Citation |

- Permanent Link:
- http://digital.auraria.edu/AA00003697/00001
## Material Information- Title:
- Soil-pile-structure interaction effects on high rises under seismic shaking
- Creator:
- Nghiem, Hien Manh
- Publication Date:
- 2009
- Language:
- English
- Physical Description:
- xxxii, 403 leaves : ; 28 cm
## Subjects- Subjects / Keywords:
- Soil-structure interaction ( lcsh )
Earthquake resistant design ( lcsh ) Tall buildings -- Earthquake effects ( lcsh ) Piling (Civil engineering) ( lcsh ) Earthquake resistant design ( fast ) Piling (Civil engineering) ( fast ) Soil-structure interaction ( fast ) Tall buildings -- Earthquake effects ( fast ) - Genre:
- bibliography ( marcgt )
theses ( marcgt ) non-fiction ( marcgt )
## Notes- Bibliography:
- Includes bibliographical references (leaves 389-403).
- General Note:
- Department of Civil Engineering
- Statement of Responsibility:
- by Hien Manh Nghiem.
## Record Information- Source Institution:
- |University of Colorado Denver
- Holding Location:
- |Auraria Library
- Rights Management:
- All applicable rights reserved by the source institution and holding location.
- Resource Identifier:
- 438853806 ( OCLC )
ocn438853806 - Classification:
- LD1193.E53 2009d N43 ( lcc )
## Auraria Membership |

Full Text |

SOIL-PILE-STRUCTURE INTERACTION EFFECTS ON HIGH RISES
UNDER SEISMIC SHAKING BY HIEN MANH NGHIEM B.S. Hanoi Architectural University, Vietnam, 1997 M.S. Hanoi Architectural University, Vietnam, 2002 A thesis submitted to the University of Colorado Denver in Partial Fulfillment of the Requirement for the Degree of Doctor of Philosophy Department of Civil Engineering 2009 by Hien Manh Nghiem All Rights Reserved This thesis for the Doctor of Philosophy degree by Hien Manh Nghiem has been approved by Hien Manh Nghiem (Ph.D., Civil Engineering) SOIL-PILE-STRUCTURE INTERACTION EFFECTS ON HIGH RISES UNDER SEISMIC SHAKING Thesis directed by Professor Nien-Yin Chang ABSTRACT Soil-structure interaction of high-rises was investigated in both theory and field measurement. The instrumented structure motions and free-field ground motions are available so that the recorded structure and ground motions can be used to validate the theory and program developed for this study. Currently, the design code only suggests the use of advanced methods to analyze the high-rise building performance. No details are provided in the code. The effects of soil structure interaction are only available for low rise buildings with simple analysis procedures and are not available for high rise buildings. The computer code SSI3D is developed to evaluate the nonlinear soil-pile- structure interaction of high-rises. Besides several soil models for static load, two models are modified and implemented for cyclic load: Modified Hyperbolic and Modified Ramberg-Osgood models. SSI3D is validated by comparing the analysis results and the measured seismic performance of an actual high-rise structure with soil-structure interaction effects. In fully nonlinear soil-pile-structure time history analysis, the unknown bed rock motion to be used as input motion must be determined from free-field motion by using deconvolution procedures. The resulting bed rock motion is then propagated to the ground surface. In this analysis, the calculated ground surface motion is compared to the ground surface motion used to calculate bed rock motion to check the validity of the de-convolution and motion propagation procedures. Unfortunately, there are differences between the deconvolution and convolution analyses described above because of the use of soil viscous damping in convolution and soil damping ratio in deconvolution. A new method is recommended to determine the appropriate soil viscous damping from the soil damping ratio by matching transfer functions from soil layer to soil layer. The excellent agreement between the calculated free-field motions using soil viscous damping and the measured free field motion confirms the validity of this method. Soil-structure interaction includes both kinematic and inertial interactions. In design code, two interactions are considered separately. In this study, the transfer function from free-field motions to base foundation motions of buildings, and equivalent stiffness, and damping of soil-pile system represented kinematic and inertial interaction are recommended for use in the design code. When the nonlinear analyses are performed, the nonlinear pile stiffness is recommended. As high rises are built or designed for areas of high seismic activity, it is critical to examine their seismic responses using an analysis code that reveals their realistic behavior under strong seismic shaking. To better understand the seismic soil- structure interaction effects, two 20-story hypothetical buildings and one 30-story actual building were subjected to seismic response analyses using SSI3D. To reflect the evolution of SSI effects, analyses were performed for the cases with rigid base, flexible base with linear foundation springs, flexible base with linear soil, flexible with nonlinear springs, and the full SSI analysis of flexible base with nonlinear soils for two hypothetical