Citation
Framing the future

Material Information

Title:
Framing the future Practical applications for structural sustainability
Uncontrolled:
Practical applications for structural sustainability
Creator:
Cole, Lis ( author )
Language:
English
Physical Description:
1 electronic file (356 pages) : ;

Subjects

Subjects / Keywords:
Sustainable engineering ( lcsh )
Sustainable engineering -- Construction ( lcsh )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Review:
A structural engineer plays an important role in the design and construction of a building. However, with sustainability moving to the forefront of the design field as a major concern and priority, the structural engineer needs to initiate sustainable practices in their design. Testing of new materials takes time to research and additional time to place it into codes, standards, and everyday practice. The additional cost to construct with a new building material is also a factor and may end up value engineering itself out of the design. What practice approach can a structural engineer take to begin to design a structure more sustainably? Investigating alternate framing methods is an advance toward reducing the amount of materials used on a project overall, which in turn will reduce the amount of carbon emissions, lower the cost, and potentially increase thermal breaks and interior space, among other things. This thesis will evaluate three different heights of steel structures, utilizing three different framing methods, two conventionally framed (moment resisting and concentric braced) and one less conventional (diagrid), to determine if one of the framing methods is more sustainable than the others, or if there will be approaches the structural engineer can take to implement sustainable practices in their design.
Thesis:
Thesis (Ph.D.)-University of Colorado Denver.
Bibliography:
Includes bibliographic references
System Details:
System requirements: Adobe Reader.
Statement of Responsibility:
by Lis Cole.

Record Information

Source Institution:
University of Florida
Rights Management:
All applicable rights reserved by the source institution and holding location.
Resource Identifier:
954003776 ( OCLC )
ocn954003776
Classification:
LD1193.E553 2016d C66 ( lcc )

Downloads

This item has the following downloads:


Full Text
FRAMING THE FUTURE PRACTICAL APPLICATIONS FOR STRUCTURAL
SUSTAINABILITY
by
LIS COLE
B.S., University of Colorado Boulder, 2006
M.S., University of Colorado Denver, 2012
A thesis submitted to the
Faculty of the Graduate School of the
University of Colorado in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
Engineering and Applied Science
2016


This thesis for the Doctor of Philosophy degree by
Lis Cole
has been approved for the
Engineering and Applied Science Program
by
Fred Rutz, Chair
Kevin Rens, Advisor
Caroline Clevenger
Elaine Gallagher Adams
Pete Jenkins
Date: April 26, 2016
n


Cole, Lis (Ph.D., Engineering and Applied Science)
Framing the Future Practical Applications for Structural Sustainability
Thesis directed by Professor Kevin L. Rens
ABSTRACT
A structural engineer plays an important role in the design and construction of a
building. However, with sustainability moving to the forefront of the design field as a
major concern and priority, the structural engineer needs to initiate sustainable practices
in their design. Testing of new materials takes time to research and additional time to
place it into codes, standards, and everyday practice. The additional cost to construct
with a new building material is also a factor and may end up value engineering itself out
of the design. What practice approach can a structural engineer take to begin to design a
structure more sustainably? Investigating alternate framing methods is an advance
toward reducing the amount of materials used on a project overall, which in turn will
reduce the amount of carbon emissions, lower the cost, and potentially increase thermal
breaks and interior space, among other things. This thesis will evaluate three different
heights of steel structures, utilizing three different framing methods, two conventionally
framed (moment resisting and concentric braced) and one less conventional (diagrid), to
determine if one of the framing methods is more sustainable than the others, or if there
will be approaches the structural engineer can take to implement sustainable practices in
their design.
The form and content of this abstract are approved. I recommend its publication.
m
Approved: Kevin L. Rens


TABLE OF CONTENTS
Chapter
1. Literature Review.......................................................1
1.1 The Overarching Problem ................................................1
1.2 What is Known...........................................................1
1.2.1 Energy Usage..........................................................1
1.2.2 Sustainability........................................................3
1.2.3 Engineers Role.......................................................4
1.3 The Gap...............................................................9
2. Steel Framing...........................................................13
2.1 Common Structural Framing...............................................13
2.1.1 Moment Resisting Frames...............................................13
2.1.2 Braced Frames.........................................................15
2.2 Alternative Design Method.............................................17
2.2.1 Diagrid History........................................................17
2.2.2 Diagrid Framing........................................................20
2.2.3 Diagrid Lateral Design.................................................21
2.2.4 Diagrid Sustainability.................................................24
3. Methods and Procedures ..................................................27
3.1 Structural Design.......................................................27
3.2 Interior, Daylighting, and Thermal Breaks...............................31
4. Results.................................................................32
4.1 Structure Design and C02e...............................................32
4.1.1 3-Story................................................................32
4.1.2 9-Story................................................................38
4.1.3 20-Story...............................................................44
4.1.4 Initial Trends.........................................................50
4.2 9-Story Seismic Design.................................................55
4.3 Interior Space, Daylighting, and Thermal Bridging......................58
4.3.1 Interior Space.........................................................58
4.3.2 Daylighting............................................................59
IV


4.3.3 Thermal Bridging.................................................59
5. Discussion/Conclusion..............................................61
5.1 Findings..........................................................61
5.2 Other Research....................................................62
5.3 Future Research...................................................65
5.4 Conclusion........................................................66
References.............................................................69
Appendix A.............................................................75
Appendix B.............................................................78
Appendix C............................................................104
Appendix D............................................................120
Appendix E............................................................123
Appendix F............................................................171
Appendix G............................................................197
Appendix H............................................................200
Appendix 1............................................................257
Appendix J............................................................278
Appendix K............................................................330
v


LIST OF TABLES
Table
4.1. 3-Story Steel Structure Results..............................................36
4.2. 3-Story Foundation Results...................................................37
4.3. 3-Story C02 Equivalents (tons)...............................................38
4.4. 9-Story Steel Structure Results..............................................43
4.5. 9-Story Foundation Results...................................................43
4.6. 9-Story C02 Equivalents (tons)...............................................44
4.7. 20-Story Steel Structure Results.............................................49
4.8. 20-Story Foundation Results..................................................50
4.9. 20-Story C02 Equivalents (tons)..............................................50
4.10. 9-Story Steel Structure Seismic Results.....................................56
4.11. 9-Story Seismic Foundation Results..........................................57
4.12. 9-Story Seismic Structure C02 Equivalents...................................58
vi


LIST OF FIGURES
Figure
2.1. Moment Frame...................................................................14
2.2. Braced Frame...................................................................15
2.3. Concentric and Eccentric Braced Frame..........................................16
2.4. Braced Frame Types.............................................................17
2.5.1. W. Abel building, formerly known as the IBM building (Peterson, 2010)........18
2.6. London City Hall Exterior (Foster+Partners, 2002) .............................19
2.7. London City Hall Interior (Foster+Partners, 2002) .............................19
2.8. Diagrid Structure..............................................................20
4.1. 3-Story MRF..................................................................34
4.2. 3-Story CBF....................................................................35
4.3. 3-Story Diagrid................................................................35
4.4. 9-Story MRF....................................................................40
4.5. 9-Story CBF....................................................................41
4.6. 9-Story Diagrid................................................................42
4.7. 20-Story MRF...................................................................46
4.8. 20-Story CBF...................................................................47
4.9. 20-Story Diagrid...............................................................48
4.10. Structure C02e...............................................................51
4.11. Structure C02e per Floor.....................................................52
4.12. Substructure C02e ...........................................................53
4.13. Substructure C02e per Floor..................................................53
4.14. Overall C02e ................................................................54
4.15. Overall C02e per Floor.......................................................55
vii


1. Literature Review
1.1 The Overarching Problem
All major scientific climatology organizations in the United States (US) concur
that climate change is caused by excessive amounts of greenhouse gas (GHG) emissions
being placed into the atmosphere by human activity (IPCC, 2013, Oreskes, 2004,
Cicerone et al., 2001). The Environmental Protection Agency (EPA) refers to GHG as
emissions that trap heat in the atmosphere, allowing less to directly leave the earths
system, thus causing the earths surface to increase in temperature (EPA, 2014).
Greenhouse gases are made up of many different types of gases, the most common being
carbon dioxide (CO2), while others include: methane (CH4), nitrous oxide (N2O), water
vapor (H2O), ozone (O3), and chlorofluorocarbons (CFCs) (Cicerone et al., 2001, EPA,
2014). Each GHG remains in the atmosphere for a different length of time, but all can be
equated back to CO2 in terms of CO2 equivalents (CCEe) to provide a simpler basis of
comparison (EPA, 2014).
1.2 What is Known
1.2.1 Energy Usage
Approximately 97 quadrillion British Thermal Units (Btu) of energy were
consumed in the US in 2011; 80 quadrillion of those were created by the burning of fossil
fuels (McConnell & Fahnestock, 2014). Buildings account for approximately 40% of
energy consumed, with the majority used by construction and daily building operations
(Attmann, 2010, McConnell & Fahnestock, 2014, Chwieduk, 2003, Weisenberger, 2011).
Operational energy use is the energy used in daily activities, such as heating, cooling,
1


lighting, and other electrical operations. Embodied energy is the energy consumed by
manufacturing and installing a product. Up to 20% of the energy used in typical
buildings is embodied energy (Ramesh et al., 2010). Depending on the material, size,
and function, the structure can account for 20-29% of the buildings embodied energy
(Cole & Kernan, 1996). Assuming a structure in the US uses an average of 24% of the
buildings total embodied energy, this would calculate out to 1.5 quadrillion Btus of
energy in 2011 alone, which equates to approximately 91 million tons of CO2.
The largest production of GHG emissions is from burning fossil fuels for energy
use. Following fossil fuels, the next largest producer of emissions come from cement
production at 7% (SEI, 2010). Buildings produce 40-50% of the GHG emissions
worldwide (Ramesh et al., 2010). As previously discussed, climate change is actually
happening due to increased GHG emissions from human activity, and buildings are a
major factor in this issue. This is in part why the sustainability movement started and has
since gained great momentum in the building industry.
On December 12, 2015, the United Nations (UN) passed what is known as the
Paris Agreement to not allow global temperatures to increase above 2C and attempt to
keep the increase below 1.5C from pre-industrial levels (U.N. General Assembly, 2015).
In order to accomplish this President Obama plans to cut US GHG emissions between
26% and 28% by 2025 from 2005 emission levels (McFarland, 2015). With buildings in
the US comprising 40% of the overall energy consumed, what will be done in the
building sector will play a major role in the success of this goal.
2


1.2.2 Sustainability
The concept of sustainability emerged in the 1960s because of environmental
concerns about increasing population (Attmann, 2010). Gro Harlem Brundtland provided
the first formal definition of sustainability in his 1987 report, Our Common Future, for
the World Commission on Environment and Development. Brundtland defined
sustainable development as ...development that meets the needs of the present without
compromising the ability of future generations to meet their own needs (1987, pg. 54).
This early definition, albeit vague, provided a starting basis for future definitions of
sustainability. McDonough and Braungart published an important document in 1992
called The Hannover Principles to clarify sustainable design (Kibert, 2008,
McDonough & Braungart, 1992). In 1993 the U.S. Green Building Council (USGBC)
was founded to address the issues of sustainability in the built environment, and began to
develop the Leadership in Energy and Environmental Design (LEED) rating system in
order to help clarify and quantify sustainability associated with buildings (USGBC,
2009).
The Natural Step is an organization created by Dr. Karl-Henrik Robert to create a
consensus about how to protect and better human life on the planet (The Natural Step,
2015). With help from governments, business people, and environmentalists, The Natural
Step created the four sustainability principles.
1. We cannot dig stuff up from the Earth at a rate faster than it naturally returns
and replenishes.
2. We cannot make chemical stuff at a rate faster than it takes nature to break it
down.
3


3. We cannot cause destruction to the planet at a rate faster than it takes to
regrow.
4. We cannot do things that cause other to not be able to fulfill their basic needs.
1.2.3 Engineers Role
No reference was made in regard to environmental protection in the American
Society of Civil Engineers (ASCE) Code of Ethics prior to 1980 (Vesilind, 1995, Vesilind
& Gunn, 1998, Cywinksi, 2001). In 1980 the guidelines of the first canon were amended
to mention improving the environment, but this did not impress the Environmental
Impact Analysis Research Council (EIARC) of the Technical Council on Research (an
ASCE committee) which felt this did not actually address responsibility to anything other
than the human environment. EIARC proposed adding an eighth canon to the Code of
Ethics, which would more comprehensively address the environment and natural
resources, although it was ultimately denied.
However, the term sustainable development used by Brundtland in 1987 did not
fall on deaf ears. In 1997 the ASCE revised its first canon to read:
Engineers shall hold paramount the safety, health and welfare of the public and
shall strive to comply with the principles of sustainable development in the
performance of their professional duties (Vesilind & Gunn, 1998, pg. 73).
It wasnt until 2009 that the ASCE provided their definition of the term sustainable
development:
Sustainable Development is the process of applying natural, human, and
economic resources to enhance the safety, welfare, and quality of life for all of the
society while maintaining the availability of the remaining natural resources
(ASCE, 2010a, pg. 1).
4


The major component of the ASCE clarifying their definition of sustainable development
is maintaining the availability of the remaining natural resources. This statement
provides a quantifiable approach to sustainability according to the civil engineer.
The ASCEs definition of sustainable development better correlates to sustainable
construction than others by including social, economic, and ecological building concerns,
this is known as the triple bottom line. Chau (2007) also emphasizes these issues when
discussing the importance of integrating sustainability into civil engineering curriculum,
and Kibert (2008, pg. 6) has provided the following list of principles to more
comprehensively address sustainable construction.
1. Reduce resource consumption
2. Reuse resources
3. Else recyclable resources
4. Protect nature (flora & fauna)
5. Eliminate toxics
6. Apply life cycle-costing
7. Focus on quality
These principles encompass resource use, nature, toxics, economics, and quality,
addressing at a more granular level the ASCEs definition of sustainable development.
The International Association for Bridge and Structural Engineerings (IABSE)
explanation of structural engineering provides many similarities to that of sustainable
construction, reverberating the common theme of the importance of economic,
environmental, and social considerations.
Structural Engineering is the science and art of planning, design, construction,
operation, monitoring and inspection, maintenance, rehabilitation and
preservation, demolishing and dismantling of structures, taking into consideration
technical, economic, environmental, aesthetic and social aspects (IABSE, 2013,
Pg- V-
5


