517 323 NBTP3-1DR Massachusetts HP12X7 4 33.07 si-sa-clay silty 2126 1.328 324 NBTP3-6DR Massachusetts HP12X7 4 33.07 si-sa-clay silty 2126 1.241 325 NBTP5-EOD Massachusetts CEP12.75" 33.83 si-sa-clay glacial till 1632 1.147 326 NBTP5-3DR Massachusetts CEP12.75" 33.83 si-sa-clay glacial till 1632 0.798 327 PR1-BOR1 Virginia PSC 24" sq31 .88 sand & silt silty sand 328 DD29-EOD Florida CEP 12.75"49.68 clayey sand clayey sand 329 ND50-BOR1 Ohio CEP 12" 6.71 silty clay si-clayey sand 676 0.849 330 NZ12-BOR1 Mississippi HP14X73 11.89 silt silt 2224 0.954 331 DWI-BOR1 S. Carolina PSC 24" sq27.46 silty clay silty clay 4742 1.050 332 DW 1-BOR2 S. Carolina PSC 24" sq 27.52 silty clay silty clay 4742 0.916 333 DW2-BORI S. Carolina HP14X73 27. 46 si-sa-clay silty clay 2753 0.984 334 DW2-BOR2 S. Carolina HP14X73 27. 52 si-sa-clay silty clay 2753 0.910 335 DS1-BORI S. Carolina PSC 12" sq 26.82 cl-si-sand calcar sand 1601 1.319 336 DS1-BOR2 S. Carolina PSC 12" sq 26.85 cl-si-sand calcar sand 1601 1.043 337 PX2-BOR1 Arizona HP14X1 1714.02 clay & sand sa-grcobble 338 PX3-EOD Arizona HP14XI 1715.24 clay & sand sa-grcobble 339 PX3-BOR1 Arizona HP14X1 1715.24 clay & sand sa-grcobble 340 PX4-EOD Arizona CEP 14" 6.83 clay & sand clayey sand 3207 1.419 341 PX4-BOR1 Arizona CEP 14" 6.83 clay & sand clayey sand 3207 1.145 342 PX5-BORI Arizona CEP 14" 7.53 clay & sand clayey sand 2971 1.081 343 PX6-BOR1 Arizona PSC 16" sq7.01 clay & sand clayey sand 4235 1.760 344 PX7-EOD Arizona PSC 16" sq6. 1 clay & sand clay 4475 1.902 345 PX7-BOR1 Arizona PSC 16" sq 6.1 clay & sand clay 4475 1.623 346 CHI1-42BOR1 Wisconsin CEP 12.75"28.99 sacl-silt silty clay 1948 0.829 347 SSTPD-BOR Sweden PSC 9.25" sq 12.8 silty sand silty sand 285 0.733 348 TSWID62/1EOD Hong Kong PSC 19.69" cyl 22.7 sa-cl-silt sandy silt 4359 1.298 349 TSW/D62/1BOR Hong Kong PSC 19.69" cyl 22.7 sa-cl-silt sandy silt 4359 0.917 350 TSW/HHK9/ 1-EOD Hong Kong PSC 19.69" cyl 23.6 sa-cl-silt sandy silt 4604 1.208 351 TSW/HHK9/ 1-BOR Hong Kong PSC 19.69" cyl 23.6 sa-cl-silt sandy silt 4604 0.949 352 TSW/D62/2EOD Hong Kong HP12X120?29.7 sa-cl-silt sandy silt 4737 0.976

PAGE 270

247 Table C-1 (cont.) 353 TSW/D62/2BOR Hong Kong HP12X120?29.7 sa-cl-silt sandy silt 4737 1.020 354 TSW/ IHK9/2-EOD Hong Kong HP12X120?31.5 sa-cl-silt sandy silt 4804 1.141 355 TSW/HHK9/ 2-BOR Hong Kong HP12X120?31.5 sa-cl-silt sandy silt 4804 1.104 356 OD1J-EOD Oakland, CA OEP 24" 8.47 silty sand silty clayey sand 7722 2.209 357 OD2P-EOD Oakland, CA OEP 24" 12.19 silty sand silty sandy clay 3047 1.957 358 OD2P-BOR Oakland, CA OEP 24" 12.19 silty sand silty sandy clay 3047 1.370 359 OD2T-EOD Oakland, CA CEP 24" 10.67 silty sand silty sand & clay 3616 0.995 360 OD3H-EOD Oakland, CA OEP 42" 30.63 stiff clay clay w/ sasi-gr 4639 3.219 361 OD4L-EOD Oakland, CA CEP 24 19.51 sandy clay silty sandy clay 4399 1.962 362 OD4P-EOD Oakland, CA CEP 24" 17.07 silty clay silty sandy clay 3087 2.543 363 OD4P-BOR Oakland, CA CEP 24" 17.07 silty clay silty sandy clay 3087 1.257 364 OD4T-EOD Oakland, CA CEP 24 18.29 sandy clay silty sandy clay 3229 2.412 365 OD4T-BOR Oakland, CA CEP 24" 18.29 sandy clay silty sandy clay 3229 1.117 366 OD4W-EOD Oakland, CA CEP 24" 18.29 sandy clay silty sandy clay 3937 2.229 367 OD4WBOR2 Oakland, CA CEP 24" 18.29 sandy clay silty sandy clay 3937 1.534 368 OD4WBOR3 Oakland, CA CEP 24" 18.38 sandy clay silty sandy clay 3937 1.157 369 QC3-EOD New York PSC 54" cyl23.01 sand dense sand 6361 3.530 370 QC3-14DR New York PSC 54" cyl23.01 sand dense sand 6361 1.222 371 QC14-EOD New York PSC 14" cyl22.86 sand dense sand 1392 1.122 372 QC 14-30DR New York PSC 14" cyl22.86 sand dense sand 1392 1.163 373 NYSP-EOD New York HP1 OX4233.5 silty sand silty sand w/gr 1388 2.365 374 NYSP-BOR New York HP 10X42 33.5 silty sand silty sand w/gr 1388 1.399 375 UFSSIA BOR Florida PSC 24" sq15 cl-si-sand silty clay 3496 0.644 376 UFSSIB BOR Florida PSC 20" sq14.42 cl-si-sand silty clay 2611 0.735 377 UFSS I O BOR Florida PSC 24" sq8.5 sa-si-clay silty clay 5107 0.820 378 UFSS13B BOR Florida PSC 24" sq8.2 sa-si-clay silty clay 2771 0.656 379 BIT20 BOR Florida PSC 20" sq14.08 silty sand sand 2593 1.230 381 HFLS3 EOD Florida PSC 30" sq12.07 sa-s i-clay sandy clay 7073 1.222 382 HFLS4L Florida PSC 30" sq22.4 cl-si-limestone-limerock 3354 1.070

PAGE 271

248EOD sand 383 HFLS4L BOR Florida PSC 30" sq22.4 cl-si-limestonesand limerock 3354 0.824 384 RBA30 BOR Florida PSC 30" sq16.28 silty sand silty sand 4039 1.094 385 RBB30W BOR Florida PSC 30" sq13.35 silty sand silty sand 3461 1.073 386 CC6 BOR Florida PSC 18" sq 16.18 silty sand sand 1388 0.975 387 CC7 BOR Florida PSC 14" sq23 .23 cl-si-sand silty sand 1770 0.978 388 CC14 BOR Florida PSC 14" sq21.18 cl-si-sand silty sand 1601 0.847 389 49SB37 EOD Florida PSC 30" sq7.13 sandy clay silty limestone 5058 1.109 N 365 Average 1.426 SD 0.912 COV 0.639 =2.33 0.386 =3.0 0.254 Table C-2 Alabama CAPWAP (EOD+BOR) Data No Pile-Case Number Location Pile Type Depth (m) Soil Type Davisson's Criteria (kN) CAPWAP TEPWAP (kN) Rdavisson Rcapwap Side Tip 41 FA1-EOD Alabama PSC 18"sq 19.51silty sand silty sand 1646 912 1.805 42 FA1-BOR1 Alabama PSC 18"sq 19.66s ilty sand silty sand 1646 1143 1.440 43 FAI-BOR2 Alabama PSC 18"sq 19.75s ilty sand silty sand 1646 1699 0.969 44 FA2-EOD Alabama PSC 18"sq 22.86silty sand silty sand 2447 1904 1.285 45 FA2-BORI Alabama PSC 18"sq 22.95s ilty sand silty sand 2447 2175 1.125 46 FA2-BOR2 Alabama PSC 18"sq 23.01s ilty sand silty sand 2447 2664 0.919 47 FA3-EOD Alabama PSC 24"sq 19.51silty sand silty sand 2780 1512 1.839 48 FA3-BORI Alabama PSC 24"sq 19.54s ilty sand silty sand 2780 1366 2.035 49 FA3-BOR2 Alabama PSC 24"sq 19.66s ilty sand silty sand 2780 2611 1.065 50 FA4-EOD Alabama PSC 24"sq 22.86silty sand silty sand 3634 1984 1.832 51 FA4-BOR1 Alabama PSC 24"sq 22.89s ilty sand silty sand 3634 2687 1.352 52 FA4-BOR2 Alabama PSC 24"sq 22.92s ilty sand silty sand 3634 3790 0.959 53 FA5-EOD Alabama PSC 36"sq 22.25silty sand silty sand 5071 2945 1.722 54 FA5-BOR Alabama PSC 36"sq 22.28s ilty sand silty sand 5071 4204 1.206 N 14 Average 1.397 SD 0.383 COV 0.274 =2.33 0.828 =3.0 0.656

PAGE 272

249 Table C-3 Oakland, CA CAPWAP (EOD+BOR) Data No Pile-Case Number Location Pile Type Depth (m) Soil Type Davisson's Criteria (kN) CAPWAP TEPWAP (kN) Rdavisson Rcapwap Side Tip 356 OD1J-EOD Oakland, CA OEP 24"8.47 silty sandsilty clayey sand7722 3496 2.209 357 OD2P-EOD Oakland, CA OEP 24"12.19s ilty sandsilty sandy clay3047 1557 1.957 358 OD2P-BOR Oakland, CA OEP 24"12.19s ilty sandsilty sandy clay3047 2224 1.370 359 OD2T-EOD Oakland, CA CEP 24"10.67silty sandsilty sand & clay3616 3634 0.995 360 OD3H-EOD Oakland, CA OEP 42"30.63stiff clay clay w/ sa-si-gr 4639 1441 3.219 361 OD4L-EOD Oakland, CA CEP 24"19.51sa ndy claysilty sandy clay4399 2242 1.962 362 OD4P-EOD Oakland, CA CEP 24"17.07s ilty clay silty sandy clay3087 1214 2.543 363 OD4P-BOR Oakland, CA CEP 24"17.07silty clay silty sandy clay3087 2455 1.257 364 OD4T-EOD Oakland, CA CEP 24"18.29sa ndy claysilty sandy clay3229 1339 2.412 365 OD4T-BOR Oakland, CA CEP 24"18.29sa ndy claysilty sandy clay3229 2891 1.117 366 OD4W-EOD Oakland, CA CEP 24"18.29sa ndy claysilty sandy clay3937 1766 2.229 367 OD4W-BOR2 Oakland, CA CEP 24"18.29 sandy claysilty sandy clay3937 2567 1.534 368 OD4W-BOR3 Oakland, CA CEP 24"18.38 sandy claysilty sandy clay3937 3403 1.157 N 13 Average 1.843 SD 0.671 COV 0.364 =2.33 0.908 =3.0 0.688 Table C-4 South Carolina CAPWAP (EOD+BOR) Data No Pile-Case Number Location Pile Type Depth (m) Soil Type Davisson's Criteria (kN) CAPWAP TEPWAP (kN) Rdavisson Rcapwap Side Tip 268 BC79-EOD S.Carolina PSC 24" oct23.47si-cl-sand calcar sand 2277 269 BC79-BORL S.Ca rolina PSC 24" oct23.5 si-clsand calcar sand 2277 2447 0.931 270 BC64-EOD S.Carolina PSC 24" oct18.59si-cl-sand calcar sand 5071 271 BC64-BORL S.Ca rolina PSC 24" oct18.62si-clsand calcar sand 5071 5004 1.013 278 MB1-EOD S. Carolina PSC 16"sq 18.9 sand silty sand 3590 756 4.749 279 MB1-BOR S. Carolina PSC 16"sq 19.2 sand silty sand 3590 2326 1.543 280 MB2-BOR S. Carolina HP14x89 20.12silty sand calcar. silt 3990 2362 1.689 281 MB3-BOR S. Carolina OEP 16" 20.12silty sand calcar. silt 4146 2540 1.632 282 S1-EOD S. Carolina OEP 24" 24.84clayey sand sandy silt 2651 2046 1.296 283 SI-BOR S. Carolina OEP 24" 24.84c layey sand sandy silt 2651 2687 0.987 284 S2-EOD S. Carolina HP14x73 23.77clayey sand sandy silt 1415 956 1.480 285 S2-BOR S. Carolina HP 14x73 23.77clayey sand sandy silt 1415 1366 1.036 331 DWI-BOR1 S. Carolina PSC 24" sq 27.46silty clay silty clay 4742 4515 1.050 332 DW 1-BOR2 S. Carolina PSC 24" sq 27 .52silty clay silty cl ay 4742 5178 0.916 333 DW2-BORI S. Carolina HP14X73 27.46s i-sa-clay silty clay 2753 2798 0.984 334 DW2-BOR2 S. Carolina HP14X73 27.5 2si-sa-clay silty clay 2753 3025 0.910

PAGE 273

250 Table C-4 (cont.) 335 DS1-BORI S. Carolina PSC 12" sq 26 .82cl-si-sand calcar sand 1601 1214 1.319 336 DS1-BOR2 S. Carolina PSC 12" sq 26 .85cl-si-sand calcar sand 1601 1535 1.043 N 16 Average 1.411 SD 0.930 COV 0.659 =2.33 0.306 =3.0 0.199 Table C-5 Florida CAPWAP (EOD+BOR) Data No Pile-Case Number Location Pile Type Depth (m) Soil Type Davisson's Criteria (kN) CAPWAP TEPWAP (kN) Rdavisson Rcapwap Side Tip 78 WC3-EOD Florida PSC24"sq 8.32 Is.-d.sand dense 2713 2264 1.198 79 WC3-BORI Florida PSC24"sq 8.38 Is.-d.sand dense 2713 2251 1.205 80 WC3-BOR2 Florida PSC24"sq 8.38 Is: d.sand dense 2713 2384 1.138 81 WC6-EOD Florida PSC24"sq 8.63 Is.-dsand dense 2015 2002 1.006 82 WC6-BOR1 Florida PSC24"sq 8.69 ls.-d.sand dense 2015 2135 0.944 83 WC6-BOR2 Florida PSC24"sq 8.38 Is.-d.sand dense 2015 1971 1.022 84 WB9-BOR Florida PSC30"sq 39.17 clayey sand clayey 4003 4186 0.956 85 WB15-BOR Florida PSC30"sq 31.58 sand silt-clay 3648 3581 1.019 105 ST1-EOD Florida PSC 18"sq13.41 carb sand 1530 2246 0.681 106 ST2-EOD Florida PSC 18"sq12.19 carb sand 2269 2740 0.828 140 A3-EOD2 Florida VC 24"sq 27.52 clayey sand sand 4261 1637 2.603 141 A3-BOR2 Florida VC 24"sq 27.55 clayey sand sand 4261 2055 2.073 142 A3-BOR3 Florida VC 24"sq 27.61 clayey sand clayey sand 4261 4115 1.035 143 A14-DD1 Florida VC 24"sq 13.72 sandy clay sand NA 3043 144 A14-DD2 Florida VC 24"sq 14.33 sandy clay sand NA 3296 145 A14-BOR1 Florida VC 24"sq 17.83 clayey sand sand NA 2687 146 A14-BOR2 Florida VC 24"sq 17.92 clayey sand sand NA 4279 147 A25-EOD Florida VC 24"sq 16.79 clayey sand sand 3180 2042 1.557 148 A25-BOR1 Florida VC 24"sq 16.82 clayey sand sand 3180 2469 1.288 149 A25-BOR2 Florida VC 24"sq 16.89 clayey sand sand 3180 2011 1.581 150 A25-BOR3 Florida VC 24"sq 16.92 clayey sand sand 3180 1966 1.617 151 AI6-EOD Florida PSC18"sq 18.47 sandy clay sand 1401 996 1.407 152 A16-BOR1 Florida PSC18"sq 18.47 sandy clay sand 1401 1254 1.117 153 A16-BOR2 Florida PSC18"sq 18.59 sandy clay sand 1401 1317 1.064 154 A41-EOD Florida VC 24"sq 15.85 clay sand 2331 1917 1.216 155 A41-BOR1 Florida VC 24"sq 15.85 clay sand 2331 2237 1.042 156 A41-BOR2 Florida VC 24"sq 16.09 clay sand 2331 2513 0.928 157 A101-EOD Florida VC 24"sq 18.84 clay clayey sand 3612 2300 1.570 158 A101-BORI Florida VC 24"sq 18.84 clay clayey sand 3612 2976 1.214 159 A101-BOR2 Florida VC 24"sq 18.93 clay clayey sand 3612 3572 1.011 160 A133-EOD Florida VC 24"sq 31.67 clayey sand sandy clay 3594 1383 2.599 161 A133-BOR Florida VC 24"sq 31.97 clayey sand sandy clay 3594 3470 1.036 162 A145-EOD Florida VC 24"sq 31.36 clayey sand sand 4341 1570 2.765

PAGE 274

251 Table C-5 (cont.) 163 A145-BOR1 Florida VC 24"sq 31.36 clayey sand sand 4341 2851 1.523 164 A145-BOR2 Florida VC 24"sq 31.39 clayey sand sand 4341 3385 1.282 165 CB3-BOR Florida PSC24"sq 23.47 clayey sand sand 2224 2509 0.886 166 CB3-BORL Florida PSC24"sq 23.71 clayey sand sand 2224 2233 0.996 167 CB5-BOR Florida VC 30"sq 16.18 clayey sand sand 5560 2527 2.200 168 CB5-BORL Florida VC 30"sq 16.46 clayey sand sandy clay 5560 2598 2.140 169 CBI 1-BORL Florida VC 30"sq 26.12 clayey sand clayey sand 6383 3621 1.763 170 CB11-EORL Florida VC 30"sq 26.15 clayey sand clayey sand 6383 2842 2.246 171 CB17-BOR1 Florida VC 30"sq 23.68 clayey sand clayey sand 6739 3648 1.847 172 CB17-BOR2 Florida VC 30"sq 23.71 clayey sand clayey sand 6739 3332 2.023 173 CB17-BORL Florida VC 30"sq 23.74 clayey sand clayey sand 6739 3038 2.218 174 CB17-DRL Florida VC 30"sq 23.84 clayey sand clayey sand 6739 3759 1.793 175 CB23-BOR Florida VC 30"sq 24.48 clayey sand sand 2860 2753 1.039 176 CB23-BORE Florida VC30"sq 25.21 clayey sand sand 2860 1975 1.448 177 CB29-BORL Florida VC 30"sq 25.76 clayey sand clayey sand 4079 3452 1.182 178 CB29-EORL Florida VC 30"sq 25.76 clayey sand clayey sand 4079 1997 2.043 179 CB35-BOR1 Florida VC 30"sq 23.93 clayey sand clayey sand 6508 3612 1.802 180 CB35-BOR2 Florida VC 30"sq 24.05 clayey sand clayey sand 6508 4221 1.542 181 CB35-BORL Florida VC 30"sq 24.11 clayey sand clayey sand 6508 4043 1.610 182 CB41-EOR Florida VC 30"sq 19.72 sandy clay sandy clay 6272 3812 1.645 183 CB41-BOR Florida VC 30"sq 19.72 sandy clay sandy clay 6272 3781 1.659 184 CB41-BORL Florida VC 30"sq 19.93 sandy clay sandy clay 6272 2157 2.908 185 CB26-EOD Florida PSC24"sq 19.05 clayey sand sand 4270 2171 1.967 186 CB26-BOR Florida PSC24"sq 19.08 clayey sand sand 4270 2753 1.551 187 CB26-EOR Florida PSC24"sq 19.75 clayey sand sandy clay 4270 3185 1.341 188 CB26-BOR2 Florida PSC24"sq 19.81 sandy clay sandy clay 4270 2504 1.705 235 PO2-BOR1 Florida PSC18"sq 5.73 sand dense sand 1219 1352 0.902 236 PO2-BOR2 Florida PSC18"sq 6.07 sand dense sand 1219 1174 1.038 237 PO2-BORL Florida PSC18"sq 6.28 sand dense sand 1219 1250 0.975 238 PO19-BOR Florida PSC18"sq 4.63 sand dense sand 1023 1334 0.767 239 PO19-EOD Florida PSC18"sq 5.24 sand dense sand 1023 1090 0.939 240 PO19-EORL Florida PSC18"sq 5.36 sand dense sand 1023 1045 0.979 241 ER5-BOR1 Florida PSC24"sq 25.97 sand sand 3803 2927 1.299 242 ER5-BOR2 Florida PSC24"sq 26.03 sand sand 3803 4123 0.922 243 ER5-BORL Florida PSC24"sq 26.15 sand sand 3803 2611 1.457 244 ER77-BOR Florida PSC24"sq 18.56 clayey sand cl-si-sand 7433 3363 2.210 245 ER77-BORL Florida PSC24"sq 18.68 clayey sand cl-si-sand 7433 4484 1.658 246 BB13-EOD Florida VC 30"sq 28.29 clayey sand sand 4475 3114 1.437 247 BB13-BOR1a Florida VC 30"sq 28.32 clayey sand sand 4475 4092 1.094 248 BB13-BORIb Florida VC 30"sq 28.32 clayey sand sand 4475 3959 1.130 249 BB 13-BOR2a Florida VC 30"sq 28.71 clayey sand sand 4475 4760 0.940 250 BB13-BOR2b Florida VC 30"sq 28.71 clayey sand sand 4475 4671 0.958 251 BB I3-BORL Florida VC 30"sq 28.8 clayey sand sand 4475 4008 1.117 252 BB19-BORa Florida VC 30"sq 27.13 sand sand 5169 4155 1.244 253 BB19-BORb Florida VC 30"sq 27.13 sand sand 5169 4666 1.108 254 BB19-BORL Florida VC 30"sq 27.19 sand sand 5169 6512 0.794

PAGE 275

252 Table C-5 (cont.) 255 BB24-EOD Florida VC 30"sq 24.44 sand clay 4955 5783 0.857 256 BB24-BOR1a Florida VC 30"sq 24.48 sand clay 4955 7517 0.659 257 BB24-BORIb Florida VC 30"sq 24.48 sand clay 4955 7571 0.654 258 BB24-BOR2a Florida VC 30"sq 24.63 sand clay 4955 8420 0.588 259 I31324-BOR2b Florida VC 30"sq 24.63 sand clay 4955 7873 0.629 260 BB24-BORL Florida VC 30"sq 24.69 sand clay 4955 6241 0.794 261 BB29-BOR Florida VC 30"sq 23.90 -sand sand 5053 5458 0.926 262 BB29-BORL Florida VC 30"sq 23.96 sand sand 5053 5115 0.988 263 ABF6-BOR Florida PSC 24" sq17.54 s i/clayey sand clayey sand 3345 1677 1.995 264 ABF6-BORL Florida PSC 24" sq17.84 si/c layey sand clayey sand 3345 3474 0.963 265 ABG13-BORL Florida PSC 24" sq14.08 clayey sand limestone 4742 4826 0.983 266 ABH2-BOR Florida PSC 24" sq10.9 s ilt/silty clay limestone 2518 3594 0.701 267 ABH2-BORL Florida PSC 24" sq10.96 s ilt/silty clay limestone 2518 4092 0.615 286 DD22-EOD Florida PSC 14"sq27.43 clay sand 3745 1134 3.302 287 DD22-BOR Florida PSC 14"sq27.74 clay sand 3745 2309 1.622 288 DD23-EOD Florida CEP 12.7524.99 clay sand 2206 681 3.239 289 DD23-BOR Florida CEP 12.7525.09 clay sand 2206 1232 1.791 328 DD29-EOD Florida CEP 12.75"49.68 cla yey sand clayey sand NA 1561 375 UFSSIA BOR Florida PSC 24" sq15 cl-si-sand silty clay 3496 5427 0.644 376 UFSSIB BOR Florida PSC 20" sq14 .42 cl-si-sand silty clay 2611 3554 0.735 377 UFSS I O BOR Florida PSC 24" sq8.5 sa-siclay silty clay 5107 6228 0.820 378 UFSS13B BOR Florida PSC 24" sq8.2 sa-siclay silty clay 2771 4226 0.656 379 BIT20 BOR Florida PSC 20" sq 14.08 Silty sand sand 2593 2108 1.230 380 BIT21 BOR Florida PSC 20" sq11.09 cl-si-sand silty sand 1637 1606 1.019 381 HFLS3 EOD Florida PSC 30" sq12 .07 sa-si-clay sandy clay 7073 5787 1.222 382 HFLS4L EOD Florida PSC 30" sq22.4 cl-si-limestonesand limerock 3354 3136 1.070 383 HFLS4L BOR Florida PSC 30" sq22.4 cl-si-limestonesand limerock 3354 4070 0.824 384 RBA30 BOR Florida PS C 30" sq16.28 Silty sand silty sand 4039 3692 1.094 385 RBB30W BOR Florida PSC 30" sq13.35 Silty sand silty sand 3461 3225 1.073 386 CC6 BOR Florida PSC 18" sq16 .18 Silty sand sand 1388 1423 0.975 387 CC7 BOR Florida PSC 14" sq23.23 cl-si-sand silty sand 1770 1810 0.978 388 CC14 BOR Florida PSC 14" sq21.18 cl-si-sand silty sand 1601 1890 0.847 389 49SB37 EOD Florida PSC 30" sq7.13 sandy clay silty limestone5058 4559 1.109 N 107 Average 1.324 SD 0.571 COV 0.431 =2.33 0.564 =3.0 0.412

PAGE 276

253 Table C-6 Louisiana CAPWAP (EOD+BOR) Data No Pile-Case Number Location Pile Type Depth (m) Soil Type Davisson's Criteria (kN) CAPWAP TEPWAP (kN) Rdavisson Rcapwap Side Tip 65 FL3-EOD Louisiana PSC24"sq 25.69s ilty clay silty sand 1779 605 2.940 66 FL3-BOR Louisiana PSC24"sq 25.69s ilty clay silty sand 1779 1210 1.470 67 FL3-BOR2 Louisiana PSC24"sq 25.69s ilty clay silty sand 1779 1557 1.143 291 LB3-EOD Kenner, LA PSC 24" sq 24.84clay Sand 1842 269 6.848 292 LB3-BOR1 Kenner, LA PSC 24" sq 24.99clay Sand 1842 912 2.020 293 LB3-BOR2 Kenner, LA PSC 24" sq 24.99clay Sand 1842 1534 1.201 294 LB3-BOR3 Kenner, LA PSC 24" sq 24.99clay Sand 1842 1677 1.098 295 LB4-EOD Kenner, LA PSC 30" sq 24.99clay Sand 2273 202 11.252 296 LB4-BOR1 Kenner, LA PSC 30" sq 25.21clay Sand 2273 887 2.563 297 LB4-BOR2 Kenner, LA PSC 30" sq 25.27clay Sand 2273 1299 1.750 298 LB4-BOR3 Kenner, LA PSC 30" sq 25.3 clay Sand 2273 1521 1.494 299 LB4-BOR4 Kenner, LA PSC 30" sq 25.3 clay Sand 2273 1603 1.418 300 LB5-EOD Kenner, LA PSC 30" sq 24.99clay Sand NA 263 301 LB5-BOR1 Kenner, LA PSC 30" sq 24.99clay Sand NA 952 302 LB5-BOR2 Kenner, LA PSC 30" sq 24.99clay Sand NA 1402 303 LB5-BOR3 Kenner, LA PSC 30 sq 25.3 clay Sand NA 1591 304 LB5-BOR4 Kenner, LA PSC 30 sq 25.3 clay Sand NA 1752 305 LB6-EOD Kenner, LA PSC 36" cyl24.69clay Sand 2411 404 5.968 306 LB6-BOR1 Kenner, LA PSC 36" cyl24.69clay Sand 2411 883 2.730 307 LB6-BOR2 Kenner, LA PSC 36" cyl24.69clay Sand 2411 1322 1.824 308 LB6-BOR3 Kenner, LA PSC 36" cyl24.99clay Sand 2411 1767 1.364 309 LB6-BOR4 Kenner, LA PSC 36" cyl24.99clay Sand 2411 2300 1.048 310 LB7-EOD Kenner, LA PSC 36" cyl24.6 clay Sand 2402 457 5.256 311 LB7-BOR1 Kenner, LA PSC 36" cyl24.69clay Sand 2402 875 2.745 312 LB7-BOR2 Kenner, LA PSC 36" cyl24.69clay Sand 2402 1279 1.878 313 LB7-BOR3 Kenner, LA PSC 36" cyl24.69clay Sand 2402 1891 1.270 314 LB7-BOR4 Kenner, LA PSC 36" cyl24.69clay Sand 2402 2260 1.063 N 22 Average 2.743 SD 2.509 COV 0.912 =2.33 0.425 =3.0 0.247 Table C-7 Massachusetts CAPWAP (EOD+BOR) Data No Pile-Case Number Location Pile Type Depth (m) Soil Type Davisson's Criteria (kN) CAPWAP TEPWAP (kN) Rdavisson Rcapwap Side Tip 115 GZZ5-EOD Boston MA CEP 14" 26.52till-clay till 2064 952 2.168 116 GZO5-EOD Boston MA CEP 14" 16.46till-clay till 2135 912 2.341 117 GZCC5-EOD Boston MA CEP 14" 24.38till-clay till 2002 2189 0.915 118 GZL2-EOD Boston MA CEP 14" 25.3 till-clay till 2847 1188 2.396 119 GZP14-EOD Boston MA CEP 14" 18.44till-clay till 1735 1357 1.279

PAGE 277

254 Table C-7 (cont.) 120 GZP11-EOD Boston MA CEP 14" 17.22till-clay till 1112 1063 1.046 121 GZP12-EOD Boston MA CEP 14" 21.03till-clay till 2224 2313 0.962 315 DI221-EOD Massachusetts PSC 14" sq19.2 sa-si-clayfine sand & silt1477 316 DI221-BOR Massachusetts PSC 14" sq19.2 sa -si-clayfine sand & silt1477 1250 1.182 317 TW488-EOD Massachusetts PSC 14" sq23 .16stiff clay stiff clay 1423 365 3.899 318 TW488-BOR Massachusetts PSC 14" sq23 .16stiff clay stiff clay 1423 934 1.524 319 NBTP2-EOD Massachusetts HP12X74 34.14 si-sa-clayglacial till 1806 1352 1.336 320 NBTP2-BOR Massachusetts HP12X74 34 .14si-sa-clayglacial till 1806 1601 1.128 321 NBTP2-BOR Massachusetts HP12X74 34 .14si-sa-clayglacial till 1806 1686 1.071 322 NBTP3-EOD Massachusetts HP12X74 33.07si-sa-claysilty 2126 1401 1.517 323 NBTP3-BOR Massachusetts HP12X74 33.07si-sa-claysilty 2126 1601 1.328 324 NBTP3-BOR Massachusetts HP12X74 33.07si-sa-claysilty 2126 1713 1.241 325 NBTP5-EOD Massachusetts CEP12.75"33 .83si-sa-clayglacial till 1632 1423 1.147 326 NBTP5-BOR Massachusetts CEP12.75"33 .83si-sa-clayglacial till 1632 2046 0.798 N 17 Average1.515 SD 0.758 COV 0.500 =2.33 0.555 =3.0 0.392 Table C-8 Nebraska CAPWAP (EOD+BOR) Data No Pile-Case Number Location Pile Type Depth (m) Soil Type Davisson's Criteria (kN) CAPWAP TEPWAP (kN) Rdavisson Rcapwap Side Tip 1 FN1-EOD Omaha NE HP1Ox42 21.95 silty clay till 1352 1023 1.322 2 FNI-BOR1 Omaha NE HPIOx42 21.98 silty clay till 1352 1668 0.811 3 FN1-BOR2 Omaha NE HPIOx42 22.25 silty clay till 1352 1917 0.705 4 FN2-EOD Omaha NE PSC12"sq19.81 silty clay till 1592 1005 1.584 5 FN2-BOR Omaha NE PSC12"sq19.81 silty clay till 1592 1357 1.173 6 FN3-EOD Omaha NE PSC14"sq17.07 silty clay till 1681 796 2.112 7 FN3-BOR Omaha NE PSC14"sq17.07 silty clay till 1681 1321 1.273 8 FN4-EOD Omaha NE CEP12.75"20.12 silty clay till 1263 1085 1.164 9 FN4-BOR Omaha NE CEP12.75"20 .12 silty clay till 1263 1281 0.986 N 9 Average 1.237 SD 0.423 COV 0.342 =2.33 0.638 =3.0 0.489