buildings. The last case depicts the most realistic SSI responses of high rises. Results of analyses presented include the comparison of natural periods, base shears, and the displacements at the top floor of the buildings. It was observed that the natural periods increase and the base shears decrease as the base become more flexible. This abstract accurately represents the content of the candidates thesis. I recommend its publication. DEDICATION Dedicated to my wife HUE THI NGUYEN, my daughter DUONG THUYNGHIEM, my son MINHHOANG NGHIEM, and my FAMILY ACKNOWLEDGMENT I would like to take this opportunity to express my gratitude to those who have contributed to the development of this thesis. Firstly, I am greatly indebted to Prof. Nien-Yin Chang for his encouragement, guidance, support, friendship, and valuable comments on each part of the thesis. Having opportunity to work with Prof. Chang was an experience that helped me gain broader perspective and insight in many areas of life. I would also like to thank the members of my thesis committee, Prof. H.Y. Ko, Dr. James R. Harris, Assistant Prof. Mettupalayam V. Sivaselvan, Associate Prof. Mohsen Tadi, Associate Prof. Samuel W. J. Welch, Dr. Trever Shing-Chun Wang, and Dr. Brian T. Brady for their serving on the examining committee, helpful comments and suggestions. The scholarships received from the Vietnamese Government are also gratefully acknowledged. I am profoundly thankful to my parents, parents in law, sister, and their families for their help. Finally, I am grateful to my wife, Hue Nguyen, for her help and lasting love and patience, and my daughter, Duong Nghiem, and son, Minh Nghiem, for their patience while awaiting their Dad to come home throughout my doctoral study. TABLE OF CONTENTS ,xvi Figures Tables.........................................................................xxix 1. Introduction...............................................................1 1.1 Problem Statement.........................................................1 1.2 Research Objectives.......................................................2 1.3 Research Approach.........................................................2 1.4 Organization of Thesis....................................................3 2. Literature Review..........................................................5 2.1 Post Earthquake Investigations............................................5 2.1.1 The Niigata Earthquake of June 16, 1964, Japan..........................5 2.1.2 Mexico City Earthquake of September 19, 1985, Mexico....................6 2.1.3 1995 Hyogo-Ken Nanbu (Kobe) Earthquake, Japan...........................9 2.1.4 Chi-Chi Taiwan Earthquake of 1999.......................................11 2.1.5 Summary of Earthquake Damage to High Rises..............................12 2.2 Dynamic Analysis of Soil-Structure Interaction............................13 2.2.1 Effects of Soil-Structure Interaction...................................13 2.2.2 Substructure Method.....................................................14 2.2.2.1 Introduction of Substructure Method...................................14 2.2.22 Inertial Interaction....................................................15 2.2.2.2.1 System Consideration.................................................15 2.2.2.2.2 Equivalent One Degree of Freedom....................................18 2.2.2.2.3 Inertial Interaction of Shallow Foundations.........................19 2.2.2.2.3.1 Basic Case.........................................................19 vm 2.2.2.2.3.2 Non-uniform Soil Profiles............................................21 2.2.2.2.3.3 Effects of Depth of Soil Layer.......................................23 2.2.2.2.3.4 Effects of Foundation Embedment.....................................23 2.2.2.2.3.5 Effects of Foundation Shape..........................................24 2.2.2.2.3.6 Effects of Foundation Flexibility....................................27 2.2.2.2.4 Inertial Interaction of Pile Foundations..............................30 2.2.2.2.4.1 Analytical Method....................................................30 2.2.2.2.4.2 Beam-on-Elastic Foundation..........................................31 2.2.2.2.4.3 Beam-on-Winkler Foundation..........................................33 2.2.2.2.4.4 Pile Group Effects..................................................40 2.2.2.3 Kinematic Interaction Effects...........................................42 2.2.2.3.1 Kinematic Effects of Shallow Foundations...............................43 2.2.2.3.1.1 Shallow Foundation at the Ground Surface.............................43 2.2.2.3.1.2 Embedded Shallow Foundations.........................................46 2.2.2.3.2 Kinematic Interaction of Pile Foundations...........................48 2.2.3 Hybrid Method...........................................................51 2.2.4 Direct Method.............................................................53 2.3 Previous Studies of Soil-Structure Interaction of High Rise Buildings.......54 2.4 Summary.....................................................................69 3. Contemporary Codes on Seismic