Applying aspects of the first definition of sustainable development in Brundtland
World Commission report, the four sustainability principles from The Natural Step, and
the ASCEs definition of sustainable development, sustainable design can be redefined as:
Design that does not reduce the natural resources of the Earth, nor produces excess that
will destroy the Earth to enhance the safety and welfare of life for the current and future
generations through environmental, economic, and social means.
The role of a structural engineer in sustainable construction is not merely to attend
to ethical considerations; there are tangible aspects as well. In Kiberts list of principles
for sustainable construction the structural engineer has the ability to influence each item
of the list above. Many of these principles can be interconnected. In 2010 the Structural
Engineering Institute (SEI) published a book called Sustainability Guidelines for the
Structural Engineer (Kestner, 2010). Within this document are aspects that engineers
can influence to make a structure more sustainable, such as recycled content, local
sourcing and manufacturing, durability, maintenance, adaptable and deconstructable
design, building/material reuse, life-cycle assessments, and material toxicity (Kestner,
2010). Some of these areas are related to CO2, which is the most common greenhouse
gas and two of the largest producers of CO2 occur in the production of concrete and steel
(Metha & Burrows, 2001). The structural engineer can design for increasing the
durability of the structures, which increases the life of the structure and in turn reduces
the resources used as well as the greenhouse gas emissions.
Designing for deconstruction can also increase the sustainability of a structure.
The construction industry produces large amounts of waste, which can amount to 2.5
6


pounds of solid waste for each square foot of floor space (Chini & Bruening, 2003, SEI,
2010). Demolition of buildings creates 2.8 pounds of waste each day per person in the
US (Kestner, 2010). By designing for deconstruction the materials can be removed from
the waste stream and reused directly in another project creating a cradle-to-cradle
approach instead of cradle-to-grave.
Life-cycle assessments (LCA), sometimes called life-cycle analysis, can be an
important role of a structural engineer in sustainable construction practices. LCA is a
method of calculating the environmental impact of a building (or structure) over its
lifetime (Athena, 2016). This method produces an environmental projection of the useful
life of a structure by quantifying the embodied energy and greenhouse gas emissions
(Rens et al., 2013). LCA is not to be confused with life-cycle costing (LCC), which
refers to the overall cost of a building (or structure) throughout its lifetime, and the most
reasonable economics of a structure are dependent on the overall return on the investment
put into it. Both LCA and LCC are calculated based on the initial investment
(environmentally or monetarily), which is from conception to final commissioning of the
structure, and the required investment into the maintenance and eventual deconstruction
and disposal of the structure (Kelly, 1984, Rens et al., 2013). Providing an appropriate
maintenance plan can substantially increase the useful life of a structure while reducing
total costs of operations. By completing a LCA and a LCC based on the environmental
or economic benefits, a plan for the total life of the structure can be outlined, and help the
triple bottom line.
7


Structural engineers play an important role in a design team, which typically
include the owner, architect, and engineers. Structural engineers are necessary in the
planning and design of a building from its schematic design through the construction
process, as the structure is a major component of a building and needs to be coordinated
with the other disciplines. An approach to a more sustainable project is employing an
integrated design team. This would include others not on the design team, such as the
contractors, from the beginning of the design process to best plan out the feasibilities of
the structure in the design, construction, and maintenance, as well as economically
(Kibert, 2008). However, an integrated design team does not always include the others
that the project affects, such as local business owners, residents, or other people who
might use the space in the future. In order to assess how a building will affect people
outside of the design team a Charrette can be held, which is a meeting in which all
stakeholders (including the structural engineer) of a project participate to provide
solutions and ideas for project conflicts (Kibert, 2008). Many social, economic, and
ecologic benefits can come from holding Charrettes, which could in turn impact the triple
bottom line and potentially create a more sustainable building.
The structural engineer has many challenges ahead in order to achieve the
ecological, economical, and social requirements needed for sustainable construction.
Some of these roles relate to the ethical obligations a structural engineer has to the field,
while other roles are related directly to decision-making during the process. During
initial design of the structure there are key decisions made by the structural engineer that
can reduce the use of virgin resources and maintain the availability of the remaining
8


resources (ASCE, 2010a, pg. 1). Planned maintenance of the building helps achieve the
most amount of useful life from both economical and environmental aspects. Once the
structure is ready to be decommissioned, thoughtful design of the deconstruction of the
structure can reduce the amount of waste through recycling/reuse efforts in a cradle-to-
cradle approach. Overall there is a vast array of roles that a structural engineer can play
during the life of a structure that will greatly impact the sustainability of the construction.
1.3 The Gap
As previously mentioned, the USGBC created the LEED rating system, which is
the most prevalent rating system for green/sustainable buildings in the US, and is
becoming used in other countries. Many design teams in the US follow these guidelines
for green buildings. However, the contributions from the structural engineer are not
heavily weighted using this rating system (Hayes & Cocke, 2009). The majority of the
contributions of the structural engineer remain in the materials and resource category as
provided by the LEED system, mainly by dictating recycled content and local sourcing of
materials using both recycled and locally sourced materials has the potential to reduce
the embodied energy of a structure.
Research on the uses of recycled material in structural components can be traced
back to the mid 1980s (Simm et al, 2003). For example, structural steel in the US
contains approximately 93% recycled content and has a recycling rate (how much steel is
sent to be recycled) of 98% (Weisenberger, 2011). Given this data it is not difficult for a
building to use at least 75% recycled content in the structure to obtain points in the LEED
system, which leaves little motivation for structural engineers and firms to do more than
9


the minimum required by LEED, especially when coupled with the fact that an equivalent
number of points are awarded for providing bicycle racks and showers for 5% of the
building occupants (Hayes & Cocke, 2009, USGBC, 2009). Material resources are an
important aspect of sustainable design which presents a great opportunity for structural
engineers to contribute to reducing GHG emissions, but if the materials specified in the
design are inherently recycled materials there is little incentive based on LEED to move
beyond the minimum requirements. This is not necessarily the case for concrete, but
there are research advances being made to increase recycled content in concrete.
Another issue with the practicality of sustainability and the structural engineer is
the embodied energy in structural materials, which is the energy used to mine,
manufacture, transport, and install the item. Architecture 2030 is on a mission to make
all new buildings constructed by the year 2030 net-zero. The National Renewable
Energy Laboratory (NREL) defines a net-zero energy building (ZEB) as a building that
produces as much energy as it uses in a year (Griffith et al, 2007). NREL acknowledges
that there are various definitions for ZEB. However, most definitions are a similar
version of what NREL has provided. Thiel et al. define net-zero as the balance between
the energy consumed by the use of the building and the energy produced by the buildings
renewable systems on an annual basis (Thiel, 2013, pg 1126). This coincides with
NRELs definition. Srinivasan et al. raise a valid concern that net-zero buildings do not
address any other energy put into the building other than the annual operational usage
(Srinivasan et al., 2012). Embodied energy and dematerialization put into the structure
and other materials are not considered, which is another downfall with LEED. Often a
10


net-zero building has a higher embodied energy in its materials than a conventional
building (Thiel, 2013). Once net-zero is achieved then all of the energy in a building is
embodied energy.
Although using recycled materials is beneficial to sustainability, other methods
need to be implemented to achieve better sustainable structures. Even though steel has a
high recycling and recycled content rate, it still consumes more energy, produces more
emissions, and can cost more than it does to make a glulam beam (Thormark 2006),
making a wood structure inherently more sustainable. However, as urban areas get more
densely populated, currently housing approximately 50% of the population, buildings will
continue to get taller (WHO, 2014, Chau et al., 2007), with steel and concrete as the two
most common building materials of tall buildings because of their strength and weight.
A newer movement of tall timber structures is emerging around the world, but is not
currently allowed in the US. The 2015 International Building Code (IBC), only allows
wood framed structures up to 5-stories (IBC, 2015). Because of this, tall structures in the
US will continue to be made out of steel and concrete.
If the current practice of sustainable structural engineering only focuses on the
amount of recycled content in the materials used, then the field of structural engineering
will still be behind the abilities to reduce the energy consumption of the structure. There
are many ideas on what could be done, but very few actually get put into practice. If
sustainable structural engineering is to move beyond the narrow focus on material
resources as green practice, then alternative framing methods can be employed to make
structures more sustainable. Until structural materials are made from renewable
11


resources with the strength necessary to build tall structures, design and framing methods
need to be evaluated in current practice.
By utilizing an alternative framing method to the traditional method increases the
sustainability of the structure by reducing GHG emissions, increasing usable/adaptable
space, increasing thermal breaks, and increase the availability of exterior space for better
daylighting designs? If one framing method does not prove to be more sustainable than
the others, is there a way for a structural engineer to provide a more sustainable solution?
The gap solving solution examined here is considering the framing methods used to
greater implement sustainability into a structural engineers current practice.
12


2. Steel Framing
2.1 Common Structural Framing
Steel frames were developed in the 19th century to accommodate the need/desire
for taller buildings to have more usable space and natural light than masonry structures
were able to provide (McEntee, 2009). The most frequently used are moment resisting
and braced frames, but alternative design has introduced some progressive new advances.
2.1.1 Moment Resisting Frames
A moment resisting frame (MRF) is a simple boxed frame (Figure 2.1) with
moment connections where the beams and columns join. Moment connections are rigid
and considered a fixed connection, meaning all forces applied to a framing member
transfer through the connection. When a force is applied perpendicularly to a member a
rotational force is produced, called a moment. Due to the rigid (fixed) connections in
MRF, the moments created by the lateral forces applied perpendicular to the columns are
transferred through the columns down to the foundation. Because of the stiffness of the
system and the fixed connections from the columns to the substructure this also induces
moments on the foundations. Moments in the substructure can increase the size of the
foundations because there has to be enough self weight of the building elements (dead
load), such as the structure, faqde, interior finishes etc., to resist the potential overturning
of the structure caused by the moments.
13



>

Figure 2.1. Moment Frame
The 1994 Northridge earthquake in California prompted a reevaluation of how
moment connections were designed due to brittle failure of the connections. Because of
this reevaluation the American Institute of Steel Construction (AISC) developed the
Seismic Provisions for Structural Steel Buildings (McEntee, 2009). MRF are classified
into three categories; ordinary moment frames (OMF), used in none to low seismic
regions, intermediate moment frames (IMF), used in low to mid seismic regions, and
special moment frames (SMF), used in high seismic regions (Richard, 2008). Although
these categories are for seismic design, MRF can also be used for wind design.
Due to MRF having fixed connections, the cost of the system can be quite high,
but benefits include a clean layout and maximization of the amount of space available for
natural light (Richard, 2008).
14


2.1.2 Braced Frames
Braced frames were used as an alternative to moment frames. Braced frames
have a diagonal member between the beam and column members used to transfer the
lateral loads to the substructure. None of the connections are rigid, and considered
pinned. A pinned connection means that the rotational moment forces discussed in
section 2.1.1 are not transferred through the connections, only vertical and horizontal
forces (axial and shear) are. The lateral loads are transferred from the columns of the
building into the floor system (diaphragm) and then into the diagonal brace via axial and
shear forces. The braces provide a path for the lateral forces to track down to the
foundation (Figure 2.2). Because of the pinned connections the moments created in the
columns are not transferred into the braces, and all loads are either axial or shear. Braced
Figure 2.2. Braced Frame
15


frames can be more cost effective due to the elimination of the moment connections.
They also do not induce a moment on the substructure and can reduce the size of the
foundation because there is no risk of overturning.
There are many ways to arrange a braced frame, the two broad categories are
concentric braced frame and eccentric braced frame (Figure 2.3). Within those there are a
variety of design options including X bracing, K bracing, chevron, and one directional
diagonal, among others (Figure 2.4). While these options may be more cost effective
than the MRF, a diagonal member within the frame takes up valuable wall space and
decreases the amount of space available for daylighting if on the exterior of the structure
(Kestner et al., 2010).
\ -v S. X.
V \ \ V* N
X, -i.