PAGE 278

255 Table C-9 Oklahoma CAPWAP (EOD+BOR) Data No Pile-Case Number Location Pile Type Depth (m) Soil Type Davisson's Criteria (kN) CAPWAP TEPWAP (kN) Rdavisson Rcapwap Side Tip 14 FOl-EOD Oklahoma CEP 26" 18.35s ilty sandsilty sand 2660 2206 1.206 15 FO1-BOR Oklahoma CEP 26" 18.35s ilty sandsilty sand 2660 3114 0.854 16 FO2-EOD Oklahoma PSC24"oct 19.2 s ilty sandsilty sand 3381 2358 1.434 17 FO2-BOR Oklahoma PSC24"oct 19.23s ilty sandsilty sand 3381 3252 1.040 18 FO3-EOD Oklahoma HP14x117 19.42sa-si-clayclayey sand 3452 2518 1.371 19 FO4-EOD Oklahoma RC24"sq 13.72sa-si-clayclayey sand 7562 2927 2.584 20 F04-BOR Oklahoma RC24"sq 17.01sa-si-clayclayey sand 7562 3412 2.216 N 7 Average 1.529 SD 0.635 COV 0.415 =2.33 0.675 =3.0 0.498 Table C-10 Oklahoma CAPWAP (EOD+BOR) Data No Pile-Case Number Location Pile Type Depth (m) Soil Type Davisson's Criteria (kN) CAPWAP TEPWAP (kN) Rdavisson Rcapwap Side Tip 189 33P1-EOD Ontario HP 12x74 34.87 cl-sa-silt silty sand 3559 1953 1.822 190 33P1-BOR Ontario HP 12x74 34.87 clsa-silt silty sand 3559 3180 1.119 191 33P1-BOR Ontario HP 12x74 34.87 clsa-silt silty sand 3559 2891 1.231 192 33P2-EOD Ontario CP 12.75" 32.67 cl-sa-silt silty sand 2180 1290 1.690 193 33P2-BOR Ontario CP 12.75" 32.67 cl -sa-silt silty sand 2180 1579 1.381 194 33P2-BOR Ontario CP 12.75" 32.67 cl -sa-silt silty sand 2180 1784 1.222 195 33P4-EOD Ontario PSC 12"sq 16 .52 cl-sa-silt cl-silt-till 2073 1779 1.165 196 33P5-EOD Ontario #14 Timber 8.66 cl-sa-silt cl-silt-till 730 636 1.148 197 TRD22-EOD Ontario HP 12x74 6.13 sand till 1575 1922 0.819 198 TRD22-BOR Ontario HP 12x74 6.13 sand till 1575 1308 1.204 199 TRE22-EOD Ontario HP 12x74 7.83 sand rock 2473 2558 0.967 200 TRE22-BOR Ontario HP 12x74 7.83 sand rock 2473 2740 0.903 201 TRP5X-EOD Ontario HP 12x53 7.68 sand rock 1824 2153 0.847 202 TRP5X-BOR Ontario HP 12x53 7.68 sand rock 1824 1757 1.038 203 TR131-BOR Ontario CP 7.063" NA sand rock 623 738 0.844 N 15 Average 1.160 SD 0.294 COV 0.254 =2.33 0.715 =3.0 0.573

PAGE 279

256 Table C-11 Pennsylvania CAPWAP (EOD+BOR) Data No Pile-Case Number Location Pile Type Depth (m) Soil Type Davisson's Criteria (kN) CAPWAP TEPWAP (kN) Rdavisson Rcapwap Side Tip 61 FP5-EOD Penn. Monotube7.19 sandy grvl sandy grvl 1081 934 1.157 62 FP5-BOR Penn. Monotube7.25 sandy grvl sandy grvl 1081 1063 1.017 98 63S-BOR Penn. HP12x53 20.12 sand-silt silt 1263 1241 1.018 128 GF19-EOD Pgh. PA HP1Ox4215.09 grvl-snd-slt shale 1468 1770 0.829 129 GF110-EOD Pgh. PA HP12x74 15.15 grvl-snd-slt shale 2224 2033 1.094 130 GF222-EOD Pgh. PA HP12x74 18.62 grvl-snd-slt shale 2580 2277 1.133 131 GF224-EOD Pgh. PA Monotube9.02 grvl-snd-slt grvl-snd-slt NA 1864 132 GF312-EOD Pgh. PA HP12x74 8.6 snd-grvl-shlshale 1512 1802 0.839 133 GF313-EOD Pgh. PA HP10x57 9.6 snd-grvl-shlclaystone 1486 1984 0.749 134 GF412-EOD Pgh. PA HP12x74 10.24 grvl-snd-slt claystone 1068 2024 0.528 135 GF413-EOD Pgh. PA HP10x57 10.55 grvl-snd-slt claystone 1334 1904 0.701 136 GF414-EOD Pgh. PA HPIOx57 10.58 grvl-snd-slt claystone 1601 2331 0.687 137 GF415-EOD Pgh. PA HP12x74 10.39 grvl-snd-slt claystone 2046 2495 0.820 N 12 Average 0.881 SD 0.201 COV 0.228 =2.33 0.570 =3.0 0.462 Table C-12 Wisconsin CAPWAP (EOD+BOR) Data No Pile-Case Number Location Pile Type Depth (m) Soil Type Davisson's Criteria (kN) CAPWAP TEPWAP (kN) Rdavisson Rcapwap Side Tip 207 CHAT-EOD Wisconsin CEP 12.75"37.49 sa-si claysilty sand 2909 1735 1.677 208 CHAT-BOR1 Wisconsin CEP 12.75"37 .52sa-si claysilty sand 2909 2068 1.407 209 CHA1-BOR2 Wisconsin CE P 12.75"37.52sa-si claysilty sand 2909 2304 1.263 210 CHA4-EOD Wisconsin CE P 12.75"35.66sa-si claysilty sand 2251 1205 1.868 211 CHB2-EOD Wisconsin HP 12x63 47.34sa-si claysilty sand 1343 489 2.746 212 CHB2-BOR1 Wisconsin HP12x63 47.34sa-si claysilty sand 1343 1201 1.118 213 CHB2-BOR3 Wisconsin HP12x63 47.4 sa-si claysilty sand 1343 1512 0.888 214 CHB2-BOR4 Wisconsin HP12x63 47.43sa-si claysilty sand 1343 2002 0.671 215 CHB2-BOR5a Wisconsi n HP12x63 47.46sa-si claysilty sand 1343 2291 0.586 216 CHB2-BOR5b Wisconsin HP12x63 47.46sa-si claysilty sand 1343 2126 0.632 217 CHB3-EOD Wisconsin HP12x63 43.31sa -si claysilty sand 890 467 1.906 218 CHB3-BOR1 Wisconsin HP12x63 43.31sa-si claysilty sand 890 1045 0.852 219 CHB3-BOR2 Wisconsin HP12x63 43.43 sa-si claysilty sand 890 979 0.909 220 CHB3-BOR3 Wisconsin HP12x63 43.53sa-si claysilty sand 890 1490 0.597 221 CHC3-EOD Wisconsin CEP14" 47.3 sa-si claysilty sand 836 489 1.710 222 CHC3-BOR Wisconsin CEP14" 47.3 sa-si claysilty sand 836 223 CHC3-BORL Wisconsin CEP14" 47.34 sa-si claysilty sand 836 1735 0.482 224 CH4-EOD Wisconsin CEP9.63" 43 .43silty clay 1601 667 2.400 225 CH4-BOR Wisconsin CEP9.63" 43.43silty clay 1601 1512 1.059 226 CH39-EOD Wisconsin CE P9.63" 43.28silty claysilty clay 2936 832 3.529

PAGE 280

257 Table C12 (cont.) 227 CH39-BOR Wisconsin CEP9.63 43.28 silty claysilty clay 2936 2046 1.435 228 CH39-BORL Wisconsin CEP9.63" 43.37silty clays ilty clay 2936 2558 1.148 229 CH6-5B-EOD Wisconsi n CEP9.63" 43.89silty claysilty sand 1673 230 CH6-5B-BOR Wisconsin CEP9.63" 43.89silty claysilty sand 1673 1779 0.940 231 CH95B-EOD Wisconsin CEP9.63" 42.37silty claysa nd & grvl2473 983 2.516 232 CH95B-BOR Wisconsin CEP9.63" 42.37silty claysa nd & grvl2473 2358 1.049 233 CH256-BOR3 Wisconsi n CEP9.63" 42.67si-sa claysi -sa & grvl2651 2224 1.192 234 CH351-BOR2 Wisconsi n CEP9.63" 47.55si-sa claysi -sa & grvl2669 2358 1.132 346 CHI1-42-BOR1 Wisconsin CEP 12.75"28.99sa-cl-silt silty clay 1948 2349 0.829 N 27 Average 1.353 SD 0.742 COV 0.548 =2.33 0.446 =3.0 0.307 Table C-13 Canada CAPWAP (EOD+BOR) Data No Pile-Case Number Refer. No. Location Pile Type Depth (m) Soil Type Davisson's Criteria (kN) CAPWAP TEPWAP (kN) Rdavisson Rcapwap Side Tip 91 35-1-BOR C.N.R.Toronto HP12x74 14.78 cl-sa-siltsilty sand1432 1157 1.238 92 35-4-BOR C.N.R.Toronto CEP12.75"14 .69 cl-sa-siltsilty sand1468 1601 0.917 93 35-5-BOR C.N.R.Toronto HP12x74 27.58 cl-sa-siltsilty sand2722 2891 0.942 94 35-6-BOR C.N.R.Toronto CEP12.75"27 .43 cl-sa-siltsilty sand2669 2580 1.034 95 35-7-BOR C.N.R.Toronto T.Timber 12 .68 cl-sa-siltsilty sand543 618 0.879 96 35-10-BOR C.N.R.Toronto PSC 12"sq1 4.63 cl-sa-siltsilty sand1788 1486 1.203 138 EF62-EOD Ottawa Canada CP 9.625 "18.99 si-sa-claytill 2233 2322 0.962 139 EF167-BOR Ottawa Canada CP 9. 625"21 si-sa-claytill 1205 2131 0.565 N 8 Average 0.967 SD 0.209 COV 0.216 =2.0 0.640 =2.5 0.521

PAGE 281

258 Table C-14 Alabama CAPWAP (BOR) Data No. Pile-Case Number Location Pile Type Depth (m) Soil Type Davisson's Criteria (kN) CAPWAP TEPWAP (kN) Rdavisson Rcapwap Side Tip 42 FA1-BOR1 Alabama PSC 18"sq 19.66s ilty sand silty sand 1646 1143 1.440 43 FAI-BOR2 Alabama PSC 18"sq 19.75s ilty sand silty sand 1646 1699 0.969 45 FA2-BORI Alabama PSC 18"sq 22.95s ilty sand silty sand 2447 2175 1.125 46 FA2-BOR2 Alabama PSC 18"sq 23.01s ilty sand silty sand 2447 2664 0.919 48 FA3-BORI Alabama PSC 24"sq 19.54s ilty sand silty sand 2780 1366 2.035 49 FA3-BOR2 Alabama PSC 24"sq 19.66s ilty sand silty sand 2780 2611 1.065 51 FA4-BOR1 Alabama PSC 24"sq 22.89s ilty sand silty sand 3634 2687 1.352 52 FA4-BOR2 Alabama PSC 24"sq 22.92s ilty sand silty sand 3634 3790 0.959 54 FA5-BOR Alabama PSC 36"sq 22.28s ilty sand silty sand 5071 4204 1.206 N 9 Average 1.230 SD 0.351 COV 0.285 =2.33 0.713 =3.0 0.562 Table C-15 Florida CAPWAP (BOR) Data No. Pile-Case Number Location Pile Type Depth (m) Soil Type Davisson's Criteria (kN) CAPWAP TEPWAP (kN) Rdavisson Rcapwap Side Tip 79 WC3-BORI Florida PSC24"sq8.38 Is.-d.sand dense 2713 2251 1.205 80 WC3-BOR2 Florida PSC24"sq8.38 Is: d.sand dense 2713 2384 1.138 82 WC6-BOR1 Florida PSC24"sq8.69 ls.-d.sand dense 2015 2135 0.944 83 WC6-BOR2 Florida PSC24"sq8.38 Is.-d.sand dense 2015 1971 1.022 84 WB9-BOR Florida PSC30"sq39.17 clayey sand clayey 4003 4186 0.956 85 WB15-BOR Florida PSC30"sq3 1.58 sand silt-clay 3648 3581 1.019 141 A3-BOR2 Florida VC 24"sq 27.55 clayey sand sand 4261 2055 2.073 142 A3-BOR3 Florida VC 24"sq 27.61 clayey sand clayey sand4261 4115 1.035 145 A14-BOR1 Florida VC 24"sq 17.83 clayey sand sand 2687 146 A14-BOR2 Florida VC 24"sq 17.92 clayey sand sand 4279 148 A25-BOR1 Florida VC 24"sq 16.82 clayey sand sand 3180 2469 1.288 149 A25-BOR2 Florida VC 24"sq 16.89 clayey sand sand 3180 2011 1.581 150 A25-BOR3 Florida VC 24"sq 16.92 clayey sand sand 3180 1966 1.617 152 A16-BOR1 Florida PSC18"sq18.47 sandy clay sand 1401 1254 1.117 153 A16-BOR2 Florida PSC18"sq18.59 sandy clay sand 1401 1317 1.064 155 A41-BOR1 Florida VC 24"sq 15.85 clay sand 2331 2237 1.042 156 A41-BOR2 Florida VC 24"sq 16.09 clay sand 2331 2513 0.928 158 A101-BORI Florida VC 24"sq 18.84 clay clayey sand3612 2976 1.214 159 A101-BOR2 Florida VC 24"sq 18.93 clay clayey sand3612 3572 1.011 161 A133-BOR Florida VC 24"sq 31.97 clayey sand sandy clay 3594 3470 1.036 163 A145-BOR1 Florida VC 24"sq 31.36 clayey sand sand 4341 2851 1.523 164 A145-BOR2 Florida VC 24"sq 31.39 clayey sand sand 4341 3385 1.282 165 CB3-BOR Florida PSC24"sq23.47 clayey sand sand 2224 2509 0.886 166 CB3-BORL Florida PSC24"sq23.71 clayey sand sand 2224 2233 0.996

PAGE 282

259 Table C-15 (cont.) 167 CB5-BOR Florida VC 30"sq 16.18 clayey sand sand 5560 2527 2.200 168 CB5-BORL Florida VC 30"sq 16.46 clayey sand sandy clay 5560 2598 2.140 169 CB11-BORL Florida VC 30"sq 26.12 clayey sand clayey sand6383 3621 1.763 170 CB11-EORL Florida VC 30"sq 26.15 clayey sand clayey sand6383 2842 2.246 171 CB17-BOR1 Florida VC 30"sq 23.68 clayey sand clayey sand6739 3648 1.847 172 CB17-BOR2 Florida VC 30"sq 23.71 clayey sand clayey sand6739 3332 2.023 173 CB17-BORL Florida VC 30"sq 23.74 clayey sand clayey sand6739 3038 2.218 174 CB17-DRL Florida VC 30"sq 23.84 clayey sand clayey sand6739 3759 1.793 175 CB23-BOR Florida VC 30"sq 24.48 clayey sand sand 2860 2753 1.039 176 CB23-BORE Florida VC30"sq 25.21 clayey sand sand 2860 1975 1.448 177 CB29-BORL Florida VC 30"sq 25.76 clayey sand clayey sand4079 3452 1.182 178 CB29-EORL Florida VC 30"sq 25.76 clayey sand clayey sand4079 1997 2.043 179 CB35-BOR1 Florida VC 30"sq 23.93 clayey sand clayey sand6508 3612 1.802 180 CB35-BOR2 Florida VC 30"sq 24.05 clayey sand clayey sand6508 4221 1.542 181 CB35-BORL Florida VC 30"sq 24.11 clayey sand clayey sand6508 4043 1.610 182 CB41-EOR Florida VC 30"sq 19.72 sandy clay sandy clay 6272 3812 1.645 183 CB41-BOR Florida VC 30"sq 19.72 sandy clay sandy clay 6272 3781 1.659 184 CB41-BORL Florida VC 30"sq 19.93 sandy clay sandy clay 6272 2157 2.908 186 CB26-BOR Florida PSC24"sq19.08 clayey sand sand 4270 2753 1.551 187 CB26-EOR Florida PSC24"sq19.75 clayey sand sandy clay 4270 3185 1.341 188 CB26-BOR2 Florida PSC24"sq19.81 sandy clay sandy clay 4270 2504 1.705 235 PO2-BOR1 Florida PSC18"sq5.73 sand dense sand1219 1352 0.902 236 PO2-BOR2 Florida PSC18"sq6.07 sand dense sand1219 1174 1.038 237 PO2-BORL Florida PSC18"sq6.28 sand dense sand1219 1250 0.975 238 PO19-BOR Florida PSC18"sq4.63 sand dense sand1023 1334 0.767 240 PO19-EORL Florida PSC18"sq5.36 sand dense sand1023 1045 0.979 241 ER5-BOR1 Florida PSC24"sq25.97 sand sand 3803 2927 1.299 242 ER5-BOR2 Florida PSC24"sq26.03 sand sand 3803 4123 0.922 243 ER5-BORL Florida PSC24"sq26.15 sand sand 3803 2611 1.457 244 ER77-BOR Florida PSC24"sq18.56 clayey sand cl-si-sand 7433 3363 2.210 245 ER77-BORL Florida PSC24"sq18.68 clayey sand cl-si-sand 7433 4484 1.658 247 BB13-BOR1a Florida VC 30"sq 28.32 clayey sand sand 4475 4092 1.094 248 BB13-BORIb Florida VC 30"sq 28.32 clayey sand sand 4475 3959 1.130 249 BB 13-BOR2a Florida VC 30"sq 28.71 clayey sand sand 4475 4760 0.940 250 BB13-BOR2b Florida VC 30"sq 28.71 clayey sand sand 4475 4671 0.958 251 BB I3-BORL Florida VC 30"sq 28.8 clayey sand sand 4475 4008 1.117 252 BB19-BORa Florida VC 30"sq 27.13 sand sand 5169 4155 1.244 253 BB19-BORb Florida VC 30"sq 27.13 sand sand 5169 4666 1.108 254 BB19-BORL Florida VC 30"sq 27.19 sand sand 5169 6512 0.794 256 BB24-BOR1a Florida VC 30"sq 24.48 sand clay 4955 7517 0.659 257 BB24-BORIb Florida VC 30"sq 24.48 sand clay 4955 7571 0.654 258 BB24-BOR2a Florida VC 30"sq 24.63 sand clay 4955 8420 0.588 259 I31324-BOR2b Florida VC 30"sq 24.63 sand clay 4955 7873 0.629 260 BB24-BORL Florida VC 30"sq 24.69 sand clay 4955 6241 0.794 261 BB29-BOR Florida VC 30"sq 23.90 -sand sand 5053 5458 0.926 262 BB29-BORL Florida VC 30"sq 23.96 sand sand 5053 5115 0.988

PAGE 283

260 Table C-15 (cont.) 263 ABF6-BOR Florida PSC 24" sq17.54 si/clayey sandclayey sand3345 1677 1.995 264 ABF6-BORL Florida PSC 24" sq17.84 s i/clayey sandclayey sand3345 3474 0.963 265 ABG13-BORL Florida PSC 24" sq14.08 clayey sand limestone 4742 4826 0.983 266 ABH2-BOR Florida PSC 24" sq10.9 silt/silty claylimestone 2518 3594 0.701 267 ABH2-BORL Florida PSC 24" sq10.96 s ilt/silty claylimestone 2518 4092 0.615 375 UFSSIA BOR Florida PSC 24" sq15 cl-si-sand silty clay 3496 5427 0.644 376 UFSSIB BOR Florida PSC 20" sq14.42 cl-si-sand silty clay 2611 3554 0.735 377 UFSS I O BOR Florida PSC 24" sq8. 5 sa-si-clay silty clay 5107 6228 0.820 378 UFSS13B BOR Florida PSC 24" sq8. 2 sa-si-clay silty clay 2771 4226 0.656 379 BIT20 BOR Florida PSC 20" sq 14.08 silty sand sand 2593 2108 1.230 380 BIT21 BOR Florida PSC 20" sq11.09 cl-si-sand silty sand 1637 1606 1.019 383 HFLS4L BOR Florida PSC 30" sq22.4 cl-silimestonesand limerock 3354 4070 0.824 384 RBA30 BOR Florida PSC 30" sq16.28 silty sand silty sand 4039 3692 1.094 385 RBB30W BOR Florida PSC 30" sq13.35 silty sand silty sand 3461 3225 1.073 386 CC6 BOR Florida PSC 18" sq16 .18 silty sand sand 1388 1423 0.975 387 CC7 BOR Florida PSC 14" sq23.23 cl-si-sand silty sand 1770 1810 0.978 388 CC14 BOR Florida PSC 14" sq21.18 cl-si-sand silty sand 1601 1890 0.847 N 85 Average 1.243 SD 0.475 COV 0.382 =2.33 0.589 =3.0 0.442 Table C-16 Kenner, LA CAPWAP (BOR) Data No. Pile-Case Number Location Pile Type Penetr Depth (m) Soil Type Davisson's Criteria (kN) CAPWAP TEPWAP (kN) Rdavisson Rcapwap Side Tip 292 LB3-BOR1 Kenner, LA PSC 24" sq 24.99 clay Sand 1842 912 2.020 293 LB3-BOR2 Kenner, LA PSC 24" sq 24.99 clay Sand 1842 1534 1.201 294 LB3-BOR3 Kenner, LA PSC 24" sq 24.99 clay Sand 1842 1677 1.098 296 LB4-BOR1 Kenner, LA PSC 30" sq 25.21 clay Sand 2273 887 2.563 297 LB4-BOR2 Kenner, LA PSC 30" sq 25.27 clay Sand 2273 1299 1.750 298 LB4-BOR3 Kenner, LA PSC 30" sq 25.3 clay Sand 2273 1521 1.494 299 LB4-BOR4 Kenner, LA PSC 30" sq 25.3 clay Sand 2273 1603 1.418 301 LB5-BOR1 Kenner, LA PSC 30" sq 24.99 clay Sand 952 302 LB5-BOR2 Kenner, LA PSC 30" sq 24.99 clay Sand 1402 303 LB5-BOR3 Kenner, LA PSC 30" sq 25.3 clay Sand 1591 304 LB5-BOR4 Kenner, LA PSC 30" sq 25.3 clay Sand 1752 306 LB6-BOR1 Kenner, LA PSC 36" cyl24.69 clay Sand 2411 883 2.730 307 LB6-BOR2 Kenner, LA PSC 36" cyl24.69 clay Sand 2411 1322 1.824 308 LB6-BOR3 Kenner, LA PSC 36" cyl24.99 clay Sand 2411 1767 1.364 309 LB6-BOR4 Kenner, LA PSC 36" cyl24.99 clay Sand 2411 2300 1.048 311 LB7-BOR1 Kenner, LA PSC 36" cyl24.69 clay Sand 2402 875 2.745

PAGE 284

261 Table C-16 (cont.) 312 LB7-BOR2 Kenner, LA PSC 36" cyl24.69 clay Sand 2402 1279 1.878 313 LB7-BOR3 Kenner, LA PSC 36" cyl24.69 clay Sand 2402 1891 1.270 314 LB7-BOR4 Kenner, LA PSC 36" cyl24.69 clay Sand 2402 2260 1.063 N 15 Average 1.698 SD 0.592 COV 0.349 =2.33 0.863 =3.0 0.659 Table C-17 Ontario CAPWAP (BOR) Data No. Pile-Case Number Refer. No. Location Pile Type Depth (m) Soil Type Davisson's Criteria (kN) CAPWAP TEPWAP (kN) Rdavisson Rcapwap Side Tip 190 33P1-BOR Site P Ontario HP 12x74 34 .87cl-sa-siltsilty sand3559 3180 1.119 191 33P1-EOR Site P Ontario HP 12x74 34 .87cl-sa-siltsilty sand3559 2891 1.231 193 33P2-BOR Site P Ontario CP 12.75" 32 .67cl-sa-siltsilty sand2180 1579 1.381 194 33P2-EOR Site P Ontario CP 12.75" 32.67cl-sa-siltsilty sand2180 1784 1.222 198 TRD22-BOR Site R Ontario HP 12x74 6.13 sand till 1575 1308 1.204 200 TRE22-BOR Site R Ontario HP 12x74 7.83 sand rock 2473 2740 0.903 202 TRP5X-BOR Site R Ontario HP 12x53 7.68 sand rock 1824 1757 1.038 203 TR131-BOR Site R Ontario CP 7.063" NA sand rock 623 738 0.844 N 8 Average 1.118 SD 0.180 COV 0.161 =2.33 0.809 =3.0 0.675 Table C-18 S.Carolina CAPWAP (BOR) Data No Pile-Case Number Location Pile Type Penetr Depth (m) Soil Type Davisson's Criteria (kN) CAPWAP TEPWAP (kN) Rdavisson Rcapwap Side Tip 269 BC79-BORL S.Ca rolina PSC 24" oct23.5 si-clsand calcar sand 2277 2447 0.931 271 BC64-BORL S.Ca rolina PSC 24" oct18.62 si-cl-sa nd calcar sand 5071 5004 1.013 279 MB1-BOR S. Carolina PSC 16"sq 19.2 sand silty sand 3590 2326 1.543 280 MB2-BOR S. Carolina HP14x89 20.12 silty sand calcar. silt 3990 2362 1.689 281 MB3-BOR S. Carolina OEP 16" 20.12 silty sand calcar. silt 4146 2540 1.632 283 SI-BOR S. Carolina OEP 24" 24.84 clayey sandsandy silt 2651 2687 0.987 285 S2-BOR S. Carolina HP14x73 23.77 clayey sandsa ndy silt 1415 1366 1.036 331 DWI-BOR1 S. Carolina PSC 24" sq27.46 silty clay silty clay 4742 4515 1.050 332 DW 1-BOR2 S. Carolina PSC 24" sq27 .52 silty clay silty clay 4742 5178 0.916 333 DW2-BORI S. Carolina HP 14X73 27.46 si-sa-clay silty clay 2753 2798 0.984 334 DW2-BOR2 S. Carolina HP14X73 27.52 si-sa-clay silty clay 2753 3025 0.910

PAGE 285

262 Table C-18 (cont.) 335 DS1-BORI S. Carolina PSC 12" sq26 .82 cl-si-sand calcar sand 1601 1214 1.319 336 DS1-BOR2 S. Carolina PSC 12" sq26 .85 cl-si-sand calcar sand 1601 1535 1.043 N 13 Average 1.158 SD 0.285 COV 0.246 =2.33 0.703 =3.0 0.565 Table C-19 Wisconsin CAPWAP (BOR) Data No. Pile-Case Number Location Pile Type Depth (m) Soil Type Davisson's Criteria (kN) CAPWAP TEPWAP (kN) Rdavisson Rcapwap Side Tip 208 CHAT-BOR1 Wisconsin CEP 12.75"37.52 sa-si clay silty sand 2909 2068 1.407 209 CHA1-BOR2 Wisconsin CE P 12.75"37.52sa-si clay s ilty sand 2909 2304 1.263 212 CHB2-BOR1 Wisconsin HP12x63 47.34sa-si clay silty sand 1343 1201 1.118 213 CHB2-BOR3 Wisconsin HP12x63 47.4 sa-si clay s ilty sand 1343 1512 0.888 214 CHB2-BOR4 Wisconsin HP12x63 47.43sa-si clay silty sand 1343 2002 0.671 215 CHB2-BOR5a Wisconsin HP12x63 47.46sa-si clay s ilty sand 1343 2291 0.586 216 CHB2-BOR5b Wisconsin HP 12x63 47.46sa-si clay silty sand 1343 2126 0.632 218 CHB3-BOR1 Wisconsin HP12x63 43.31sa-si clay silty sand 890 1045 0.852 219 CHB3-BOR2 Wisconsin HP12x63 43.43sa -si clay silty sand 890 979 0.909 220 CHB3-BOR3 Wisconsin HP12x63 43.53sa-si clay silty sand 890 1490 0.597 222 CHC3-BOR Wisconsin CEP14" 47.3 sa-si clay silty sand 836 223 CHC3-BORL Wisconsin CEP14" 47.34 sa-si clay silty sand 836 1735 0.482 225 CH4-BOR Wisconsin CEP9.63" 43 .43silty clay 1601 1512 1.059 227 CH39-BOR Wisconsin CEP9.63 43.28 silty clay silty clay 2936 2046 1.435 228 CH39-BORL Wisconsin CEP9.63" 43.37silty clay s ilty clay 2936 2558 1.148 230 CH6-5B-BOR Wisconsin CEP9.63" 43.89silty clay s ilty sand 1673 1779 0.940 232 CH95B-BOR Wisconsin CEP9.63" 42.37silty clay sa nd & grvl2473 2358 1.049 233 CH256-BOR3 Wisconsin CEP9.63" 42.67si-sa clay si-sa & grvl2651 2224 1.192 234 CH351-BOR2 Wisconsin CEP9.63" 47.55si-sa clay si-sa & grvl2669 2358 1.132 N 18 Average 0.964 SD 0.286 COV 0.296 =2.33 0.547 =3.0 0.429 Table C-20 Florida CAPWAP (EOD) Data No. Pile-Case Number Location Pile Type Depth (m) Soil Type Davisson's Criteria (kN) CAPWAP TEPWAP (kN) Rdavisson Rcapwap Side Tip 78 WC3-EOD Florida PSC24"sq8.32 Is.-d.sand dense 2713 2264 1.198 81 WC6-EOD Florida PSC24"sq8.63 Is.-dsand dense 2015 2002 1.006 105 ST1-EOD Florida PSC 18"sq13.41 carb sand 1530 2246 0.681

PAGE 286

263 Table C-20 (cont.) 106 ST2-EOD Florida PSC 18"sq12.19 carb sand 2269 2740 0.828 140 A3-EOD2 Florida VC 24"sq 27.52clayey sand sand 4261 1637 2.603 147 A25-EOD Florida VC 24"sq 16.79clayey sand sand 3180 2042 1.557 151 AI6-EOD Florida PSC18"sq18.47sandy clay sand 1401 996 1.407 154 A41-EOD Florida VC 24"sq 15.85clay sand 2331 1917 1.216 157 A101-EOD Florida VC 24"sq 18.84clay clayey sand 3612 2300 1.570 160 A133-EOD Florida VC 24"sq 31.67clayey sand sandy clay 3594 1383 2.599 162 A145-EOD Florida VC 24"sq 31.36clayey sand sand 4341 1570 2.765 185 CB26-EOD Florida PSC24"sq19.05clayey sand sand 4270 2171 1.967 239 PO19-EOD Florida PSC18"sq5.24 sand dense sand 1023 1090 0.939 246 BB13-EOD Florida VC 30"sq 28.29clayey sand sand 4475 3114 1.437 255 BB24-EOD Florida VC 30"sq 24.44sand clay 4955 5783 0.857 381 HFLS3 EOD Florida PSC 30" sq12.07 sa-si-clay sandy clay 7073 5787 1.222 382 HFLS4L EOD Florida PSC 30" sq22.4 cl-si-limestonesand limerock 3354 3136 1.070 389 49SB37 EOD Florida PSC 30" sq7.13 sandy clay Silty limestone 5058 4559 1.109 N 18 Average 1.503 SD 0.650 COV 0.433 =2.33 0.638 =3.0 0.467 Table C-21 Massachusetts CAPWAP(EOD) Data No. Pile-Case Number Location Pile Type Depth (m) Soil Type Davisson's Criteria (kN) CAPWAP TEPWAP (kN) Rdavisson Rcapwap Side Tip 115 GZZ5-EOD Boston MA CEP 14" 26.52till-clay till 2064 952 2.168 116 GZO5-EOD Boston MA CEP 14" 16.46till-clay till 2135 912 2.341 117 GZCC5-EOD Boston MA CEP 14" 24.38till-clay till 2002 2189 0.915 118 GZL2-EOD Boston MA CEP 14" 25.3 till-clay till 2847 1188 2.396 119 GZP14-EOD Boston MA CEP 14" 18.44till-clay till 1735 1357 1.279 120 GZP11-EOD Boston MA CEP 14" 17.22till-clay till 1112 1063 1.046 121 GZP12-EOD Boston MA CEP 14" 21.03till-clay till 2224 2313 0.962 315 DI221-EOD Massachusetts PSC 14" 19.2 sa-si-clayfine sand & silt1477 317 TW488-EOD Massachusetts PSC 14" 23.16 stiff clay stiff clay 1423 365 3.899 319 NBTP2-EOD Massachusetts HP12X743 4.14si-sa-clayglacial till 1806 1352 1.336 322 NBTP3-EOD Massachusetts HP12X7 433.07si-sa-claysilty 2126 1401 1.517 325 NBTP5-EOD Massachusetts CEP12.75"33 .83si-sa-clayglacial till 1632 1423 1.147 N 11 Average 1.728 SD 0.904 COV 0.523 =2.33 0.602 =3.0 0.419