SSI............................................70 3.1 Inertial Interaction Procedure by IBC 2003 or ASCE 7-02......................70 3.2 Inertial Interaction Procedure by FEMA 440 (2005)............................72 3.3 Kinematic Interaction Procedure by FEMA 440 (2005)..........................75 3.4 Deficiencies of Codes on Seismic SSI........................................77 4. Development of Nonlinear Earthquake Soil-Structure Interaction Finite Element Analysis Code (SSI3D) ..........................................78 IX 4.1 Introduction.............................................................78 4.2 General Formulation......................................................79 4.2.1 Formulation of Displacement-based Finite Element Method................79 4.2.2 Finite Element Matrices................................................82 4.2.2.1 Beam-Column Elements.................................................82 4.2.2.2 Solid Elements.......................................................83 4.2.2.3 Interface Elements...................................................85 4.2.3 Solution Methods.....................................................89 4.2.3.1 Static Linear Solutions..............................................89 4.2.3.2 Static Nonlinear Solutions...........................................89 4.3 Dynamic Finite Element Theory..........................................89 4.3.1 Dynamic Formulation....................................................89 4.3.2 Solution of Dynamic Equilibrium Equations..............................91 4.3.2.1 Direct Integration Methods...........................................92 4.3.2.1.1 The Central Different Method.......................................92 4.3.2.1.2 The Houbolt Method.................................................93 4.3.2.1.3 TheNewmark/? Method................................................94 4.3.2.1.4 The Wilson 9 Method................................................97 4.3.2.1.5 The Hilber, Hughes and Taylor a Method.............................99 4.3.2.1.6 Choice of Method...................................................99 4.3.2.2 Mode Superposition Method............................................99 4.4 Computer Program for 3D Soil-Structure Interaction Analysis of High-Rise Building........................................................100 5. Constitutive Models of Materials..........................................102 5.1 General Observation of Material Behaviors and Modeling and Development Histories of Material Behavior Modeling...................................102 5.2 Definition of Stress.....................................................102 x 5.3 Definition of Strain..................................................103 5.4 Elasticity............................................................104 5.5 Elasto-Plastic Rate Integral of Differential Plasticity Models........105 5.6 Mohr-Coulomb Model....................................................106 5.6.1 Parameters of Mohr-Coulomb Model....................................106 5.6.2 Elasto-Plastic Constitutive Matrix of Mohr-Coulomb Model............109 5.6.3 Parameter Determination of Mohr-Coulomb Model.......................110 5.7 Modified Cam-Clay Model...............................................112 5.7.1 Parameters of Modified Cam-Clay Model...............................112 5.7.2 Elasto-Plastic Constitutive Matrix of Modified Cam-Clay Model.......113 5.7.3 Parameter Determination of Modified Cam-Clay Model..................115 5.8 Cap Model.............................................................117 5.8.1 Parameters of Cap Model.............................................117 5.8.2 Elasto-Plastic Constitutive Matrix of Cap Model.....................119 5.8.3 Parameter Determination of Cap Model................................120 5.9 Modified Hyperbolic Model.............................................123 5.9.1 Parameters of Modified Hyperbolic Model.............................123 5.9.2 Parameter Determination of Modified Hyperbolic Model................131 5.10 Modified Ramberg-Osgood Model........................................135 5.10.1 Parameters of Modified Ramberg-Osgood Model........................135 5.10.2 Parameter Determination of Modified Ramberg-Osgood Model...........140 5.11 Lade Model...........................................................143 5.11.1 Parameters of Lade Model...........................................143 5.11.2 Elasto-Plastic Constitutive Matrix of Lade Model...................147 5.11.3 Parameter Determination of Lade Model..............................148 5.12 Damping Model in Soil Dynamics.......................................151 5.13 Procedure of Nonlinear Analysis by Finite Element Method.............153 5.14 Soil Model Verification..............................................154 xi 6 Site Response............................................................164 6.1 Introduction...........................................................164 6.2 Fourier Transform......................................................165 6.3 1-D Wave Propagation Theory............................................165 6.3.1 Evaluation of Transfer