Figure 2.3: Concentric and Eccentric Braced Frame
16



/ s S
s' S A
N \ \ \

>4 X
AX / \
s ^ _
L
i------
A
"AT / \J|
7\[


A 1 4J C*.
1 V A s \ 1 1 .ta
s 7 V / \ / X/
1
V
Figure 2.4. Braced Frame Types
2.2 Alternative Design Method
2.2.1 Diagrid History
Diagonal grid structural systems, or diagrids, have the potential to achieve many
of the Sustainability Guidelines for the Structural Engineer (Kestner et al., 2010). A
diagrid is a diagonal framing system typically for tall buildings, originally explored by
Russian engineer Vladimir Shukhov in 1896 (Boake, 2014, Moon, 2011). Besides water
towers in Russia this construction method had not been used since the end of the 19th
century until 1963 with the construction of the IBM building in Pittsburg, PA (Figure
2.5). However, the use of this framing method was sporadic framing method until the
2000s when Norman Foster began further exploring the idea (Boake, 2014).
17


Figure 2.5.1.W. Abel building, formerly known as the IBM building (Peterson, 2010)
Norman Foster proposed a diagrid structure for the Humana Headquarters
competition in the early 1980s, but did not win the design (Moon et al., 2007). His first
diagrid structure was constructed in 2002 when he designed London City Hall (Figure 2.6
and 2.7) (Boake, 2014). Along with the increased cost of the curtain wall, this was
difficult to design until better computer technology and software were developed (Boake,
2014, Moon et al., 2007).
18


Figure 2.6. London City Hall Exterior (Foster+Partners, 2002)
19


2.2.2 Diagrid Framing
The diagrid structure employs a method of diagonal framing, typically around the
exterior of the structure, which creates triangulation by tying the floor systems into the
lattice pattern structure. No vertical members are used in the framing, resulting in the
diagonal pattern taking on both the gravity and lateral loads of the structure (Besjak et al.,
2009, Moon, 2011). Similar to the braced frame, the diagrid has pinned connections
because of the diagonal framing members providing the forces a direct path to the
foundation (Figure 2.8). With no moments induced at the substructure the foundations
could potentially be reduced in size because there are no overturning forces.
Figure 2.8. Diagrid Structure
With an exterior frame that is capable of taking lateral and gravity loads, a
concrete core is not always necessary to help support the structure. It is also possible to
20


eliminate interior columns between the core and the perimeter providing more interior/
usable/adaptable interior space. By the use of axially loading the diagonal members, the
diagrid structure is also more effective in minimizing shear deformation (Kim & Lee,
2012, Boake, 2013). The triangulation also helps when designing structures with
irregular shapes (Taghizadeh & Seyedinnoor, 2013).
Moon, who has written most of the research on diagrid structures, focuses on the
structural behavior and design methodologies of diagrids. He has investigated at length
the optimal angle of the diagrid dependent upon the building height (Moon, 2011, Moon,
2012). His work has even attributed to other researchers work. Leonard has expanded on
Moons work and studied the shear-lag effect of high-rise diagrid structures (2007).
2.2.3 Diagrid Lateral Design
Utilizing a steel diagrid structure as the primary system to resist both the lateral
and gravity loads on a building presents a challenge when evaluating it for the use in
seismic design. Structures are designed to be inelastic during a seismic event, meaning
the structure will not return to it original shape after shaking in an earthquake. The goal
is to have the structure withstand a large earthquake, with the understanding that it would
likely require major repairs or demolition following the seismic event. This is a life
safety issue and allows all persons inside the chance to vacate. If structures were
designed to remain elastic, able to return to their original form with out an damage or
alterations, during a large seismic event, the structures might withstand better but be
significantly larger, heavier, and much more costly.
21


Wind design requires structures to remain elastic, because the probability of large
wind gusts are much more likely and frequent than a large seismic event, and it would not
be possible to repair or replace a structure every time a storm occurred. As structures get
taller wind is more likely to control the design of the lateral systems than seismic. In this
case the diagrid is designed using the same parameters as MRF and braced frame
systems. Much of the research on diagrid structures focuses on wind loading, as tall
buildings typically have long fundamental periods, the time it takes for a tall structure to
oscillate back and forth, which makes them less susceptible to seismic loads, because the
time it takes the structure to oscillate is much longer than the shorter fast motions from
the ground movement (Kim & Lee, 2012). Kim and Lee argue that with the increased
stiffness of a diagrid, since it is designed for stiffness rather than strength, the diagrid
system may be subject to higher seismic load (2012).
ASCE 7-10, which is the standard referenced in the International Building Code
(IBC), has a provision for steel systems in table 12.2-1 H. Steel systems not specifically
detailed for seismic resistance, excluding cantilever column systems. This has a
Response Modification Factor, A-factor, of 3 (ASCE, 2010b). The A-factor is a method
of quantifying a lateral systems ductility (ability to deform without breaking) in a
seismic event. The higher the A-factor, the more the structure is assumed to be able to
deform without collapse. However, this is not accounting for structures that have the
lateral and gravity systems as one in the same, such as a diagrid. In order for a diagrid to
perform properly during a seismic event, because of the combined system, it must remain
elastic (does not permanently deform and returns to its original shape), otherwise it would
22


compromise the gravity system and pose a life safety concern (Reimann & Black, 2011).
Therefore, using R greater than 1.0 for any structure that has a combined gravity and
lateral system is not appropriate.
The /^-factor is important in calculating the seismic base shear (expected lateral
force at the base of a structure from a seismic event). Current code uses the /^-factor to
calculate Cs, which is the first plastic hinge, or first point where the structure is no longer
elastic and permanently deforms, and determined from the ratio of the base shear to the
reactive weight of the structure (ASCE, 2010b, Council, 2009). To simplify the
calculations, the structure is designed linearly to the elastic range of the structural
response and assumed to remain ductile, in lieu of the actual response once the structure
reaches/passes the plastic hinge and can no longer return to its original form (Uang,
1991). A larger A-factor reduces the Cs and thus lowers the design base shear, because
the structure is assumed to be more ductile (or have the ability to deform more) without
collapse, so it is able to be designed for a lower lateral force at the base of the structure.
This is not accurate for the true structural response and is compensated for with the
design over strength factor, Qo, used for designing specific elements, such as columns or
connections. For a structure, such as a diagrid to return to its original form without
permanent deformation during a seismic event it must be designed with a /^-factor of 1.0
[or less] (assuming no available ductility of the system) which would be an elastic
response to the earthquake. This is compared to a braced frame /^-factor 3.25, an
ordinary moment frame of 3.5, and a special moment frame of 8, because these framing
systems are able to deform during an earthquake and still stand allowing for repair to the
23


lateral system or replacement of the structure sometime following the seismic event
(ASCE, 2010b).
Kim and Lee assumed an /^-factor of 3 when investigating the seismic
performance of diagrid structures (2012). Without more information as to why they used
3 for the A-factor, it is assumed it was chosen from ASCE 7-10 table 12.2-1 as a steel
system not specifically detailed for seismic resistance excluding cantilever column
systems. One paper evaluates a diagrid structure to determine an /Cfactor using the
ATC-63 methodology, which was determined to be 3.64 (Baker et al., 2010). Although
the higher A-factor calculated in this study would make the seismic design of a diagrid
more similar to that of an OMF and braced framed systems, it is only applicable to this
case until it can be proven that this would be valid for every case. Until proven otherwise
it would be recommended to design for elastic behavior using R of 1.0 or less.
2.2.4 Diagrid Sustainability
Much of the research involving diagrid structures has been conducted on tall
structures as diagrid has been proven to be a more efficient and sustainable design that
utilizes less structural material (Jaswani & Dhyani, 2015, Jani & Patel, 2013, Panchal &
Patel, 2014, Moon, 2012, Sarkisian et al., 2012, Moon, 2009). One study was done on
36, 50, 60, 70, and 80 story structures (Jani & Patel, 2013), and another on 40, 50, 60, 70,
80, 90, and 100 story buildings (Moon, 2008). However, some jurisdictions limit
building height or number of stories providing a need for shorter buildings to be
considered with alternative framing methods.
24


A study by Panchal and Patel compares the material savings of a 20-story diagrid
structure to that of a MRF for both steel and concrete structures (2014). Their results
showed that the diagrid saved in both materials, 13% less concrete and 58% less steel.
According to Korsavi and Maqhareh, the 46-story Hearst Tower in Manhattan was
designed as a diagrid and saved 21% less steel than conventional framing methods
(2014). The 112-story Lotte Super Tower in Seoul, Korea, was studied to save 27% of
the steel if built as a diagrid (Besjak et al., 2009).
While it can be hypothesized from research proving the structural efficiency of a
diagrid system that the foundations would be smaller, research into this topic is also non-
existent. One of the areas of potential for increasing efficiency is by altering the framing
of a structure to reduce the foundation sizes. Given that concrete production creates
approximately 7% of the of the CO2 emissions in the US annually, this reduction would
have a large environmental impact (Kestner et al., 2010). Framing plays an important
role not only in terms of the structure, but also with the overall building design and
architectural planning of the space. Changes in the beam depth of the structure can
impact the floor to ceiling height, and alterations in the column sizes can change the
amount of usable interior space. Additional user space can mean not only a reduction in
the number of buildings needed but also fiscal advantages for the owner, as the increase
in available square footage represents additional revenue for each square foot.
The exterior facade of the structure can also be impacted by the use of a diagrid
system. Expressing the diagrid structure as a visual component of the exterior can impact
the cladding, [and] it is more expensive to use this type of system (Boake, 2014). With
25


many low to mid-rise structures the fa9ade is typically an exterior curtain wall and hangs
from the floor slabs outside of the structure. There are many reasons for this. Firstly,
placing the facade within the structural members causes complication in the design
because the structure can induce loads on the fa9ade causing it fail. Secondly, by having
a continuous exterior the thermal properties are not compromised by breaking the facade
into sections to allow the structure to pass through. Thirdly, it is more cost effective to
have modular sized units of the facade (Z. Wiegand, personal communication, December
3, 2015). Regardless of the type of fa9ade chosen, there are other impacts, specifically in
daylighting and thermal breaks, that dependent on design and space can either enhance or
reduce an architects opportunity to maximize interior daylighting and thermal breaks
which has been shown to have impact on heating, cooling, electrical, and social well-
being.
Although shown to save in material of the structure itself, research combining
multiple aspects together, such as the foundations, CCke produced, thermal breaks,
daylighting, and interior space, has yet to be pursued. Investigating multiple areas of
sustainability can simultaneously help provide clients with important information to
better aid their decisions on what structure type to use. This information would also be
valuable for the structural engineer using methods in sustainable design.
26


3. Methods and Procedures
The Structural Engineers Association of California (SEAOC), the Applied
Technology Council (ATC), and the Consortium of Universities for Research in
Earthquake Engineering (CUREE), utilizing the first letter of the names of these three
groups, combined forces to create a joint venture project called SAC (SAC, 2015). The
Federal Emergency Management Agency (FEMA) helped to create and fund SAC in an
effort to study welded steel frame structures because of brittle behavior discovered
following the 1994 Northridge earthquake. Part of this study involved creating
benchmark buildings that could be analyzed and redesigned for future improvements to
earthquake design. SAC commissioned Brandow & Johnson Associates, Consulting
Structural Engineers, to design three steel framed structures (3-story, 9-story, and 20-
story) using standard techniques commonly employed prior to the 1994 Northridge
earthquake (Ohtori et al., 2004). Each of the three structures consists of exterior steel
moment resisting frames, and interior steel beams and columns (Ohtori et al., 2004).
Although these structures were only for analysis purposes and never constructed, the
engineers designed them as if they would be built.
3.1 Structural Design
To investigate the structural efficiency and sustainability of diagrid framing
versus conventional methods, the three SAC benchmark buildings (3, 9, and 20-story)
were analyzed with standard framing techniques such as moment resisting frame (MRF)
and concentric brace frame (CBF) systems, and compared directly to a diagrid structure.
27


SAP2000 (SAP) (SAP2000, 2017), an industry standard for structural analysis software,
was used to design the gravity and lateral systems of each structure.
Utilizing the SAC benchmark structures, the 3, 9, and 20-story structures were
modeled in SAP maintaining the parameters set in the original design. For example, if
the columns of the SAC benchmark structure were wide flanges of 14 inch depth, W14s,
then W14s were maintained for the columns of the MRF SAP model. Similarly, the
beam depths on the floors were maintained, and the bays where the MRFs were located
were the same as those provided by the benchmark structures. Maintaining these
parameters was important, because structural engineers must operate within constraints
provided by the architect and owner.
Originally, the benchmark designs used A36 steel for the beams and girders and
A992 steel for the columns, because the SAC structures were designed using the 1989
ASD steel code and this was common practice. Current practice uses A992 steel for all
wide flange members, thus all wide flange members for this study will be designed with
A992 steel. Changes were made equally to all structures in this study in order to
maintain the integrity of the analysis.
Lateral design is governed by either seismic or wind loads and determined by
calculating the base shear, V, of the structure. Typically in Colorado, wind controls the
lateral design. Wind loading is calculated by a variety of parameters, such as wind speed,
building height, exposure, and directionality. The Colorado front range has high wind
speeds and are determined as case specific when using the ASCE 7-10. However,
downtown Denver is located east of interstate 25 and does not fall into the case specific
28


region. Design wind speeds for downtown Denver are taken at 115 miles per hour.
Using the Denver design wind speed the wind force for each structure was calculated.
The force was then applied to the exterior of the structures to determine the wind base
shear.
The United States Geological Survey (USGS) provides design maps to calculate
the seismic response spectrums for specific sites. Using a location in downtown Denver
and defining the default site class D (stiff soil), USGS provided the design spectral
response acceleration parameters, Sds and Sdi, short periods and 1-second periods
respectively. These parameters are used to calculate the seismic response coefficient, Cs.
The Cs is applied to the building weight, W, to determine the seismic base shear. From
the SAP models the building weight was determined for use in the seismic base shear.
The seismic base shear was compared to the wind base shear for each structure height to
determine the controlling lateral load. For all cases wind was determined to be the
governing lateral load, which was then applied each SAP model.
While running the MRF models, some of the beam members were oversized using
the original parameters set by the benchmark structures, which is likely attributed to wind
in lieu of seismic controlling the designs, as well as using all A992 steel. To provide the
most efficient member sizing with a code check as close to 1.0 (the demand capacity to
available member capacity ratio) as possible it was determined to allow SAP to have a
broader range of member sizes to choose from. If the SAC structures had a specific
member to be a W33, then parameters were set in SAP to not allow the member to be
29