PAGE 287

264 Table C-22 Oakland, CA CAPWAP (EOD) Data No. Pile-Case Number Location Pile Type Depth (m) Soil Type Davisson's Criteria (kN) CAPWAP TEPWAP (kN) Rdavisson Rcapwap Side Tip 356 OD1J-EOD Oakland, CA OEP 24"8.47 s ilty sandsilty clayey sand7722 3496 2.209 357 OD2P-EOD Oakland, CA OEP 24"12.19s ilty sandsilty sandy clay3047 1557 1.957 359 OD2T-EOD Oakland, CA CEP 24"10.67silty sandsilty sand & clay3616 3634 0.995 360 OD3H-EOD Oakland, CA OEP 42"30.63stiff clay clay w/ sa-si-gr 4639 1441 3.219 361 OD4L-EOD Oakland, CA CEP 24"19.51sa ndy claysilty sandy clay4399 2242 1.962 362 OD4P-EOD Oakland, CA CEP 24"17.07s ilty clay silty sandy clay3087 1214 2.543 364 OD4T-EOD Oakland, CA CEP 24"18.29sa ndy claysilty sandy clay3229 1339 2.412 366 OD4W-EOD Oakland, CA CEP 24"18.29sa ndy claysilty sandy clay3937 1766 2.229 N 8 Average 2.191 SD 0.629 COV 0.287 =2.33 1.265 =3.0 0.997 Table C-23 Ontario CAPWAP (EOD) Data No. Pile-Case Number Location Pile Type Depth (m) Soil Type Davisson's Criteria (kN) CAPWAP TEPWAP (kN) Rdavisson Rcapwap Side Tip 189 33P1-EOD Ontario HP 12x74 34.87 cl-sa-silt silty sand3559 1953 1.822 192 33P2-EOD Ontario CP 12.75" 32 .67 cl-sa-silt silty sand2180 1290 1.690 195 33P4-EOD Ontario PSC 12"sq 16 .52 cl-sa-silt cl-silt-till2073 1779 1.165 196 33P5-EOD Ontario #14 Timber8.66 cl-sa-silt cl-silt-till730 636 1.148 197 TRD22-EOD Ontario HP 12x74 6.13 sand till 1575 1922 0.819 199 TRE22-EOD Ontario HP 12x74 7.83 sand rock 2473 2558 0.967 201 TRP5X-EOD Ontario HP 12x53 7.68 sand rock 1824 2153 0.847 N 7 Average 1.208 SD 0.399 COV 0.330 =2.33 0.639 =3.0 0.493

PAGE 288

265 Table C-24 Pgh. PA CAPWAP (EOD) Data No. Pile-Case Number Location Pile Type Depth (m) Soil Type Davisson's Criteria (kN) CAPWAP TEPWAP (kN) Rdavisson Rcapwap Side Tip 128 GF19-EOD Pgh. PA HP1Ox4215.09grvl-snd-sltshale 1468 1770 0.829 129 GF110-EOD Pgh. PA HP12x74 15.15grvl-snd-sltshale 2224 2033 1.094 130 GF222-EOD Pgh. PA HP12x74 18.62grvl-snd-sltshale 2580 2277 1.133 131 GF224-EOD Pgh. PA Monotube9.02 grvl-snd-sltgrvl-snd-slt 1864 132 GF312-EOD Pgh. PA HP12x74 8.6 snd-grvl-shlshale 1512 1802 0.839 133 GF313-EOD Pgh. PA HP10x57 9.6 snd-grvl-shlclaystone 1486 1984 0.749 134 GF412-EOD Pgh. PA HP12x74 10.24grvl-snd-sltclaystone 1068 2024 0.528 135 GF413-EOD Pgh. PA HP10x57 10.55grvl-snd-sltclaystone 1334 1904 0.701 136 GF414-EOD Pgh. PA HPIOx57 10.58grvl-snd-sltclaystone 1601 2331 0.687 137 GF415-EOD Pgh. PA HP12x74 10.39grvl-snd-sltclaystone 2046 2495 0.820 N 9 Average 0.820 SD 0.192 COV 0.235 =2.33 0.524 =3.0 0.423 Table C-25 Wisconsin CAPWAP (EOD) Data No. Pile-Case Number Location Pile Type Depth (m) Soil Type Davisson's Criteria (kN) CAPWAP TEPWAP (kN) Rdavisson Rcapwap Side Tip 207 CHAT-EOD Wisconsin CEP 12.75"37.49 sa-si clay silty sand 2909 1735 1.677 210 CHA4-EOD Wisconsin CE P 12.75"35.66 sa-si clay s ilty sand 2251 1205 1.868 211 CHB2-EOD Wisconsin HP 12x63 47.34 sa-si clay s ilty sand 1343 489 2.746 217 CHB3-EOD Wisconsin HP1 2x63 43.31 sa-si clay silty sand 890 467 1.906 221 CHC3-EOD Wisconsin CEP14" 47.3 sa -si clay silty sand 836 489 1.710 224 CH4-EOD Wisconsin CE P9.63" 43.43 silty clay 1601 667 2.400 226 CH39-EOD Wisconsin CE P9.63" 43.28 silty clay s ilty clay 2936 832 3.529 229 CH6-5B-EOD Wisconsin CEP9.63" 43.89 silty clay silty sand 1673 231 CH95B-EOD Wisconsin CE P9.63" 42.37 silty clay sa nd & grvl2473 983 2.516 N 8 Average 2.294 SD 0.637 COV 0.278 =2.33 1.349 =3.0 1.068

PAGE 289

APPENDIX D Calibration Resistance Factor by Using FOSM for Driven Pile using Static Analysis

PAGE 290

266 Table D-1a Calibration Resistance Factor for Driven Pile in Cohesionless Soil LOCATION Davisson NordlundR R DavissonR R Davisson MeyerhofR R Davisson Schmertmann SPTR R SURFRIDER CONDOMINIUM-FL 0.93 1.11 0.96 0.75 KARIDAS CONDOMINIUM #2-FL 0.79 0.66 0.15 0.48 BEACHES OF LONGBOAT-FL 2.54 2.42 0.4 1.54 VIENTA CONDOMINIUM-FL 1.64 1.68 0.19 0.68 ARVIDA HOTEL-FL 0.93 0.95 0.32 0.8 VERANDA HOTEL, SARASOTA-FL 1.75 1.83 0.23 0.9 LONGBOAT COVE, SARASOTA-FL 1.14 1.18 0.19 0.58 I-95 WEST PALM BEACH #1-FL 1.11 1.45 0.88 2.34 I-95 WEST PALM BEACH #2-FL 1.08 1.43 0.78 2.05 BLOUNT ISLAND SITE 215-FL 1.01 0.95 0.7 1.27 BLOUNT ISLAND SITE 316-FL 1.68 2.56 1.43 2.06 SIESTA KEY SARASOTA-FL 2.01 2.06 0.27 0.9 ST. JOHN'S RIVER (ASCE)-3B-FL 0.61 0.79 0.26 0.77 ST. JOHN'S RIVER (ASCE) 3C-FL 1.06 1.4 0.65 1.36 ST. AUGUSTINE (ASCE) 4A-F L 1.95 1.68 0.94 1.69 BLOUNT ISLAND TERM. B-20-FL 0.6 0.78 0.2 0.86 SARASOTA MEM. HOSPITAL-FL 1.28 1.12 1.37 0.93 PORT ORANGE BENT 2 PILE 6-FL 0.75 1.09 0.53 1.08 BLOUNT ISLAND TERM. B-21-FL 0.72 0.81 0.5 0.83 CAPE CANAVERAL T-6-FL 0.69 0.55 0.29 0.7 WEST BAY BRIDGE TP15-OH 0.42 0.6 1.17 1.42 ESCAMBIA RIVER BENT5-FL 0.48 0.69 1.17 1.68 ROOSEVELT BRIDGE A-FL 0.77 0.65 0.56 1.52 ROOSEVELT BRIDGE B-30-W-FL 0.92 0.67 0.82 1.89 BUCKMAN BRIDGE TS-19-FL 0.48 0.7 0.5 1.16 MARCO ISLAND TP2-FL 1.59 1.51 0.59 1.52 118 GRL Piles Bailey Fork, Bailey, TN 0.82 0.91 0.23 0.78 99 GRL Piles I-165/Water St Int, AL 0.79 1.01 0.52 1.09 99 GRL Piles I-165/Water St Int, AL 0.2 0.25 0.13 0.37 99 GRL Piles I-165/Water St Int, AL 1.21 1.53 1.12 2.43 99 GRL Piles I-165/Water St Int, AL 0.23 0.29 0.13 0.35 99 GRL Piles I-165/Water St Int, AL 0.47 0.66 0.59 0.96 Axial Pile-Mission Avenue, Viaduct, CA 1.93 2.11 1.04 1.63 LOAD TRANSFER #35-3, OK 1.61 1.62 0.98 2.79 Site 35, Pile 10, Reinforced Concrete 1.42 1.5 1.82 2.32 Jacksonville Industr ial zone # 1-FL 0.71 0.92 0. 48 0.88 Jacksonville Indust rial zone # 1-FL Jacksonville Industrial # 2-FL 0.84 1.19 0.61 0.94 Jacksonville Industrial # 2-FL Number of Cases 37 37 37 37 Average 1.06 1.17 0.64 1.25 STD deviation 0.55 0.56 0.42 0.62 COV 0.52 0.48 0.65 0.49 =2.33 0.37 0.45 0.17 0.46 =3.0 0.26 0.32 0.11 0.33

PAGE 291

267 Table D-1b Calibration Resistance Factor for Driven Pile in Cohesionless Soil Using Florida Data Only LOCATION Davisson NordlundR R DavissonR R Davisson MeyerhofR R Davisson Schmertmann SPTR R SURFRIDER CONDOMINIUM-FL 0.93 1.11 0.96 0.75 KARIDAS CONDOMINIUM #2-FL 0.79 0.66 0.15 0.48 BEACHES OF LONGBOAT-FL 2.54 2.42 0.4 1.54 VIENTA CONDOMINIUM-FL 1.64 1.68 0.19 0.68 ARVIDA HOTEL-FL 0.93 0.95 0.32 0.8 VERANDA HOTEL, SARASOTA-FL 1.75 1.83 0.23 0.9 LONGBOAT COVE, SARASOTA-FL 1.14 1.18 0.19 0.58 I-95 WEST PALM BEACH #1-FL 1.11 1.45 0.88 2.34 I-95 WEST PALM BEACH #2-FL 1.08 1.43 0.78 2.05 BLOUNT ISLAND SITE 215-FL 1.01 0.95 0.7 1.27 BLOUNT ISLAND SITE 316-FL 1.68 2.56 1.43 2.06 SIESTA KEY SARASOTA-FL 2.01 2.06 0.27 0.9 ST. JOHN'S RIVER (ASCE)-3B-FL 0.61 0.79 0.26 0.77 ST. JOHN'S RIVER (ASCE) 3C-FL 1.06 1.4 0.65 1.36 ST. AUGUSTINE (ASCE) 4A-F L 1.95 1.68 0.94 1.69 BLOUNT ISLAND TERM. B-20-FL 0.6 0.78 0.2 0.86 SARASOTA MEM. HOSPITAL-FL 1.28 1.12 1.37 0.93 PORT ORANGE BENT 2 PILE 6-FL 0.75 1.09 0.53 1.08 BLOUNT ISLAND TERM. B-21-FL 0.72 0.81 0.5 0.83 CAPE CANAVERAL T-6-FL 0.69 0.55 0.29 0.7 ESCAMBIA RIVER BENT5-FL 0.48 0.69 1.17 1.68 ROOSEVELT BRIDGE A-FL 0.77 0.65 0.56 1.52 ROOSEVELT BRIDGE B-30-W-FL 0.92 0.67 0.82 1.89 BUCKMAN BRIDGE TS-19-FL 0.48 0.7 0.5 1.16 MARCO ISLAND TP2-FL 1.59 1.51 0.59 1.52 Jacksonville Industr ial zone # 1-FL 0.71 0.92 0. 48 0.88 Jacksonville Indust rial zone # 1-FL Jacksonville Industrial # 2-FL 0.84 1.19 0.61 0.94 Jacksonville Industrial # 2-FL N 27 27 27 27 Average 1.113 1.216 0.591 1.191 STD deviation 0.525 0.545 0.358 0.508 COV 0.471 0.448 0.606 0.427 =2.33 0.43 0.50 0.17 0.51 =3.0 0.31 0.36 0.12 0.38

PAGE 292

268 Table D-2a Calibration Resistance Factor for Driven Pile in Cohesive Soil LOCATION Davisson API revisedR R Davisson TomlinsonR R DavissonR R ACOSTA BRIDGE PEIR H2-FL 1.57 2.18 1.35 BRIDGE SITE 3046A, Hinds, MS 0.77 1.35 0.55 Dist. 08 P 455-03-04, 455-05-03 TP33, 0.52 0.4 0.55 Dist. 61 P 50-05-15 TP1, Ascension, LA 0.86 0.77 0.83 Dist. 61 P 742-01-39, East Baton, LA 0.64 0.64 0.59 Axial Pile-Mission Avenue, Viaduct, CA 1.58 1.65 0.97 BRIDGE SITE 1067, HINDS, MS 0.94 0.92 0.59 BRIDGE SITE 1068, HINDS, MS 0.87 1.64 0.61 BRIDGE SITE 1072A, HINDS, MS 0.84 0.85 0.59 BRIDGE SITE 3024, HINDS, MS 0.55 0.59 0.36 Dist. 02 P 7-03-40 TP5, St. Charles LA 0.73 0.89 0.95 Dist. 02 P 855-14-7 and P 855-14-5 LA 1.26 1.47 1.01 Dist. 03 P 455-02-04 TP2, St Landry LA 0.8 0.52 0.73 065-90-0024_and_855-04-0046_ TP5-LA 1.21 1.08 1.24 424-05-0081_Bayou_Boeuf_West_; TP1-LA 0.75 0.86 0.73 424-06-0005_Bayou_Boeuf_East_ F1-LA 0.92 0.57 0.95 424-06-0005_Bayou_Boeuf_East_ F2;-LA 0.94 0.63 0.99 424-06-0005_Bayou_Boeuf_East_ F5-LA 0.61 0.38 0.67 424-06-0005_Bayou_Boeuf_East_ F6-LA 0.57 0.4 0.75 N 19 19 19 Average 0.89 0.94 0.79 Standard deviation 0.31 0.50 0.25 COV 0.35 0.54 0.32 =2.33 0.45 0.32 0.30 =3.0 0.34 0.22 0.21

PAGE 293

269 Table D-2b Calibration Resistance Factor for Driven Pile in Cohesive Soil Using Louisiana Data Only LOCATION Davisson API revisedR R Davisson TomlinsonR R DavissonR R Dist. 08 P 455-03-04, 455-05-03 TP33-LA 0.52 0.4 0.55 Dist. 61 P 50-05-15 TP1, Ascension-LA 0.86 0.77 0.83 Dist. 61 P 742-01-39, East Baton-LA 0.64 0.64 0.59 Dist. 02 P 7-03-40 TP5, St. Charles -LA 0.73 0.89 0.95 Dist. 02 P 855-14-7 and P 855-14-5-LA 1.26 1.47 1.01 Dist. 03 P 455-02-04 TP2, St Landry-LA 0.8 0.52 0.73 065-90-0024_and_855-04-0046_ TP5-LA 1.21 1.08 1.24 424-05-0081_Bayou_Boeuf_West_; TP1-LA 0.75 0.86 0.73 424-06-0005_Bayou_Boeuf_East_ F1-LA 0.92 0.57 0.95 424-06-0005_Bayou_Boeuf_East_ F2-LA 0.94 0.63 0.99 424-06-0005_Bayou_Boeuf_East_ F5-LA 0.61 0.38 0.67 424-06-0005_Bayou_Boeuf_East_ F6-LA 0.57 0.4 0.75 N 12 12 12 Average 0.818 0.718 0.833 Standard deviation 0.236 0.322 0.201 COV 0.289 0.449 0.241 =2.33 0.47 0.29 0.53 =3.0 0.37 0.21 0.42

PAGE 294

270 Table D-3a Calibration Resistance Factor for Driven Pile in Mixed Soil LOCATION Davisson Tomlinson Nordlund ThurmanR R Davisson API revised Nordlund ThurmanR R Davisson ThurmanR R Davisson Schmertmann SPTR R Davisson Schmertmann CPTR R APP. BAY BRIDGE BENT 101 0.97 1.11 1.03 3.58 APP. BAY BRIDGE BENT 133 1.12 0.72 0.62 2.07 I-275 34th ST. PINELLAS-FL 0.5 0.55 0.71 0.88 DeSOTA CONDOMINIUM MS.-FL 1.17 1.22 1.16 WASHINGTON CONDOMINIUM 0.39 0.46 0.49 SUNSHINE SKYWAY SITE 1 A-FL 1.05 SUNSHINE SKYWAY SITE 1 B-FL 0.99 SUNSHINE SKYWAY SITE 3-FL 1.51 SUNSHINE SKYWAY SITE 10-FL 1.17 0.95 0.81 1.88 SUNSHINE SKYWAY SITE 13 A-FL 2.35 FLORENCE/MARION 3 ASD 1.56 1.88 1.71 FLORENCE / MARION 3 BSD 0.46 0.63 0.6 1.2 FLORENCE / MARION 3 CSD 0.45 0.64 0.66 1 NORTHEAST VILLA MIRADA 6-FL 1.22 1.24 1.71 SEAWAY HOTELS, SAND KEY-FL 2.68 HOWARD FRANKLAND / LS3-FL 0.53 0.99 0.85 2.23 CHOCTAWHATCHEE P-5-FL 0.85 0.99 2.76 CHOCTAWHATCHEE P-11-FL 1.01 1.4 2.49 CHOCTAWHATCHEE P-17-FL 1.08 1.42 3.13 CHOCTAWHATCHEE P-23-FL 0.43 0.63 0.91 CHOCTAWHATCHEE P-29-FL 0.58 0.86 1.38 CHOCTAWHATCHEE P-35-FL 0.92 1.43 2.17 HOWARD FRANK. / LS4 SHORT 3.33 3.87 5.21 CHOCTAWHATCHEE P-41-FL 1.35 1.32 1.34 3.52 CHOCTAWHATCHEE FSB-26-FL 0.38 0.55 1.1 CAPE CANAVERAL T-7-FL 0.62 0.67 0.96 CAPE CANAVERAL T-14-FL 0.9 1.07 1.34 WHITE CITY BRIDGE TP3-PA 2.56 2.82 3.66 HOWARD FRANK. / LS4 LONG-FL? 0.5 WHITE CITY BRIDGE TP6-PA 1.53 1.69 1.85 ACOSTA BRIDGE PEIR F6-FL 0.88 1.01 1.49 ACOSTA BRIDGE PEIR G13_FL 1.83 BUCKMAN BRIDGE TS-13-FL 0.42 0.47 1.19 BUCKMAN BRIDGE TS-24-FL 0.51 0.52 0.8 1.07 BUCKMAN BRIDGE TS-29-FL 0.47 0.61 1.16 APPALACHICOLA RIVER PIER14-FL 0.76 1.01 1.89 APPALACHICOLA RIVER PIER25-FL 1.15 1.44 2.81 MARINA BAY CLUB TP7-FL 1.85 APPALACHICOLA BAY BENT 41-FL 1.51 1.65 3.99 ST. MARISSA CONDO. TP8 & Pile 20-FL 1.52

PAGE 295

271 Table D-3a (cont.) GEORGIA/FLORIDA BOUNDARY-FL 0.76 JACKSONVILLE SITE B-FL 1.83 JACKSONVILLE SITE D-FL 1.4 SAINT JOHN RIVER SITE F-FL 1.09 LONGBOAT KEY SARASOTA-FL 0.51 0.75 0.7 0.88 SUNSHINE SKYWAY SITE 13 B-FL 1.37 116 GRL Piles-164/Cimaron Rvr Br, OK 0.47 0.76 0.58 1.01 116 GRL Piles-164/Cimaron Rvr Br, OK 0.75 1.35 1.06 1.82 119 GRL Piles-White City Bridge, FL 1.32 1.39 2.51 119 GRL Piles-White City Bridge, FL 1.26 1.53 2.32 123 GRL Piles-Dawhoo River Bridge, SC 1.28 1.27 0.92 1.59 123 GRL Piles-Dawhoo River Bridge, SC 0.35 0.35 0.29 0.63 124 GRL Piles-Socastee W. Way Br, SC 0.85 0.92 1.41 125 GRL Piles-Doughty St Prk Gar, SC 1.07 0.84 0.76 1.87 126 GRL Piles-Battery Creek, SC 0.82 1.11 1.73 126 GRL Piles-Battery Creek, SC 0.87 204 GRL Piles-C&D Canal, Pier 17, DE 0.64 0.79 1.33 Axial Pile-Mission Avenue, Viaduct, CA 1.36 1.47 1.51 1.41 Doheny Park Rd U.C. Sta 451+8 5.5, CA 0.4 0.39 0.51 Luling Bridge; TP2-LA 1.66 0.65 0.65 2.92 Luling Bridge; TP3; Circular void-LA 0.79 0.81 6.2 Luling Bridge; TP4; Circular void-LA 1.72 0.66 0.65 3.42 Luling Bridge; TP5-LA 1.84 0.71 0.69 3.61 Luling Bridge; TP6-LA 1.74 0.71 0.69 3.59 Luling Bridge; TP7-LA 1.8 0.72 0.71 3.76 Orlando International Airport; D22-FL 1.43 1.54 2.31 Site 33, Pile 3, Reinforced Concrete 0.47 0.48 0.67 Site 33, Pile 4, Reinforced Concrete 1.31 1.18 1.47 Ft Myers-FL 1.12 1.27 1.24 1.23 Apalachicola River Bridge Pi er 3-FL 0.76 0.94 1.83 0.86 Apalachicola Bay Bridge – Bent 22-FL 1.55 0.94 0.81 2.3 1.21 Apalachicola Bay Bridge – Bent 16-FL 0.56 0.71 0.98 Port Orange Bent 19-FL 0.87 1.29 1.01 0.28 Choctahatchee Bay, FL3 0.83 1.19 2.79 0.83 Choctahatchee Bay, FL26 2.28 1.91 2.41 6.24 1.69 065-90-0024_and_855-04-0046_ Tp1-LA 0.68 0.66 0.61 0.69 065-90-0024_and_855-04-0046_ Tp2-LA 0.45 0.48 0.39 0.52 065-90-0024_and_855-04-0046_ TP3-LA 0.92 0.81 0.72 0.86 065-90-0024_and_855-04-0046_ TP4-LA 1.02 0.82 0.66 0.94 260-05-0020_Tickfaw_River_; TP1-LA 1.09 1.17 0.94 1.22

PAGE 296

272 Table D-3a (cont.) 262-06-09_Tickfaw_River_ #1; TP1-LA 0.24 0.42 0.55 262-06-09_Tickfaw_River_ #1; TP2-LA 0.21 0.35 0.36 283-09-52_New_Orleans-LA 0.82 0.77 1.26 424-05-0078_Bayou_Boeuf_Main_; TP2-LA 0.74 0.69 1.02 424-05-0078_Bayou_Boeuf_Main_; TP5-LA1.06 1.42 1.11 2 424-05-0081_Bayou_Boeuf_West_; TP2-LA 0.49 0.42 0.59 424-05-0081_Bayou_Boeuf_West_; TP3-LA 0.82 0.72 1.26 424-05-0081_Bayou_Boeuf_West_; TP4-LA0.54 0.71 0.52 0.65 424-05-0087_Bayou_Ramos_ TP1-LA 0.75 0.7 0.73 424-05-0087_Bayou_Ramos_ TP2-LA 0.47 0.68 0.87 424-05-0087_Bayou_Ramos_ TP3-LA 0.43 0.55 0.77 424-05-0087_Bayou_Ramos_ TP4-LA 0.57 0.86 0.76 424-05-0087_Bayou_Ramos_ TP5-LA 0.49 0.47 0.65 424-05-0087_Bayou_Ramos_ TP7-LA 1.28 0.68 0.58 0.79 424-06-0005_Bayou_Boeuf_East_ F3-LA 0.5 0.76 0.57 0.95 424-06-0005_Bayou_Boeuf_East_ F4-LA 0.53 0.72 0.51 0.96 424-07-0009_Gibson_Raceland_ TP1-LA 0.88 0.77 0.72 424-07-0009_Gibson_Raceland_ TP4-LA 0.61 0.56 0.88 450-366-02_Luling_Bridge-LA 0.47 0.48 0.65 855-14-13_Houma-LA 0.57 0.76 0.58 1.18 N 34 85 85 74 32 Average 1.00 0.88 0.93 1.97 0.90 Standard deviation 0.52 0.47 0.55 1.21 0.35 COV 0.52 0.54 0.59 0.61 0.39 =2.33 0.35 0.30 0.28 0.57 0.42 =3.0 0.25 0.21 0.19 0.38 0.31 Table D-3b Calibration Resistance Factor for Driven Pile in Mixed Soil Using Florida Data Only LOCATION Davisson Tomlinson Nordlund ThurmanR R Davisson API revised Nordlund ThurmanR R Davisson ThurmanR R Davisson Schmertmann SPTR R Davisson Schmertmann CPTR R APP. BAY BRIDGE BENT 101 0.97 1.11 1.03 3.58 APP. BAY BRIDGE BENT 133 1.12 0.72 0.62 2.07 I-275 34th ST. PINELLAS-FL 0.5 0.55 0.71 0.88 DeSOTA CONDOMINIUM MS.-FL 1.17 1.22 1.16 WASHINGTON CONDOMINIUM 0.39 0.46 0.49 SUNSHINE SKYWAY SITE 1 A-FL 1.05 SUNSHINE SKYWAY SITE 1 B-FL 0.99 SUNSHINE SKYWAY SITE 3-FL 1.51 SUNSHINE SKYWAY SITE 10-FL 1.17 0.95 0.81 1.88 SUNSHINE SKYWAY SITE 13 A-FL 2.35 FLORENCE/MARION 3 ASD 1.56 1.88 1.71 FLORENCE / MARION 3 BSD 0.46 0.63 0.6 1.2 FLORENCE / MARION 3 CSD 0.45 0.64 0.66 1

PAGE 297

273 Table D-3b (cont.) NORTHEAST VILLA MIRADA – 6-FL 1.22 1.24 1.71 SEAWAY HOTELS, SAND KEY-FL 2.68 HOWARD FRANKLAND / LS3-FL 0.53 0.99 0.85 2.23 CHOCTAWHATCHEE P-5-FL 0.85 0.99 2.76 CHOCTAWHATCHEE P-11-FL 1.01 1.4 2.49 CHOCTAWHATCHEE P-17-FL 1.08 1.42 3.13 CHOCTAWHATCHEE P-23-FL 0.43 0.63 0.91 CHOCTAWHATCHEE P-29-FL 0.58 0.86 1.38 CHOCTAWHATCHEE P-35-FL 0.92 1.43 2.17 HOWARD FRANK. / LS4 SHORT 3.33 3.87 5.21 CHOCTAWHATCHEE P-41-FL 1.35 1.32 1.34 3.52 CHOCTAWHATCHEE FSB-26-FL 0.38 0.55 1.1 CAPE CANAVERAL T-7-FL 0.62 0.67 0.96 CAPE CANAVERAL T-14-FL 0.9 1.07 1.34 HOWARD FRANK. / LS4 LONG-FL? 0.5 ACOSTA BRIDGE PEIR F6-FL 0.88 1.01 1.49 ACOSTA BRIDGE PEIR G13_FL 1.83 BUCKMAN BRIDGE TS-13-FL 0.42 0.47 1.19 BUCKMAN BRIDGE TS-24-FL 0.51 0.52 0.8 1.07 BUCKMAN BRIDGE TS-29-FL 0.47 0.61 1.16 APPALACHICOLA RIVER PIER14-FL 0.76 1.01 1.89 APPALACHICOLA RIVER PIER25-FL 1.15 1.44 2.81 MARINA BAY CLUB TP7-FL 1.85 APPALACHICOLA BAY BENT 41-FL 1.51 1.65 3.99 ST. MARISSA CONDO. TP8 & Pile 20FL 1.52 GEORGIA/FLORIDA BOUNDARY-FL 0.76 JACKSONVILLE SITE B-FL 1.83 JACKSONVILLE SITE D-FL 1.4 SAINT JOHN RIVER SITE F-FL 1.09 LONGBOAT KEY – SARASOTA-FL 0.51 0.75 0.7 0.88 SUNSHINE SKYWAY SITE 13 B-FL 1.37 119 GRL Piles-White City Bridge, FL 1.32 1.39 2.51 119 GRL Piles-White City Bridge, FL 1.26 1.53 2.32 Orlando International Airport; D22-FL 1.43 1.54 2.31 Site 33, Pile 3, Reinforced Concrete 0.47 0.48 0.67 Site 33, Pile 4, Reinforced Concrete 1.31 1.18 1.47 Ft Myers-FL 1.12 1.27 1.24 Apalachicola River Bridge Pi er 3-FL 0.76 0.94 1.83 Apalachicola Bay Bridge Bent 22-FL 1.55 0.94 0.81 2.3 Apalachicola Bay Bridge Bent 16-FL 0.56 0.71 0.98 Port Orange Bent 19-FL 0.87 1.29 1.01 Choctahatchee Bay, FL3 0.83 1.19 2.79 Choctahatchee Bay, FL26 2.28 1.91 2.41 6.24 1.69 N 12 42 42 55 7 Average 0.95 0.97 1.11 1.87 1.01

PAGE 298

274 Table D-3b (cont.) Standard deviation 0.57 0.52 0.61 1.10 0.44 COV 0.60 0.54 0.54 0.59 0.43 =2.33 0.28 0.33 0.37 0.56 0.43 =3.0 0.19 0.23 0.26 0.38 0.32 Table D-3c Calibration Resistance Factor for Driven Pile in Mixed Soil Using Lousiana Data Only LOCATION Davisson Tomlinson Nordlund ThurmanR R Davisson API revised Nordlund ThurmanR R Davisson ThurmanR R Davisson Schmertmann SPTR R Davisson Schmertmann CPTR R Luling Bridge; TP2-LA 1.66 0.65 0.65 2.92 Luling Bridge; TP3; Circular void-LA 0.79 0.81 6.2 Luling Bridge; TP4; Circular void-LA 1.72 0.66 0.65 3.42 Luling Bridge; TP5-LA 1.84 0.71 0.69 3.61 Luling Bridge; TP6-LA 1.74 0.71 0.69 3.59 Luling Bridge; TP7-LA 1.8 0.72 0.71 3.76 065-90-0024_and_855-04-0046_ Tp1-LA 0.68 0.66 0.61 0.69 065-90-0024_and_855-04-0046_ Tp2-LA 0.45 0.48 0.39 0.52 065-90-0024_and_855-04-0046_ TP3-LA 0.92 0.81 0.72 0.86 065-90-0024_and_855-04-0046_ TP4-LA 1.02 0.82 0.66 0.94 260-05-0020_Tickfaw_River_; TP1-LA 1.09 1.17 0.94 1.22 262-06-09_Tickfaw_River_ #1; TP1-LA 0.24 0.42 0.55 262-06-09_Tickfaw_River_ #1; TP2-LA 0.21 0.35 0.36 283-09-52_New_Orleans-LA 0.82 0.77 1.26 424-05-0078_Bayou_Boeuf_Main_; TP2-LA 0.74 0.69 1.02 424-05-0078_Bayou_Boeuf_Main_; TP5-LA 1.06 1.42 1.11 2 424-05-0081_Bayou_Boeuf_West_; TP2-LA 0.49 0.42 0.59 424-05-0081_Bayou_Boeuf_West_; TP3-LA 0.82 0.72 1.26 424-05-0081_Bayou_Boeuf_West_; TP4-LA 0.54 0.71 0.52 0.65 424-05-0087_Bayou_Ramos_ TP1-LA 0.75 0.7 0.73 424-05-0087_Bayou_Ramos_ TP2-LA 0.47 0.68 0.87 424-05-0087_Bayou_Ramos_ TP3-LA 0.43 0.55 0.77 424-05-0087_Bayou_Ramos_ TP4-LA 0.57 0.86 0.76 424-05-0087_Bayou_Ramos_ TP5-LA 0.49 0.47 0.65 424-05-0087_Bayou_Ramos_ TP7-LA 1.28 0.68 0.58 0.79 424-06-0005_Bayou_Boeuf_East_ F3-LA 0.5 0.76 0.57 0.95 424-06-0005_Bayou_Boeuf_East_ F4-LA 0.53 0.72 0.51 0.96 424-07-0009_Gibson_Raceland_ TP1-LA 0.88 0.77 0.72 424-07-0009_Gibson_Raceland_ TP4-LA 0.61 0.56 0.88 450-366-02_Luling_Bridge-LA 0.47 0.48 0.65 855-14-13_Houma-LA 0.57 0.76 0.58 1.18 N 16 31 31 6 25 Average 1.09 0.68 0.64 3.92 0.87 Standard deviation 0.52 0.23 0.16 1.16 0.33 COV 0.48 0.34 0.26 0.30 0.38 =2.33 0.42 0.35 0.39 2.23 0.41 =3.0 0.30 0.27 0.31 1.75 0.31