Functions.....................................165 6.3.2 Equivalent Linear Analysis...........................................169 6.4 1-D Finite Element Method..............................................170 6.4.1 Governing Equations..................................................170 6.4.2 Linear Analysis......................................................172 6.4.3 Nonlinear Analysis...................................................172 6.5 Equivalent Viscous Damping.............................................174 6.6 Program Verification...................................................175 7. Linear Static and Dynamic Stiffness of Soil-Pile Interaction............178 7.1 Stiffness Components...................................................178 7.2 Pile Soil Model........................................................179 7.3 Torsional Stiffness....................................................180 7.3.1 Modulus of Sub-Grade Reaction........................................180 7.3.2 Analytical Solution..................................................181 7.3.3 Numerical Solution (1-D FEM).........................................185 7.4 Vertical Stiffness.....................................................193 7.4.1 Modulus of Sub-Grade Reaction........................................193 7.4.2 Analytical Solution..................................................195 7.4.3 Numerical Solution (1-D FEM).........................................198 7.5 Lateral Stiffness......................................................202 7.5.1 Governing Equation...................................................202 7.5.2 Modulus of Sub-Grade Reaction........................................203 xii 7.5.3 Numerical Solution (1-D FEM)............................................204 7.5.3.1 Stiffness Matrix......................................................204 7.5.3.2 Inertial Interaction..................................................206 7.6 Dynamic Behavior of Single Pile...........................................210 7.6.1 Inertial Interaction....................................................210 7.6.2 Kinematic Interaction...................................................213 7.7 Pile Group Effects........................................................216 7.7.1 General Concept.........................................................216 7.7.2 Governing Equation for Elastic Solution................................217 7.7.3 Pile Group under Vertical Load..........................................218 7.7.4 Pile Group under Lateral Load...........................................223 8. Nonlinear Static Stiffness of Soil-Pile Interaction.......................229 8.1. Introduction..............................................................229 8.2 Nonlinear Torsional Stiffness of Single Pile.............................230 8.3 Nonlinear Vertical Stiffness of Single Pile..............................232 8.4 Nonlinear Lateral Stiffness of Single Pile................................236 8.4.1 Broms Theory...........................................................236 8.4.2 1-D Finite Element Solution.............................................238 8.4.2.1 Pile-Soil Modeling....................................................238 8.4.2.2 Nonlinear Beam Element................................................238 8.4.2.3 Moment Capacity of Reinforced Concrete Pile...........................241 8.4.2.4 Soil Reaction on Piles by p-y Approach...............................245 8.4.3 3D Finite Element Analyses..............................................248 8.4.4 Method Validation.......................................................250 8.4.5 Parameters of Hyperbolic Function.......................................261 8.5 Nonlinear Group Effect..................................................263 8.5.1 Pile Group under Vertical Load..........................................263 xiii 8.5.2 Pile Group under Lateral Load 266 9. Soil-Pile-Structure Interaction of Buildings under Seismic Shaking.......268 9.1. Design Code for Seismic.................................................268 9.1.1 Introduction...........................................................268 9.1.2 Maximum Considered Earthquake Ground Motion...........................268 9.1.3 Site Class Definition..................................................270 9.1.4 Structural Design Criteria.............................................271 9.1.4.1 Index Force Analysis Procedure......................................271 9.1.4.2 Equivalent Lateral Force Procedure..................................271 9.1.4.3 Modal Response Spectrum Analysis Procedure..........................273 9.1.4.4 Linear Response History Analysis Procedure..........................274 9.1.4.5 Nonlinear Response History Analysis Procedure.......................275 9.2 Modal Damping of Multi-Degrees-of-Freedom System.......................275 9.3 Seismic Response of Hypothetical Buildings..............................278 9.3.1 Description of the Buildings...........................................278 9.3.2 Site Selection.........................................................284 9.3.3 Soil Properties........................................................285 