larger than a W33. However, it was able to use a shallower section such as a W24 if it
was the most efficient size as determined by SAP.
Once the MRFs had been analyzed in SAP they were modeled in Revit (Revit,
2015), a building information modeling (BIM) program. Revit has the ability to analyze
the structure and obtain information such as material quantities, which is useful when
assessing the amount of steel used in each structure. The steel beam and column
quantities for each MRF were then tabulated to provide total tons of steel.
Using the completed SAP model for the MRF structure, the CBF structure was
created. All moment frames were replaced with diagonal concentric braced frames. The
braces were designed with square HSS sections and all of the connections were pinned
instead of fixed as is typical of this type of frame. Following that the diagrid structure
was created. The only alterations made to the model was replacing the exterior columns
with diagonal members and adjusting the exterior beams to accommodate the varying
lengths. Both the CBF and diagrid systems maintained W14s for all columns and
diagonal framing members (for the diagrid), and if the beams on one floor were W24s,
then the CBF and diagrid structures maintained a maximum size of a W24s. The
building size and height, and other design parameters remained untouched from the
original MRF model in order to maintain accuracy of the results.
The applied live loads and superimposed dead loads to all framing systems were
(also) identical to provide consistency through out the analyses. Unfactored dead, live,
and wind loads were obtained from the SAP models at the base of each column. Using
these loads all the foundations were designed using Enercalc (Enercalc,, 2015). Some
30


assumptions had to be made in order for this to work, as this is a hypothetical situation
and not site specific and a geotechnical report of the soil does not exist. It was assumed
that the foundations would be individual spread footings for each column base with a soil
bearing capacity of 10 ksf. Although typical foundations for larger structures in the
Denver area are drilled piers due to the expansive soils, it was decided to use spread
footings as there are fewer variables and simpler to compare across the different structure
types. Similar to the SAP design, all of the structures used the same parameters to
achieve comparable results.
3.2 Interior, Daylighting, and Thermal Breaks
When considering interior space, daylighting, and thermal breaks there are many
factors that effect the usable space, such as fire proofing and finishes. Interior finishes
are determined by the owner and architect and vary in thicknesses, but are not a direct
result of the column sizes. Assuming the same finishes would be used in all three
structures, MRF, CBF, and diagrid, the finishes themselves were not considered when
determining interior usable space. Sprayed on fire proofing however, does vary in
thickness depending on the column size. It is determined by a ratio of the weight, W, to
perimeter, D, of the member. With a larger W/D ratio the amount of fire proofing needed
is less than a member with a small W/D ratio. Therefore spray applied fire proofing was
considered in the analysis of usable interior space and also daylighting.
31


4. Results
4.1 Structure Design and CChe
4.1.1 3-Story
The benchmark 3-story structure consists of six 30 bays in the east/west direction
and four 30 bays in the north/south direction. Three bays on all four exterior sides have
a moment resisting frame to provide lateral support. All columns are fixed at the base
and are W 14s. The exterior beams in the moment frames are W24s on the 3rd level
(roof), W30s on the 2nd level, and W33s on the 1st level (one above ground). The
interior beams consist of W24s as the primary beams, and W18s as the secondary
beams. The 3-story structure was modeled in SAP, assigning the appropriate member
sizes according to the original benchmark design.
A superimposed dead load of 20 psf was applied, which included a partition
loading as well as mechanical, electrical, and various other items considered as dead load
in a building. SAP was allowed to calculate the self weight of the structure, including the
weight of the concrete on metal deck used as the floor system. The live load was
assumed to be 100 pounds per square foot (psf) for each floor and the roof. The use of
the building was not known, therefore a conservative approach was taken by applying an
assembly load on each floor and roof. The SAP model provided the weight of the
structure, which was used in determining the seismic base shear, Veq (Appendix A).
From the height of the structure and the geographical location the wind load was
calculated for both the east-west and north-south directions, Vwind-ew and Vwind-ns
respectively (Appendix A). Comparing the wind base shears to the seismic base shear, it
32


was found that wind controlled in both directions. Even considering the differentia-
factor for each type of structure; MRF, CBF, and diagrid, wind still controlled.
Wind loading was then applied to the structure in SAP and the model was run,
allowing SAP to select appropriate member sizes based on the parameters set in the
previously discussed methods and procedures section of this paper (Appendix B). From
the completed analysis in the SAP model, the MRF structure was then created in Revit to
provide the schedules and quantities of the steel framing. The 3-story MRF structure had
a total of 409 steel members for a total of 318 tons of steel. Using the carbon dioxide
equivalent (CChe) for US steel, in which 0.73 tons of carbon is produced for every ton of
steel produced (Kestner, 2010), the MRF structure would produce 232 tons CCEe.
SAP also provided the unfactored dead, live, and wind loads at the base of each
column, which were used to design the spread footings in Enercalc (Appendix C). From
the foundation design the building had a total of 33 footings, equal to the number of
columns at ground level, for a total of 798 tons of concrete and 7 tons of reinforcement.
The CChe for the substructure of the MRF 3-story building was 803 tons.
Using the completed SAP model for the MRF structure, the CBF structure was
modeled. All moment frames were replaced with diagonal concentric braced frames.
The braces were designed with square HSS sections and all of the connections were
pinned instead of fixed, as explained in section 2.1.2. Following that the diagrid structure
was modeled. The only alterations made to the model were replacing the exterior
columns with diagonal members and adjusting the exterior beams to accommodate the
33


varying lengths. All of the loads, building size and height, and other design parameters
remained untouched from the original MRF model.
With both the CBF and diagrid structures completed in SAP, the models were run
and checked for consistency with the MRF structure. The foundation loads were
obtained for design in Enercalc and the models were recreated in Revit (Figures 4.1
through 4.3) to provide the schedule of quantities. Tables 4.1 and 4.2 display the
calculated results for the structure and substructure respectively.
34


Figure 4.2. 3-Story CBF
Figure 4.3. 3-Story Diagrid
From the structure design it is apparent that the overall weight of the structure is
not directly proportionate to the number of framing members. As seen in Table 4.1, the
35


diagrid has the fewest number of framing members, but also has the highest overall
structural weight at 14% more than the MRF. This is due to the longer spans around the
exterior that resulted in larger member sizes. The CBF has the most framing members
because of the additional members needed to create the braces, but only has a 5%
increase in weight from the MRF. The CChe is a direct calculation of the tons of steel
which puts MRF at the lowest, CBF at a 5% increase in CChe from the MRF, and the
diagrid at a 14% increase over the MRF and a 9% increase over the CBF.
Table 4.1. 3-Story Steel Structure Results
# of Members Weight (tons) CChe (tons)
MRF 409 318 232
CBF 437 332 242
Diagrid 397 361 263
The substructure size does not have a direct correlation to the overall weight of
the structure. Table 4.2 displays the results of the foundation design. The diagrid has the
fewest number of footings, which is related to the number of columns in contact with the
ground. Because the diagrid has two columns at the same location around the exterior,
only one footing is used. Both the CBF and MRF have the same number of columns and
therefore the same number of footings. However, this does not mean that the
substructure for the CBF and MRF will be the same. Because the MRF induces a
moment into the footings each footing will need to be larger to resist the over turning
moments. The CBF and diagrid structures do not induce moments into their foundations.
36


Table 4.2. 3-Story Foundation Results
# of Footings Weight of #of Weight of CCEe
Footings Reinforcing Reinforcement (tons)
(tons) Bars (tons)
MRF 33 798 312 7 803
CBF 33 688 300 6 693
Diagrid 26 465 256 3 467
Concrete produces one ton of CChe for every ton of concrete produced (Kestner,
2010). Reinforcing steel for the footings was also considered in the calculations of CCEe.
From the results of the substructure the diagrid produced the least number of footings,
fewest reinforcing bars, and the lowest overall weight for both. In terms of CChe, the
CBF produced the second highest amount at 48% more than the diagrid, and the MRF
produced the most with 72% more than the diagrid and 16% more than the CBF.
Excavation for the construction of the substructure is also a source of CChe
production. Approximately 1.3 tons of CChe are produced for every cubic yard of earth
excavated (UST, 2016). There are corresponding increases and decreases to this value
depending on the type of earth (sand, dense soil, rock, etc.), but this ratio was determined
to be appropriate since the actual information on the soil type is not known. Similar to
the reinforcement, this value does not yield high values and is not a major factor in
comparing the overall CCke for the substructure.
Table 4.3 shows the CCke for the structure, the components of the substructure,
and the overall. Although the diagrid produced more CCke for the structural steel
members, it was able to produce a much smaller overall substructure system causing it to
be the framing method with the lowest amount of CCEe produced. The CBF produced
37


both a structure and substructure CChe between the MRF and diagrid and has an overall
increase of 28% more CChe than the diagrid. The MRF had the overall lightest structure,
but the largest substructure causing it to have the largest CChe at 42% more than the
diagrid and 11% more than the CBF.
Table 4.3. 3-Story CO2 Equivalents (tons)
Steel Concrete Reinforcement Excavation Total
Framing Foundation
MRF 232 798 5 8 1043
CBF 242 688 5 7 942
Diagrid 263 465 2 5 736
4.1.2 9-Story
The benchmark 9-story structure consists of five 30 bays in the east/west and the
north/south direction. Four bays on all four exterior sides have a moment resisting frame
to provide lateral support. All columns are fixed at the base and are W14s. The exterior
beams in the moment frames are W24s on the 9th level (roof), W27s on the 8th level,
W30s on the 7th level, and W36s on all remaining levels. The interior beams consist of
W24s as the primary beams, and W18s as the secondary beams. Ground to level 1 has a
floor to floor height of 18, and all the other levels above have a floor to floor height of
13. The 9-story structure was modeled in SAP, assigning the appropriate member sizes
according to the original benchmark design.
Similar to the 3-story structure, a superimposed dead load of 20 psf was applied.
SAP was allowed to calculate the self weight of the structure, including the weight of the
concrete on metal deck used as the floor system. The live load was assumed to be 100
38


pounds per square foot (psf) for each floor and the roof. The SAP model provided the
weight of the structure, which was used in determining the seismic base shear, Veq
(Appendix E). From the height of the structure and the geographical location the wind
load was calculated for both the east-west and north-south directions, Vwind-ew and Vwind-
ns respectively (Appendix D). Comparing the wind base shears to the seismic base shear,
it was found that wind controlled in both directions, as expected. Considering the
different R-factor for each type of structure to be used; MRF, CBF, and diagrid, wind still
controlled.
Wind loading was then applied to the structure in SAP and the model was run,
allowing SAP to select appropriate member sizes based on the parameters set in the
previously discussed methods and procedures section of this paper (Appendix E). From
the completed analysis in the SAP model, the MRF structure was then created in Revit to
provide the schedules and quantities of the steel framing. SAP also provided the
unfactored dead, live, and wind loads at the base of each column, which were used to
design the spread footings in Enercalc (Appendix F).
Using the completed SAP model for the MRF structure, the CBF structure was
modeled. All moment frames were replaced with diagonal concentric braced frames.
The braces were designed with square HSS sections and all of the connections were
pinned instead of fixed, as is typical of this type of frame. Following that the diagrid
structure was modeled. The only alterations made to the model were replacing the
exterior columns with diagonal members and adjusting the exterior beams to
39


accommodate the varying lengths. All of the loads, building size and height, and other
design parameters remained untouched from the original MRF model.
With both the CBF and diagrid structures completed in SAP, the models were run
and checked for consistency with the MRF structure. The foundation loads were
obtained for design in Enercalc and the models were recreated in Revit (Figures 4.4
through 4.6) to provide the schedule of quantities. Tables 4.4 and 4.5 display the
calculated results for the structure and substructure respectively.
Figure 4.4. 9-Story MRF
40


Figure 4.5. 9-Story CBF
41


Figure 4.6. 9-Story Diagrid
As was true with the 3-story structure, the CBF had the most members. However,
with the 9-story structure it had the lightest structural weight (Table 4.4). The MRF and
diagrid had the same number of members, 144 fewer than the CBF, but the diagrid
structure weighed 298 tons more than the MRF. In this case, the MRF only produced
1% more CChe than the CBF, and the diagrid produced 35% more CChe than the CBF
and 34% more than the MRF.
42