PAGE 299

APPENDIX E Nominal and Measure Capacity of Driven Pile from Vietnam

PAGE 300

275 Table E-1 Summary driven pile data from North, Central and south of Vietnam Soil Dimention Pile Length No Name of Project Location type Name (mm) (m) NP-C1 32 Hang Trong-Hanoi Hanoi Clay No77 20x20 12 NP-C2 North Plain No22 20x20 12 NP-C3 61 Lac Trung-Hanoi Hanoi Clay No41-A 25x25 22 NP-C4 North Plain No50-B 25x25 36 NP-C5 No181-B 25x25 32 NP-C6 No311-B 25x25 22 NP-C7 No416-B 25x25 22 NP-C8 Sai Dong-Gia Lam-Hanoi Hanoi Clay F-13 25x25 21.8 NP-C9 North Plain B-13 25x25 22.5 NP-C10 B-9 25x25 22 NP-C11 E-5 25x25 22.1 NP-C12 B-1 25x25 21.5 NP-C13 E-1 25x25 21.8 NP-C14 NguPhuc-Kim Thanh Hai Duong Clay No2 25x25 16 NP-C15 Hai Duong North Plain No3 25x25 16 NP-C16 No4 25x25 16 NP-C17 Truong Hoc-Nam Sach Hai Duong Clay TN01 20x20 11 NP-C18 Hai Duong North Plain TN02 20x20 11 NP-C19 Nha Lam Viec-Nam Sach Hai Duong Clay TN01 25x25 12 NP-C20 Hai Duong North Plain TN02 25x25 12 NP-C21 Duong 395 -Hai Duong Hai Duong Clay TN1-VH 30x30 23 NP-C22 North Plain TN1-SAT 30x30 23 NP-C23 16 Cat Bi-HaiPhong HaiPhong Clay No1 30x30 30.2 NM-C24 Nhacong vu Cong An-Lao Cai Lao Cai Clay TN1-011 25x25 10 NM-C25 North TN2-051 25x25 10.8 NM-C26 Mountain TN3-114 25x25 13.6 NM-C27 TN4-172 25x25 12 NM-C28 Viet Tri-VinhPhu VinhPhu Clay TN02 30x30 19.6 NM-C29 North TN03 30x30 17.5 NM-C30 Mountain TN04 30x30 18 NM-C31 TN05 30x30 18.5 NM-C32 TN03B 30x30 19 NM-C33 Vung Dang-QuangNinh QuangNinh Clay N01 25x25 11.5 NM-C34 North N02 25x25 6.5 NM-C35 Mountain N03 25x25 6.2 NM-C36 N04 25x25 9.36 NM-C37 N02 25x25 10 NM-C38 N03 25x25 10 NP-C39 Thinh Long-Nam Dinh Nam Dinh Clay M1PD4 D=45 37.2 NP-C40 North Plain I21PD4 D=45 37.2 NP-C41 I1PD3 D=45 37.2 NP-C42 B40PD4 D=45 37.2 NP-C43 B13PD3 D=45 37.2

PAGE 301

276 Table E-1 (cont.) NP-C44 C23-PD1 40x40 39.2 NP-C45 K2-PD2 40x40 39.1 NP-C46 C42-Tuonggoc 40x40 31 NP-C47 D1-PD5 40x40 31 NP-C48 D38-150 40x40 37 NP-C49 B38-30 40x40 37.1 NP-S1 134 QuanThanh-Hanoi Hanoi Sand TN1 20x20 15 NP-S2 North Plain TN2 20x20 22.3 NP-S3 TN3 20x20 22.6 NP-S4 Nha may panasonic-Hanoi Hanoi Sand TN1 30x30 25 NP-S5 North Plain TN2 30x30 25 NP-S6 TN3 30x30 25 NP-S7 TN4 30x30 25 NP-S8 TN5 30x30 25 NP-S9 TN6 30x30 25 NP-S10 TN7 30x30 25 NP-S11 TN8 30x30 25 NP-S12 TN9 30x30 25 NP-S13 TN10 30x30 25 NP-S14 TN11 30x30 25 NP-S15 TN12 30x30 25 NP-S16 TN13 30x30 25 NP-S17 TN14 30x30 25 NP-S18 TN15 30x30 25 NP-S19 TN16 30x30 25 NP-S20 CT20A-Viet Hung-Hanoi Hanoi Sand No133CT20A1 25x25 25 NP-S21 North Plain No37-CT20A2 25x25 25 NP-S22 No133CT20A4 25x25 25 NP-S23 No66-CT20A 25x25 25 NP-S24 No37-CT20A1 25x25 25 NP-S25 No133CT20A1 25x25 25 NP-S26 No37-CT20A2 25x25 25 NP-S27 No133CT20A2 25x25 25 NP-S28 No37-CT20A3 25x25 25 NP-S29 No133CT20A3 25x25 25 NP-S30 No37-CT20A4 25x25 25 NP-S31 No133CT20A4 25x25 25 NP-S32 CT20B-Viet Hung-Hanoi Hanoi Sand N01 40x40 36 NP-S33 North Plain N91 40x40 36 NP-S34 N164 40x40 36 NP-S35 Yen Thuong-Gia Lam-Hanoi Hanoi Sand No122 25x25 12 NP-S36 North Plain No239 25x25 12 NP-S37 No56 25x25 12 NP-S38 No112 25x25 12

PAGE 302

277 Table E-1 (cont.) NP-S39 No161 25x25 12 NP-S40 Lai Vu-Hai Duong Hai Duong Sand No77 25x25 13 NP-S41 Thanh Dong-Hai Duong Hai Duong Sand No30 25x25 32.5 NP-S42 North Plain No78 25x25 32.6 NP-S43 No80 25x25 33.3 NP-S44 Tran Phu-Hai Duong Hai Duong Sand TN-24 25x25 29 NP-S45 North Plain TN-70 25x25 29 NP-S46 TN-134 25x25 29 NP-S47 Truong congnhankythuat Hung Yen Sand C2-No16 30x30 32.5 NP-S48 Hung Yen North Plain D7-No65 30x30 33 NP-S49 C10-No102 30x30 31.5 NP-S50 D14-No140 30x30 32.4 NP-S51 Tru so lam viec so thuongmai Hai Duong Sand N037 25x25 11.9 NP-S52 Hai Duong North Plain N090 25x25 11.4 NP-S53 N0208 25x25 12.1 NP-S54 N0282 25x25 14.2 NP-M1 My Dinh-TuLiem-hanoi Hanoi Mixed N01-C144 35x35 23.8 NP-M2 North Plain N02-C65 35x35 22.4 NP-M3 81 Tran Hung Dao-Hanoi Hanoi Mixed No248 35x35 21.4 NP-M4 North Plain No129 35x35 21.8 NP-M5 No53 35x35 21.8 NP-M6 299 Duong CauGiay-Hanoi Hanoi Mixed No64 35x35 25 NP-M7 North Plain No185 35x35 26.6 NP-M8 No132 35x35 26.8 NP-M9 No52 35x35 25.2 NP-M10 335 Duong CauGiay-Hanoi Hanoi Mixed TN05-108 35x35 NP-M11 Bo KeHoachDauTu-Hanoi Hanoi Mixed N3-51 30x30 35+2 NP-M12 North Plain N9-92 30x30 35+2 NP-M13 N8-139 30x30 35+2 NP-M14 N2-233 30x30 35+2 NP-M15 N4-558 30x30 35+2 NP-M16 N7-682 30x30 35+2 NP-M17 N5-874 30x30 35+2 NP-M18 Me Tri-TuLiem-Hanoi Hanoi Mixed NT06 25x25 27 NP-M19 North Plain NT05 25x25 27 NP-M20 NT04 25x25 27 NP-M21 NT03 25x25 27 NP-M22 NT02 25x25 27 NP-M23 NT01 25x25 27 NP-M24 DH KienTruc Hanoi Hanoi N01-10F 20x20 12 NP-M25 North Plain N02-7E 20x20 12 NP-M26 CC1-Dich Vong-CauGiay-Hanoi Hanoi Mixed NT1 35x35 25.4 NP-M27 North Plain NT2 35x35 20.4 NP-M28 NT3 35x35 19 NP-M29 N-4 35x35 20 NP-M30 N-5 35x35 20 NP-M31 Nha may dong tau Song Hong Hanoi Mixed A1-5 35x35 25 NP-M32 Hanoi North Plain B1-2 35x35 25 NP-M33 A5-2 35x35 25

PAGE 303

278 Table E-1 (cont.) NP-M34 A10-5 35x35 25 NP-M35 B5-2 35x35 25 NP-M36 B10-2 35x35 25 NP-M37 A1 35x35 21.4 NP-M38 A29 35x35 19 NP-M39 A60 35x35 25.5 NP-M40 A55 35x35 19.5 NP-M41 CT14K-Viet Hung-Hanoi Hanoi Mixed No62 40x40 36.4 NP-M42 North Plain No55 40x40 33.5 NP-M43 No172 40x40 35.6 NP-M44 No336 40x40 32.9 NP-M45 No243 40x40 33.8 NP-M46 Van Mo-HaDong-Hanoi Hanoi Mixed SHC220-D8 25x25 11.6 NP-M47 North Plain SHC480-C11 25x25 12.4 NP-M48 SHC540-C15 25x25 11.75 NP-M49 SHC103-B13 25x25 12 NP-M50 SHC28-E4 25x25 11.5 NP-M51 SHC355-B2 25x25 11.3 NP-M52 SHC410-C6 25x25 11.5 NP-M53 27 Hang Bai Hanoi Hanoi Mixed NT1-HB 25x25 21,8 NP-M54 192B QuanThanh Hanoi Hanoi Mixed 5QT 30x30 21,5 NP-M55 North Plain 7QT 30x30 21 NP-M56 DHXDHanoi Hanoi Mixed NT06 35x35 19 NP-M57 North Plain NT10 35x35 13 NP-M58 VinhPhuc-Hanoi Hanoi Mixed TN1 25x25 15 NP-M59 North Plain TN2 25x25 15 NP-M60 TN2 25x25 15 NP-M61 Sieuthi 7 tangHai Duong Hai Duong Mixed TN01-103 30x30 38.4 NP-M62 North Plain TN2-60 30x30 38.1 NP-M63 Cau Lac boHuu Tri Nguyen Trai Hai Duong Mixed D1-Cx7 20x20 10.8 NP-M64 Hai Duong North Plain D5-Fx12 20x20 10.9 NP-M65 D2-Ex5 20x20 11 NP-M66 Dai Vien Thong Thanh Ha Hai Duong Mixed No1 25x25 17 NP-M67 Hai Duong North Plain No2 25x25 17 NP-M68 KyThucXa-Truong Cao Dang Hai Duong Mixed TN1-129 25x25 39 NP-M69 Hai Duong North Plain TN2-95 25x25 39 NP-M70 TN3-32 25x25 39 NP-M71 Lai Cach-Cam Giang-Hai Duong Hai Duong Mixed TN57 25x25 35 NP-M72 North Plain TN355 25x25 40 NP-M73 TN312 25x25 24.5 NP-M74 TN121 25x25 23 NP-M75 Great Wall Plaza-ThanhNien St Hai Duong Mixed No50 35x35 40 NP-M76 Hai Duong North Plain No206 35x35 40 NP-M77 35x35 40 NM-M78 Khu Du Lich NhaNghi-Chi Linh Hai Duong Mixed No49 D=30 21.5 NM-M79 Hai Duong North Plain D=30 21.5 NM-M80 D=30 21.5 NP-M81 Nha Tap Luyen Da Nang Hai Duong Mixed TN01 25x25 30.9 NP-M82 Hai Duong North Plain TN02 25x25 30.9

PAGE 304

279 Table E-1 (cont.) NP-M83 Tru So Lam Viec Van An Hai Duong Mixed TN01 20x20 8.2 NP-M84 Hai Duong North Plain TN02 20x20 8.2 NP-M85 BenhVienLaoPhoi Hai Duong Mixed TN01 25x25 30 NP-M86 Hai Duong North Plain TN02 25x25 30 NP-M87 Nha Lam Viec Cong An-GiaLoc Hai Duong Mixed TN01 25x25 18 NP-M88 Hai Duong North Plain TN02 25x25 18 NP-M89 Cam Phuc-Cam Giang Hai Duong Mixed TN04 20x20 13.25 NP-M90 Hai Duong North Plain TN40 20x20 13.25 NP-M91 ngan hang congthuong Hai Duong Mixed TN14 30x30 32.5 NP-M92 Hai Duong North Plain TN57 30x30 32.6 NP-M93 TN80 30x30 33.5 NP-M94 Ngan Hang BacHai Duong Hai Duong Mixed TN-1 25x25 10 NP-M95 North Plain TN-175 25x25 10 NP-M96 TN-186 25x25 10.2 NP-M97 Bo Chi HuyQuan Su Hai Duong Hai Duong Mixed N44 25x25 12 NP-M98 North Plain N108 25x25 12 NP-M99 Trung Tam Thuong Mai Van Hoa HaiPhong Mixed C01 40x40 38 NP-M100 HaiPhong North Plain C02 40x40 38 NP-M101 C03 40x40 38 NP-M102 C04 40x40 38 NP-M103 TrungTrac-Van Lam-Hung Yen Hung Yen Mixed TN31-C10 20x20 18 NP-M104 North Plain TN137-A24 20x20 18 NP-M105 TN94-C31 20x20 18 NP-M106 So Tai Nguyen Moi Truong Thai Binh Mixed NT1TB 35x35 4 NP-M107 Thai Binh North Plain TN02TB 35x35 4 NP-M108 TN03TB 35x35 4 CP-C1 Dong Hoi-QuangBinh Quang Clay No162-A6 25x25 11 CP-C2 Binh No242-F9 25x25 12 CP-C3 Central No284-A10 25x25 11 CP-C4 Plain No41-F3 25x25 10.4 CP-C5 No4-A1 25x25 11.4 CP-C6 Phan Chu Trinh-Da Lat-Lam Dong Da Lat Clay No550 30x30 18 CP-C7 Central No530 30x30 18 CP-C8 Mountain No228 30x30 18 CP-C9 No31 30x30 18 CP-C10 No138 30x30 18 CP-C11 Tuongdai Le Loi-ThanhHoa ThanhHoa Clay No1 30x30 16 CP-S1 Nha may dong tau Danang Da Nang Sand TD1 40x40 34.1 CP-S2 Central Plain TD2 40x40 31.8 CP-S3 TD3 40x40 33.6 CP-S4 TD4 40x40 31.5 CP-S5 TD5 40x40 30.6 CP-M1 Doosan QuangNgai Mixed A-3-6 (TP1) D=40 20.3 CP-M2 Central Plain Y3-A33 (TP2) D=40 25.6 CP-M3 RT 25 (TP3) D=40 25.3 CP-M4 B-17-2 (TP4) D=40 25.7 CP-M5 A20 (TP5) D=40 26.4

PAGE 305

280 Table E-1 (cont.) CP-M6 Y4-12 (TP6) D=40 22.7 CP-M7 Y2-1-D10 (TP7) D=40 24.7 CP-M8 B-4-06 (TP8) D=40 26 CP-M9 A-5-03 (TP9) D=40 25.6 CP-M10 MF2.30 (TP10) D=40 26.4 CP-M11 A-3-2 (TP11) D=40 28 CP-M12 ST05 (TP12) D=40 28.4 CP-M13 Y6-B14 (TP13) D=40 24.7 CP-M14 Y5-12 (TP14) D=40 24.3 CP-M15 Y7-B12 (TP15) D=40 26.5 CP-M16 MF.Y1-J30 (TP16) D=40 30.05 CP-M17 A-2-1 (TP17) D=40 16.8 CP-M18 B-22 D=40 27.1 CP-M19 A-29 D=40 27.1 CP-M20 San bay -NhaGaHanhKhach Da Nang Mixed N03(P1-480) 40x40 20.5 CP-M21 Danang Central Plain N04(P1-532) 40x40 23.85 CP-M22 N06(P2-57) 40x40 20.7 CP-M23 N07(P2-63) 40x40 20.92 CP-M24 N09(P3-159) 40x40 20.78 CP-M25 N10(P1-347) 40x40 22.32 CP-M26 N1(P1-151) 40x40 24.95 CP-M27 N2(P1-221) 40x40 26.25 CP-M28 N5(P2-3) 40x40 23.89 CP-M29 N8(P3-7) 40x40 24.15 CP-M30 N11(P3-411) 40x40 26.36 CP-M31 N12(P3-510) 40x40 25.1 CP-M32 N13(P5-8) 30x30 22.8 CP-M33 N14(P4-30) 30x30 26.1 CP-M34 PhongPhu-TP Hue Hue Mixed D10-26 30x30 19 CP-M35 Central Plain D5-458 30x30 20 CP-M36 T13-309 30x30 12 CP-M37 T12-290 30x30 12 CP-M38 C6-405 30x30 16 CP-M39 C8-144 30x30 16 CP-M40 TP VinhNghe An Nghe An Mixed N02 25x25 24 CP-M41 Central Plain N03 25x25 24 CP-M42 N01-122 25x25 24 CP-M43 N02-23 25x25 24 CP-M44 Dung Quat QuangNgai Mixed 1-A-1-8 D=40 23 CP-M45 Central Plain 1-B-1-1 D=40 23.1 CP-M46 1-A-8-3 D=40 23.5 CP-M47 1-B-12-1 D=40 23.1

PAGE 306

281 Table E-1 (cont.) CP-M48 1-B-7-3 D=40 23 CP-M49 1-F-4-3 D=40 23.2 CP-M50 1-J-4-4 D=40 23 CP-M51 1-J-2-4 D=40 23.3 CP-M52 C-3-4 D=40 24 CP-M53 TP-A-17-3 D=40 24 SP-C1 CauPhu My-Saigon SaiGon Clay No22 40x40 27.7 SP-C2 Cong tyximangHiepPhuoc-Saigon SaiGon Clay No22 30x30 36 SP-M1 Tong KhoXangDauNha Be-Saigon SaiGon Mixed N01-A33 30x30 41.8 SP-M2 South Plain N02-A33 30x30 44.5 SP-M3 N03-A33 30x30 45 SP-M4 N04-A32 30x30 39 SP-M5 N05-A32 30x30 39 SP-M6 N06-A32 30x30 37 SP-M7 N10-A26 30x30 34 SP-M8 N11-A26 30x30 35.5 SP-M9 N12-A26 30x30 35 SP-M10 Intel-corpNut giao thong Thu Duc SaiGon Mixed TP1 20x20 18 SP-M11 SaiGon South Plain TP2 20x20 18 SP-M12 TP3 20x20 18 SP-M13 TP4 20x20 18 SP-M14 TP5 D=30 24 SP-M15 TP6 D=30 24 SP-M16 TP7 D=40 22 SP-M17 UngThanhHao Mon -Phuong 7-Q8 SaiGon Mixed N01-CD1 40x40 43.6 SP-M18 Saigon South Plain N02-CD2 40x40 43.8 SP-M19 ASU-Phu My-Ba Ria-Vung Tau Vung Tau Mixed N01-L129-P2 30x30 8.3 SP-M20 SaiGon South Plain N02-L4-P1 30x30 8.35 SP-M21 N03-L14-P2 30x30 12.3 SP-M22 N04-L33-P1 30x30 9.05 SP-M23 Nha May Su lyNuoc Thai SaiGon SaiGon Mixed BLB-TP1 40x40 41,77 SP-M24 South Plain Mixed LP-TP1 40x40 40,19 SP-M25 Mixed FB-TP2 40x40 39,3 SP-M26 Mixed WTF-TP1 40x40 42,15 SP-M27 Mixed DDS-TP1 40x40 38,86 SP-M28 Mixed T1-TP1 40x40 38,8 SP-S1 Nha May Su lyNuoc Thai Sai Sand WTF-TP3 40x40 39,47 SP-S2 Gon Sand WTF-TP4 40x40 39,45 SP-S3 Sand LP-TP2 40x40 40,1 SP-S4 Sand 1FB-TP1 40x40 39,54

PAGE 307

282 Table E-2 Summary measure capacity of driven pile from North, Central and South of Vietnam by different criterion No Chin's Method 80% Chin's Method Davision's method 1" NP-C1 71.4 57.1 28.8 46.0 NP-C2 58.8 47.1 33.6 44.0 NP-C3 120.5 96.4 94.0 98.0 NP-C4 109.9 87.9 82.5 90.0 NP-C5 125.0 100.0 97.0 101.0 NP-C6 122.0 97.6 96.0 100.0 NP-C7 84.7 67.8 72.0 76.0 NP-C8 243.9 195.1 158.0 149.6 NP-C9 250.0 200.0 165.2 152.8 NP-C10 188.7 150.9 131.4 133.0 NP-C11 217.4 173.9 147.0 140.2 NP-C12 172.4 137.9 133.0 133.0 NP-C13 232.6 186.0 156.7 150.0 NP-C14 89.3 71.4 55.0 68.0 NP-C15 79.4 63.5 32.0 50.0 NP-C16 78.7 63.0 50.0 62.5 NP-C17 30.1 24.1 20.0 20.0 NP-C18 29.9 23.9 21.0 21.0 NP-C19 30.3 24.2 18.0 17.8 NP-C20 30.6 24.5 17.5 17.5 NP-C21 116.3 93.0 77.0 94.3 NP-C22 149.3 119.4 113.0 115.0 NP-C23 104.2 83.3 59.0 70.0 NM-C24 133.3 106.7 112.5 121.9 NM-C25 149.3 119.4 119.0 129.5 NM-C26 153.8 153.8 153.8 153.8 NM-C27 153.8 123.1 119.0 129.5 NM-C28 147.1 117.6 117.0 125.0 NM-C29 119.0 95.2 99.0 106.0 NM-C30 119.0 95.2 103.3 109.0 NM-C31 131.6 105.3 115.0 120.0 NM-C32 144.9 115.9 117.0 126.0 NM-C33 169.5 135.6 75.0 105.0 NM-C34 48.8 39.0 22.0 36.0 NM-C35 105.3 84.2 60.0 83.0 NM-C36 142.9 114.3 66.0 97.0 NM-C37 109.9 87.9 68.0 86.0 NM-C38 104.2 83.3 68.0 84.0 NP-S1 54.3 43.5 46.0 49.5 NP-S2 52.9 42.3 45.0 47.5 NP-S3 59.5 47.6 52.5 54.0 NP-S4 131.6 105.3 112.5 116.7 NP-S5 135.1 108.1 116.1 119.5 NP-S6 125.0 100.0 105.9 110.0 NP-S7 140.8 112.7 118.0 122.0

PAGE 308

283 Table E-2 (cont.) NP-S8 133.3 106.7 114.3 117.6 NP-S9 137.0 109.6 112.5 115.5 NP-S10 135.1 108.1 115.3 118.8 NP-S11 128.2 102.6 115.3 118.8 NP-S12 119.0 95.2 103.2 107.2 NP-S13 131.6 105.3 112.5 116.7 NP-S14 126.6 101.3 109.7 113.4 NP-S15 135.1 108.1 116.5 119.8 NP-S16 126.6 101.3 112.5 114.1 NP-S17 129.9 103.9 112.5 115.4 NP-S18 131.6 105.3 108.8 113.5 NP-S19 125.0 100.0 105.4 109.5 NP-S20 101.0 80.8 85.3 88.0 NP-S21 133.3 106.7 100.0 102.0 NP-S22 147.1 117.6 111.8 112.0 NP-S23 85.5 68.4 74.0 76.2 NP-S24 97.1 77.7 83.1 85.5 NP-S25 129.9 103.9 95.0 98.3 NP-S26 136.99 109.6 120.0 120.0 NP-S27 105.3 84.2 90.4 92.5 NP-S28 117.6 94.1 99.3 100.5 NP-S29 102.0 81.6 87.0 89.0 NP-S30 126.6 101.3 99.7 101.5 NP-S31 96.2 76.9 79.8 83.2 NP-S32 500.0 400.0 410.0 356.0 NP-S33 416.7 333.3 337.4 305.0 NP-S34 312.5 250.0 279.0 270.0 NP-S35 81.3 65.0 65.0 68.0 NP-S36 85.5 68.4 72.0 75.0 NP-S37 73.5 58.8 65.0 67.0 NP-S38 76.3 61.1 59.0 60.0 NP-S39 84.0 67.2 58.0 60.0 NP-S40 60.2 48.2 36.5 48.8 NP-S41 48.8 39.0 40.1 45.5 NP-S42 46.7 37.4 39.6 44.3 NP-S43 46.5 37.2 40.0 43.9 NP-S44 60.6 48.5 45.0 52.0 NP-S45 60.2 48.2 45.0 52.0 NP-S46 103.1 82.5 52.5 69.0 NP-S47 277.8 222.2 155.0 155.0 NP-S48 208.3 166.7 145.0 145.0 NP-S49 163.9 131.1 133.0 133.0 NP-S50 161.3 129.0 114.0 114.0 NP-S51 83.3 66.7 42.0 60.0 NP-S52 57.5 46.0 40.0 50.0 NP-S53 76.9 61.5 47.5 61.7 NP-S54 80.0 64.0 49.0 62.0 NP-M1 172.4 137.9 158.0 156.0 NP-M2 227.3 181.8 179.0 184.0

PAGE 309

284 Table E-2 (cont.) NP-M3 270.3 216.2 110.0 142.0 NP-M4 192.3 153.8 137.5 152.3 NP-M5 222.2 177.8 137.5 155.6 NP-M6 370.4 296.3 255.0 245.0 NP-M7 344.8 275.9 275.0 260.0 NP-M8 370.4 296.3 285.0 265.0 NP-M9 344.8 275.9 239.0 233.0 NP-M10 186.2 149.0 140.0 140.0 NP-M11 175.4 140.4 138.0 145.0 NP-M12 175.4 140.4 137.0 145.0 NP-M13 178.6 142.9 139.0 147.0 NP-M14 175.4 140.4 138.0 145.0 NP-M15 175.4 140.4 138.0 145.0 NP-M16 172.4 137.9 136.0 144.0 NP-M17 158.7 127.0 133.0 139.0 NP-M18 147.1 117.6 115.0 111.2 NP-M19 137.0 109.6 101.5 103 NP-M20 166.7 133.3 120.0 113.0 NP-M21 129.9 103.9 99.5 98.5 NP-M22 158.7 127.0 105.0 103.0 NP-M23 153.8 123.1 101.5 105.5 NP-M24 59.5 47.6 42.0 50.0 NP-M25 41.3 33.1 35.0 38.3 NP-M26 238.1 190.5 180.0 184.5 NP-M27 238.1 190.5 169.0 182.0 NP-M28 243.9 195.1 183.0 192.5 NP-M29 243.9 195.1 203.0 209.0 NP-M30 250.0 200.0 196.0 203.5 NP-M31 204.1 163.3 140.6 152.0 NP-M32 212.8 170.2 149.2 158.7 NP-M33 181.8 145.5 127.0 138.8 NP-M34 227.3 186.0 142.0 155.7 NP-M35 166.7 133.3 127.5 136.5 NP-M36 131.6 105.3 110.6 117.4 NP-M41 476.2 381.0 327.6 375.0 NP-M42 434.8 347.8 342.0 310.0 NP-M43 454.5 363.6 310.0 278.0 NP-M44 312.5 250.0 284.0 276.8 NP-M45 322.6 258.1 267.0 256.4 NP-M46 107.5 86.0 60.0 80.0 NP-M47 74.6 59.7 48.0 61.0 NP-M48 149.3 119.4 69.0 97.0 NP-M49 84.7 67.8 56.0 70.0 NP-M50 120.5 96.4 64.0 87.0 NP-M51 69.9 55.9 50.0 60.0 NP-M52 65.4 52.3 48.0 57.4 NP-M53 77.5 62.0 57.0 66.0 NP-M54 185.2 148.1 133.4 141.5 NP-M55 178.6 142.9 134.0 141.5

PAGE 310

285 Table E-2 (cont.) NP-M56 181.8 145.5 139.5 146.5 NP-M57 161.3 129.0 133.0 138.0 NP-M58 108.6 86.9 78.0 89.0 NP-M59 83.1 66.5 70.0 76.0 NP-M60 100.4 80.3 76.0 85.0 NP-M61 277.8 222.2 187.0 158.0 NP-M62 277.8 222.2 161.9 140.0 NP-M63 53.8 43.0 30.0 41.7 NP-M64 38.5 30.8 26.0 33.0 NP-M65 43.7 34.9 24.0 34.4 NP-M66 51.8 41.5 38.0 45.0 NP-M67 59.9 47.9 42.0 50.0 NP-M68 111.1 88.9 70.0 76.0 NP-M69 142.9 114.3 80.0 84.0 NP-M70 142.9 114.3 80.0 84.0 NP-M71 147.1 117.6 109.0 102.0 NP-M72 92.6 74.1 80.0 80.0 NP-M73 108.7 87.0 78.0 84.0 NP-M74 117.6 94.1 78.0 92.0 NP-M75 357.1 285.7 231.0 190.5 NP-M76 344.8 275.9 266.0 225.0 NP-M77 357.1 285.7 236.0 200.0 NM-M78 186.6 149.3 132.0 135.0 NM-M79 NM-M80 NP-M81 96.2 76.9 65.0 75.0 NP-M82 109.9 87.9 72.0 82.0 NP-M83 68.5 54.8 26.0 43.0 NP-M84 78.1 62.5 27.0 49.0 NP-M85 78.1 62.5 50.0 58.0 NP-M86 90.9 72.7 57.0 64.0 NP-M87 104.2 83.3 68.0 80.0 NP-M88 117.6 94.1 70.0 85.0 NP-M89 33.8 27.0 18.0 26.3 NP-M90 36.9 29.5 20.0 28.3 NP-M91 111.1 88.9 90.0 93.6 NP-M92 112.4 89.9 90.0 93.3 NP-M93 111.1 88.9 90.0 93.3 NP-M94 126.6 101.3 78.0 99.0 NP-M95 114.9 92.0 76.0 93.5 NP-M96 116.3 93.0 77.0 94.3 NP-M97 106.4 85.1 45.0 61.2 NP-M98 79.4 63.5 45.0 61.2 NP-M99 217.4 173.9 192.0 192.0 NP-M100 NP-M101 NP-M102 172.4 137.9 158.0 158.0 NP-M103 74.6 59.7 62.5 65.5