9.3.4 Building Analyses......................................................291 9.3.4.1 Analysis Assumptions.................................................291 9.3.4.2 Analysis Procedure...................................................291 9.3.4.3 Dead Load and Live Load..............................................292 9.3.4.4 Ground Motion and Deconvolution......................................295 9.3.4.5 Foundation Properties................................................317 9.3.4.6 Modal Analyses.......................................................323 9.3.4.7 Modal Response Spectra Analyses......................................338 9.3.4.7.1 Analysis Parameters................................................338 9.3.4.7.2 Equivalent Lateral Force Analyses..................................339 xiv 9.3.4.7.3 Modal Response Spectra Analyses.................................340 9.3.4.8 Time History Analyses.............................................343 9.4 Seismic Response of Actual 30-Story Building.........................358 9.4.1 Description of 30-Story Building....................................358 9.4.2 Structural Materials................................................358 9.4.3 Instrumentation.....................................................358 9.4.4 Building Analyses...................................................363 9.4.4.1 Analysis Assumptions..............................................363 9.4.4.2 Analysis Procedures...............................................363 9.4.4.3 Load Determination................................................363 9.4.4.4 Foundation Properties.............................................364 9.4.4.5 Modal Analyses....................................................366 9.4.4.6 Equivalent Lateral Force Analyses.................................369 9.4.4.7 Modal Response Spectrum Analyses..................................370 9.4.4.8 Time History Analyses.............................................371 10. Summary and Conclusion................................................385 10.1 Summary..............................................................385 10.2 Conclusion...........................................................387 10.3 Recommendation for Future Research...................................388 References................................................................389 xv LIST OF FIGURES Figures 2.1 Pile Supporting the NHK Building Sheared by Lateral Loading during the 1964 Niigata Earthquake (Meymand, 1998)..............................6 2.2 Ten-Story Building Supported by Pile Foundation on Soft Soil during the 1985 Mexico Earthquake (Meymand, 1998)...............................7 2.3 Progression of Soil-Pile-Structure Interaction and Pile Bending Moments during Liquefaction (Tokimasu et al., 1998)..............................11 2.4 Seismic Response of Structure Embedded on Rock and on Soil....14 2.5 Soil-Structure Interaction Model of Three Degrees of Freedom Structure..16 2.6 Equivalent Model........................................................16 2.7 Equivalent One-Degree-of-Freedom System.................................18 2.8 Foundation Stiffness and Damping Factors for Elastic and Viscoelastic Half Space (Veletos and Vebric, 1973)....................................21 2.9 Foundation Damping Factors for Half Space with and without Hysteretic Damping (Veletsos and Vebric, 1973) and Soil Profiles with Indicated Modulus Profiles and no Hysteretic Damping (Gazetas, 1991).....22 2.10 Embedded Soil-Foundation-Structure on Finite Soil Layer................24 2.11 Foundation Stiffness and Damping Factor for Rigid Cylindrical Foundations Embedded in Half Space..................................................25 2.12 Horizontal Foundation Stiffness and Damping Factor for Rigid Rectangular Foundations Embedded in Half Space (Gazetas, 1991)......................26 2.13 Dashpot Coefficient Rocking Radiation Damping versus Frequency for Different Foundation Shape (Dobry and Gazetas, 1986)....................27 2.14 Disk Foundation........................................................28 2.15 Rocking Stiffness and Damping Factors for Flexible Foundations.........29 xvi 2.16 Assumed Passive Wedge-Type Failure for Clay (Reese et al., 2000)......34 2.17 Characteristic Shapes of p-y Curves for Soft Clay in the Presence of Free Water..........................................................35 2.18 Assumed Passive Wedge-Type Failure of Pile in Sand....................36 2.19 Characteristic Shape of p-y Curve for Static Loading in Stiff Clay with no Free Water.....................................................36 2.20 Characteristic Shape of p-y Curve for Cyclic Loading in Stiff Clay with no Free Water..........................................................37 2.21 Characteristic of a Family of p-y Curve for Static and Cyclic Loading in Sand................................................................37 2.22 Proposed p-y Curve for c-
2.23 (a) Soil-Pile Model, (b) Soil-Pile Gapping Model, (b) and Force-Displacement 3tan(/?-
b H \
factor to account for the three-dimensional effect of the passive wedge. The p-y curve |