Table 4.4. 9-Story Steel Structure Results
# of Members Weight (tons) CChe (tons)
MRF 1170 843 616
CBF 1314 839 612
Diagrid 1170 1129 824
The substructure for the 9-story diagrid structure is similar to the 3-story in that it
has the fewest number of footings, and the least amount of concrete and reinforcing, thus
producing the least amount of CChe. A reverse has also happened though, the CBF
produced the most CChe for the 9 story structure at 20% more than the diagrid and 3%
more than the MRF. The MRF in turn produced 17% more than the diagrid.
Table 4.5. 9-Story Foundation Results
# of Footings Weight of #of Weight of CChe
Footings Reinforcing Reinforcement (tons)
(tons) Bars (tons)
MRF 36 1003 392 7 1008
CBF 36 1032 560 8 1039
Diagrid 28 855 VI , 5 , 858
Table 4.6 shows the CChe for the structure, the components of the substructure,
and the overall (Table 4.6). Although the diagrid produced much higher CChe for the
structural steel members, it was able to produce a smaller overall substructure system
causing it to produce a much lower total amount of CChe. However, this is still an
increase of 3% compared to that of the overall CChe produced for the MRF and 2% more
than the CBF. For the 9-story the CBF produced the lowest amount of CChe for the
43


structure, but the highest for the substructure CChe for an overall CChe at 2% more than
the MRF.
Table 4.6. 9-Story CO2 Equivalents (tons)
Steel Concrete Reinforcement Excavation Total
Framing Foundation
MRF 616 1003 5 10 1634
CBF 612 1039 6 10 1661
Diagrid 824 855 4 9 1691
4.1.3 20-Story
The benchmark 20-story structure consists of six 20 bays in the east/west, and
five 20 bays the north/south direction. All bays on all four exterior sides have a moment
resisting frame to provide lateral support. All columns are fixed at the base and are
W14s. There are only four interior column lines instead of each bay (grid intersection)
containing a column line as was the case in the 3 and 9-story structures. The exterior
beams in the moment frames are W21s on the 20th level (roof), W24s on level 19,
W27s on levels 17 and 18, W30s on all remaining levels. The interior beams consist of
W24s as the primary beams, and W18s and W14s as the secondary beams. Ground to
level 1 has a floor to floor height of 18, and all the other levels above have a floor to
floor height of 13. The 20-story structure was modeled in SAP, assigning the
appropriate member sizes according to the original benchmark design.
Similar to the 3 and 9-story structures, a superimposed dead load of 20 psf was
applied. SAP was allowed to calculate the self weight of the structure, including the
weight of the concrete on metal deck used as the floor system. The live load was
44


assumed to be 100 pounds per square foot (psf) for each floor and the roof. The SAP
model provided the weight of the structure, which was used in determining the seismic
base shear, Veq (Appendix G). From the height of the structure and the geographical
location the wind load was calculated for both the east-west and north-south directions,
Vwind-ew and Vwind-ns respectively (Appendix G). Comparing the wind base shears to the
seismic base shear, it was found that wind controlled in both directions, as expected.
Considering the different A-factor for each type of structure to be used; MRF, CBF, and
diagrid, wind still controlled.
Wind loading was then applied to the structure in SAP and the model was run,
allowing SAP to select appropriate member sizes based on the parameters set in the
previously discussed methods and procedures section of this paper (Appendix H). From
the completed analysis in the SAP model, the MRF structure was then modeled in Revit
to provide the schedules and quantities of the steel framing. SAP also provided the
unfactored dead, live, and wind loads at the base of each column, which were used to
design the spread footings in Enercalc (Appendix I).
Using the completed SAP model for the MRF structure, the CBF structure was
modeled. All moment frames were replaced with diagonal concentric braced frames.
The braces were designed with square HSS sections and all of the connections were
pinned instead of fixed, as is typical of this type of frame. Following that, the diagrid
structure was modeled. The only alterations made to the model were replacing the
exterior columns with diagonal members and adjusting the exterior beams to
45


accommodate the varying lengths. All of the loads, building size and height, and other
design parameters remained untouched from the original MRF model.
With both the CBF and diagrid structures completed in SAP, the models were run
and checked for consistency with the MRF structure. The foundation loads were
obtained for design in Enercalc and the models were recreated in Revit (Figures 4.7
through 4.9) to provide the schedule of quantities. Tables 4.7 and 4.8 display the
calculated results for the structure and substructure respectively.
Figure 4.7. 20-Story MRF
46


Figure 4.8. 20-Story CBF
47


Figure 4.9. 20-Story Diagrid
48


Consistent with the 3 and 9-story structures, the CBF had the most members, and
similar to the 9-story structure it had the lowest overall weight (Table 4.7). The MRF had
the fewest framing members, but had the most weight and CChe, with a 14% increase
from the CBF and 9% increase from the diagrid. The diagrid had 240 fewer framing
members than the CBF, but an increase of 5% in the CChe produced for the CBF, which
is a substantial decrease from the 9-story.
Table 4.7. 20-Story Steel Structure Results
# of Members Weight (tons) CChe (tons)
MRF 1428 2172 1586
CBF 1868 1902 1389
Diagrid 1628 1989 1452
With fewer number of columns and height more than twice that of the 9-story, the
footings for the 20-story structures are substantially larger. Since this is a hypothetical
situation which takes place in Denver, CO, and typically in Denver drilled concrete piers
would be used in lieu of spread footing in this case, but for consistency spread footings
were used in these calculations. Once again the diagrid had the fewest number of
footings. However, with the 20-story structure the diagrid used more concrete in the
substructure. This is because there are two diagonal columns at each footing creating
larger loads. With larger loads the footings must not only get wider, they must also get
deeper to provide the necessary shear strength. Unlike the 3-story the MRF had the
smallest amount of concrete used in the substructure. When the dead loads become large
enough it resists the overturning moments. Whereas, the CBF had some challenges
resisting the sliding of the concrete footings making them larger than the MRF. The CBF
49


footings produced 4% more CChe than the MRF, and the diagrid produced 3% and 7%
more CChe than the CBF and MRF respectively.
Table 4.8. 20-Story Foundation Results
# of Footings Weight of #of Weight of CChe
Footings Reinforcing Reinforcement (tons)
(tons) Bars (tons)
MRF 26 1981 476 86 2043
CBF 26 2072 484 79 2129
Diagrid 20 2113 510 98 2184
Table 4.9 shows the CCke for the structure, the components of the substructure,
and the overall. Although the CBF produced the least overall CChe, both the MRF and
diagrid structures only increased the total amount of CChe by 3%.
Table 4.9. 20-Story CO2 Equivalents (tons)
Steel Concrete Reinforcement Excavation Total
Framing Foundation
MRF 1586 1981 63 20 3649
CBF 1389 2072 58 21 3539
Diagrid 1452 2113 71 21 3657
4.1.4 Initial Trends
Based on the results presented in section 4.1.1 through 4.1.2, there are some initial
trends developing, even though it is not possible to accurately predict trends with only
three case studies. The carbon emissions produced by the structure increases more for the
MRF as the structure gets taller, as shown in figure 4.10 below. The CBF acts similarly
to the MRF, but at a slower rate, whereas the diagrid is almost linear and has a lower
slope than both the MRF and CBF. Looking at the CCLe on a per floor basis, CCLe for
50


entire structure divided by the number of stories, both the MRF and CBF reduce CChe
from the 3-story to the 9-story structure, and then increase from the 9-story to 20-story,
less rapidly for the CBF than the MRF, Figure 4.11. Alternatively, the diagrid increases
in the amount of CChe per floor from the 3-story to the 9-story, and then decreases
dramatically from the 9-story to the 20-story.
Figure 4.10. Structure CChe
51


Structure C02e per Floor
^MRF
Figure 4.11. Structure CChe per Floor
For the substructure of the MRF, CBF, and diagrid, the CChe increases similarly,
as shown in Figure 4.12. However, looking at the CCke on a per floor basis all three
structure types decrease rapidly from 3-stories to 9-stories, Figure 4.13. The MRF and
CBF continue to decrease in CCke on a per floor basis from the 9-story to the 20-story,
but the diagrid increases.
52


Substructure C02e
MRF
CBF
Diagrid
Figure 4.12. Substructure CChe
Substructure C02e per Floor
MRF
CBF
Diagrid
Figure 4.13. Substructure C02e per Floor
53


The overall CChe produced for each structure type resembles that of the
substructure, similar to the overall structure on a per floor basis. This is suggesting that
although the diagrid structure begins to save in steel framing material over the MRF and
CBF as the building gets taller, the substructure increases and counteracts these effects
producing more overall CChe. Refer to Figures 4.14 and 4.15 for the overall CChe and
overall CChe per floor.
Overall C02e
MRF
CBF
'Diagrid
Figure 4.14. Overall COie
54


Overall C02e per Floor
MRF
CBF
*Diagrid
Figure 4.15. Overall C02e per Floor
4.2 9-Story Seismic Design
For investigative purposes, the MRF, CBF, and diagrid 9-story structures were
analyzed for seismic loading. To maintain consistency and allow for comparison the
building site was assumed to be in downtown Denver. The default site class D was
chosen and SAP was allowed to calculate the seismic loading from USGS using Denvers
zip code (80202). As previously discussed in section 2.2.3, a diagrid structure does not
have an A-factor associated with it in ASCE 7-10. It was decided to use an /^-factor of
1.0 for the diagrid structure to remain elastic, even though one study has proven their
diagrid structure to have an A-factor of 3.64. Colorado is not a high seismic area, so
special seismic detailing is not required. Because of this it was assumed that both the
55


MRF and CBF would be ordinary frames with /^-factors of 3.5 and 3.25 respectively.
Changing the lateral force from wind to seismic was the only parameters changed from
the original MRF, CBF, and diagrid SAP models presented in section 4.1.2.
The original models and the seismic models had the same number of framing
members, because the layouts did not change. Due to the secondary beams becoming
W18x50s, because a W18x35 is not seismically compact, the overall weight of the
structure increased, which is visible when comparing Table 4.4 to Table 4.10 (below).
The MRF increased by 39%, the CBF by 44%, and the diagrid by 25% from the original
wind loading design.
Table 4.10. 9-Story Steel Structure Seismic Results
# of Members Weight (tons) CChe
MRF 1170 1171 855
CBF 1314 1210 883
Diagrid 1170 1415 1033
Unlike the wind loaded structure the MRF had the lightest structural weight. The
CBF was a 3% increase in CCke compared to the MRF, whereas the diagrid was a 21%
increase. For the wind loaded structure the MRF only had a 1% increase of CCke
compared to the CBF, but the diagrid had a 35% increase in CCke produced. Although
the diagrid produced more CCke than the MRF and the CBF for the seismic design, the
overall increase in CCke was less than that of the 9-story wind loaded diagrid structure.
As was true with the 3-story structure, the CBF had the most members.
56


Table 4.11. 9-Story Seismic Foundation Results
# of Footings Weight of Footings (tons) #of Reinforcing Bars Weight of Reinforcement (tons) CChe
MRF 36 1310 260 4 1313
CBF 36 942 520 7 947
Diagrid 28 [ 2141 364 1 14 1 2151
Opposite to that of the wind loaded 9-story structure, the diagrid produced the
most C02e for the substructure, and the CBF produced the least. Because of the
overturning moment in the MRF, the footings produced 39% more C02e than that of the
CBF. The diagrid foundations produced more than twice that of the CBF because of the
f?-factor being 1 in lieu of the 3.25 for the ordinary CBF. This was caused by the increase
of shears at the column bases, thus creating larger footings to counteract the sliding
forces.
Table 4.12 shows the CChe for the structure, the components of the substructure,
and the overall. Due to the difference in R-factor, compared to the MRF and the CBF the
diagrid produced much higher CChe for the entire structure at 64% more than the CBF,
and 38% more than the MRF. This is a substantial increase, because the wind loaded
diagrid structure produced close to the same amount of CChe as the MRF, which
produced the lowest.
57


Table 4.12. 9-Story Seismic Structure CO2 Equivalents
Steel Framing Concrete Foundation Reinforcement Excavation Total
MRF 855 1310 3 4 2172
CBF 883 942 5 3 1834
Diagrid 1033 | 1952 9 5 3000
4.3 Interior Space, Daylighting, and Thermal Bridging
4.3.1 Interior Space
Interior usable space is important since sale and lease of space is based on square
footage. As previously stated, the available interior space is dependent upon the amount
of space used by the columns of the structure, and the amount of space used by the
finishes were ignored as they would likely be the same no matter what framing method
was used. To determine interior space, the amount of spray applied for fire proofing was
considered since its thickness is dependent upon the size of the framing member.
The 3-story MRF and diagrid structures have similar usable interior space, but the
CBF provides approximately 360 ft2 more of usable space. This is not a substantial
difference and likely not large enough to be a selling point for the client. The 9-story and
20-story structures had even less of a difference in interior usable space. Without being
able to reduce the number of columns within the diagrid structure the interior space
remained similar across all framing types.
58


4.3.2 Daylighting
Allowing daylight into a building can play an important role in the reduction of
interior lighting and human well being. Daylighting space for the building was
considered as the floor to ceiling height minus any exterior columns or braces blocking a
portion of the window. For the 3-story structure the MRF provides the most daylighting
space with 512 ft2 more than the CBF and 740 ft2 more than the diagrid. Both the CBF
and diagrid are still within 95% of the daylighting space available for the MRF, likely not
enough to propose to a client. However, there is a substantial difference for the available
daylighting space available on the 9-story structure. The diagrid framing provided the
most available daylighting space with the MRF providing 7,808 ft2 (15%) less, and the
CBF providing 17,621 ft2 (33%) less than the diagrid, and 9,813 ft2 less than the MRF.
For the 20-story structure the spread of daylighting space narrowed with the MRF as
having the most available, the diagrid providing 3,296 ft2 (4%) less than the MRF, and
the CBF providing 7,665 ft2 (9%) less than the MFR. If the diagrid was able to have
fewer column lines for the 20-story structure similar to that of the 9-story structure, the
available daylighting space would likely be more spread out, similar to that of the 9-story.
4.3.3 Thermal Bridging
Thermal bridging is similar to that of the daylighting space in that the amount of
area taken up by the columns and braces in exterior walls is important for sustainability.
The less area steel framing members take up of the exterior the better, because there is
less area that could effect the insulation properties of the building. As mentioned with the
daylighting, the 3-story structure does not have enough difference in the areas to make it
59


notable. The 9-story MRF actually had the least amount of thermal bridging with 1,080
ft2 more than the diagrid, which is likely due to the larger member sizes, albeit fewer
members help increase the available daylighting area. The CBF had the most amount of
thermal bridging with 7,320 ft2 more than the MRF. The 20-story structure produced
similar results to that of the 9-story structure, with the MRF producing the least amount
of thermal bridging, the diagrid with 2,176 ft2 more than the MRF, and the CBF with
7,665 ft2 more than that of the MRF.
60