PAGE 311

286 Table E-2 (cont.) NP-M104 64.9 51.9 57.0 59.0 NP-M105 103.6 82.9 76.0 80.0 NP-M106 222.2 177.8 172.0 162.0 NP-M107 175.4 140.4 147.0 144.0 NP-M108 212.8 170.2 164.8 157.0 CP-C1 129.9 103.9 90.0 116.0 CP-C2 144.5 115.6 100.0 116.0 CP-C3 163.9 131.1 122.0 138.0 CP-C4 129.9 103.9 95.0 115.0 CP-C5 151.5 121.2 120.0 127.0 CP-C6 181.8 145.5 126.0 126.0 CP-C7 370.4 296.3 213.0 214.0 CP-C8 227.3 181.8 168.0 175.0 CP-C9 285.7 228.6 213.0 215.0 CP-C10 312.5 250.0 196.0 202.0 CP-S1 152.0 152.0 152.0 152.0 CP-S2 231.2 231.2 231.2 231.2 CP-S3 144.5 144.5 144.5 144.5 CP-S4 249.6 249.6 249.6 249.6 CP-S5 157.2 157.2 157.2 157.2 CP-M1 217.4 173.9 180.0 190.0 CP-M2 250.0 200.0 210.0 210.8 CP-M3 312.5 250.0 260.0 254.0 CP-M4 227.3 181.8 188.0 191.0 CP-M5 434.8 347.8 255.0 257.0 CP-M6 238.1 190.5 205.0 208.0 CP-M7 357.1 285.7 277.0 227.0 CP-M8 217.4 173.9 180.0 187.5 CP-M9 303.0 242.4 231.0 227.0 CP-M10 344.8 275.9 280.0 267.0 CP-M11 175.4 140.4 162.0 165.5 CP-M12 344.8 275.9 283.0 283.0 CP-M13 277.8 222.2 226.0 226.8 CP-M14 200.0 160.0 168.8 175.7 CP-M15 357.1 285.7 227.0 227.0 CP-M16 333.3 266.7 284.0 268.0 CP-M17 227.3 181.8 187.5 202.1 CP-M20 416.7 333.3 260.0 274.5 CP-M21 370.4 296.3 269.0 272.0 CP-M22 384.6 307.7 260.0 270.5 CP-M23 344.8 275.9 260.0 266.5 CP-M24 434.8 347.8 255.0 266.5 CP-M25 555.6 444.4 304.5 309.8 CP-M26 416.7 333.3 260.0 274.5 CP-M27 476.2 381.0 273.0 273.0 CP-M28 476.2 381.0 273.0 273.0 CP-M29 416.7 333.3 260.0 274.5 CP-M30 434.8 347.8 250.0 258.0 CP-M31 370.4 296.3 269.0 272.0

PAGE 312

287 Table E-2 (cont.) CP-M32 270.3 216.2 224.0 216.0 CP-M33 294.1 235.3 172.3 173.0 CP-M34 285.7 188.0 160.0 175.0 CP-M35 158.7 127.0 154.5 155.1 CP-M36 196.1 156.9 125.4 148.5 CP-M37 196.1 156.9 125.4 148.5 CP-M38 196.1 156.9 122.0 142.0 CP-M39 232.6 186.0 113.0 142.0 CP-M40 133.3 106.7 94.0 98.0 CP-M41 139.7 111.7 94.0 98.0 CP-M42 126.6 101.3 100.0 102.0 CP-M43 114.5 91.6 86.0 91.0 SP-C1 363.6 290.9 253.0 253.0 SP-C2 100.0 80.0 76.0 79.0 SP-M1 200.0 160.0 141.0 133.0 SP-M2 192.3 153.8 113.0 124.2 SP-M3 217.4 173.9 142.0 164.5 SP-M4 140.8 112.7 105.0 104.0 SP-M5 138.9 111.1 119.0 120.0 SP-M6 196.1 156.9 142.0 133.0 SP-M7 196.1 156.9 134.5 140.0 SP-M8 208.3 166.7 144.5 155.0 SP-M9 169.5 135.6 130.0 126.3 SP-M10 106.4 85.1 82.5 85.7 SP-M11 113.6 90.9 90.0 91.3 SP-M12 116.3 93.0 93.0 95.0 SP-M13 SP-M14 133.3 106.7 100.0 100.0 SP-M15 SP-M16 300.3 240.2 245.0 250.0 SP-M17 526.3 421.1 445.0 350.0 SP-M18 769.2 615.4 618.0 410.0 SP-M19 157.7 126.2 132.0 144.1 SP-M20 157.8 126.3 128.0 142.6 SP-M21 193.5 154.8 150.0 170.0 SP-M22 191.5 153.2 110.0 150.0 SP-M23 178.6 142.9 151.5 153.0 SP-M24 270.3 216.2 194.5 188.5 SP-M25 200.0 160.0 162.3 164.0 SP-M26 232.6 186.0 189.5 186.0 SP-M27 158.7 127.0 141.0 143.7 SP-M28 192.3 153.8 156.0 160.0 SP-S1 232.6 186.0 180.5 181.8 SP-S2 227.3 181.8 165.5 167.5 SP-S3 158.7 127.0 141.0 143.7 SP-S4 192.3 153.8 151.0 153.6

PAGE 313

288 Table E-3 Summary nominal capacity of driven pile in Cohesionless Soil from North, Central and South of Vietnam by different method Nordlund SPT Peck, Hanson and Thornburn from Schmertmann Schmertmann SPT Mayhoft SPT Q1 Q2 Q3 Q4 NP-S1 57.35 93.23 51.98 49.12 NP-S2 60.36 98.14 54.71 51.71 NP-S3 63.38 103.05 57.45 54.29 NP-S4 176.29 277.69 137.14 142.88 NP-S5 174.66 275.12 135.88 141.56 NP-S6 173.03 272.55 134.61 140.24 NP-S7 171.40 269.98 133.34 138.91 NP-S8 169.76 267.41 132.07 137.59 NP-S9 168.13 264.84 130.80 136.27 NP-S10 166.50 262.27 129.53 134.94 NP-S11 164.87 259.70 128.26 133.62 NP-S12 163.23 257.12 126.99 132.30 NP-S13 161.60 254.55 125.72 130.97 NP-S14 159.97 251.98 124.45 129.65 NP-S15 158.34 249.41 123.18 128.33 NP-S16 156.70 246.84 121.91 127.01 NP-S17 155.07 244.27 120.64 125.68 NP-S18 153.44 241.70 119.37 124.36 NP-S19 151.81 239.13 118.10 123.04 NP-S20 150.63 221.42 92.45 90.63 NP-S21 149.20 219.31 91.57 89.77 NP-S22 147.76 217.20 90.69 88.90 NP-S23 146.33 215.09 89.80 88.04 NP-S24 144.90 212.98 88.92 87.18 NP-S25 143.46 210.87 88.04 86.32 NP-S26 142.03 208.77 87.16 85.45 NP-S27 140.59 206.66 86.28 84.59 NP-S28 139.16 204.55 85.40 83.73 NP-S29 137.72 202.44 84.52 82.86 NP-S30 136.29 200.33 83.64 82.00 NP-S31 134.85 198.22 82.76 81.14 NP-S32 671.00 1193.34 339.84 288.08 NP-S33 639.05 1136.52 323.66 274.36 NP-S34 607.10 1079.69 307.48 260.64 NP-S35 58.78 162.05 59.34 63.25 NP-S36 56.11 154.68 56.64 60.38 NP-S37 53.44 147.32 53.94 57.50 NP-S38 50.77 139.95 51.25 54.63 NP-S39 48.10 132.59 48.55 51.75 NP-S40 53.44 53.45 31.86 35.11 NP-S41 35.35 63.65 49.28 61.33

PAGE 314

289 Table E-3 (cont.) NP-S42 34.48 62.10 48.08 59.84 NP-S43 33.62 60.55 46.88 58.34 NP-S44 29.93 60.07 25.01 23.15 NP-S45 33.26 66.75 27.79 25.72 NP-S46 36.59 73.42 30.57 28.30 NP-S47 198.48 237.84 84.90 72.28 NP-S48 180.43 216.22 77.18 65.71 NP-S49 171.41 205.41 73.32 62.42 NP-S50 162.39 194.60 69.46 59.14 NP-S51 37.78 59.52 39.85 42.50 NP-S52 34.00 53.56 35.87 38.25 NP-S53 37.78 59.52 39.85 42.50 NP-S54 41.56 65.47 43.84 46.75 SP-S1 237.60 313.25 133.41 100.32 SP-S2 195.97 296.99 116.55 79.27 SP-S3 244.11 369.42 127.89 137.86 SP-S4 327.44 507.40 172.37 167.21

PAGE 315

290 Table E-4 Summary nominal capacity of driven pile in Cohesive Soil from North, Central and South of Vietnam by different method Data from North, Central and South of Vietnam -Tomlinson method -API method method Burland method Schmertma nn SPT Su-Terzaghi, Peck SuHara Su-Terzaghi, Peck SuHara Su-Terzaghi, Peck SuHara Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 NP-C1 35.8 71.6 22.5 46.3 28.4 58.4 21.6 38.3 NP-C2 32.5 65.1 20.5 42.1 25.8 53.1 19.6 34.8 NP-C3 88.2 166.8 68.2 122.5 67.3 124.1 74.3 101.9 NP-C4 84.2 159.2 65.1 116.9 64.3 118.5 70.9 97.3 NP-C5 80.2 151.6 62.0 111.4 61.2 112.8 67.5 92.7 NP-C6 76.2 144.0 58.9 105.8 58.1 107.2 64.2 88.0 NP-C7 72.1 136.4 55.8 100.2 55.1 101.6 60.8 83.4 NP-C8 144.6 196.9 116.8 175.2 106.5 159.6 147.4 130.5 NP-C9 152.6 207.8 123.3 184.9 112.5 168.5 155.6 137.8 NP-C10 160.7 218.8 129.8 194.6 118.4 177.3 163.8 145.0 NP-C11 176.7 240.6 142.8 214.1 130.2 195.1 180.2 159.5 NP-C12 168.7 229.7 136.3 204.4 124.3 186.2 172.0 152.3 NP-C13 184.8 251.6 149.3 223.8 136.1 203.9 188.4 166.8 NP-C14 53.6 71.6 40.2 71.2 45.4 86.4 48.4 59.3 NP-C15 51.0 68.2 38.3 67.8 43.2 82.3 46.1 56.5 NP-C16 48.5 64.8 36.4 64.5 41.1 78.2 43.8 53.6 NP-C17 15.9 23.6 11.4 24.7 14.8 30.5 13.5 20.6 NP-C18 17.5 26.0 12.5 27.2 16.3 33.6 14.9 22.7 NP-C19 17.9 25.5 12.5 26.2 15.9 32.2 13.5 22.1 NP-C20 19.6 28.1 13.8 28.8 17.5 35.4 14.9 24.3 NP-C21 115.5 152.9 56.6 182.1 96.3 173.0 123.8 121.5 NP-C22 109.7 145.2 53.8 172.9 91.5 164.4 117.6 115.5 NP-C23 77.9 79.2 78.3 89.6 74.6 82.1 89.6 55.8 NM-C24 76.5 133.0 51.8 95.7 71.4 129.7 66.8 88.0 NM-C25 80.7 140.4 54.7 101.0 75.4 136.9 70.5 92.9 NM-C26 93.5 162.5 63.3 116.9 87.3 158.5 81.7 107.6 NM-C27 85.0 147.7 57.5 106.3 79.3 144.1 74.2 97.8 NM-C28 106.6 143.0 67.8 216.2 136.6 234.3 137.2 155.8 NM-C29 112.5 151.0 71.5 228.2 144.1 247.3 144.8 164.5 NM-C30 118.5 158.9 75.3 240.2 151.7 260.3 152.4 173.1 NM-C31 124.4 166.9 79.1 252.2 159.3 273.4 160.1 181.8 NM-C32 130.3 174.8 82.8 264.2 166.9 286.4 167.7 190.5 NM-C33 50.6 79.9 40.4 66.2 47.8 82.2 41.5 85.5 NM-C34 47.9 75.7 38.2 62.7 45.3 77.9 39.4 81.0 NM-C35 53.3 84.1 42.5 69.7 50.4 86.6 43.7 90.0 NM-C36 55.9 88.3 44.6 73.2 52.9 90.9 45.9 94.5 NM-C37 58.6 92.5 46.7 76.6 55.4 95.2 48.1 99.0 NM-C38 61.2 96.7 48.9 80.1 57.9 99.5 50.3 103.5 CP-C1 36.7 67.6 48.9 79.2 55.0 96.9 36.8 83.9 CP-C2 37.7 69.4 50.2 81.2 56.4 99.4 37.8 86.1 CP-C3 38.7 71.2 51.5 83.3 57.9 102.0 38.7 88.3 CP-C4 39.6 72.9 52.8 85.4 59.3 104.5 39.7 90.5 CP-C5 40.6 74.7 54.1 87.5 60.8 107.1 40.7 92.7

PAGE 316

291 Table E-4 (cont.) CP-C6 153.3 151.4 87.0 162.6 91.1 176.4 89.1 127.4 CP-C7 157.3 155.4 89.3 166.9 93.5 181.1 91.5 130.7 CP-C8 161.4 159.3 91.6 171.2 95.9 185.7 93.8 134.1 CP-C9 165.4 163.3 93.9 175.4 98.3 190.4 96.2 137.4 CP-C10 169.4 167.3 96.2 179.7 100.7 195.0 98.5 140.8 CP-C11 SP-C1 167.9 286.7 150.2 244.3 140.2 233.5 176.0 195.1 SP-C2 106.5 111.8 129.7 175.5 116.1 177.0 168.6 70.3

PAGE 317

Table E-5 Summary nominal capacity of driven pile in MixedSoil from North, Central and South of Vietnam by different method Data from North, Central and South of Vietnam from Peck, Hanson and Thornburn from Schmertmann Tomlinson/Nordlu nd API /Nordlund /Nordlund Burland/ Nordlund Tomlinson/Nordlu nd API / Nordlund /Nordlund Burland/ Nordlund Schmert mann SPT Su Terzaghi Peck Su Hara Su Terzaghi, Peck Su Hara Su Terzaghi, Peck Su Hara Su Terzaghi Peck Su Hara Su Terzaghi, Peck Su Hara Su Terzaghi, Peck Su Hara Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q11 Q14 Q15 NP M1 218.3 236.4 178.9 267.2 180.5 269.7 203.6 271.2 289.3 231.8 320.1 144.0 322.6 256.5 153.7 NP M2 241.3 261.3 197.7 295.3 199.5 298.0 225.0 299.8 319.8 256.2 353.8 159.2 356.5 283.5 169.9 NP M3 146.9 190.9 138.2 154.7 138.6 157.1 137.6 115.8 320.2 267.5 284.0 267.9 286.4 266.9 142.1 NP M4 154.6 201.0 145.5 162.8 145.9 165.4 144.9 121.9 337.1 281.6 298.9 282.0 301.5 280.9 149.6 NP M5 162.3 211.0 152.8 171.0 153.2 173.7 152.1 128.0 353.9 295.6 313.9 296.1 316.5 295.0 157.1 NP M6 213.1 361.2 210.7 278.1 201.1 258.3 260.6 314.0 462.1 311.7 379.0 302.1 359.2 361.5 162.5 NP M7 207.5 351.7 205.2 270.7 195.9 251.5 253.7 305.8 450.0 303.5 369.0 294.1 349.7 352.0 158.2 NP M8 224.3 380.2 221.8 292.7 211.7 271.9 274.3 330.6 486.5 328.1 398.9 318.0 378.1 380.5 171.1 NP M9 229.9 389.7 227.4 300.0 217.0 278.7 281.1 338.8 498.6 336.3 408.9 325.9 387.6 390.0 175.4 NP M11 144.6 153.0 129.3 149.0 127.6 149.1 134.8 227.9 236.4 212.6 232.3 211.0 232.4 218.2 119.9 NP M12 148.5 157.1 132.8 153.0 131.1 153.1 138.5 234.1 242.7 218.4 238.6 216.7 238.7 224.1 123.1 NP M13 152.4 161.3 136.3 157.0 134.5 157.1 142.1 240.3 249.1 224.1 244.9 222.4 245.0 230.0 126.4 NP M14 156.3 165.4 139.7 161.0 138.0 161.1 145.7 246.4 255.5 229.9 251.2 228.1 251.3 235.9 129.6 NP M15 160.2 169.5 143.2 165.1 141.4 165.2 149.4 252.6 261.9 235.6 257.4 233.8 257.6 241.8 132.8 NP M16 164.1 173.7 146.7 169.1 144.9 169.2 153.0 258.7 268.3 241.4 263.7 239.5 263.8 247.7 136.1 NP M17 168.0 177.8 150.2 173.1 148.3 173.2 156.7 264.9 274.7 247.1 270.0 245.2 270.1 253.6 139.3 NP M18 89.5 102.2 71.8 93.5 65.7 86.1 78.6 124.7 137.4 106.9 128.6 105.9 121.2 103.4 82.9 NP M19 94.5 107.8 75.8 98.7 69.4 90.8 83.0 131.6 145.0 112.9 135.8 111.8 128.0 109.2 87.5 NP M20 99.5 113.5 79.7 103.8 73.1 95.6 87.3 138.6 152.6 118.8 142.9 117.7 134.7 114.9 92.1 NP M21 104.5 119.2 83.7 109.0 76.7 100.4 91.7 145.5 160.2 124.8 150.1 123.6 141.4 120.7 96.7 NP M22 109.4 124.9 87.7 114.2 80.4 105.2 96.1 152.4 167.9 130.7 157.2 129.5 148.2 126.4 101.3 NP M23 112.4 128.3 90.1 117.3 82.6 108.1 98.7 156.6 172.5 134.3 161.5 133.0 152.2 129.9 104.0 NP M24 33.9 42.2 28.5 33.3 29.3 34.8 27.6 42.6 50.9 37.2 42.0 34.0 43.5 36.3 38.5 NP M25 30.6 38.0 25.6 30.0 26.4 31.4 24.9 38.4 45.8 33.4 37.8 30.6 39.2 32.7 34.6 NP M26 182.1 178.6 128.7 231.1 130.9 240.7 137.3 182.1 178.6 128.7 231.1 130.9 240.7 137.3 191.7 NP M27 192.2 188.5 135.9 243.9 138.2 254.0 144.9 192.2 188.5 135.9 243.9 138.2 254.0 144.9 202.4 292

PAGE 318

Table E-5 (cont.) NP M28 202.3 198.4 143.0 256.8 145.5 267.4 152.5 202.3 198.4 143.0 256.8 145.5 267.4 152.5 213.1 NP M29 212.4 208.3 150.2 269.6 152.7 280.8 160.1 212.4 208.3 150.2 269.6 152.7 280.8 160.1 223.7 NP M30 222.5 218.3 157.3 282.4 160.0 294.1 167.8 222.5 218.3 157.3 282.4 160.0 294.1 167.8 234.4 NP M31 330.8 374.4 314.5 340.5 312.4 338.0 320.0 381.1 424.7 364.8 390.8 362.7 388.3 370.2 183.0 NP M32 323.0 365.5 307.0 332.4 305.0 330.0 312.3 372.0 414.6 356.1 381.5 354.0 379.0 361.4 178.6 NP M33 315.1 356.6 299.6 324.3 297.5 321.9 304.7 362.9 404.4 347.4 372.2 345.4 369.8 352.6 174.3 NP M34 307.2 347.7 292.1 316.2 290.1 313.9 297.1 353.9 394.3 338.7 362.9 336.7 360.5 343.8 169.9 NP M35 299.3 338.8 284.6 308.1 282.7 305.8 289.5 344.8 384.2 330.0 353.6 328.1 351.3 334.9 165.6 NP M36 291.5 329.8 277.1 300.0 275.2 297.8 281.9 335.7 374.1 321.4 344.3 319.5 342.0 326.1 161.2 NP M41 685.6 681.7 680.3 707.8 668.6 691.2 689.6 1096.1 1092.3 1090.9 1118.4 1079.2 1101.7 1100.2 305.9 NP M42 623.2 619.8 618.5 643.4 607.8 628.3 626.9 996.5 993.0 991.7 1016.7 981.1 1001.6 1000.2 278.1 NP M43 560.9 557.8 556.6 579.1 547.0 565.5 564.2 896.8 893.7 892.6 915.0 883.0 901.4 900.2 250.3 NP M44 529.7 526.8 525.7 546.9 516.6 534.1 532.9 847.0 844.1 843.0 864.2 833.9 851.4 850.2 236.4 NP M45 498.6 495.8 494.8 514.7 486.3 502.7 501.5 797.2 794.4 793.4 813.4 784.9 801.3 800.1 222.5 NP M46 64.9 77.5 49.6 67.3 54.7 79.9 51.0 94.8 107.4 79.4 97.2 84.6 109.8 80.9 57.2 NP M47 66.6 79.6 50.9 69.1 56.2 82.0 52.4 97.3 110.3 81.6 99.8 86.9 112.7 83.1 58.8 NP M48 68.4 81.7 52.3 70.9 57.6 84.2 53.8 99.9 113.2 83.7 102.4 89.1 115.7 85.3 60.3 NP M49 70.1 83.8 53.6 72.7 59.1 86.4 55.2 102.4 116.1 85.9 105.0 91.4 118.7 87.5 61.8 NP M50 71.9 85.8 54.9 74.6 60.6 88.5 56.5 105.0 119.0 88.0 107.7 93.7 121.6 89.6 63.4 NP M51 73.6 87.9 56.3 76.4 62.1 90.7 57.9 107.6 121.9 90.2 110.3 96.0 124.6 91.8 64.9 NP M52 75.4 90.0 57.6 78.2 63.6 92.8 59.3 110.1 124.8 92.3 112.9 98.3 127.6 94.0 66.5 NP M53 55.4 79.1 46.5 56.4 46.9 59.1 44.7 73.8 76.2 64.8 74.7 65.3 77.5 63.1 45.2 NP M54 110.8 169.8 98.3 125.2 100.6 128.7 111.4 146.6 205.7 134.1 161.1 136.5 164.5 147.3 86.1 NP M55 120.0 179.4 107.2 134.2 101.5 122.5 119.7 147.6 207.0 134.8 161.8 129.1 150.1 147.3 93.2 NP M56 231.2 262.7 205.9 232.3 206.5 238.7 201.6 266.9 298.5 241.7 268.1 242.2 274.5 237.3 130.2 NP M57 211.3 229.8 192.9 208.2 193.9 213.6 186.1 268.5 286.9 250.1 265.4 251.0 270.8 243.3 134.0 NP M58 56.5 56.3 50.3 58.2 50.7 59.5 50.9 104.2 103.9 98.0 105.9 98.4 107.1 98.5 75.1 NP M59 62.8 62.5 55.9 64.7 56.3 66.1 56.5 115.7 115.5 108.8 117.6 109.3 119.0 109.5 83.4 NP M60 69.1 68.8 61.5 71.1 62.0 72.7 62.2 127.3 127.0 119.7 129.4 120.2 130.9 120.4 91.7 NP M61 150.6 150.6 150.6 150.6 150.6 150.6 150.6 198.4 198.4 198.4 198.4 198.4 198.4 198.4 77.5 NP M62 136.9 136.9 136.9 136.9 136.9 136.9 136.9 180.4 180.4 180.4 180.4 180.4 180.4 180.4 70.5 NP M63 41.9 45.7 36.5 41.2 38.0 45.8 34.7 39.8 43.6 34.4 39.1 35.9 43.7 32.6 37.1 NP M64 38.1 41.5 33.2 37.4 34.5 41.6 31.6 36.2 39.6 31.3 35.5 32.6 39.7 29.7 33.8 NP M65 34.3 37.4 29.9 33.7 31.1 37.4 28.4 32.6 35.7 28.2 32.0 29.4 35.7 26.7 30.4 NP M66 31.9 31.9 31.9 31.9 31.9 31.9 31.9 43.3 43.3 43.3 43.3 43.3 43.3 43.3 26.1 NP M67 35.3 35.3 35.3 35.3 35.3 35.3 35.3 47.9 47.9 47.9 47.9 47.9 47.9 47.9 28.8 293

PAGE 319

Table E-5 (cont.) NP M68 113.1 113.1 113.1 113.1 113.1 113.1 113.1 152.7 152.7 152.7 152.7 152.7 152.7 152.7 69.7 NP M69 119.1 119.1 119.1 119.1 119.1 119.1 119.1 160.7 160.7 160.7 160.7 160.7 160.7 160.7 73.3 NP M70 125.0 125.0 125.0 125.0 125.0 125.0 125.0 168.8 168.8 168.8 168.8 168.8 168.8 168.8 77.0 NP M71 117.8 191.3 88.2 88.2 68.1 113.1 111.0 114.5 183.0 84.9 152.7 64.8 104.8 107.7 92.4 NP M72 120.9 196.3 90.5 90.6 69.8 116.1 113.9 117.5 187.8 87.1 156.7 66.5 107.6 110.6 94.9 NP M73 124.0 201.3 92.8 92.9 71.6 119.0 116.9 120.5 192.6 89.4 160.7 68.2 110.3 113.4 97.3 NP M74 130.2 211.4 97.4 97.5 75.2 125.0 122.7 126.6 202.2 93.8 168.8 71.6 115.8 119.1 102.2 NP M75 300.3 288.2 287.9 364.7 256.7 313.9 384.8 363.3 351.2 350.9 427.7 319.7 376.9 447.8 178.3 NP M76 316.1 303.4 303.1 383.9 270.2 330.4 405.0 382.4 369.7 369.4 450.2 336.5 396.7 471.3 187.7 NP M77 331.9 318.6 318.2 403.1 283.7 347.0 425.3 401.5 388.2 387.9 472.7 353.3 416.6 494.9 197.0 NM M78 133.5 221.3 162.1 218.3 168.6 232.5 145.7 138.6 138.6 138.6 138.6 138.6 138.6 138.6 174.9 NP M81 78.2 87.8 90.7 111.5 82.9 104.1 96.2 142.4 152.0 155.0 175.7 147.2 168.3 160.5 58.0 NP M82 70.7 79.4 82.1 100.9 75.0 94.2 87.1 128.8 137.5 140.2 159.0 133.1 152.3 145.2 52.5 NP M83 52.2 53.3 43.4 55.1 49.5 68.2 40.5 85.4 86.5 76.6 88.3 82.7 101.4 73.7 63.6 NP M84 47.2 48.2 39.3 49.8 44.8 61.7 36.6 77.3 78.3 69.3 79.9 74.9 91.8 66.7 57.6 NP M85 90.4 93.8 89.0 97.6 85.8 93.5 94.0 257.0 260.4 255.6 264.2 252.3 260.1 260.6 55.2 NP M86 81.8 84.8 80.5 88.3 77.6 84.6 85.1 232.5 235.6 231.3 239.1 228.3 235.3 235.8 50.0 NP M87 69.1 85.2 56.5 74.4 59.2 77.4 61.3 67.1 83.1 54.5 72.4 57.2 75.3 59.3 68.5 NP M88 76.4 94.1 62.4 82.2 65.4 85.5 67.7 74.1 91.9 60.2 80.0 63.2 83.3 65.5 75.7 NP M89 25.7 27.8 25.7 25.7 25.7 25.7 25.7 50.4 52.5 50.4 50.4 50.4 50.4 50.4 28.6 NP M90 28.4 30.7 28.4 28.4 28.4 28.4 28.4 55.7 58.0 55.7 55.7 55.7 55.7 55.7 31.6 NP M91 98.5 107.5 99.7 129.1 90.6 109.1 127.7 129.8 138.8 131.1 160.4 121.9 140.4 159.0 63.3 NP M92 103.6 113.1 105.0 135.9 95.4 114.8 134.4 136.6 146.1 138.0 168.9 128.3 147.8 167.4 66.7 NP M93 108.8 118.8 110.2 142.7 100.1 120.6 141.2 143.4 153.4 144.9 177.3 134.8 155.2 175.8 70.0 NP M94 69.3 65.3 50.3 67.5 59.1 87.9 48.9 123.9 119.8 104.9 122.1 113.7 142.4 103.5 68.9 NP M95 73.0 68.7 53.0 71.1 62.2 92.5 51.5 130.4 126.1 110.4 128.5 119.6 149.9 108.9 72.5 NP M96 76.6 72.1 55.6 74.7 65.3 97.1 54.1 136.9 132.4 115.9 134.9 125.6 157.4 114.3 76.1 NP M97 52.7 69.4 44.3 54.2 46.2 59.8 42.7 79.6 96.2 71.2 81.1 73.1 86.6 69.5 44.9 NP M98 58.2 76.7 49.0 59.9 51.1 66.1 47.2 87.9 106.4 78.7 89.6 80.8 95.8 76.9 49.6 NP M99 214.6 523.3 226.3 336.7 181.5 285.2 377.7 207.5 504.3 219.3 317.7 174.4 266.1 370.6 178.0 NP M102 198.9 485.3 207.9 311.4 166.2 263.0 343.3 191.9 466.3 200.8 292.4 159.2 244.0 336.3 165.2 NP M103 43.1 47.9 42.0 42.0 42.6 67.9 48.1 48.3 53.2 47.2 67.4 47.8 67.9 53.3 61.1 NP M104 47.9 53.3 46.7 46.7 47.3 75.5 53.4 53.7 59.1 52.5 74.9 53.1 75.5 59.2 67.9 NP M105 52.6 58.6 51.3 51.3 52.0 83.0 58.7 59.0 65.0 57.7 82.4 58.4 83.0 65.1 74.7 NP M106 247.4 280.3 251.9 290.0 238.4 265.4 311.0 331.3 364.1 335.8 373.9 322.3 349.3 394.9 137.3 NP M107 222.9 251.1 229.2 265.8 216.0 241.5 289.3 333.5 361.7 339.8 376.4 326.6 352.1 399.9 135.3 294

PAGE 320

Table E-5 (cont.) NP M108 252.5 278.9 258.5 295.2 244.3 270.2 318.4 361.4 387.9 367.4 404.1 353.2 379.1 427.3 129.4 CP M1 170.8 225.2 154.4 242.7 159.2 254.1 169.2 174.2 192.3 174.2 192.3 192.3 174.2 174.2 226.1 CP M2 179.7 237.0 162.6 255.4 167.6 267.4 178.1 183.4 202.4 183.4 202.4 202.4 183.4 183.4 238.0 CP M3 188.7 248.9 170.7 268.2 176.0 280.8 187.0 192.6 212.6 192.6 212.6 212.6 192.6 192.6 249.9 CP M4 195.3 259.1 177.0 278.8 182.4 291.6 193.6 199.2 222.1 199.2 222.1 222.1 199.2 199.2 263.6 CP M5 215.9 286.4 195.6 308.1 201.6 322.3 214.0 220.2 245.5 220.2 245.5 245.5 220.2 220.2 291.3 CP M6 248.4 329.4 231.7 361.7 237.6 379.0 263.9 252.5 279.3 252.5 279.3 279.3 252.5 252.5 330.7 CP M7 303.6 402.6 283.2 442.1 290.4 463.2 322.5 308.6 341.3 308.6 341.3 341.3 308.6 308.6 404.2 CP M8 248.4 329.4 231.7 361.7 237.6 379.0 263.9 252.5 279.3 252.5 279.3 279.3 252.5 252.5 330.7 CP M9 276.0 366.0 257.4 401.9 264.0 421.1 293.2 280.5 310.3 280.5 310.3 310.3 280.5 280.5 367.4 CP M10 289.8 384.3 270.3 422.0 277.2 442.1 307.8 294.6 325.8 294.6 325.8 325.8 294.6 294.6 385.8 CP M11 220.8 292.8 205.9 321.5 211.2 336.9 234.5 224.4 248.2 224.4 248.2 248.2 224.4 224.4 293.9 CP M12 303.6 402.6 283.2 442.1 290.4 463.2 322.5 308.6 341.3 308.6 341.3 341.3 308.6 308.6 404.2 CP M13 289.8 384.3 270.3 422.0 277.2 442.1 307.8 294.6 325.8 294.6 325.8 325.8 294.6 294.6 385.8 CP M14 276.0 366.0 257.4 401.9 264.0 421.1 293.2 280.5 310.3 280.5 310.3 310.3 280.5 280.5 367.4 CP M15 303.6 402.6 283.2 442.1 290.4 463.2 322.5 308.6 341.3 308.6 341.3 341.3 308.6 308.6 404.2 CP M16 303.6 402.6 283.2 442.1 290.4 463.2 322.5 308.6 341.3 308.6 341.3 341.3 308.6 308.6 404.2 CP M17 248.4 329.4 231.7 361.7 237.6 379.0 263.9 252.5 279.3 252.5 279.3 279.3 252.5 252.5 330.7 CP M20 257.6 370.9 207.5 303.5 220.9 309.0 250.4 299.2 412.6 249.1 345.1 262.5 246.9 292.0 279.2 CP M21 263.4 379.4 212.2 310.4 225.9 316.0 256.1 306.0 421.9 254.8 352.9 268.5 252.5 298.7 285.6 CP M22 269.3 387.8 216.9 317.3 230.9 323.0 261.8 312.8 431.3 260.5 360.8 274.4 258.1 305.3 291.9 CP M23 275.1 396.2 221.7 324.2 235.9 330.1 267.5 319.6 440.7 266.1 368.6 280.4 263.7 312.0 298.2 CP M24 281.0 404.7 226.4 331.0 240.9 337.1 273.2 326.4 450.1 271.8 376.5 286.3 269.3 318.6 304.6 CP M25 286.8 413.1 231.1 337.9 245.9 344.1 278.9 333.2 459.5 277.4 384.3 292.3 274.9 325.2 310.9 CP M26 292.7 421.5 235.8 344.8 251.0 351.1 284.6 340.0 468.8 283.1 392.2 298.3 280.5 331.9 317.3 CP M27 298.6 429.9 240.5 351.7 256.0 358.2 290.2 346.8 478.2 288.8 400.0 304.2 286.1 338.5 323.6 CP M28 304.4 438.4 245.2 358.6 261.0 365.2 295.9 353.6 487.6 294.4 407.8 310.2 291.8 345.1 330.0 CP M29 310.3 446.8 249.9 365.5 266.0 372.2 301.6 360.4 497.0 300.1 415.7 316.2 297.4 351.8 336.3 CP M30 316.1 455.2 254.7 372.4 271.0 379.2 307.3 367.2 506.3 305.8 423.5 322.1 303.0 358.4 342.7 CP M31 322.0 463.7 259.4 379.3 276.1 386.3 313.0 374.0 515.7 311.4 431.4 328.1 308.6 365.1 349.0 CP M32 327.8 472.1 264.1 386.2 281.1 393.3 318.7 380.8 525.1 317.1 439.2 334.1 314.2 371.7 355.4 CP M33 333.7 480.5 268.8 393.1 286.1 400.3 324.4 387.6 534.5 322.7 447.1 340.0 319.8 378.3 361.7 CP M34 95.1 126.9 81.3 106.0 81.7 108.1 84.1 85.9 117.7 72.1 96.8 72.5 98.9 74.9 95.3 CP M35 98.2 130.9 83.9 109.4 84.3 111.6 86.8 88.6 121.4 74.4 99.9 74.8 102.1 77.3 98.4 CP M36 101.2 135.0 86.5 112.8 86.9 115.0 89.5 91.4 125.2 76.7 103.0 77.1 105.2 79.7 101.4 CP M37 103.2 137.7 88.3 115.1 88.6 117.3 91.3 93.2 127.7 78.2 105.1 78.6 107.3 81.3 103.4 295

PAGE 321

Table E-5 (cont.) CP M38 105.2 140.4 90.0 117.3 90.4 119.6 93.1 95.0 130.2 79.8 107.1 80.2 109.4 82.9 105.5 CP M39 107.3 143.1 91.7 119.6 92.1 121.9 94.9 96.9 132.7 81.3 109.2 81.7 111.5 84.5 107.5 CP M40 73.7 123.1 62.0 99.0 57.5 95.2 78.4 78.7 128.1 67.0 104.0 62.5 100.2 83.4 72.3 CP M41 77.7 130.0 65.4 104.5 60.7 100.5 82.7 83.0 135.2 70.7 109.8 66.0 105.8 88.0 76.3 CP M42 81.8 136.8 68.9 110.0 63.9 105.8 87.1 87.4 142.4 74.4 115.6 69.4 111.4 92.6 80.3 CP M43 90.0 150.5 75.8 121.0 70.3 116.4 95.8 96.1 156.6 81.9 127.1 76.4 122.5 101.9 88.3 SP M1 165.5 165.5 165.5 165.5 165.5 165.5 165.5 296.2 296.2 296.2 296.2 296.2 296.2 296.2 102.8 SP M2 169.1 169.1 169.1 169.1 169.1 169.1 169.1 302.7 302.7 302.7 302.7 302.7 302.7 302.7 105.0 SP M3 172.7 172.7 172.7 172.7 172.7 172.7 172.7 309.1 309.1 309.1 309.1 309.1 309.1 309.1 107.2 SP M4 176.3 176.3 176.3 176.3 176.3 176.3 176.3 315.5 315.5 315.5 315.5 315.5 315.5 315.5 109.5 SP M5 179.9 179.9 179.9 179.9 179.9 179.9 179.9 322.0 322.0 322.0 322.0 322.0 322.0 322.0 111.7 SP M6 183.5 183.5 183.5 183.5 183.5 183.5 183.5 328.4 328.4 328.4 328.4 328.4 328.4 328.4 113.9 SP M7 187.1 187.1 187.1 187.1 187.1 187.1 187.1 334.9 334.9 334.9 334.9 334.9 334.9 334.9 116.2 SP M8 190.7 190.7 190.7 190.7 190.7 190.7 190.7 341.3 341.3 341.3 341.3 341.3 341.3 341.3 118.4 SP M9 194.3 194.3 194.3 194.3 194.3 194.3 194.3 347.7 347.7 347.7 347.7 347.7 347.7 347.7 120.7 SP M10 62.1 71.4 57.3 80.0 61.9 92.6 54.1 66.9 76.2 62.0 84.8 66.6 97.3 58.9 75.4 SP M11 63.4 72.9 58.5 81.7 63.2 94.5 55.3 68.3 77.8 63.4 86.6 68.0 99.4 60.1 77.0 SP M12 64.8 74.4 59.7 83.4 64.5 96.5 56.4 69.7 79.4 64.7 88.4 69.5 101.5 61.4 78.6 SP M14 67.4 77.5 62.2 86.8 67.1 100.4 58.7 72.6 82.6 67.3 92.0 72.3 105.6 63.9 81.8 SP M16 70.1 80.5 64.6 90.2 69.8 104.4 61.0 75.4 85.9 70.0 95.6 75.1 109.7 66.4 85.0 SP M17 570.2 568.9 648.7 757.4 587.6 674.4 788.2 653.9 652.6 732.4 841.1 671.3 758.1 871.9 348.3 SP M18 630.3 628.7 717.0 837.2 649.4 745.3 871.2 722.8 721.2 809.5 929.7 741.9 837.9 963.7 385.0 SP M19 78.3 111.2 63.5 78.4 68.5 90.7 61.6 104.0 136.9 89.2 104.1 94.2 116.4 87.3 73.8 SP M20 82.6 117.4 67.1 82.7 72.3 95.7 65.0 109.8 144.6 94.2 109.9 99.4 122.8 92.2 77.9 SP M21 87.0 123.6 70.6 87.1 76.1 100.7 68.5 115.5 152.2 99.2 115.6 104.7 129.3 97.0 82.0 SP M22 95.7 136.0 77.7 95.8 83.7 110.8 75.3 127.1 167.4 109.1 127.2 115.1 142.2 106.7 90.2 SP M23 232.5 266.0 243.9 275.4 230.3 254.2 266.6 343.0 376.4 354.3 385.8 340.7 364.6 377.0 165.0 SP M24 271.3 273.0 274.5 296.3 265.2 281.7 295.2 368.5 370.2 371.7 393.5 362.4 378.9 392.4 141.8 SP M25 134.4 177.1 166.9 249.1 163.4 219.4 189.5 166.1 189.1 178.9 261.2 175.5 231.5 201.5 189.5 SP M26 293.1 303.1 291.4 296.1 289.6 294.0 291.8 454.9 465.0 453.2 457.9 451.5 455.9 453.7 181.8 SP M27 262.7 263.1 265.5 279.5 258.9 270.6 272.5 369.0 369.4 371.8 385.8 365.2 376.8 378.8 89.0 SP M28 349.4 364.2 349.4 370.1 333.2 353.5 369.0 482.1 497.0 482.1 502.9 465.9 486.3 501.8 173.2 296

PAGE 322

APPENDIX F Histogram and Frequency Distribution of Bias Factor for Driven Piles from Vietnam

PAGE 323

297 Figure F-S1-a Histogram and frequency distribution of bias factor 1 for 58 cases of concrete piles in Sand using the Nordlund method ( : Peck, Hanson and Thornbum) in Vietnam Figure F-S1-b Resistant factor calibration for 58 cases of concrete piles in Sand using the Nordlund method ( : Peck, Hanson and Thornbum) in Vietnam 0.5 1 1.5 0 0.5 1 1.5 2 2.5 3 Bias FactorDensity Lamda1AllSand data Normal Lognormal 0 1 2 3 4 5 6 7 8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 324

298 Figure F-S1-c Histogram and frequency distribution of bias factor for 1 54cases of concrete piles in Sand using the Nordlundmethod ( : Peck, Hanson and Thornbum)in North of Vietnam Figure F-S1-d Resistant factor calibration for54 cases of concrete piles in Sand using theNordlundmethod ( : Peck, Hanson and Thornbum)in North of Vietnam 0.5 1 1.5 0 0.5 1 1.5 2 2.5 3 3.5 Bias FactorDensity Lamda1NorthSand data Normal Lognormal 0 1 2 3 4 5 6 7 8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 325

299 Figure F-S1-e Histogram and frequency distribution of bias factor 1 for 4 cases of concrete piles in Sand using the Nordlundmethod ( : Peck, Hanson and Thornbum)in South of Vietnam 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 0 0.5 1 1.5 2 2.5 Bias FactorDensity Lamda1SouthSand data Normal log-normal

PAGE 326

300 Figure F-S2-a: Histogram and frequency distribution of bias factor 2 for 58 cases of concrete piles in Sand using the Nordlund method ( : Schmertmann) in Vietnam Figure F-S2-b Resistant factor calibration for 58 cases of concrete piles in Sand using the Nordlund method ( : Schmertmann) in Vietnam 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Bias FactorDensity Lamda2AllSand data Normal Lognormal -2 -1 0 1 2 3 4 5 6 7 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 327

301 Figure F-S2-c Histogram and frequency distribution of bias factor 2 for 54 cases of concrete piles in Sand using the Nordlundmethod ( : Schmertmann)in North of Vietnam Figure F-S2-d Resistant factor calibration for 54 cases of concrete piles in Sand using the Nordlundmethod ( : Schmertmann)in North of Vietnam 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Bias FactorDensity Lamda2NorthSand data Normal Lognormal -2 -1 0 1 2 3 4 5 6 7 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 328

302 Figure F-S2-e Histogram and frequency distribution of bias factor 2 for 4 cases of concrete piles in Sand using the Nordlundmethod ( : Schmertmann)in South of Vietnam 0.2 0.3 0.4 0.5 0.6 0.7 0 2 4 6 8 10 DataDensity Lamda2SouthSand data Normal distribution Lognormal distribution

PAGE 329

303 Figure F-S3-a: Histogram and frequency distribution of bias factor 3 for 58 cases of concrete piles in Sand using the Meyerhof SPT methodin Vietnam Figure F-S3-b: Resistant factor calibration for 58 cases of concrete piles in Sand using the Meyerhof SPT methodin Vietnam 0.8 1 1.2 1.4 1.6 1.8 2 2.2 0 0.5 1 1.5 2 2.5 3 Bias FactorDensity Lamda3AllSand data Normal Lognormal 0 1 2 3 4 5 6 7 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Reliability Index, Resistance Factor,

PAGE 330

304 Figure F-S3-c: Histogram and frequency distribution of bias factor 3 for 54 cases of concrete piles in Sand using the Meyerhof SPT methodin North of Vietnam Figure F-S3-d Resistant factor calibration for 54 cases of concrete piles in Sand using the Meyerhof SPT methodin North of Vietnam 0.8 1 1.2 1.4 1.6 1.8 2 2.2 0 0.5 1 1.5 2 2.5 3 DataDensity Lamda3NorthSand data Normal Lognormal 1 2 3 4 5 6 7 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 331

305 Figure F-S3-e Histogram and frequency distribution of bias factor 3 for 4 cases of concrete piles in Sand using the Meyerhof SPT methodin South of Vietnam 0.8 1 1.2 1.4 1.6 1.8 0 0.5 1 1.5 2 2.5 Bias FactorDensity Lamda3SouthSand data Normal Lognormal

PAGE 332

306 Figure F-S4-a: Histogram and frequency distribution of bias factor 4 for 58 cases of concrete piles in Sand using the Schmertmann SPT methodin Vietnam Figure F-S4-b: Resistant factor calibration for 58 cases of concrete piles in Sand using the Schmertmann SPT methodin Vietnam 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 0 0.5 1 1.5 2 2.5 3 3.5 Bias FactorDensity Lamda4AllSand data Normal Lognormal 0 1 2 3 4 5 6 7 8 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Reliability Index, Resistance Factor,

PAGE 333

307 Figure F-S4-c: Histogram and frequency distribution of bias factor 4 for 54 cases of concrete piles in Sand using the Schmertmann SPT methodin North of Vietnam Figure F-S4-d: Resistant factor calibration for 54 cases of concrete piles in Sand using the Schmertmann SPT methodin North of Vietnam 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 Bias FactorDensity Lamda4NorthSand data Normal Lognormal 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 334

308 Figure F-S4-e: Histogram and frequency distribution of bias factor 4 for 4 cases of concrete piles in Sand using the Schmertmann SPT methodin North of Vietnam 0 0.5 1 1.5 2 2.5 3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Bias FactorDensity Lamda4SouthSand data Normal Lognormal

PAGE 335

309 Figure F-C1-a: Histogram and frequency distribution of bias factor 1 for 50cases of concrete piles in Clay using the -Tomlinson method (Su: Peck) in Vietnam Figure F-C1-b: Resistant factor calibration for 50cases of concrete piles in Clay using the Tomlinson method (Su: Peck) in Vietnam 0 0.5 1 1.5 2 2.5 3 3.5 0 0.2 0.4 0.6 0.8 1 1.2 Bias FactorDensity Lamda1AllClay data Normal Lognormal 0 1 2 3 4 5 6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 336

310 Figure F-C1-c Histogram and frequency distribution of 1 for 38 cases of concrete piles in Clay using the -Tomlinson method (Su: Peck) in Northof Vietnam Figure F-C1-d Resistance factor calibration for 38 cases of concrete piles in Clay using the Tomlinson method (Su: Peck) in Northof Vietnam 0.5 1 1.5 2 0 0.2 0.4 0.6 0.8 1 1.2 Bias FactorDensity Lamda1NorthClay data Lognormal Normal 0 1 2 3 4 5 6 7 8 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 337

311 Figure F-C1-e Histogram and frequency distribution of 1 for 10 cases of concrete piles in Clay using the -Tomlinson method (Su: Peck) in Central of Vietnam Figure F-C1-f Resistance factor calibration for 10 cases of concrete piles in Clay using the Tomlinson method (Su: Peck) in Central of Vietnam -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.1 0.2 0.3 0.4 0.5 Bias FactorDensity Lamda1CentralClay data Lognormal Normal 0 1 2 3 4 5 6 7 8 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 338

312 Figure F-C2-a Histogram and frequency distribution of bias factor 2 for 50cases of concrete piles in Clay using the -Tomlinson method (Su: Hara) in Vietnam Figure F-C2-b Resistance factor calibration for 50cases of concrete piles in Clay using the Tomlinson method (Su: Hara) in Vietnam 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.5 1 1.5 2 Bias FactorDensity Lamda2AllClay data Normal Lognormal 0 1 2 3 4 5 6 7 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 339

313 Figure F-C2-c Histogram and frequency distribution of bias factor 2 for 38cases of concrete piles in Clay using the -Tomlinson method (Su: Hara) in North of Vietnam Figure F-C2-d Resistance factor calibration for 38cases of concrete piles in Clay using the Tomlinson method (Su: Hara) in North of Vietnam 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 0 0.5 1 1.5 2 2.5 Bias FactorDensity Lamda2NorthClay data Normal Lognormal -1 0 1 2 3 4 5 6 7 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 340

314 Figure F-C2-e Histogram and frequency distribution of bias factor 2 for 10cases of concrete piles in Clay using the -Tomlinson method (Su: Hara) in South of Vietnam Figure FigureF-C2-f Resistance factor calibration for 10cases of concrete piles in Clay using the -Tomlinson method (Su: Hara) in South of Vietnam 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 0 0.5 1 1.5 2 2.5 3 Bias FactorDensity Lamda2CentralClay data Normal Lognormal 0 1 2 3 4 5 6 7 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 Reliability Index, Resistance Factor,

PAGE 341

315 Figure Figure F-C3-a Histogram and frequency distribution of bias factor 3 for 50cases of concrete piles in Clay using the -API method (Su: Peck) in Vietnam Figure Figure F-C3-b: Resistance factor calibration for 50cases of concrete piles in Clay using the -API method (Su: Peck) in Vietnam 0 0.5 1 1.5 2 2.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 DataDensity Lamda3AllClay data Normal Lognormal 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 342

316 Figure F-C3-a Histogram and frequency distribution of bias factor 3 for 38cases of concrete piles in Clay using the -API method (Su: Peck) in North of Vietnam Figure F-C3-b Resistance factor calibration for 38cases of concrete piles in Clay using the -API method (Su: Peck) in North of Vietnam 0 0.5 1 1.5 2 2.5 3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Bias FactorDensity Lamda3NorthClay data Normal Lognormal 1 2 3 4 5 6 7 8 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 343

317 Figure F-C3-c Histogram and frequency distribution of bias factor 3 for 10cases of concrete piles in Clay using the -API method (Su: Peck) in Central of Vietnam Figure F-C3-d Resistance factor calibration for 10cases of concrete piles in Clay using the -API method (Su: Peck) in Central of Vietnam 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Bias FactorDensity Lamda3CentralClay data Normal Lognormal 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 1 1.5 2 2.5 Reliability Index, Resistance Factor,

PAGE 344

318 Figure F-C5-aHistogram and frequency distribution of bias factor 5 for 50cases of concrete piles in Clay using the method (Su: Peck) in Vietnam Figure F-C5-b Resistance factor calibration for 50cases of concrete piles in Clay using the method (Su: Peck) in Vietnam 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Bias FactorDensity Lamda5AllClay data Normmal Lognormal 1 2 3 4 5 6 7 8 9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 345

319 Figure F-C5-c Histogram and frequency distribution of bias factor 5 for 38cases of concrete piles in Clay using the method (Su: Peck) North of Vietnam Figure F-C5-d Resistance factor calibration for 38cases of concrete piles in Clay using the method (Su: Peck) North of Vietnam 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.5 1 1.5 2 Bias FactorDensity Lamda5NorthClay data Normal Lognormal 0 1 2 3 4 5 6 7 8 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 346

320 Figure F-C5-e Histogram and frequency distribution of bias factor 5 for 10cases of concrete piles in Clay using the method (Su: Peck) Central of Vietnam Figure F-C5-f Resistance factor calibration for 10cases of concrete piles in Clay using the method (Su: Peck) Central of Vietnam 1 1.5 2 2.5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Bias FactorDensity Lamda5CentralClay data Normal Lognormal 1 1.5 2 2.5 3 3.5 4 4.5 5 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 Reliability Index, Resistance Factor,

PAGE 347

321 Figure F-C6-a Histogram and frequency distribution of bias factor 6 for 50cases of concrete piles in Clay using the method (Su: Hara) in Vietnam Figure F-C6-b Resistance factor calibration for 50cases of concrete piles in Clay using the method (Su: Hara) in Vietnam 0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0.5 1 1.5 2 2.5 Bias FactorDensity Lamda6AllClay data Normal Lognormal -1 0 1 2 3 4 5 6 7 8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 348

322 Figure F-C6-cHistogram and frequency distribution of bias factor 6 for 38cases of concrete piles in Clay using the method (Su: Hara) in North of Vietnam Figure F-C6-d Resistance factor calibration for 38cases of concrete piles in Clay using the method (Su: Hara) in North of Vietnam 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 0 0.5 1 1.5 2 2.5 Bias Facto r Density Lamda6NorthClay data Normal Lognormal -1 0 1 2 3 4 5 6 7 8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 349

323 Figure F-C6-eHistogram and frequency distribution of bias factor 6 for 10cases of concrete piles in Clay using the method (Su: Hara) in South of Vietnam Figure F-C6-f Resistance factor calibration for 10cases of concrete piles in Clay using the method (Su: Hara) in South of Vietnam 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 0 0.5 1 1.5 2 2.5 3 3.5 4 Bias FactorDensity Lamda6CentralClay data Normal Lognormal -1 0 1 2 3 4 5 6 7 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 Reliability Index, Resistance Factor,

PAGE 350

324 Figure F-C7-aHistogram and frequency distribution of bias factor 7 for 50 cases of concrete piles in Clay using the methodin Vietnam Figure F-C7-bResistance factor calibration of concrete piles in Clay using the methodin Vietnam 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 Bias FactorDensity Lamda7AllClay data Normal Lognormal 1 2 3 4 5 6 7 8 9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 351

325 Figure F-C7-cHistogram and frequency distribution of bias factor 7 for 38cases of concrete piles in Clay using the method in North of Vietnam Figure F-C7-dResistance factor calibration of concrete piles in Clay using the method in North of Vietnam 0.5 1 1.5 2 0 0.2 0.4 0.6 0.8 1 1.2 Bias FactorDensity Lamda7NorthClay data Normal Lognormal 1 2 3 4 5 6 7 8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 352

326 Figure F-C7-eHistogram and frequency distribution of bias factor 7 for 10cases of concrete piles in Clay using the method in Central of Vietnam Figure F-C7-fResistance factor calibration of concrete piles in Clay using the method in Central of Vietnam 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Bias FactorDensity Lamda7CentralClay data Normal Lognormal 0 1 2 3 4 5 6 7 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 Reliability Index, Resistance Factor,

PAGE 353

327 Figure F-C8-a Histogram and frequency distribution of bias factor 8 for 50 cases of concrete piles in Clay using the Schmertmann SPT in Vietnam Figure F-C8-bResistance factor calibration for 50 cases of concrete piles in Clay using the Schmertmann SPT in Vietnam 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.5 1 1.5 2 Bias FactorDensity Lamda8AllClay data Normal Lognormal 0 1 2 3 4 5 6 7 8 9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 354

328 Figure F-C8-cHistogram and frequency distribution of bias factor 8 for 38 cases of concrete piles in Clay using the Schmertmann SPT in North of Vietnam Figure F-C8-dResistance factor calibrationfor 38 cases of concrete piles in Clay using the Schmertmann SPT in North of Vietnam 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.5 1 1.5 2 Bias FactorDensity Lamda8NorthClay data Normal Lognormal 0 1 2 3 4 5 6 7 8 9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 355

329 Figure F-C8-eHistogram and frequency distribution of bias factor 8 for 10 cases of concrete piles in Clay using the Schmertmann SPT in South of Vietnam 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Bias FactorDensity Lamda8CentralClay data Normal Lognormal

PAGE 356

330 Figure F-M1-a Histogram and frequency distribution of bias factor 1 for 165 cases of concrete piles in Mixed soils using the -Tomlinson andNordlund/Thurman method (Su: Peck, : Peck, Hanson and Thornburn) in Vietnam Figure F-M1-bResistance factor calibration for 165 cases of concrete piles in Mixed soils using the Tomlinson andNordlund/Thurman method (Su: Peck, : Peck, Hanson and Thornburn) in Vietnam 0.5 1 1.5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Bias FactorDensity Lamda1NorthMixed data Normal Log-Normal 0 1 2 3 4 5 6 7 8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 357

331 Figure F-M1-cHistogram and frequency distribution of bias factor 1 for 99 cases of concrete piles in Mixed soils using the -Tomlinson andNordlund/Thurman method (Su: Peck, : Peck, Hanson and Thornburn) in North of Vietnam Figure F-M1-dResistance factor calibration for 99 cases of concrete piles in Mixed soils using the Tomlinson andNordlund/Thurman method (Su: Peck, : Peck, Hanson and Thornburn) in North of Vietnam 0.5 1 1.5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Bias FactorDensity Lamda1NorthMixed data Normal Log-Normal 0 1 2 3 4 5 6 7 8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 358

332 Figure F-M1-e Histogram and frequency distribution of bias factor 1 for 41cases of concrete piles in Mixed soils using the -Tomlinson andNordlund/Thurman method (Su: Peck, : Peck, Hanson and Thornburn) in Central of Vietnam Figure F-M1-fResistance factor calibration for 41cases of concrete piles in Mixed soils using the Tomlinson andNordlund/Thurman method (Su: Peck, : Peck, Hanson and Thornburn) in Central of Vietnam 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Bias FactorsDensity Lamda1CentralMixed data Normal Log-Normal 0 1 2 3 4 5 6 7 8 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 359

333 Figure F-M1-gHistogram and frequency distribution of bias factor 1 for 25cases of concrete piles in Mixed soils using the -Tomlinson andNordlund/Thurman method (Su: Peck, : Peck, Hanson and Thornburn) in South of Vietnam Figure F-M1-hResistance factor calibration for 25cases of concrete piles in Mixed soils using the Tomlinson andNordlund/Thurman method (Su: Peck, : Peck, Hanson and Thornburn) in South of Vietnam 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Bias FactorDensity Lamda1SouthMixed data Normal Lognormal 0 1 2 3 4 5 6 7 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 360

334 Figure F-M2-aHistogram and frequency distribution of bias factor 2 for 165cases of concrete piles in Mixed soils using the -Tomlinson andNordlund/Thurman method (Su: Hara, : Peck, Hanson and Thornburn) in Vietnam Figure F-M2-bResistance factor calibration for 165cases of concrete piles in Mixed soils using the Tomlinson andNordlund/Thurman method (Su: Hara, : Peck, Hanson and Thornburn) in Vietnam 0 0.5 1 1.5 2 2.5 3 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Bias FactorDensity Lamda2AllMixed data Normal Log-Normal -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 361

335 Figure F-M2-cHistogram and frequency distribution of bias factor 2 for 99cases of concrete piles in Mixed soils using the -Tomlinson andNordlund/Thurman method (Su: Hara, : Peck, Hanson and Thornburn) in North of Vietnam Figure F-M2-dResistance factor calibration for 99cases of concrete piles in Mixed soils using the Tomlinson andNordlund/Thurman method (Su: Hara, : Peck, Hanson and Thornburn) in North of Vietnam 0.4 0.6 0.8 1 1.2 1.4 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Bias FactorDensity Lamda2NorthMixed data Normal Lognormal -1 0 1 2 3 4 5 6 7 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 362

336 Figure F-M2-eHistogram and frequency distribution of bias factor 2 for 41 cases of concrete piles in Mixed soils using the -Tomlinson andNordlund/Thurman method (Su: Hara, : Peck, Hanson and Thornburn) in Central of Vietnam Figure F-M2-fResistance factor calibration for 41cases of concrete piles in Mixed soils using the Tomlinson andNordlund/Thurman method (Su: Hara, : Peck, Hanson and Thornburn) in Central of Vietnam 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0.5 1 1.5 2 2.5 Bias FactorDensity Lamda2CentralMixed data Normal Lognormal -2 -1 0 1 2 3 4 5 6 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 363

337 Figure F-M2-g Histogram and frequency distribution of bias factor 2 for 25 cases of concrete piles in Mixed soils using the -Tomlinson andNordlund/Thurman method (Su: Hara, : Peck, Hanson and Thornburn) in South of Vietnam Figure F-M2-hResistance factor calibration for 25cases of concrete piles in Mixed soils using the Tomlinson and Nordlund/Thurman method (Su: Hara, : Peck, Hanson and Thornburn) in South of Vietnam 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 Bias FactorDensity Lamda2SouthMixed data Normal Log-normal 0.5 1 1.5 2 2.5 3 3.5 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 364

338 Figure F-M3-aHistogram and frequency distribution of bias factor 3 for 165 cases of concrete piles in Mixed soils using the -API andNordlund/Thurman method (Su: Peck, : Peck, Hanson and Thornburn) in Vietnam Figure F-M3-b Resistance factor calibration for 165cases of concrete piles in Mixed soils using the API andNordlund/Thurman method (Su: Peck, : Peck, Hanson and Thornburn) in Vietnam 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 0 0.5 1 1.5 Bias FactorDensity Lamda3AllMixed data Normal Log-Normal 0 1 2 3 4 5 6 7 8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 365

339 Figure F-M3-cHistogram and frequency distribution of bias factor 3 for 99cases of concrete piles in Mixed soils using the -API andNordlund/Thurman method (Su: Peck, : Peck, Hanson and Thornburn) in North of Vietnam Figure F-M3-dResistance factor calibration for 99cases of concrete piles in Mixed soils using the API andNordlund/Thurman method (Su: Peck, : Peck, Hanson and Thornburn) in North of Vietnam 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Bias FactorDensity Lamda3NorthMixed data Normal Log-Normal 0 1 2 3 4 5 6 7 8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 366

340 Figure F-M3-eHistogram and frequency distribution of bias factor 3 for 41cases of concrete piles in Mixed soils using the -API andNordlund/Thurman method (Su: Peck, : Peck, Hanson and Thornburn) in Central of Vietnam Figure F-M3-fResistance factor calibration for 41cases of concrete piles in Mixed soils using the API andNordlund/Thurman method (Su: Peck, : Peck, Hanson and Thornburn) in Central of Vietnam 0.5 1 1.5 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Bias FactorDensity Lamda3CentralMixed data Normal Log-normal 0 1 2 3 4 5 6 7 8 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 367

341 Figure F-M3-gHistogram and frequency distribution of bias factor 3 for 25 cases of concrete piles in Mixed soils using the -API andNordlund/Thurman method (Su: Peck, : Peck, Hanson and Thornburn) in South of Vietnam Figure F-M3-hResistance factor calibration for 25 cases of concrete piles in Mixed soils using the API andNordlund/Thurman method (Su: Peck, : Peck, Hanson and Thornburn) in South of Vietnam 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Bias FactorDensity Lamda4SouthMixed data Normal Lognormal 0 1 2 3 4 5 6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 368

342 Figure F-M4-a Histogram and frequency distribution of bias factor 4 for 165 cases of concrete piles in Mixed soils using the -API andNordlund/Thurman method (Su: Hara, : Peck, Hanson and Thornburn) in Vietnam Figure F-M4-bResistance factor calibration for 165 cases of concrete piles in Mixed soils using the API andNordlund/Thurman method (Su: Hara, : Peck, Hanson and Thornburn) in Vietnam 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Bias FactorDensity Lamda4AllMixed data Normal Log-Normal 0 1 2 3 4 5 6 7 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 369

343 Figure F-M4-cHistogram and frequency distribution of bias factor 4 for 99 cases of concrete piles in Mixed soils using the -API andNordlund/Thurman method (Su: Hara, : Peck, Hanson and Thornburn) in North of Vietnam Figure F-M4-dResistance factor calibration for 99cases of concrete piles in Mixed soils using the API andNordlund/Thurman method (Su: Hara, : Peck, Hanson and Thornburn) in North of Vietnam 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.5 1 1.5 Bias FactorDensity Lamda5NorthMixed data Normal Log-Normal 0 1 2 3 4 5 6 7 8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 370

344 Figure F-M4-eHistogram and frequency distribution of bias factor 4 for 41 cases of concrete piles in Mixed soils using the -API andNordlund/Thurman method (Su: Hara, : Peck, Hanson and Thornburn) in Central of Vietnam Figure F-M4-fResistance factor calibration for 41cases of concrete piles in Mixed soils using the API andNordlund/Thurman method (Su: Hara, : Peck, Hanson and Thornburn) in Central of Vietnam 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Bias FactorDensity Lamda4CentralMixed data Normal Log-Normal -1 0 1 2 3 4 5 6 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 371

345 Figure F-M4-gHistogram and frequency distribution of bias factor 4 for 25cases of concrete piles in Mixed soils using the -API andNordlund/Thurman method (Su: Hara, : Peck, Hanson and Thornburn) in South of Vietnam Figure F-M4-h Resistance factor calibration for 25 cases of concrete piles in Mixed soils using the API andNordlund/Thurman method (Su: Hara, : Peck, Hanson and Thornburn) in South of Vietnam 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Bias FactorDensity Lamda4SouthMixed data Normal Lognormal 0 1 2 3 4 5 6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 372

346 Figure F-M5-a Histogram and frequency distribution of bias factor 5 for 165cases of concrete piles in Mixed soils using the andNordlund/Thurman method (Su: Peck, : Peck, Hanson and Thornburn) in Vietnam FigureF-M5-bResistance factor calibration for 165 cases of concrete piles in Mixed soils using the andNordlund/Thurman method (Su: Peck, : Peck, Hanson and Thornburn) in Vietnam 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Bias FactorDensity Lamda5AllMixed data Normal Log-Normal 0 1 2 3 4 5 6 7 8 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 373