5. Discussion/Conclusion
5.1 Findings
In terms of CChe the diagrid is a clear choice for the 3-story building, as it
produced 22% less overall CChe than the CBF, which produced less than the MRF. As
mentioned in the results the different framing methods did not produce a significant
difference in daylighting, thermal bridging, and interior space for the 3-story structure,
likely due to the small size of the structure. This makes CCke the deciding factor when
determining the most sustainable 3-story structure.
For the 9-story structure the MRF produced the least amount of overall CCke.
However, the diagrid only produced 4% more, which may not be a enough of a difference
for the MRF to have an advantage when considering sustainability of the structure. The
diagrid though had 15% more exterior wall space available for the use of daylighting than
the MRF, whereas the MRF had 25% more thermal bridging, which could be enough
potential difference to offset the 4% difference of the diagrid. Although it is debatable as
to whether the MRF or the diagrid is more sustainable for the 9-story structure, it is clear
that the CBF is not the most sustainable option, as it performed the worst in all
categories.
Evaluating the 20-story structure, it is not clear which framing method is the most
sustainable. The CBF produced the least overall CCke, but both the MRF and diagrid
structures were within 3% of the amount of CCke produced by CBF. The MRF had the
most space available for daylighting and the most area of thermal bridging. However, the
diagrid was within 4% of the MRF values and the CBF was within 9% of the MRF
61


values. Unless one of these sustainability aspects is the only consideration in deciding
between these framing methods, the decision may come down to overall cost of the
structure.
Studying the foundation design of the diagrid also proved to be informative as this
is an area that has not received much attention from other researchers. By including the
substructure, as it is a necessary part of the entire structure, it became evident that the
substructure had a major impact on the overall CChe of the entire structure. The
foundations produced more CChe than the steel for the MRF, CBF, and diagrid structures
for all three building heights, proving that this cannot be ignored when considering the
sustainability of a structure. Only in the case of the 9-story diagrid was the amount of
C02e produced by the structure and substructure similar.
Using an R-factor of 1.0 for the diagrid, making the structure elastic, has proven
to be poor choice when considering the sustainability of the structure. The diagrid
produced 64% more C02e than the CBF and 38% more than the MRF. Because the MRF
produced 18% more C02e than the CBF, due to the foundation size, it is obvious that the
CBF is the appropriate choice of structure for the 9-story seismic designed structure.
5.2 Other Research
In comparing these results with the information found in section 2.2.4 of the
structural literature review there are some discrepancies. The research done by Panchal
and Patel, it was discovered that the 20-story diagrid used 58% less steel than the MRF
(2014), whereas the design for this research demonstrated a 9% savings as compared to
the MRF. Both the 20-story diagrid studied in this thesis, and the one analyzed by
62


Panchal and Patel, though, saved material compared to that of a MRF. However, their
study does not consider a CBF as an alternative solution. Their study also had a different
interior framing method than the one used within this thesis. The SAC structures were
laid out on a standard cartesian coordinate system with the beams framing in one
direction and the girders running perpendicular to the beams. Panchal and Patel have
their framing on a radial grid with the girders framing from the center to the exterior
corners. The differences in the interior framing may play a role in the higher success of
their diagrid system compared to the MRF.
Moon et al. also use this radial method of framing when studying the optimal
angles for 20, 42, and 60-story diagrid structures (2007). For smaller structures, such as
the case with the SAC structures, it is common practice to place the framing in bays with
the beams in one direction and the girders in another. The radial system evenly
distributes the weight of the structure around the entire exterior, which may also aid the
foundation design of the 20-story diagrid and potentially help in reducing the number of
interior columns.
The 112-story Lotte Super Tower in Korea, also used a radial framing method for
the diagrid structure and found that the structure would save 27% of the materials if using
the diagrid framing (Besjak et al., 2009). However, out of the range of research between
Besjak et al., Moon et al., and Panchal and Patel, none considered shorter structures.
While the material savings is important on taller structures because taller structures need
more material, so the materials savings is a greater total quantity, the majority of
63


buildings in the US and around the world are shorter than 20-stories. Although the
Denver area is growing and expanding, most of the structures are not 20-stories tall.
Another area that is lacking in research, is the consideration of foundations when
considering material savings. None of the above mentioned researchers included the
effects of the diagrid structure on the substructure. Because the amount of CCke
produced due to the production of concrete is much higher than that of steel this is
something that needs to be considered when investigating material savings. Other areas
within sustainability that are lacking on research include, but are not limited to, the
amount of space the different framing methods take up on the exterior walls, to consider
either daylighting or thermal bridging, and the interior space. With the radial framing
system used by the above mentioned research, it may be possible to reduce the number of
interior columns and expand the amount of interior usable space.
It is known that the lateral design of the structure impacts the amount of material
used within the structure. Given that previous research focused on investigating tall
structures as well as maintaining elastic design for all of the structural framing types, in
order to compare apples to apples, wind has typically governed the lateral design of the
research done on diagrids. In the case of Kim and Lee they assumed an /^-factor of 3 for
the diagrid in the seismic design, no insight was provided as to why this value was
chosen (2012). Baker et al., on the other hand, were able to prove that for their specific
structure the /^-factor was 3.64, but this still leaves limited information on the actual R-
factor of a diagrid compared to MRF and CBF (2010). However, given that the /^-factor
is to allow for ductility in the structure during a seismic event by being able to deform
64


without collapse, it was found that a diagrid structure should remain elastic (R less than
or equal to 1.0) and not allow deformation because of the gravity and lateral systems
being one in the same.
5.3 Future Research
Energy Analysis: an in-depth energy analysis to determine the amount of
operating energy saved by allowing more daylight versus the energy saved
from more thermal bridging may be of value to the field given these results.
Low to Mid-rise research: in depth research of low to mid-rise structures with
different framing methods should be done to predict trends on which framing
method would be best for sustainability. This could aid in determining a
structure type for a building without doing multiple analyses. However,
shorter structures tend to be irregular shapes and sizes, which may not
produce trends that are easily discernible.
Coordinate systems: the performance of low to mid-rise structures using a
interior gird placed on a cartesian coordinate compared to that of a radial
coordinate while investigating the MRF, CBF, and diagrid lateral systems is a
potential future study specifically given the large difference in result
comparison to current research.
Timber Construction: should be developed to analyze a diagrid and other
framing methods for timber construction, as timber is more sustainable in
terms of CChe produced than any other traditional material. If large timber
structures were studied and could reduce the amount of CCEe produced in
65


addition to making a substantial impact on the sustainability aspect of
structural design. Comparing CCke produced by timber, steel, and concrete
would also have a large impact on the future of sustainability.
R-Factor: analyzing diagrid structures for their R-factor to provide in future
building codes as an option for framing methods would be a worthy
investigation. If an R-factor for diagrids was discovered to be similar to that
of an ordinary MRF or CBF, then a diagrid may prove to be a viable option in
a high seismic area.
5.4 Conclusion
The role of the structural engineer historically in relation to sustainability has
been a much more passive role, relying on other disciplines such as the architect to drive
innovation. The research done here demonstrates how important it is for structural
engineers to take an active role employing various techniques to find a more sustainable
path for the field, and pushing it to become the new standard expectation.
Investigating the sustainability of different framing types is something that should
be employed when starting a new project. This may impact a clients decision as to
which framing makes the most sense for the project. By investigating the sustainability
of a structure at the start of new projects, the structural engineer can begin to take a more
active role in sustainability in lieu of the passive approach currently common. Usually
the structural engineer relies on the architect and other disciplines to provide the desired
sustainable approaches to the project. Making the structural engineer more aware of the
66


impacts of their design decisions may also lead to further investigation of framing
choices, and perhaps innovative new framing techniques.
This investigation also highlights why a wholistic approach when considering the
sustainability of a structure, and therefore more than just the portion of the structure
above ground, need to be considered. Beyond analyzing the whole structure as good
practice, this thesis showed that it is necessary as the substructure was a major
component in the amount of CChe produced for the structures, which many other
researchers were not comprehensive in including the substructure, only focusing on the
above ground. In all cases the foundation significantly changed the total amount of CChe
produced compared to just the CChe produced for the steel framing. As concrete is one
of the highest producers of CChe emissions, especially where structural engineering is
concerned, this is not an area that can be ignored.
While much of this thesis has focused on the role of the structural engineer, there
is significant rational for why it should and does matter to the clients. Reducing the
amount of material used on the project is beneficial for the client, as this will likely
reduce the overall cost of the project. If possible increasing the interior space will make
it more adaptable and desirable to rent or sell. Reducing the sizes of the exterior framing
members and increasing the thermal bridging will aid in the reduction of heating and
cooling loads necessary for the building. The reduction in the sizes of the exterior
framing members will also aid in the area available to bring in the most daylighting,
which in turn would also aid in the necessary cooling loads and electrical requirements as
less lighting would be needed on a constant basis.
67


Finally, analyzing a structure to consider different aspects of sustainability can
help the structural engineer participate better as part of an integrated design team, or in a
Charette, to provided the most sustainable product. This is also something a structural
engineer can put into practice immediately, instead of waiting for years to get something
implemented into the codes and standards. In lieu of the traditional approach where the
structural engineers starts with a couple design possibilities and allows the client to
decide based on cost of the system- it would be a better to consider sustainability as an
approach to the initial design and determine the design possibilities based on that for
presentation. With an evaluation of the sustainability of the structure, albeit more initial
work for the structural engineer, the structural engineer can present design possibilities
that affect the economic, social, and environmental aspects and achieve the overall triple
bottom line, thus providing the best product for the client, the occupants, and the
environment.
In summation, there is not one best design or one best approach to sustainability
as related to the structural engineer, but a spectrum of opportunity to work toward making
the entire field more sustainable all while not costing the client more or sacrificing
structural integrity, but reducing environmental impact substantially.
68


REFERENCES
ASCE. (2010a). Code of Ethics. Retrieved from ASCE website: http://
www.asce.org/Leadership-and-Management/Ethics/Code-of-Ethics/
ASCE (2010b). Minimum Design Loads for Buildings and Other Structures. Reston, VA:
American Society of Civil Engineers.
Athena Sustainable Materials Institute (2014, March, 24) Retrieved from Athena website:
http://www.athenasmi.org/resources/about-lca/whats-the-difference/
Attmann, O. (2010). Green architecture: Advanced technologies and materials. United
States: McGraw-Hill.
Baker, W., Besjak, C., Sarkisian, M., Lee, R, & Doo, C. S. (2010). Proposed
methodology to determine seismic performance factors for steel diagrid framed
systems. Council of Tall Buildings and Urban Habitat.
Besjak, C., Kim, B., and Biswas, P. (2009) 555m Tall Lotte Super Tower, Seoul, Korea.
Structures Congress 2009: pp. 1-10.
Boake, T. M. (2013). Diagrids, the New Stablity System: Combining Architecture with
Engineering. In Architectural Engineering Institute Conference.
Boake, T. (2014). Diagrid Structures: Systems, Connections, Details. Germany: Walter de
Gruyter.
Brundtland, G. H. (1987). Our common future, Oxford University Press, Oxford, U.K.
Chau, K. W. (2007). Incorporation of sustainability concepts into a civil
engineering curriculum. Journal of Professional Issues in Engineering Education
and Practice, 133(3), 188-191.
Chau, K. W., Wong, S. K., Yau, Y., & Yeung, A. K. C. (2007). Determining optimal
building height. Urban Studies, 44(3), 591-607.
Chini, A. R., & Bruening, S. F. (2003). Deconstruction and material reuse in the United
States. The Future of Sustainable Construction, May, 1-22.
Chwieduk, D. (2003). Towards sustainable-energy buildings. Applied energy, 76(1), 211-
217.
Cicerone, R., Barron, E., Dickinson, R., Fung, I., Hansen, J., Karl, T., Lindzen, R.,
McWilliams, J., Rowland, F., Sarachik, E. & Wallace, J. (2001). Climate Change
69


Science: An Analysis of Some Key Questions. Washington, D.C.: National
Academy Press.
Cole, R. J., & Kernan, P. C. (1996). Life-cycle energy use in office buildings. Building
and Environment, 31(4), 307-317.
Council, B. S. S. (2009). NEHRP recommended seismic provisions for new buildings and
other structures (FEMAP-750). Washington, DC: Federal Emergency
Management Agency.
Cywinski, Z. (2001). Current philosophy of sustainability in civil engineering. Journal of
Professional Issues in Engineering Education and Practice, 127(1), 12-16.
Enercalc (Version 6) [Computer software]. Corona del Mar, CA: Enercalc Inc.
EPA. (2014, May 6). Retrieved from Climate Change website: http://www.epa.gov/
climatechange/
Foster+Partners (2002), City Hall [photo], Retrieved March 18, 2016 from http://
www. fosterandpartners. com/proj ects/city-hall/
Griffith, B., Long, N., Torcellini, P, Judkoff, R., Crawley, D. & Ryan, J. U.S. Department
of Energy. (2007, December). Assessment of the Technical Potential for
Achieving Net Zero-Energy Buildings in the Commercial Sector, (pp. 1-114).
Golden, CO: National Renewable Energy Laboratory.
Hays, B. & Cocke, D. (2009, April ). Missed Opportunities in Structural Sustainability
Structure Magazine, 27-28.
IABSE. (2013). Structural engineering. Retrieved from IABSE website: http://
www. iab se.org/IAB SE/ Structural_Engineering/I AB SE/ structural/
about_structural.aspx?hkey=ee9b28cf-6ala-4fdc-alb5-aed61219be77
IPCC, Intergovernmental Panel on Climate Change. (2013). Climate Change 2013: The
Physical Science Basis. New York, NY: Cambridge University Press.
Jani, K. & Patel, P. (2013). Analysis and Design of Diagrid Structural System for High
Rise Steel Buildings. Chemical, Civil and Mechanical Engineering Tracks of 3rd
Nirma University International Conference on Engineering.
Jaswani, N. & Dhyani, D. (2015). Parametric Study on Diagrid Structure System for
High-Rise Building. International Journal of Advanced Engineering and Research
Development, 2(15), 369-376.
70