347 FigureF-M5-c Histogram and frequency distribution of bias factor 5 for 99 cases of concrete piles in Mixed soils using the and Nordlund/Thurman method (Su: Peck, : Peck, Hanson and Thornburn) in North of Vietnam Figure F-M5-d Resistance factor calibration for 99 cases of concrete piles in Mixed soils using the andNordlund/Thurman method (Su: Peck, : Peck, Hanson and Thornburn) in North of Vietnam 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.5 1 1.5 Bias FactorDensity Lamda5NorthMixed data Normal Log-Normal 0 1 2 3 4 5 6 7 8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 374

348 Figure F-M5-eHistogram and frequency distribution of bias factor 5 for 41 cases of concrete piles in Mixed soils using the andNordlund/Thurman method (Su: Peck, : Peck, Hanson and Thornburn) in Central of Vietnam Figure F-M5-fResistance factor calibration for 41cases of concrete piles in Mixed soils using the andNordlund/Thurman method (Su: Peck, : Peck, Hanson and Thornburn) in Central of Vietnam 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.5 1 1.5 Bias FactorDensity Lamda5CentralMixed data Normal Log-Normal 0 1 2 3 4 5 6 7 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 375

349 Figure F-M5-gHistogram and frequency distribution of bias factor 5 for 25 cases of concrete piles in Mixed soils using the andNordlund/Thurman method (Su: Peck, : Peck, Hanson and Thornburn) in South of Vietnam Figure F-M5-hResistance factor calibration for 25 cases of concrete piles in Mixed soils using the andNordlund/Thurman method (Su: Peck, : Peck, Hanson and Thornburn) in South of Vietnam 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Bias FactorDensity Lamda5SouthMixed data Normal Log-Normal 0 1 2 3 4 5 6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 376

350 Figure F-M6-aHistogram and frequency distribution of bias factor 6 for 165 cases of concrete piles in Mixed soils using the andNordlund/Thurman method (Su: Hara, : Peck, Hanson and Thornburn) in Vietnam Figure F-M6-bResistance factor calibration for 165cases of concrete piles in Mixed soils using the andNordlund/Thurman method (Su: Hara, : Peck, Hanson and Thornburn) in Vietnam 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0.5 1 1.5 2 Bias FactorDensity Lamda6AllMixed data Normal Log-Normal -1 0 1 2 3 4 5 6 7 8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 377

351 Figure F-M 6 cHistogram and frequency distribution of bias factor 6 for 99 cases of concrete piles in Mixed soils using the and Nordlund/Thurman method (Su: Hara, : Peck, Hanson and Thornburn) in North of Vietnam Figure F-M 6 d Resistance factor calibration for 99 cases of concrete piles in Mixed soils using the and Nordlund/Thurman method (Su: Hara, : Peck, Hanson and Thornburn) in North of Vietnam 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0.5 1 1.5 2 2.5 Bias FactorDensity Lamda6NorthMixed data Normal Log-Normal -1 0 1 2 3 4 5 6 7 8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 378

352 Figure F-M6-eHistogram and frequency distribution of bias factor 6 for 41 cases of concrete piles in Mixed soils using the andNordlund/Thurman method (Su: Hara, : Peck, Hanson and Thornburn) in Central of Vietnam Figure F-M6-fResistance factor calibration for 41cases of concrete piles in Mixed soils using the andNordlund/Thurman method (Su: Hara, : Peck, Hanson and Thornburn) in Central of Vietnam 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.5 1 1.5 2 Bias FactorDensity Lamda6CentralMixed data Normal Log-Normal -1 0 1 2 3 4 5 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 379

353 Figure F-M 6 gHistogram and frequency distribution of bias factor 6 for 25 cases of concrete piles in Mixed soils using the and Nordlund/Thurman method (Su: Hara, : Peck, Hanson and Thornburn) in South of Vietnam Figure F-M6-h Resistance factor calibration for 25 cases of concrete piles in Mixed soils using the and Nordlund/Thurman method (Su: Hara, : Peck, Hanson and Thornburn) in South of Vietnam 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.5 1 1.5 2 2.5 Bias FactorDensity Lamda6SouthMixed data Normal Log-Normal 0 1 2 3 4 5 6 7 8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 380

354 Figure F-M7-aHistogram and frequency distribution of bias factor 7 for 165 cases of concrete piles in Mixed soils using the Burland andNordlund/Thurman method ( : Peck, Hanson and Thornburn) in Vietnam Figure F-M7-bResistance factor calibration for 165 cases of concrete piles in Mixed soils using the Burland andNordlund/Thurman method ( : Peck, Hanson and Thornburn) in Vietnam 0.5 1 1.5 2 0 0.5 1 1.5 Bias FactorDensity Lamda7AllMixed data Normal Log-Normal 0 1 2 3 4 5 6 7 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 381

355 Figure F-M7c Histogram and frequency distribution of bias factor 7 for 99 cases of concrete piles in Mixed soils using the Burland and Nordlund/Thurman method ( : Peck, Hanson and Thornburn) in North of Vietnam Figure F-M7dResistance factor calibration for 99 cases of concrete piles in Mixed soils using the Burland and Nordlund/Thurman method ( : Peck, Hanson and Thornburn) in North of Vietnam 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Bias FactorDensity Lamda7NorthMixed data Normal Log-Normal 0 1 2 3 4 5 6 7 8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 382

356 Figure F-M7-eHistogram and frequency distribution of bias factor 7 for 41cases of concrete piles in Mixed soils using the Burland and Nordlund/Thurman method ( : Peck, Hanson and Thornburn) in Central of Vietnam Figure F-M7-fResistance factor calibration for 41cases of concrete piles in Mixed soils using the Burland andNordlund/Thurman method ( : Peck, Hanson and Thornburn) in Central of Vietnam 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.5 1 1.5 2 DataDensity Lamda7CentralMixed data Normal Log-Normal 0 1 2 3 4 5 6 7 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 383

357 Figure F-M7-gHistogram and frequency distribution of bias factor 7 for 25cases of concrete piles in Mixed soils using the Burland andNordlund/Thurman method ( : Peck, Hanson and Thornburn) in South of Vietnam Figure F-M7-hResistance factor calibration for 25 cases of concrete piles in Mixed soils using the Burland andNordlund/Thurman method ( : Peck, Hanson and Thornburn) in South of Vietnam 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Bias FactorDensity Lamda7SouthMixed data Normal Log-Normal 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 384

358 Figure F-M8-aHistogram and frequency distribution of bias factor 8 for 165 cases of concrete piles in Mixed soils using the -Tomlinson andNordlund/Thurman method (Su: Peck, : Schmertmann) in Vietnam Figure F-M8-bResistance factor calibration for 165 cases of concrete piles in Mixed soils using the Tomlinson andNordlund/Thurman method (Su: Peck, : Schmertmann) in Vietnam 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.5 1 1.5 Bias FactorDensity Lamda8AllMixed data Normal log-Normal -1 0 1 2 3 4 5 6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 385

359 Figure F-M8-cHistogram and frequency distribution of bias factor 8 for 99 cases of concrete piles in Mixed soils using the -Tomlinson and Nordlund/Thurman method (Su: Peck, : Schmertmann) in North of Vietnam Figure F-M8-dResistance factor calibration for 99 cases of concrete piles in Mixed soils using the Tomlinson and Nordlund/Thurman method (Su: Peck, : Schmertmann) in North of Vietnam 0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Bias FactorDensity Lamda8NorthMixed data Normal Lognormal -1 0 1 2 3 4 5 6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 386

360 Figure F-M8-eHistogram and frequency distribution of bias factor 8 for 41cases of concrete piles in Mixed soils using the -Tomlinson andNordlund/Thurman method (Su: Peck, : Schmertmann) in Central of Vietnam Figure F-M8-fResistance factor calibration for 41cases of concrete piles in Mixed soils using the Tomlinson andNordlund/Thurman method (Su: Peck, : Schmertmann) in Central of Vietnam 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.5 1 1.5 2 2.5 Bias FactorDensity Lamda8CentralMixed data Normal Log-Normal -1 0 1 2 3 4 5 6 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 387

361 Figure F-M8-gHistogram and frequency distribution of bias factor 8 for 25 cases of concrete piles in Mixed soils using the -Tomlinson andNordlund/Thurman method (Su: Peck, : Schmertmann) in South of Vietnam Figure F-M8-hResistance factor calibration for 25 cases of concrete piles in Mixed soils using the Tomlinson andNordlund/Thurman method (Su: Peck, : Schmertmann) in South of Vietnam 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.5 1 1.5 2 2.5 Bias FactorDensity Lamda8SouthMixed data Normal Log-Normal -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 388

362 Figure F-M9-aHistogram and frequency distribution of bias factor 9 for 165 cases of concrete piles in Mixed soils using the -Tomlinson andNordlund/Thurman method (Su: Hara, :Schmertmann) in Vietnam Figure F-M9-bResistance factor calibration for 165cases of concrete piles in Mixed soils using the Tomlinson andNordlund/Thurman method (Su: Hara, :Schmertmann) in Vietnam 0 0.5 1 1.5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Bias FactorDensity Lamda9AllMixed data Normal Log-Normal -1 0 1 2 3 4 5 6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 389

363 Figure F-M9-cHistogram and frequency distribution of bias factor 9 for 99cases of concrete piles in Mixed soils using the -Tomlinson and Nordlund/Thurman method (Su: Hara, :Schmertmann) in North of Vietnam FigureF-M9-dResistance factor calibration for 99cases of concrete piles in Mixed soils using the Tomlinson andNordlund/Thurman method (Su: Hara, : Schmertmann) in North of Vietnam 0 0.2 0.4 0.6 0.8 1 1.2 0 0.5 1 1.5 2 Bias FactorDensity Lamda9NorthMixed data Normal Log-Normal -1 0 1 2 3 4 5 6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 390

364 Figure F-M9-eHistogram and frequency distribution of bias factor 9 for 41cases of concrete piles in Mixed soils using the -Tomlinson andNordlund/Thurman method (Su: Hara, :Schmertmann) in Central of Vietnam Figure F-M9-fResistance factor calibration for 41cases of concrete piles in Mixed soils using the Tomlinson andNordlund/Thurman method (Su: Hara, :Schmertmann) in Central of Vietnam 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0.5 1 1.5 2 2.5 Bias FactorDensity Lamda9CentralMixed data Normal Log-Normal -1 0 1 2 3 4 5 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 391

365 Figure F-M9-gHistogram and frequency distribution of bias factor 9 for 25cases of concrete piles in Mixed soils using the -Tomlinson andNordlund/Thurman method (Su: Hara, : Schmertmann) in South of Vietnam Figure F-M9-hResistance factor calibration for 25cases of concrete piles in Mixed soils using the Tomlinson andNordlund/Thurman method (Su: Hara, : Schmertmann) in South of Vietnam 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0.5 1 1.5 2 2.5 Bias FactorDensity Lamda9SouthMixed data Normal Log-Normal -1 0 1 2 3 4 5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 392

366 Figure F-M10-aHistogram and frequency distribution of bias factor 10 for 165 cases of concrete piles in Mixed soils using the -API andNordlund/Thurman method (Su: Peck, : Schmertmann) in Vietnam Figure F-M10-bResistance factor calibration for 165 cases of concrete piles in Mixed soils using the API andNordlund/Thurman method (Su: Peck, : Schmertmann) in Vietnam 0 0.5 1 1.5 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Bias FactorDensity Lamda10AllMixed data Normal Log-Normal -1 0 1 2 3 4 5 6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 393

367 Figure F-M 10 c Histogram and frequency distribution of bias factor 10 for 99 cases of concrete piles in Mixed soils using the -API and Nordlund/Thurman method (Su: Peck, : Schmertmann) in North of Vietnam Figure F-M 10 dResistance factor calibration for 99 cases of concrete piles in Mixed soils using the API and Nordlund/Thurman method (Su: Peck, : Schmertmann) in North of Vietnam 0 0.5 1 1.5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Bias FactorDensity Lamda10NorthMixed data Normal Log-Normal -1 0 1 2 3 4 5 6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 394

368 Figure F-M10-eHistogram and frequency distribution of bias factor 10 for 41cases of concrete piles in Mixed soils using the -API andNordlund/Thurman method (Su: Peck, : Schmertmann) in Central of Vietnam Figure F-M10-fResistance factor calibration for 41cases of concrete piles in Mixed soils using the API andNordlund/Thurman method (Su: Peck, : Schmertmann) in Central of Vietnam 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.5 1 1.5 Bias FactorDensity Lamda5CentralMixed data Normal Log-Normal 0 1 2 3 4 5 6 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 395

369 Figure F-M10-gHistogram and frequency distribution of bias factor 10 for 25 cases of concrete piles in Mixed soils using the -API andNordlund/Thurman method (Su: Peck, :Schmertmann) in South of Vietnam Figure F-M10-hResistance factor calibration for 25 cases of concrete piles in Mixed soils using the API andNordlund/Thurman method (Su: Peck, :Schmertmann) in South of Vietnam 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.5 1 1.5 2 2.5 Bias FactorDensity Lamda10SouthMixed data Normal Log-Normal 0 1 2 3 4 5 6 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Reliability Index, Resistance Factor,

PAGE 396

370 Figure F-M11-aHistogram and frequency distribution of bias factor 11 for 165 cases of concrete piles in Mixed soils using the -API andNordlund/Thurman method (Su: Hara, : Schmertmann) in Vietnam Figure F-M11-bResistance factor calibration for 165 cases of concrete piles in Mixed soils using the API andNordlund/Thurman method (Su: Hara, : Schmertmann) in Vietnam 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Bias FactorDensity Lamda11AllMixed data Normal Log-Normal -1 0 1 2 3 4 5 6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 397

371 Figure F-M 11 c Histogram and frequency distribution of bias factor 11 for 99 cases of concrete piles in Mixed soils using the -API and Nordlund/Thurman method (Su: Hara, : Schmertmann) in North of Vietnam Figure F-M 11 dResistance factor calibration for 99 cases of concrete piles in Mixed soils using the API and Nordlund/Thurman method (Su: Hara, : Schmertmann) in North of Vietnam 0 0.2 0.4 0.6 0.8 1 0 0.5 1 1.5 2 2.5 Bias FactorDensity Lamda11NorthMixed data Normal Log-Normal -1 0 1 2 3 4 5 6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 398

372 Figure F-M11-eHistogram and frequency distribution of bias factor 11 for 41 cases of concrete piles in Mixed soils using the -API andNordlund/Thurman method (Su: Hara, : Schmertmann) in Central of Vietnam Figure F-M11-fResistance factor calibration for 41 cases of concrete piles in Mixed soils using the -API and Nordlund/Thurman method (Su: Hara, : Schmertmann) in Central of Vietnam 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.5 1 1.5 2 2.5 3 Bias FactorDensity Lamda11CentralMixed data Normal Log-Normal -1 0 1 2 3 4 5 6 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 399

373 Figure F-M11-gHistogram and frequency distribution of bias factor 11 for 25cases of concrete piles in Mixed soils using the -API andNordlund/Thurman method (Su: Hara, : Schmertmann) in South of Vietnam Figure F-M11-h Resistance factor calibration for 25 cases of concrete piles in Mixed soils using the API andNordlund/Thurman method (Su: Hara, : Schmertmann) in South of Vietnam 0 0.5 1 1.5 0 0.5 1 1.5 2 2.5 Bias FactorDensity Lamda11SouthMixed data Normal Log-Normal 0 1 2 3 4 5 6 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Reliability Index, Resistance Factor,

PAGE 400

374 Figure F-M12-aHistogram and frequency distribution of bias factor 12 for 165 cases of concrete piles in Mixed soils using the and Nordlund/Thurman method (Su: Peck, : Schmertmann) in Vietnam Figure F-M12-bResistance factor calibration for 165 cases of concrete piles in Mixed soils using the andNordlund/Thurman method (Su: Peck, : Schmertmann) in Vietnam 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Bias FactorDensity Lamda12AllMixed data Normal Log-Normal -1 0 1 2 3 4 5 6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 401

375 Figure F-M 12 c Histogram and frequency distribution of bias factor 12 for 99 cases of concrete piles in Mixed soils using the and Nordlund/Thurman method (Su: Peck, : Schmertmann) in North of Vietnam Figure F-M 12 dResistance factor calibration for 99 cases of concrete piles in Mixed soils using the and Nordlund/Thurman method (Su: Peck, : Schmertmann) in North of Vietnam 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.5 1 1.5 Bias FactorDensity Lamda12NorthMixed data fit 13 fit 14 -1 0 1 2 3 4 5 6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 402

376 Figure F-M12-eHistogram and frequency distribution of bias factor 12 for 41 cases of concrete piles in Mixed soils using the andNordlund/Thurman method (Su: Peck, : Schmertmann) in Central of Vietnam Figure F-M12-fResistance factor calibration for 41cases of concrete piles in Mixed soils using the andNordlund/Thurman method (Su: Peck, : Schmertmann) in Central of Vietnam 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 0 0.5 1 1.5 2 2.5 Bias FactorDensity Lamda12CentralMixed data Normal Log-Normal 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 403

377 Figure F-M12-gHistogram and frequency distribution of bias factor 12 for 25cases of concrete piles in Mixed soils using the andNordlund/Thurman method (Su: Peck, : Schmertmann) in South of Vietnam Figure F-M12-hResistance factor calibration for 25 cases of concrete piles in Mixed soils using the andNordlund/Thurman method (Su: Peck, : Schmertmann) in South of Vietnam 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.5 1 1.5 2 2.5 Bias FactorDensity Lamda12SouthMixed data Normal Log-Normal -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 404

378 Figure F-M13-aHistogram and frequency distribution of bias factor 13 for 165 cases of concrete piles in Mixed soils using the andNordlund/Thurman method (Su: Hara, : Schmertmann) in Vietnam Figure F-M13-bResistance factor calibration for 165 cases of concrete piles in Mixed soils using the andNordlund/Thurman method (Su: Hara, : Schmertmann) in Vietnam 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Bias FactorDensity Lamda13AllMixed data Normal Log-Normal -1 0 1 2 3 4 5 6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 405

379 Figure F-M13-cHistogram and frequency distribution of bias factor 13 for 99 cases of concrete piles in Mixed soils using the andNordlund/Thurman method (Su: Hara, : Schmertmann) in North of Vietnam Figure F-M13-dResistance factor calibration for 99cases of concrete piles in Mixed soils using the andNordlund/Thurman method (Su: Hara, : Schmertmann) in North of Vietnam 0 0.2 0.4 0.6 0.8 1 1.2 0 0.5 1 1.5 2 Bias FactorDensity Lamda13NorthMixed data Normal Log-Normal -1 0 1 2 3 4 5 6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 406

380 Figure F-M13-eHistogram and frequency distribution of bias factor 13 for 41 cases of concrete piles in Mixed soils using the andNordlund/Thurman method (Su: Hara, : Schmertmann) in Central of Vietnam Figure F-M13-fResistance factor calibration for 41cases of concrete piles in Mixed soils using the andNordlund/Thurman method (Su: Hara, : Schmertmann) in Central of Vietnam 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.5 1 1.5 2 Bias FactorDensity Lamda13CentralMixed data Normal Log-Normal 0 1 2 3 4 5 6 7 8 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 407

381 Figure F-M13-gHistogram and frequency distribution of bias factor 13 for 25 cases of concrete piles in Mixed soils using the andNordlund/Thurman method (Su: Hara, : Schmertmann) in South of Vietnam Figure F-M13-hResistance factor calibration for 25 cases of concrete piles in Mixed soils using the andNordlund/Thurman method (Su: Hara, : Schmertmann) in South of Vietnam 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Bias FactorDensity Lamda13SouthMixed data Normal Log-Normal -1 0 1 2 3 4 5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 408

382 Figure F-M14-aHistogram and frequency distribution of bias factor 14 for 165 cases of concrete piles in Mixed soils using the Burland andNordlund/Thurman method ( : Schmertmann) in Vietnam Figure F-M14-bResistance factor calibration for 165 cases of concrete piles in Mixed soils using the Burland andNordlund/Thurman method ( : Schmertmann) in Vietnam 0 0.5 1 1.5 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Bias FactorDensity Lamda14AllMixed data Normal Log-Normal 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 409

383 Figure F-M 14 c Histogram and frequency distribution of bias factor 14 for 99 cases of concrete piles in Mixed soils using the Burland and Nordlund/Thurman method ( :Schmertmann) in North of Vietnam Figure F-M 14 dResistance factor calibration for 99 cases of concrete piles in Mixed soils using the Burland and Nordlund/Thurman method ( :Schmertmann) in North of Vietnam 0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Bias FactorDensity Lamda14NorthMixed data Normal Log-Normal -1 0 1 2 3 4 5 6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 410

384 Figure F-M14-eHistogram and frequency distribution of bias factor 14 for 41cases of concrete piles in Mixed soils using the Burland andNordlund/Thurman method ( :Schmertmann) in Central of Vietnam Figure F-M14-fResistance factor calibration for 41cases of concrete piles in Mixed soils using the Burland andNordlund/Thurman method ( :Schmertmann) in Central of Vietnam 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Bias FactorDensity Lamda14CentralMixed data Normal Log-Normal 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 411

385 Figure F-M14-gHistogram and frequency distribution of bias factor 14 for 25cases of concrete piles in Mixed soils using the Burland andNordlund/Thurman method ( :Schmertmann) in South of Vietnam Figure F-M14-hResistance factor calibration for 25cases of concrete piles in Mixed soils using the Burland andNordlund/Thurman method ( :Schmertmann) in South of Vietnam 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Bias FactorDensity Lamda14SouthMixed data Normal Lognormal -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 412

386 Figure F-M15-aHistogram and frequency distribution of bias factor 15 for 165cases of concrete piles in Mixed soils using the Schmertmann SPT method in Vietnam Figure F-M15-bResistance factor calibration for 165cases of concrete piles in Mixed soils using the Schmertmann SPT method in Vietnam 0.5 1 1.5 2 2.5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Bias FactorDensity Lamda15AllMixed data Normal Lognormal 0 1 2 3 4 5 6 7 8 9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 413

387 Figure F-M 15 c Histogram and frequency distribution of bias factor 15 for 99 cases of concrete piles in Mixed soils using the Schmertmann SPT method in North of Vietnam Figure F-M 15 dResistance factor calibration for 99 cases of concrete piles in Mixed soils using the Schmertmann SPT method in North of Vietnam 0.5 1 1.5 2 2.5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Bias FactorDensity Lamda15NorthMixed data Normal Lognormal 1 2 3 4 5 6 7 8 9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 414

388 Figure F-M15-eHistogram and frequency distribution of bias factor 15 for 41cases of concrete piles in Mixed soils using the Schmertmann SPT in Central of Vietnam Figure F-M15-fResistance factor calibration for 41cases of concrete piles in Mixed soils using the Schmertmann SPT in Central of Vietnam 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Bias FactorDensity Lamda15CentralMixed data Normal Log-Normal -1 0 1 2 3 4 5 6 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 415

389 Figure F-M15-gHistogram and frequency distribution of bias factor 15 for 25cases of concrete piles in Mixed soils using theSchmertmann SPTmethod ( :Schmertmann) in South of Vietnam Figure F-M15-hResistance factor calibration for 25 cases of concrete piles in Mixed soils using theSchmertmann SPTmethod ( :Schmertmann) in South of Vietnam 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Bias FactorDensity Lamda15SouthMixed data Normal Lognormal 0 1 2 3 4 5 6 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 Reliability Index, Resistance Factor,

PAGE 416

APPENDIX G Nominal and Measure Capacity of Drilled Shaft from Vietnam

PAGE 417

390 Table G-1 Summary drilled shaft data from Vietnam No Name of Project Location Soil Name (mm) (m) NP-M1 181 Nguyen Luong Bang-Hanoi Hanoi Mixed C9 1 47 NP-M2 North Plain C26 0.8 47 NP-M3 Chung Cu Cao Tang CT4-Van Khe Hanoi Mixed TN-1 1.2 44 NP-M4 HaDong-HaTay North Plain TN-2 1.2 44 NP-M5 TN-3 1.2 44 NP-M6 CT1A-CT1BXuan La-Tayho-Hanoi Hanoi Mixed TN08 1.2 44 NP-M7 North Plain TN22 1.0 44 NP-M8 TN26 1.2 44 NP-M9 CT3 Trung Van-Hanoi Hanoi Mixed NT1 1.2 46 NP-M10 North Plain NT2 1.2 46 NP-M11 NT3 1.0 44 NP-M12 NT4 1.0 45 NP-M13 NT5 0.8 46 NP-M14 11 Tran Hung Dao-Hanoi Hanoi Mixed TN1 1.0 44 NP-M15 North Plain TN2 0.8 44 NP-M16 235 Nguyen Trai-Hanoi Hanoi Mixed TN1-07 1.0 46 NP-M17 North Plain TN2-32 1.0 46 NP-M18 Habico-Tower-Hanoi Hanoi Mixed N07 1.2 40 NP-M19 North Plain N207 1.2 40 NP-M20 N223 1.5 40 NP-M21 N44 1.2 40 NP-M22 Hanoi Central Hotel-44 Ly ThuongKiet St Hanoi Mixed No60 1.0 39 NP-M23 Hanoi Tung Shing Club-151 ThuyKheHanoi Mixed P65 1.2 52 NP-M24 Tay Ho-Hanoi North Plain P119 1.2 52 NP-M25 P216 1.2 51 NP-M26 P290 1.0 41 NP-M27 La Khe-Van Khe, Ha Dong-HaTay Hanoi Mixed CN120-14 1.2 49 NP-M28 North Plain Sand CN100-03 1.0 49 NP-M29 Logitem Vietnam Corp, No1 project-Thai Thinh Hanoi Mixed C-45 1.0 47 NP-M30 M5 Tower-Nguyen Chi Thanh-Hanoi Hanoi TN2-96 1.5 47 NP-M31 NhaKhoSach-Thu VienQuocGiaHanoi Hanoi Mixed No-2 0.9 46 NP-M32 North Plain No-3 0.9 45 NP-M33 Nha van phong 149-pho Hue-hanoi Hanoi Mixed TN01-50 0.4 42 NP-M34 North Plain TN02-123 0.4 43 NP-M35 Thanh Tri Bridge-Hanoi Hanoi Mixed P18 1.5 42 NP-M36 North Plain P32 1.5 42 NP-M37 P11-L8 1.5 49 NP-M38 P12-R02 1.5 50 NP-M39 P12-R05 1.5 50 NP-M40 Trung Tam Thuong Mai CauGiay-DichVong Hanoi No27 1.2 47 NP-M41 CauGiay-Hanoi North Plain No92 1.2 44 NP-M42 Trung Tam Thuong Mai-Khu do thi Hanoi Mixed TN07 1.0 37 NP-M43 Nam Thang Long-Tay Ho-Hanoi North Plain more TN16 1.0 37 NP-M44 Sand TN08 1.0 37 NP-M45 TN04 0.8 37 NP-M46 TN11 1.0 37

PAGE 418

391 Table G-1 (cont.) NP-M47 TN15 1.0 37 NP-M48 TN03 1.2 37 NP-M49 TN12 1.0 37 NP-M50 Ever Fortune Plaza Hote l83 Ly ThuongKiet Hanoi D5a 1.0 40 NP-M51 Hanoi Opera Hilton Hanoi Hanoi Mixed 2.00 1.0 38 NP-M52 Phap Van Bridge Hanoi Hanoi P38R32 1.2 44 NP-M53 SaS Royal Hotel-LeNin Park -Hanoi Hanoi TP1 1.0 43 NP-M54 North Plain TP2 0.8 43 NP-M55 Tru So Bo Noi Vu-Khu Do thimoiDichVong Hanoi Mixed TN2 1.0 52 NP-M56 CauGiay-Hanoi North Plain TN3 1.0 51 NP-M57 TN4 1.0 51 NP-M58 Trung Tam Thuong Mai Dich Vu Hanoi TN1 1.2 50 NP-M59 114 Mai Hac De Hanoi North Plain TN2 1.0 50 NP-M60 Indochina Plaza-Hanoi-stra ingage Hanoi TP1 1.0 58 NP-M61 North Plain TP2 1.5 48 NP-M62 TP3 0.6-2.7 40 NP-M63 My DinhTuLiem Hanoi Hanoi N62 1.2 41 NP-M64 North Plain N100 1.5 42 NP-M65 N207 1.5 42 NP-M66 349 Doi Can-Hanoi Hanoi CN2-10 1.2 36 NP-M67 North Plain CN1-44 1.2 36 NP-M68 114 Mai Hac De -Hanoi Hanoi TN1 1.2 49 NP-M69 North Plain TN2 1.5 49 NP-M70 Ngoc Khanh -Ba Dinh-Hanoi Hanoi 42.00 1.2 43 NP-M71 North Plain 195.00 0.8 43 NP-M72 B15 Dai Kim-Dinh Cong-Hanoi Hanoi No13 1.0 48 NP-M73 North Plain No68 1.0 60 NP-M74 No118 1.0 48 NP-M75 335 Duong CauGiay-Hanoi Hanoi Mixed TN01-05 1.0 44 NP-M76 North Plain more TN03-54 1.2 44 NP-M77 sand TN02-36 1.2 44 NP-M78 TN04-94 1.2 44 NP-M79 Thuong Ly Bridge HaiPhong Hanoi Mixed K35-M3 1.0 59 NP-M80 LachChay Bridge -HaiPhong HaiPhong Mixed No2D 1.0 53 NP-M81 An Duong Bridge HaiPhong HaiPhong Mixed N16 1.5 51 NP-M82 North Mountain N06 1.0 48 NP-M83 N07 1.0 46 NP-M84 N10 1.0 42 NP-M85 Truong DH Hung Vuong-Viet Tr i-VinhPhu Viet Tri TN01 1.2 39 NP-M86 North Mountain TN06 1.2 34 CP-M1 Cau qua Song han-Danang Danang A-8 1.5 37 CP-M2 Central Plain P-5 2.0 36 SP-M1 Cao Octrung cu PhuThanh-SaiGon SaiGon No-73 1.0 32 SP-M2 South Plain No-356 1.0 32 SP-M3 193 dinhthienhoang-PDakao-s aigon SaiGon TN01 0.8 43 SP-M4 South Plain TN02 1.0 43 SP-M5 Duong Cao Toc TrungLuong-S aiGon SaiGon C5-T27 1.0 54 SP-M6 South Plain C4-T29 1.0 53

PAGE 419

392 Table G-1 (cont.) SP-M7 C4-T31 1.0 55 SP-M8 C7-T37 1.0 52 SP-M9 C7-T39 1.0 52 SP-M10 C12-T45 1.0 54 SP-M11 N14-T4 1.5 46 SP-M12 Highrise building Sonadezi-Bien Hoa SaiGon CN80-14 0.8 21 SP-M13 Saigon South Plain CN80-32 0.8 17 SP-M14 CN100132 1.0 20 SP-M15 CN100-35 1.0 20 SP-M16 Hung Long comany-SaiG on SaiGon CTT06 1.2 60 SP-M17 South Plain CTT07 1.2 60 SP-M18 Trung Cu UngThanhHao Mon -Phuong 7-Q8 SaiGon N01-CN2 1.0 60 SP-M19 SaiGon South Plain N02-CN1 1.0 60 Table G-2 Summary measure capacity of drilled shaft from North, Central and South of Vietnam by different criterionDesign Load SLT Measure Capacity No (T) (T) Chin's Method 80% Chin's Method Davision's method 1" 0.5%D NP-M1 260 520 877 702 783 735 783 NP-M2 260 520 909 727 800 756 800 NP-M3 700 1400 2000 1600 1500 1300 1652 NP-M4 700 1400 2000 1600 1496 1320 1648 NP-M5 700 1400 2000 1600 1680 1520 1730 NP-M6 600 1200 3333 2667 2100 1550 2250 NP-M7 450 900 2000 1600 1700 1540 1780 NP-M8 600 1200 NP-M9 550 1100 2222 1778 1460 1310 1728 NP-M10 550 1100 2128 1702 1620 1480 1807 NP-M11 370 740 1754 1404 1324 1154 1442 NP-M12 370 740 1370 1096 1121 1045 1186 NP-M13 250 500 1316 1053 1000 950 1098 NP-M14 400 800 1205 964 1010 950 1065 NP-M15 300 600 1042 833 810 720 816 NP-M16 470 940 1429 1143 1250 1160 1279 NP-M17 470 940 1429 1143 1290 1200 1305 NP-M18 883 1766 2941 2353 2200 1900 2390 NP-M19 804 1609 2778 2222 1964 1721 2212 NP-M20 1055 2109 2857 2286 2200 1900 2370 NP-M21 883 1766 2500 2000 1800 1600 2036 NP-M22 300 750 1429 1143 850 800 1014 NP-M23 650 1300 2564 2051 2050 1682 2104 NP-M24 650 937 NP-M25 650 1031 NP-M26 400 707 NP-M27 550 1100 2000 1600 1600 1300 1633 NP-M28 450 900 1887 1509 1500 1250 1508 NP-M29 220 330 526 421 450 460 494