Kelly, A. (1984). Maintenance planning and control. Great Britan: Butterworth & Co.
Kestner, D. M., Goupil, J., & Lorenz, E. (Eds.). (2010). Sustainability guidelines for the
structural engineer. ASCE Publications.
Kibert, C. J. (2008). Sustainable construction: Green building design and delivery.
Hoboken, New Jersey: John Wiley & Sons Inc.
Kim, J., & Lee, Y. H. (2012). Seismic performance evaluation of diagrid system
buildings. The Structural Design of Tall and Special Buildings, 21(10),
736-749.
Korsavi, S., & Maqhareh, M. R. (2014). The Evolutionary Process of Diagrid
Structure Towards Architectural, Structural and Sustainability Concepts:
Reviewing Case Studies. Journal of Architectural Engineering Technology,
2014.
Leonard, J. (2007). Investigation of shear lag effect in high-rise buildings with
diagrid system (Doctoral thesis, Massachusetts Institute of
Technology).
McEntee, P. (2009, February). Steel moment frames history and evolution. Structural
Engineer. Retrieved from https://www.strongtie.com/resources/technical-topics/
published-articles
McFarland, P. (2015). Officials Reach Historic Climate Deal. Engineering News Record.
Retrieved from http://www.enr.com/articles/38236-officials-still-face-long-road-
to-paris-climate-pact
McConnell, J. R., & Fahnestock, L. A. (2014). Innovations in Steel Design: Research
Needs for Global Sustainability. Journal of Structural Engineering.
McDonough, W., & Braungart, M. (1992). The Hannover Principles. William
McDonough Architects.
Metha, P. K., & Burrows, R. W. (2001). Building durable structures in the 21st century.
Concrete International, March, 57-63.
Moon, K. S., Connor, J. J., & Fernandez, J. E. (2007). Diagrid structural systems for tall
buildings: characteristics and methodology for preliminary design. The Structural
Design of Tall and Special Buildings, 16(2), 205-230.
71


Moon, K. S. (2008). Sustainable Structural Engineering Strategies for Tall Buildings.
Structural Design of Tall and Special Buildings, 17, 895-914.
Moon, K. S. (2009). Design and Construction of Steel Diagrid Structures. NSCC 2009.
Moon, K. S. (2011). Sustainable Structural Systems and Configurations for Tall
Buildings. In Reston, VA: ASCE copyright Proceedings of the 2011 Architectural
Engineering National Conference, March 30-April 2, 2011, Oakland, CA| d
20110000. American Society of Civil Engineers.
Moon, K. S. (2012). Optimal Configuration of Structural Systems for Tall Buildings.
20th Analysis and Computation Specialty Conference, 300-309.
The Natural Step (2015, December). Principles of Sustainability. Retrieved from The
Natural Step website: http://www.thenaturalstep.org
Ohtori, Y., Christenson, R. E., Spencer, B.F., & Dyke, S.J. (2004). Benchmark Control
Problems for Seismically Excited Nonlinear Buildings. Journal of Engineering
Mechanics, 133(4), 366-385.
Oreskes, N. (2004, December 3). The Scientific Consensus on Climate Change. Science,
306, 1686.
Panchal, N. B., & Patel, V. R. (2014). Diagrid structural system: Strategies to reduce
lateral forces on high-rise buildings. International Journal of Research in
Engineering and Technology, 3(03), 374-378.
Peterson, I. (2010). [Photo], Retrieved March 19, 2016 from http://
mathtourist.blogspot.gr/2010/08/diamond-lattice-exoskeleton.html
Ramesh, T., Prakash, R., & Shukla, K. K. (2010). Life cycle energy analysis of buildings:
An overview. Energy and Buildings, 42(10), 1592-1600.
Riemann, D., & Black, J. (2011, June). Diagrid on display. Structure. Retrieved from
http ://www. structuremag. org/?p= 135
Rens, K. L., Liu, R., & Foltz, S. D. (2013). Sustainable approach for optimal steel sheet
pile structure assessment, maintenance, and rehabilitation. Journal of
Performance of Constructed Facilities, 27(2), 181-190.
Revit (Version 15) [Computer software], Autodesk.
72


Richard, D. (2008, June). Steel moment frames 101: What to consider when creating
wide-open spaces. Structural Engineer. Retrieved from http://cenews.com/article/
5 840/steel_moment_frames_l 01___whattocon si derwhencreati ng_wi de_
openspaces
SAC. (2015, July 31). Retrieved from SAC Steel Project website: http://
www. sacsteel. org/index. html
SAP2000 (Version 17) [Computer software]. Walnut Creek, CA: CSI America.
Sarkisian, M., Long, E., Shook, D., Doo, C. (2012). Optimization Tools for the Design of
Structures. 20th Analysis & Computational Specialty Conference, 221-230.
Simm, J., Wallis, M., Hedges, T., Emmanuel, B., & Brampton, A. (2003). Developments
in the use of recycled and secondary materials in costal structures. Costal
Structures, 147(23), 270-282.
Srinivasan, R., Braham, W., Campbell, D., & Curcija, C. (2012). Re(de)fining net zero
energy: Renewable emergy balance in environmental building design. Building
and Environment, 47, 300-315.
Taghizadeh, K., & Seyedinnoor, S. (2013). Super-Tall Buildings Forms Based on
Structural Concepts and Energy Conservation Principles. Architecture Research,
3(2), 13-19.
Thiel, C., Campion, N., Landis, A., Jones, A., Schaefer, L., & Bilec, M. (2013) A
Materials Life Cycle Assessment of a Net-Zero Energy Building. Energies 6,
1125-1141.
Thormark, C. (2006). The effect of material choice on the total energy need and recycling
potential of a building. Building and Environment, 41, 1019-1026.
Uang, C. M. (1991). Establishing R (or R w) and C d factors for building seismic
provisions. Journal of Structural Engineering, 117(1), 19-28.
U.N. General Assembly, 21st Session. Report of the Committee on the Adoption of the
Paris Agreement. Draft Desicion. Paris, 2015.
USGBC, (2009). LEED 2009 for new construction and major renovations. Washington,
D.C.: United States Green Building Council.
UST, (2016). Leaking UST Footprint Calculator. Retrieved from
http://www.ustcalc.org/CarbonCalc.aspx
73


Vesilind, P. A. (1995). Evolution of the American Society of Civil Engineers Code of
Ethics. Journal of Professional Issues in Engineering Education and Practice,
121(1), 4-10.
Vesilind, P. A., & Gunn, A. S. (1998). Sustainable development and the ASCE code of
ethics. Journal of Professional Issues in Engineering Education and Practice,
124(3), 72-74.
Weisenberger, G. (2011). Sustainability and the Structural Engineer. Practice Periodical
on Structural Design and Construction, 16(4), 146-150.
WHO, (2014). Global Health Observatory (GHO): Urban population growth World
Health Organization (WHO). 2014. Retrieved January 6, 2015 from http://
www.who.int/gho/urban_health/situation_trends/urban_population_growth_text /
en/
74


APPENDIX A
75


3-Story Seismic
Site Class D Stiff Soil
le = 1.0 Importance Factor for Risk Category II
W = 4333 k Effective Seismic Weight
Response Modification Factor
OMRF OCBF Diagrid
R = 3.5 3.25 1.0
Seismic Response Coefficient, Cs
Cs = Sds/(R/IJ = 0.195
Cs not to exceed:
T = Cthnx = (0.2)*(39)a75 = 3.12 sec < TL=4 sec
Cs < SD1/[T(R/Ie)] = 0.014
Cs not less than:
Cs > 0.044SDSle > 0.01 =0.0086 <0.014
VEQ= 61 k
76


3-Story Wind
Exposure C
Risk Category II
Enclosed Building
Internal Pressure
(GCpi)=0.18
Directionality Factor
Kd=0.85
Velocity Pressure Exposure Coefficient
Kh=0.98
Topographic Factor
G=0.85
Cp=0.8 Windward
Cp=-0.5 Leeward
Ignoring Altitude Adjustment
qz=0.00256khkztkdV2=28.2 psf
p=qGCp-q(GCpi)=24.2 psf
East/West Direction
Vwind E/W = 112 k
North/South Direction
Vwind N/S = 168 k
However, wind pressure changes based on building height for O'
to 15' height kh=0.85, therefore p=21 psf and Vwind E/W=98k. Actual
base shear between 98k and 112k.
VWind>VEQforall cases
therefore wind controls
77


APPENDIX B
78


MRF 3-story.sdb
3-Story MRF
SAP2000 V17.3.0
27 March 2016
3-Story MRF
Table: Joint Reactions
Table: Joint Reactions
Joint OutputCase CaseType F1 Kip F2 Kip F3 Kip M1 Kip-ft M2 Kip-ft M3 Kip-ft
604 DEAD LinStatic 13.877 -5.418 118.830 36.5589 80.0503 9.934 E-05
604 LIVE LinStatic 8.466 -4.206 67.232 30.9158 49.1536 5.133E-05
604 WIND LinStatic -87.295 123.927 -61.493 -32.6013 -9.3635 3.869 E-05
604 DSTL1 Combination 19.428 -7.585 166.361 51.1825 112.0704 1.391 E-04
604 DSTL2 Combination 30.198 -13.231 250.167 93.3361 174.7061 2.013E-04
604 DSTL3 Combination -70.643 117.426 81.103 11.2694 86.6968 1.579 E-04
604 DSTL4 Combination 103.947 -130.428 204.088 76.4720 105.4239 8.053 E-05
604 DSTL5 Combination -26.995 55.462 111.849 27.5701 91.3786 1.386 E-04
604 DSTL6 Combination 60.300 -68.465 173.342 60.1714 100.7421 9.987 E-05
604 DSTL7 Combination -74.806 119.051 45.454 0.3017 62.6817 1.281 E-04
604 DSTL8 Combination 99.784 -128.803 168.440 65.5044 81.4088 5.072 E-05
604 DSTL9 Combination 13.877 -5.418 118.830 36.5589 80.0503 9.934 E-05
604 DSTL10 Combination 22.343 -9.624 186.062 67.4748 129.2039 1.507E-04
605 DEAD LinStatic 1.604 -0.196 231.196 0.8368 6.4893 2.031 E-05
605 LIVE LinStatic 0.887 -0.113 135.124 0.4807 3.5822 1.133 E-05
605 WIND LinStatic -0.473 0.137 -0.271 -1.1044 -3.3999 1.043 E-05
605 DSTL1 Combination 2.246 -0.274 323.674 1.1715 9.0851 2.843 E-05
605 DSTL2 Combination 3.345 -0.415 493.634 1.7734 13.5187 4.250 E-05
605 DSTL3 Combination 1.452 -0.098 277.164 -0.1002 4.3873 3.480 E-05
605 DSTL4 Combination 2.398 -0.372 277.706 2.1086 11.1871 1.394 E-05
605 DSTL5 Combination 1.688 -0.166 277.300 0.4520 6.0873 2.958 E-05
605 DSTL6 Combination 2.162 -0.303 277.571 1.5564 9.4872 1.916E-05
605 DSTL7 Combination 0.970 -0.039 207.805 -0.3513 2.4405 2.871 E-05
605 DSTL8 Combination 1.917 -0.313 208.347 1.8575 9.2403 7.849 E-06
605 DSTL9 Combination 1.604 -0.196 231.196 0.8368 6.4893 2.031 E-05
605 DSTL10 Combination 2.492 -0.309 366.320 1.3176 10.0715 3.164 E-05
606 DEAD LinStatic -0.284 -0.111 234.601 0.4720 -1.1542 1.657E-06
606 LIVE LinStatic -0.159 -0.065 137.073 0.2727 -0.6489 6.586 E-07
606 WIND LinStatic -0.516 0.137 -0.029 -1.1034 -3.5401 7.405 E-07
606 DSTL1 Combination -0.397 -0.156 328.441 0.6608 -1.6159 2.320 E-06
606 DSTL2 Combination -0.594 -0.237 500.837 1.0028 -2.4234 3.042E-06
606 DSTL3 Combination -0.856 3.219E-03 281.492 -0.5370 -4.9252 2.729 E-06
606 DSTL4 Combination 0.176 -0.270 281.550 1.6699 2.1551 1.248 E-06
606 DSTL5 Combination -0.598 -0.065 281.506 0.0147 -3.1551 2.359 E-06
606 DSTL6 Combination -0.082 -0.202 281.535 1.1182 0.3850 1.618E-06
606 DSTL7 Combination -0.771 0.037 211.112 -0.6786 -4.5789 2.232 E-06
606 DSTL8 Combination 0.261 -0.237 211.169 1.5283 2.5013 7.509 E-07
606 DSTL9 Combination -0.284 -0.111 234.601 0.4720 -1.1542 1.657E-06
606 DSTL10 Combination -0.442 -0.176 371.674 0.7447 -1.8032 2.316E-06
607 DEAD LinStatic 0.280 -0.111 234.612 0.4730 1.1290 7.300 E-07
607 LIVE LinStatic 0.155 -0.065 137.072 0.2735 0.6238 4.273 E-07
607 WIND LinStatic -0.513 0.136 -0.124 -1.1003 -3.5181 -1.574E-08
607 DSTL1 Combination 0.392 -0.156 328.457 0.6622 1.5806 1.022 E-06
607 DSTL2 Combination 0.583 -0.237 500.849 1.0052 2.3529 1.560 E-06
607 DSTL3 Combination -0.177 2.616E-03 281.410 -0.5327 -2.1632 8.602 E-07
607 DSTL4 Combination 0.848 -0.270 281.659 1.6679 4.8729 8.917E-07
607 DSTL5 Combination 0.079 -0.066 281.472 0.0174 -0.4042 8.681 E-07
607 DSTL6 Combination 0.592 -0.202 281.597 1.1178 3.1139 8.838 E-07
607 DSTL7 Combination -0.261 0.036 211.026 -0.6746 -2.5019 6.412E-07
607 DSTL8 Combination 0.764 -0.237 211.275 1.5260 4.5342 6.727 E-07
Q+ri ici
-,f -17
MRF 3-story.sdb
3-Story MRF
SAP2000 V17.3.0
27 March 2016
Table: Joint Reactions
Joint OutputCase CaseType F1 Kip F2 Kip F3 Kip M1 Kip-ft M2 Kip-ft M3 Kip-ft
607 DSTL9 Combination 0.280 -0.111 234.612 0.4730 1.1290 7.300E-07
607 DSTL10 Combination 0.434 -0.176 371.684 0.7465 1.7529 1.157E-06
608 DEAD LinStatic -1.642 -0.193 230.193 0.8254 -6.6755 6.361 E-07
608 LIVE LinStatic -0.906 -0.112 134.612 0.4763 -3.6817 6.592E-07
608 WIND LinStatic -0.464 0.137 0.092 -1.1034 -3.3168 -1.484E-06
608 DSTL1 Combination -2.299 -0.271 322.271 1.1556 -9.3457 8.905E-07
608 DSTL2 Combination -3.421 -0.411 491.612 1.7527 -13.9013 1.818E-06
608 DSTL3 Combination -2.435 -0.095 276.324 -0.1129 -11.3274 -7.202E-07
608 DSTL4 Combination -1.506 -0.369 276.140 2.0939 -4.6938 2.247E-06
608 DSTL5 Combination -2.203 -0.164 276.278 0.4388 -9.6690 2.154E-08
608 DSTL6 Combination -1.739 -0.300 276.186 1.5422 -6.3522 1.505E-06
608 DSTL7 Combination -1.942 -0.037 207.266 -0.3605 -9.3248 -9.111E-07
608 DSTL8 Combination -1.014 -0.311 207.082 1.8463 -2.6912 2.056E-06
608 DSTL9 Combination -1.642 -0.193 230.193 0.8254 -6.6755 6.361 E-07
608 DSTL10 Combination -2.549 -0.305 364.806 1.3018 -10.3572 1.295E-06
609 DEAD LinStatic 0.086 -0.256 231.834 1.0973 0.3714 -2.418E-05
609 LIVE LinStatic 0.046 -0.147 135.569 0.6284 0.2075 -1.360E-05
609 WIND LinStatic -0.369 0.137 -0.104 -1.1032 -2.9103 -6.514E-06
609 DSTL1 Combination 0.120 -0.359 324.567 1.5363 0.5199 -3.386E-05
609 DSTL2 Combination 0.177 -0.543 495.111 2.3222 0.7777 -5.078E-05
609 DSTL3 Combination -0.266 -0.171 278.096 0.2136 -2.4646 -3.554E-05
609 DSTL4 Combination 0.472 -0.444 278.305 2.4200 3.3559 -2.251 E-05
609 DSTL5 Combination -0.081 -0.239 278.148 0.7652 -1.0095 -3.228E-05
609 DSTL6 Combination 0.287 -0.376 278.253 1.8684 1.9008 -2.576E-05
609 DSTL7 Combination -0.291 -0.094 208.546 -0.1156 -2.5760 -2.828E-05
609 DSTL8 Combination 0.446 -0.367 208.755 2.0908 3.2445 -1.525E-05
609 DSTL9 Combination 0.086 -0.256 231.834 1.0973 0.3714 -2.418E-05
609 DSTL10 Combination 0.132 -0.403 367.403 1.7257 0.5789 -3.779E-05
610 DEAD LinStatic -13.927 -5.435 119.488 36.6432 -81.3576 -1.032E-04
610 LIVE LinStatic -8.493 -4.216 67.623 30.9604 -49.9732 -5.358E-05
610 WIND LinStatic -82.700 123.506 -23.687 -32.8225 -9.1498 -3.402E-05
610 DSTL1 Combination -19.498 -7.608 167.283 51.3004 -113.9006 -1.445E-04
610 DSTL2 Combination -30.301 -13.267 251.582 93.5084 -177.5861 -2.096E-04
610 DSTL3 Combination -99.412 116.985 119.698 11.1493 -106.7788 -1.579E-04
610 DSTL4 Combination 65.988 -130.028 167.073 76.7943 -88.4793 -8.984E-05
610 DSTL5 Combination -58.062 55.232 131.542 27.5605 -102.2040 -1.409E-04
610 DSTL6 Combination 24.638 -68.275 155.229 60.3831 -93.0542 -1.068E-04
610 DSTL7 Combination -95.234 118.615 83.852 0.1563 -82.3716 -1.269E-04
610 DSTL8 Combination 70.166 -128.397 131.226 65.8014 -64.0720 -5.887E-05
610 DSTL9 Combination -13.927 -5.435 119.488 36.6432 -81.3576 -1.032E-04
610 DSTL10 Combination -22.420 -9.650 187.111 67.6036 -131.3307 -1.568E-04
667 DEAD LinStatic 8.511 -0.257 224.634 1.0483 36.5298 9.687E-05
667 LIVE LinStatic 4.933 -0.122 128.700 0.4838 21.1695 7.191E-05
667 WIND LinStatic -0.299 1.787 -0.103 -12.9165 -2.2657 1.944E-04
667 DSTL1 Combination 11.916 -0.360 314.487 1.4676 51.1417 1.356E-04
667 DSTL2 Combination 18.107 -0.503 475.480 2.0320 77.7070 2.313E-04
667 DSTL3 Combination 9.914 1.479 269.457 -11.6586 41.5700 3.107E-04
667 DSTL4 Combination 10.513 -2.095 269.664 14.1744 46.1014 -7.820E-05
667 DSTL5 Combination 10.064 0.585 269.509 -5.2003 42.7029 2.135E-04
667 DSTL6 Combination 10.363 -1.202 269.612 7.7162 44.9686 1.902E-05
667 DSTL7 Combination 7.361 1.556 202.067 -11.9731 30.6111 2.816E-04
667 DSTL8 Combination 7.959 -2.018 202.274 13.8600 35.1425 -1.073E-04
667 DSTL9 Combination 8.511 -0.257 224.634 1.0483 36.5298 9.687E-05
667 DSTL10 Combination 13.444 -0.379 353.334 1.5321 57.6993 1.688E-04
Q+ri ici
.f -17