PAGE 420

393 Table G-2 (cont.) NP-M30 1000 2000 3846 3077 2419 2050 2980 NP-M31 300 450 812 649 685 650 713 NP-M32 300 450 888 710 672 629 722 NP-M33 70 105 NP-M34 70 105 NP-M35 501 1002 1754 1404 1510 1462 1645 NP-M36 671 1341 2000 1379 1340 1270 1540 NP-M37 432 864 2439 1951 1937 1748 2186 NP-M38 501 1002 1667 1333 1440 1400 1560 NP-M39 501 1002 2703 2162 2000 1800 2312 NP-M40 570 1140 1887 1509 1577 1470 1653 NP-M41 570 1140 1887 1509 1470 1380 1594 NP-M42 450 900 1429 1143 1185 1082 1232 NP-M43 450 900 1429 1143 1167 1072 1225 NP-M44 450 900 1429 1143 1150 1050 1210 NP-M45 300 600 1429 1143 1200 1100 1250 NP-M46 450 900 1429 1143 1163 1068 1222 NP-M47 450 900 1429 1143 1237 1162 1282 NP-M48 600 1200 1111 889 951 910 1000 NP-M49 450 900 1429 1143 1100 1000 1185 NP-M50 435 870 1808 1447 1195 1025 1308 NP-M51 960 1890 1512 1300 1095 1387 NP-M52 790 1460 1168 1113 1043 1250 NP-M53 770 1235 988 975 900 1042 NP-M54 370 575 460 460 450 493 NP-M55 550 1100 1701 1361 1512 1348 1504 NP-M56 550 1100 1745 1396 1512 1330 1509 NP-M57 550 1100 1582 1266 1375 1195 1361 NP-M58 750 1300 2083 1667 1626 1474 1777 NP-M59 400 800 1370 1096 1100 1069 1201 NP-M60 2400 5556 4444 4000 2100 3000 NP-M61 2400 5263 4211 4025 3209 4000 NP-M62 2600 3704 2963 2844 2436 3000 NP-M63 3333 2667 2206 1850 2350 NP-M64 4167 3333 2933 2500 3402 NP-M65 4000 3200 2750 2340 3234 NP-M66 750 1500 2439 1951 1826 1600 2000 NP-M67 750 1500 2326 1860 1900 1734 2036 NP-M68 1100 2200 3333 2667 2400 1850 2455 NP-M69 1550 3100 5263 4211 2712 1935 3400 NP-M70 620 1240 2703 2162 1569 1700 2178 NP-M71 270 540 1163 930 848 800 900 NP-M72 440 880 1961 1569 1367 1125 1400 NP-M73 440 880 2222 1778 1743 1590 1600 NP-M74 440 880 1887 1509 1400 1100 1400 NP-M75 450 1000 1408 1127 1200 1125 1257 NP-M76 600 1200 1724 1379 1472 1400 1553 NP-M77 600 1200 1754 1404 1485 1415 1567

PAGE 421

394 Table G-2 (cont.) NP-M78 600 1200 1754 1404 1500 1425 1601 NP-M79 460 1114 891 890 789 924 NP-M80 450 870 696 710 750 786 NP-M81 1314 2083 1667 1750 1550 1869 NP-M82 527 1235 988 844 775 927 NP-M83 527 1149 920 900 821 958 NP-M84 527 1064 851 894 840 939 NP-M85 600 1200 2000 1600 1668 1534 1775 NP-M86 600 1200 1429 1143 1266 1238 1342 CP-M1 1500 3000 4000 3200 2500 2000 3070 CP-M2 1800 3600 5000 4000 3200 2750 4163 SP-M1 400 657 SP-M2 400 600 SP-M3 320 640 1111 889 879 769 909 SP-M4 450 900 1250 1000 1075 1072 1114 SP-M5 664 SP-M6 671 SP-M7 598 SP-M8 625 SP-M9 670 SP-M10 682 SP-M11 500 750 1000 800 900 900 965 SP-M12 270 540 1000 800 590 654 752 SP-M13 270 540 588 471 300 405 500 SP-M14 450 900 667 533 350 654 540 SP-M15 450 900 833 667 480 530 659 SP-M16 620 1240 1429 1143 1178 1150 1307 SP-M17 620 1426 2500 2000 1360 1200 1426 SP-M18 520 1040 SP-M19 520 1040 Table G-3 Summary Nominal Capacity of Drilled Shaft from North, Central and South of Vietnam by Different Method FHWA method Reese and Wright method No Su:Terzaghi, Peck Su: (Hara) Su: Terzaghi, Peck Su: Hara NP-M1 543.80 621.16 585.41 662.77 NP-M2 NP-M3 1238.87 1385.92 1309.79 1456.84 NP-M4 NP-M5 NP-M6 1134.73 1213.33 1686.40 1764.99 NP-M7 NP-M8 NP-M9 1134.78 1367.76 1230.41 1463.39

PAGE 422

395 Table G-3 (cont.) NP-M10 NP-M11 843.77 922.89 905.24 740.67 NP-M12 NP-M13 637.30 700.59 677.37 740.67 NP-M14 932.11 1180.96 893.64 1142.49 NP-M15 714.02 913.10 682.34 881.42 NP-M16 772.73 1203.86 802.19 1233.32 NP-M17 NP-M18 1233.76 1729.47 1653.25 2148.96 NP-M19 NP-M20 NP-M21 NP-M22 696.56 939.73 1034.85 1278.02 NP-M23 1326.33 1484.64 1963.45 2121.76 NP-M24 NP-M25 NP-M26 NP-M27 1170.21 1452.24 1646.93 1928.96 NP-M28 934.61 1131.77 1309.66 1506.82 NP-M29 451.34 638.94 403.02 590.62 NP-M30 1182.18 1885.85 1583.55 1885.85 NP-M31 762.25 852.31 938.33 1028.39 NP-M32 NP-M33 286.36 424.45 389.60 527.68 NP-M34 NP-M35 1411.24 1581.35 1648.57 1818.68 NP-M36 1365.70 1534.11 1716.45 1884.86 NP-M37 1707.37 1976.96 1939.74 2209.33 NP-M38 1633.16 1633.16 2030.55 2030.55 NP-M39 1846.02 1846.02 2254.86 2254.86 NP-M40 890.48 1211.41 1600.64 1921.57 NP-M41 NP-M42 851.67 879.16 1229.80 1257.28 NP-M43 NP-M44 NP-M45 NP-M46 NP-M47 NP-M48 NP-M49 NP-M50 848.80 1019.96 1166.91 1338.08 NP-M51 820.41 960.99 892.52 1033.10 NP-M52 925.13 1070.41 824.72 970.00 NP-M53 729.72 993.55 814.54 1078.37 NP-M54 479.69 519.07 544.19 583.57

PAGE 423

396 Table G-3 (cont.) NP-M55 1224.00 1369.03 1688.12 1833.15 NP-M56 NP-M57 NP-M58 1363.62 1607.99 1688.94 1933.31 NP-M59 1363.62 1607.99 1688.94 1933.31 NP-M60 1268.64 1515.86 1891.32 2138.53 NP-M61 1444.37 1838.09 2292.32 2686.05 NP-M62 1727.57 2372.46 2805.57 3450.46 NP-M63 1067.81 1379.71 1705.95 2017.84 NP-M64 1508.51 1898.37 2377.11 2766.98 NP-M65 1508.51 1898.37 2377.11 2766.98 NP-M66 901.00 1087.13 1396.01 1582.14 NP-M67 913.79 1115.55 1406.53 1608.29 NP-M68 1152.42 1659.95 1326.40 1833.93 NP-M69 1570.47 2204.88 1819.81 2454.22 NP-M70 909.83 1045.71 1556.54 1692.42 NP-M71 536.78 625.61 960.14 1048.97 NP-M72 670.08 1041.75 830.22 1201.89 NP-M73 756.41 1082.73 858.07 1184.39 NP-M74 661.24 1058.87 799.55 1197.18 NP-M75 776.73 1036.98 995.23 1255.49 NP-M76 991.05 1303.36 1303.86 1616.17 NP-M77 NP-M78 NP-M79 822.60 1542.78 978.04 1698.22 NP-M80 749.81 1210.36 994.93 1455.47 NP-M81 1132.07 1536.67 1749.77 2154.37 NP-M82 611.91 881.65 730.46 1000.20 NP-M83 NP-M84 NP-M85 1473.42 2451.94 1652.22 2630.74 NP-M86 1253.21 2134.29 1338.21 2219.29 CP-M1 1225.45 1923.29 1582.55 2280.39 CP-M2 1419.35 2254.86 2220.06 3055.57 SP-M1 SP-M2 SP-M3 740.61 813.98 655.61 728.97 SP-M4 970.74 1089.37 864.49 983.12 SP-M5 SP-M6 SP-M7 SP-M8 SP-M9 SP-M10 SP-M11 995 1778 995 1778

PAGE 424

397 Table G-3 (cont.) SP-M12397.84 616.12 701.19 919.46 SP-M13 SP-M14 612.73 922.14 970.95 1280.35 SP-M15 SP-M16 1291.36 1620.90 1571.04 1900.58 SP-M17

PAGE 425

APPENDIX H Histogram and Frequency Distribution of Bias Factor for Drilled Shaft

PAGE 426

398 Figure H-M1-a. Histogram and frequency distribution of bias factor 1 for 92 cases of drilled shaft in Mixed soils using the FHWA method (Su: Terzaghi, Peck) and using 1” criterion in Vietnam Figure H-M1-b.Resistance factor calibration for 92 cases of drilled shaft in Mixed soils using the FHWA method (Su: Terzaghi, Peck) and using 1” criterion in Vietnam 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Bias FactorDensity Lamda1AllMixed data Normal Lognormal 0 1 2 3 4 5 6 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 Reliability Index, Resistance Factor,

PAGE 427

399 Figure H-M1-c. Histogram and frequency distribution of bias factor 1 for 80 cases of drilled shaft in Mixed soils using the FHWA method (Su: Terzaghi, Peck) and using 1” criterion in North of Vietnam Figure H-M1-d. Resistance factor calibration for 80 cases of drilled shaft in Mixed soils using the FHWA method (Su: Terzaghi, Peck) and using 1” criterion in North of Vietnam 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Bias FactorDensity Lamda1NorthMixed data Normal Lognormal 1 2 3 4 5 6 7 8 9 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 428

400 Figure H-M1-e. Histogram and frequency distribution of bias factor 1 for 10 cases of drilled shaft in Mixed soils using the FHWA method (Su: Terzaghi, Peck) and using 1” criterion in South of Vietnam Figure H-M1-f. Resistance factor calibration for 10 cases of drilled shaft in Mixed soils using the FHWA method (Su: Terzaghi, Peck) and using 1” criterion in South of Vietnam 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.5 1 1.5 2 2.5 3 Bias FactorDensity Lamda1SouthMixed data Normal Lognormal 0 1 2 3 4 5 6 7 8 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 429

401 Figure H-M2-a. Histogram and frequency distribution of bias factor 2 for 92 cases of drilled shaft in Mixed soils using the FHWA method (Su: Hara) and using 1” criterion in Vietnam Figure H-M2-b. Resistance factor calibration for 92 cases of drilled shaft in Mixed soils using the FHWA method (Su: Hara) and using 1” criterion in Vietnam 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Bias FactorDensity Lamda2AllMixed data Normal Lognormal -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 Reliability Index, Resistance Factor,

PAGE 430

402 Figure H-M2-c. Histogram and frequency distribution of bias factor 2 for 80 cases of drilled shaft in Mixed soils using the FHWA method (Su: Hara) and using 1” criterion in North of Vietnam Figure H-M2-d. Resistance factor calibrationfor 80 cases of drilled shaft in Mixed soils using the FHWA method (Su: Hara) and using 1” criterion in North of Vietnam 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Bias FactorDensity Lamda2NorthMixed data Normal Lognormal 0 1 2 3 4 5 6 7 8 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 431

403 Figure H-M2-e. Histogram and frequency distribution of bias factor 2 for 10 cases of drilled shaft in Mixed soils using the FHWA method (Su:Hara) and using 1” criterion in South of Vietnam Figure H-M2-f. Resistance factor calibrationfor 10 cases of drilled shaft in Mixed soils using the FHWA method (Su:Hara) and using 1” criterion in South of Vietnam 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 0 0.5 1 1.5 2 2.5 3 Bias FactorDensity Lamda2SouthMixed data Normal Lognormal -1 0 1 2 3 4 5 6 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 432

404 Figure H-M3-a. Histogram and frequency distribution of bias factor 3 for 92 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su: Tezaghi, Peck) and using 1” criterion in Vietnam Figure H-M3-b. Resistance factor calibration for 92 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su: Tezaghi, Peck) and using 1” criterion in Vietnam 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Bias FactorDensity Lamda3AllMixed data Normal lognormal -1 0 1 2 3 4 5 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 Reliability Index, Resistance Factor,

PAGE 433

405 Figure H-M3-c. Histogram and frequency distribution of bias factor 3 for 80 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su: Tezaghi, Peck) and using 1” criterion in North of Vietnam Figure H-M3-d. Resistance factor calibration for 80 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su: Tezaghi, Peck) and using 1” criterion in North of Vietnam 0.5 1 1.5 2 0 0.5 1 1.5 2 Bias FactorDensity Lamda3NorthMixed data Normal Lognormal 0 1 2 3 4 5 6 7 8 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 434

406 Figure H-M3-e. Histogram and frequency distribution of bias factor 3 for 10 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su:Tezaghi, Peck) and using 1” criterion in South of Vietnam Figure H-M3-f. Resistance factor calibrationfor 10 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su:Tezaghi, Peck) and using 1” criterion in South of Vietnam 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 0 0.5 1 1.5 2 Bias FactorDensity Lamda3SouthMixed data Normal Lognormal -1 0 1 2 3 4 5 6 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 435

407 Figure H-M4-a. Histogram and frequency distribution of bias factor 4 for 92 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su: Hara) and using 1” criterion in Vietnam Figure H-M4-b. Resistance factor calibration for 92 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su: Hara) and using 1” criterion in Vietnam 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.5 1 1.5 2 2.5 Bias FactorDensity Lamda4AllMixed data Normal Lognormal -1 0 1 2 3 4 5 6 7 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 436

408 Figure H-M4-c. Histogram and frequency distribution of bias factor 4 for 80 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su: Hara) and using 1” criterion in North of Vietnam Figure H-M4-d. Resistance factor calibrationfor 80 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su: Hara) and using 1” criterion in North of Vietnam 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.5 1 1.5 2 2.5 3 Bias FactorDensity Lamda4NorthMixed data Normal Lognormal -1 0 1 2 3 4 5 6 7 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 437

409 Figure H-M4-e. Histogram and frequency distribution of bias factor 4 for 10 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su: Hara) and using 1” criterion in South of Vietnam Figure H-M4-f. Resistance factor calibrationfor 10 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su: Hara) and using 1” criterion in South of Vietnam 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 0 0.5 1 1.5 2 Bias FactorDensity Lamda4SouthMixed data Normal Lognormal -1 0 1 2 3 4 5 6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 438

410 Figure H-M5-a. Histogram and frequency distribution of bias factor 5 for 92 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su: Tezaghi, Peck) and using 0.5% D criterion in Vietnam Figure H-M5-b. Resistance factor calibrationfor 92 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su: Tezaghi, Peck) and using 0.5% D criterion in Vietnam 1 1.5 2 2.5 3 0 0.2 0.4 0.6 0.8 1 1.2 Bias FactorDensity Lamda5AllMixed data Normal Lognormal 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 0.4 0.6 0.8 1 1.2 1.4 Reliability Index, Resistance Factor,

PAGE 439

411 Figure H-M5-c. Histogram and frequency distribution of bias factor 5 for 80 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su: Tezaghi, Peck) and using 0.5% D criterion in North of Vietnam Figure H-M5-d. Resistance factor calibrationfor 80 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su: Tezaghi, Peck) and using 0.5% D criterion in North of Vietnam 1 1.5 2 2.5 3 0 0.5 1 1.5 Bias FactorDensity Lamda5NorthMixed data Normal Lognormal 1 2 3 4 5 6 7 8 9 0.2 0.4 0.6 0.8 1 1.2 Reliability Index, Resistance Factor,

PAGE 440

412 Figure H-M5-e. Histogram and frequency distribution of bias factor 5 for 10 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su:Tezaghi, Peck) and using 0.5% D criterion in South of Vietnam Figure H-M5-f. Resistance factor calibrationfor 10 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su:Tezaghi, Peck) and using 0.5% D criterion in South of Vietnam 0.8 1 1.2 1.4 1.6 1.8 2 0 0.5 1 1.5 2 Bias factorDensity Lamda5SouthMixed data Normal Lognormal 0 1 2 3 4 5 6 7 8 0.2 0.4 0.6 0.8 1 1.2 Reliability Index, Resistance Factor,

PAGE 441

413 Figure H-M6-a. Histogram and frequency distribution of bias factor 6 for 92 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su: Hara) and using 0.5% D criterion in Vietnam Figure H-M6-b. Resistance factor calibration for 92 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su: Hara) and using 0.5% D criterion in Vietnam 0.5 1 1.5 2 2.5 0 0.5 1 1.5 Bias FactorDensity Lamda6AllMixed data Normal Lognormal 0 1 2 3 4 5 6 7 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 442

414 Figure H-M6-c. Histogram and frequency distribution of bias factor 6 for 80 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su: Hara) and using 0.5% D criterion in North of Vietnam Figure H-M6-d. Resistance factor calibration for 80 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su: Hara) and using 0.5% D criterion in North of Vietnam 0.5 1 1.5 2 2.5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Bias FactorDensity Lamda6NorthMixed data Normal Lognormal 1 2 3 4 5 6 7 8 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 443

415 Figure H-M6-e. Histogram and frequency distribution of bias factor 6 for 10 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su: Hara) and using 0.5% D criterion in South of Vietnam Figure H-M6-f. Resistance factor calibration for 10 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su: Hara) and using 0.5% D criterion in South of Vietnam 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 0 0.5 1 1.5 2 2.5 3 3.5 Bias FactorDensity Lamda6SouthMixed data Normal Lognormal -1 0 1 2 3 4 5 6 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 444

416 Figure H-M7-a. Histogram and frequency distribution of bias factor 7 for 92 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su: Tezaghi, Peck) and using 0.5% D criterion in Vietnam Figure H-M7-b. Resistance factor calibration for 92 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su: Tezaghi, Peck) and using 0.5% D criterion in Vietnam 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Bias FactorDensity Lamda7AllMixed data Normal Lognormal 0 1 2 3 4 5 6 7 8 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 445

417 Figure H-M7-c. Histogram and frequency distribution of bias factor 7 for 80 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su: Tezaghi, Peck) and using 0.5% D criterion in North of Vietnam Figure H-M7-d. Resistance factor calibrationfor 80 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su: Tezaghi, Peck) and using 0.5% D criterion in North of Vietnam 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Bias FactorDensity Lamda7NorthMixed data Normal Lognormal 1 2 3 4 5 6 7 8 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 446

418 Figure H-M7-e. Histogram and frequency distribution of bias factor 7 for 10 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su: Tezaghi, Peck) and using 0.5% D criterion in South of Vietnam Figure H-M7-f. Resistance factor calibrationor 10 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su: Tezaghi, Peck) and using 0.5% D criterion in South of Vietnam 0.5 1 1.5 0 0.5 1 1.5 2 Bias FactorDensity Lamda7SouthMixed data Normal Lognormal -1 0 1 2 3 4 5 6 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 447

419 Figure H-M8-a. Histogram and frequency distribution of bias factor 8 for 92 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su: Hara) and using 0.5% D criterion in Vietnam Figure H-M8-b. Resistance factor calibration for 92 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su: Hara) and using 0.5% D criterion in Vietnam 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.5 1 1.5 2 Bias factorDensity Lamda8AllMixed data Normal Lognormal 0 1 2 3 4 5 6 7 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 448

420 Figure H-M8-c. Histogram and frequency distribution of bias factor 8 for 80 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su: Hara) and using 0.5% D criterion in North of Vietnam Figure H-M8-d. Resistance factor calibrationfor 80 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su: Hara) and using 0.5% D criterion in North of Vietnam 0.5 1 1.5 2 0 0.5 1 1.5 2 2.5 Bias FactorDensity Lamda8NorthMixed data Normal Lognormal 0 1 2 3 4 5 6 7 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 Reliability Index, Resistance Factor,

PAGE 449

421 Figure H-M8-e. Histogram and frequency distribution of bias factor 8 for 10 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su: Hara) and using 0.5% D criterion in South of Vietnam Figure H-M8-f. Resistance factor calibrationfor 10 cases of drilled shaft in Mixed soils using the Reese and Wright method (Su: Hara) and using 0.5% D criterion in South of Vietnam 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 0 0.5 1 1.5 2 2.5 3 Bias FactorDensity Lamda8SouthMixed data Normal lognormal -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reliability Index, Resistance Factor,

PAGE 450

422 REFERENCES AASHTO. LRFD Highway Bridge Design Specifications 1st Edition, American Association of State Highway and Transportation Officials, Washington, D.C., USA, 1994. AASHTO. LRFD Bridge Design Specifications 2nd Edition, American Association of State Highway and Transportation Officials, Washington, D.C., USA, 1998. AASHTO. LRFD Bridge Design Specifications 4th Edition, American Association of State Highway and Transportation Officials, Washington, D.C., USA, 2007. AASHTO-LRFD Bridge Design Specifications (2010). Interim Revision. 5th Edition, American Association of State Highway and Transportation Officials, Washington, D.C. AASHTO-LRFD Bridge Design Specifications (2012). 6th Edition, American Association of State Highway and Transportation Officials, Washington, D.C. Allen, Tony M. Development of the WSDOT Pile Driving Formula and Its Calibration and Resistance Factor Design (LRFD) FHWA Report, WA-RD 610.1, Washington State Department of Transportation, 2005. Allen, T. M., Nowak, A. S., and Bathurst, R. J. (2005). Calibration to determine load and resistance factors for geotechnical and structural design Transportation Research Circular Number E-C079, TRB, Washington, D.C., 83 p. Ang, H.S. and Tang, W.H., 1975. Probability Concepts in Engineering Planning and Design, Vol. I, Basic Principles, John Wiley & Sons, New York. ASTM D1143/D1143M (2007). Standard Test Methods for Deep Foundations under Static Axial Compressive Load American Society for Testing and Materials, Philadelphia, PA. Baecher, G.B and Christian, J.T. Reliability and Statics in Geotechnical Engineering John Wiley and Sons Ltd, 2003 Barker, R. M., Duncan, J. M., Rojiani, K. B., Ooi, P. S. K., Tan, C. K., and Kim, S. G. Manuals for the Design of Bridge Foundations: Shallow Foundations, Driven Piles, Retaining Walls and Abutments, Drilled Shafts, Estimating Tolerable Movements, and Load Factor Design Specifications and Commentary, NCHRP Report 343, TRB National Research Council, Washington, D.C., 1991.

PAGE 451

423 Becker D. E. and Devata M.(2005 ). Implementation and Application Issues of Load and Resistance Factor Design (LRFD) for Deep Foundations ASCE Conference Proceedings, 156, 1, DOI:10.1061/40777(156)1. Bowles, J. Foundation Analysis and Design McGraw-Hill, New York, 1996. Coduto, D. Foundation Design, 2nd ed. Prentice-Hall, Upper Saddle River, N.J., 2001. Chang, N.Y., Vinopal, R., Vu, C., Nghiem, N., Foundation Design Practice and LRFD Strategic Plan Report No. CDOT-DTD-R-2006-7 Chang, N.Y., CDOT Strategic Plan for Data Collection and Evaluation of Grade 50 H-Piles into Bedrock Report No. CDOT-2011-11 Chin, F.K., Estimation of the Ultimate Load of Piles Not Carried to Failure Proceedings of 2nd Southeast Asia Conference on Soil Engineering, Singapore. 1115th June. Davisson, M.T., 1972, High Capacity Piles Proceedings of the Lecture Series on Innovation in Foundation Construction, pp. 81-112, ASCE Illinois Section, Chicago, IL. Federal Highway Administration (FHWA) (1998). Driven Manual Mathias, D. and Cribbs, M. Blue-Six Software, Inc. Logan, UT. FHWA (1997). Design and Construction of Driven Pile Foundations Workshop manual, Volumes I, publication FHWA-HI-97-013 FHWA (2007). Load and Resistance Factor Design (LRFD) for Highway Bridge Superstructures April 2007. Publication number FHWA-NHI-07-034. Foye, K. C., Abou-Jaoude, G., Prezzi, M., and Salgado, R. (2009). “Resistance factors in load and resistance factor design of driven pipe piles in sand” Journal of Geotechnical and Geoenvirnmoental Engineering, ASCE, v 135, n 1, 2009, pp. 1 13. Goble, G.G. 1999. Geotechnical Related Development and Implementation of Load and Resistance Factor Design (LRFD) Methods. NCHRP Program, Synthesis of Highway Practice 276, Transportation Research Board, Washington, D.C.

PAGE 452

424 Goble, Rausche, Likens and Associates, Inc. (GRL), 1996, Design and Construction of Driven Pile Foundations, Volume I, NHI Course Nos. 13221 and 13222, US Department of Transportation, Federal Highway Administration, Washington, DC. GRL Engineers, Inc., 2003, Case Pile Wave Analysis Program (GRL CAPWAP 2005). Hara, A., Ohta, T., Niwa, M., Tanaka, S., and Banno, T. (1974 ).”Shear Modulus and Shear Strength of Cohesive Soils” Soils and Foundations, Vol. 14, No. 3, September, pp. 1 12. Kuo, C. L., McVay, M. C., and M., Birgisson, B. (2002). “ Calibration of Load and Resistance Factor Design: Resistance factors for drilled shaft design” Transportation Research Record, No. 1808, pp. 108 111. Kyung Jun Kim, Development of Resistance Factor for Axial Capacity of Driven Piles in North Carolina PhD thesis. North Carolina State University, 2002 Kulhawy, F.H. and Mayne, P.W. (1990). Manual on Estimating of Soil Properties for Foundation Design Electric Power Research Institute. Palo Alto, California. Lai, P., McVay, M.; Bloomquist, D., and Badri, D. (2008). “Axial Pile Capacity of Large Diameter Cylinder Piles” Proceedings of From Research to Practice in Geotechnical Engineering Congress 2008. Liang, R., and Nawari, N. O. (2000). “Evaluation of Resistance Factors for Driven Piles” New Technological and Design Developments in Deep Foundations (GSP 100), Proceedings of Sessions of Geo-Denver 2000, pp. 178 191. Michael C. McVay, Ching L. Kuo, and Bjorn Birgisson, Resistance Factors for Drilled Shaft Design, In Transportation Research Record: Journal of the Transportation Research Board, No. 1808, TRB, National Research Council, Washington, DC., 2002, pp. 108–111. McVay, M., Birgisson, B., Nguyen, T., and Kuo, C. Uncertainty in LRFD phi, Factors for Driven Prestressed Concrete Piles In Transportation Research Record: Journal of the Transportation Research Board, No. 1808, TRB, National Research Council, Washington, DC., 2002, pp. 99–107. McVay, M., Birgisson, B., Zhang, L., Perez, A, and Putcha, S. Load and Resistance

PAGE 453

425 Factor Design (LRFD) for Driven Piles Using Dynamic Methods —A Florida Perspective. Geotechnical Testing Journal, Vol. 23, No. 1, 2000, pp. 55–66. McVay, M.C., Kuo, C.L. and Singletary, W.A. (1998). Calibrating Resistance Factors in the Load and Resistance Factor Design for Florida Foundations Gainesville, Florida. McVay, M.; Klammler, H., Bloomquist, D., Otero, J., and Farone, M. (2010). “Modification of LRFD Resistance Factors Based on Site Variability”. NTIS website accessed March 2010. Michael, T and John, W. Pile Design and Construction Practice 5th.ed. Taylor and Francis, 2008. Misra, A. and Roberts, L.A. (2006).”Probabilistic Analysis of Drilled Shaft Service Limit State Using the “t-z” Method”. Canadian Geotechnical Journal, pp. 1324 1332. Misra, A., Roberts, L. A. and Levorson, S. M. (2007). “Reliability of Drilled Shaft Behavior Using Finite Difference Method and Monte Carlo Simulation.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, pp. 65 77. Nguyen, Thai. Load and Resistance Factor Design for Driven Piles Based on Static Methods. M.S. thesis University of Florida, Gainesville, 2001 Ng, K.W., Suleiman, M.T., and Sritharan, S. (2010). “LRFD Resistance Factors Including the Influence of Pile Setup for Design of Steel H-Pile Using WEAP.” Geotechnical Special Publication No. 199, Advances in Analysis, Modeling & Design, Proc. of the Annual Geo-Congress of the Geo-Institute, ASCE, Feb 20-24, Fratta, D., Puppala, A.J., and Muhunthan, B., ed., West Palm Beach, FL, pp. 2153 2161. Ng, K. W. (2011). Pile Setup, Dynamic Construction control and Load and Resistance Factor Design of Vertically Loaded Steel H-Piles Ph.D. Thesis. Iowa State University of Science and Technology, Ames, IA. Nowak, A.S., 1992, Calibration of LRFD Bridge Design Code NCHRP 12-33, Report prepared for National Cooperative Highway Research Program by Department of Civil Engineering, University of Michigan, Ann Arbor, MI, 167 p. Ng, K.W., Suleiman, M.T., and Sritharan, S. (2012a) “Pile Setup in Cohesive Soil with Emphasis on LRFD: Analytical Quantifications and Design Recommendations.”

PAGE 454

426 Journal of Geotechnical and Geoenvironmental Engineering, ASCE. (Accepted for publication) Ng, K.W., Sritharan, S., and Dunker, K.F. (2012b) “Verification of Recommended Load and Resistance Factor Design Approach to Pile Design and Construction in Cohesive Soils.” Transportation Research Board, 91st annual meeting, Washington, D.C. Nowak, A. S., Calibration of LRFD Bridge Design Code, NCHRP Report 368, Transportation Research Board Washington, DC., 1999. Paikowsky, S. G. Load and Resistance Factor Design (LRFD) for Deep Foundations, NCHRP Report 507, Transportation Research Board, Washington, DC., 2004. Pile Dynamics, Inc. (2000). CAPWAP for Windows Manual. Pile Dynamics, Inc., Cleveland, OH. Peck, R. B., W. E. Hanson, and T. H. Thornburn (1974) Foundation Engineering John Wiley & Sons, 514 p. Reese, L.C., Wang, S.C. and Arrellaga, J. (1998). APILE Plus 3.0 Manual EnSoft, Inc. Austin, Texas. Reese, L.C., Wang, S.C. and Isenhower, W.M. Analysis and Design of Shallow and Deep Foundation John Wiley and Sons Ltd, 2006. Reese, L.C. and M.W. O'Neill, 1988, Drilled Shafts: Construction Procedures and Design Methods Publication No. FHWA-HI-88-042, Federal Highway Administration, McLean, VA, 564 p. Roling, M J., Sritharan, S., and Suleiman, M. T. (2010). Development of LRFD design Procedures for Bridge Piles in Iowa – An Electronic Database for Pile Load Tests in Iowa (PILOT-Iowa). Final Report Vol. I IHRB Project No. TR-573, TR-583 and TR-584. Institute for Transportation, Iowa State University, Ames, IA. Terzaghi, K., and Peck, R.B. (1967). Soil Mechanics in Engineering Practice Wiley. U.S. Army Corps of Engineers. Bearing Capacity of Soil Technical Engineering and Design Guides, No. 7, EM 1110-1-1905. Adapted by ASCE–2000. ASCE Press, New York, 1992.

PAGE 455

427 Yoon, Abu-Farsakh, Tsai, and Zhang, LRFD Calibration of Axial-Load concrete Piles Driven in to Soft Soils TRB 2008 Annual Meeting CD-ROM Yang. K, Resistance Factor for Lateral Design of Drilled Shafts Supporting Sound Wall, Deep Foundation Institute, Conference Proceedings 2007.