MRF 3-story.sdb
3-Story MRF
SAP2000 V17.3.0
27 March 2016
Table: Joint Reactions
Joint OutputCase CaseType F1 Kip F2 Kip F3 Kip M1 Kip-ft M2 Kip-ft M3 Kip-ft
668 DEAD LinStatic -0.612 4.727 E-03 463.275 -0.0805 -2.6053 1.872E-05
668 LIVE LinStatic -0.337 7.233 E-03 274.349 -0.0799 -1.4378 1.094E-05
668 WIND LinStatic -0.295 0.889 0.052 -8.2614 -2.0668 1.793E-05
668 DSTL1 Combination -0.856 6.618E-03 648.585 -0.1127 -3.6474 2.621 E-05
668 DSTL2 Combination -1.273 0.017 994.888 -0.2245 -5.4268 3.997E-05
668 DSTL3 Combination -1.029 0.894 555.982 -8.3581 -5.1931 4.039E-05
668 DSTL4 Combination -0.439 -0.883 555.877 8.1648 -1.0595 4.533E-06
668 DSTL5 Combination -0.881 0.450 555.956 -4.2273 -4.1597 3.143E-05
668 DSTL6 Combination -0.587 -0.439 555.904 4.0341 -2.0929 1.350E-05
668 DSTL7 Combination -0.845 0.893 417.000 -8.3339 -4.4115 3.478E-05
668 DSTL8 Combination -0.256 -0.884 416.895 8.1890 -0.2780 -1.082E-06
668 DSTL9 Combination -0.612 4.727 E-03 463.275 -0.0805 -2.6053 1.872E-05
668 DSTL10 Combination -0.949 0.012 737.623 -0.1605 -4.0430 2.966E-05
669 DEAD LinStatic 0.038 0.025 451.834 -0.1597 0.1696 4.186E-06
669 LIVE LinStatic 0.021 0.017 268.030 -0.1148 0.0913 2.373E-06
669 WIND LinStatic -0.261 0.800 -2.754 E-03 -7.4198 -1.8408 -5.566E-06
669 DSTL1 Combination 0.054 0.035 632.568 -0.2236 0.2375 5.860E-06
669 DSTL2 Combination 0.079 0.058 971.048 -0.3754 0.3496 8.820E-06
669 DSTL3 Combination -0.215 0.831 542.198 -7.6114 -1.6372 -5.433E-07
669 DSTL4 Combination 0.307 -0.770 542.204 7.2281 2.0443 1.059E-05
669 DSTL5 Combination -0.084 0.431 542.199 -3.9015 -0.7168 2.240E-06
669 DSTL6 Combination 0.176 -0.370 542.202 3.5182 1.1239 7.806E-06
669 DSTL7 Combination -0.226 0.823 406.648 -7.5635 -1.6881 -1.799E-06
669 DSTL8 Combination 0.295 -0.778 406.653 7.2760 1.9934 9.333E-06
669 DSTL9 Combination 0.038 0.025 451.834 -0.1597 0.1696 4.186E-06
669 DSTL10 Combination 0.059 0.043 719.864 -0.2745 0.2609 6.559E-06
670 DEAD LinStatic -0.037 0.023 452.327 -0.1501 -0.1596 2.483E-07
670 LIVE LinStatic -0.022 0.016 268.307 -0.1077 -0.0956 1.544E-07
670 WIND LinStatic -0.261 0.796 -9.060 E-03 -7.3875 -1.8418 -1.393E-06
670 DSTL1 Combination -0.051 0.033 633.258 -0.2101 -0.2235 3.476E-07
670 DSTL2 Combination -0.079 0.053 972.085 -0.3524 -0.3445 5.449E-07
670 DSTL3 Combination -0.305 0.824 542.784 -7.5676 -2.0333 -1.095E-06
670 DSTL4 Combination 0.217 -0.768 542.802 7.2074 1.6503 1.691E-06
670 DSTL5 Combination -0.175 0.426 542.788 -3.8739 -1.1124 -3.986E-07
670 DSTL6 Combination 0.087 -0.370 542.797 3.5136 0.7294 9.945E-07
670 DSTL7 Combination -0.294 0.817 407.086 -7.5226 -1.9854 -1.170E-06
670 DSTL8 Combination 0.228 -0.775 407.104 7.2524 1.6981 1.617E-06
670 DSTL9 Combination -0.037 0.023 452.327 -0.1501 -0.1596 2.483E-07
670 DSTL10 Combination -0.059 0.039 720.635 -0.2578 -0.2552 4.026E-07
671 DEAD LinStatic 0.598 3.789 E-03 453.488 -0.0834 2.5560 -2.110E-06
671 LIVE LinStatic 0.350 5.220 E-03 268.930 -0.0739 1.4979 -1.176E-06
671 WIND LinStatic -0.286 0.879 -9.935 E-03 -8.1985 -2.0276 7.511E-06
671 DSTL1 Combination 0.838 5.304 E-03 634.883 -0.1167 3.5784 -2.955E-06
671 DSTL2 Combination 1.279 0.013 974.474 -0.2182 5.4639 -4.414E-06
671 DSTL3 Combination 0.432 0.883 544.176 -8.2985 1.0396 4.978E-06
671 DSTL4 Combination 1.004 -0.874 544.196 8.0984 5.0948 -1.004E-05
671 DSTL5 Combination 0.575 0.444 544.181 -4.1992 2.0534 1.223E-06
671 DSTL6 Combination 0.861 -0.435 544.191 3.9992 4.0810 -6.288E-06
671 DSTL7 Combination 0.252 0.882 408.129 -8.2735 0.2728 5.612E-06
671 DSTL8 Combination 0.825 -0.875 408.149 8.1234 4.3280 -9.410E-06
671 DSTL9 Combination 0.598 3.789 E-03 453.488 -0.0834 2.5560 -2.110E-06
671 DSTL10 Combination 0.949 9.009 E-03 722.418 -0.1572 4.0539 -3.286E-06
672 DEAD LinStatic -4.494E-03 -0.016 463.580 0.0010 -0.0414 -2.324E-05
672 LIVE LinStatic -0.022 -4.877 E-03 274.652 -0.0329 -0.1033 -1.354E-05
Q+n I.M
3 r.f -1 7
MRF 3-story.sdb
3-Story MRF
SAP2000 V17.3.0
27 March 2016
Table: Joint Reactions
Joint OutputCase CaseType F1 Kip F2 Kip F3 Kip M1 Kip-ft M2 Kip-ft M3 Kip-ft
672 WIND LinStatic -0.301 0.887 -0.060 -8.2489 -2.0908 -1.224E-05
672 DSTL1 Combination -6.291 E-03 -0.023 649.012 0.0014 -0.0580 -3.253 E-05
672 DSTL2 Combination -0.040 -0.027 995.739 -0.0514 -0.2150 -4.955 E-05
672 DSTL3 Combination -0.306 0.867 556.235 -8.2477 -2.1405 -4.012E-05
672 DSTL4 Combination 0.296 -0.906 556.356 8.2501 2.0411 -1.565 E-05
672 DSTL5 Combination -0.156 0.424 556.265 -4.1232 -1.0951 -3.400 E-05
672 DSTL6 Combination 0.145 -0.463 556.326 4.1257 0.9957 -2.176E-05
672 DSTL7 Combination -0.305 0.872 417.161 -8.2480 -2.1281 -3.315E-05
672 DSTL8 Combination 0.297 -0.901 417.282 8.2498 2.0535 -8.675E-06
672 DSTL9 Combination -4.494 E-03 -0.016 463.580 0.0010 -0.0414 -2.324E-05
672 DSTL10 Combination -0.026 -0.021 738.232 -0.0319 -0.1447 -3.678 E-05
673 DEAD LinStatic -8.493 -0.260 224.371 1.0675 -36.4591 -1.048E-04
673 LIVE LinStatic -4.922 -0.123 128.542 0.4948 -21.1241 -7.666 E-05
673 WIND LinStatic -0.301 1.804 0.280 -13.0077 -2.2771 -1.458 E-04
673 DSTL1 Combination -11.891 -0.364 314.120 1.4944 -51.0427 -1.468 E-04
673 DSTL2 Combination -18.067 -0.509 474.914 2.0727 -77.5495 -2.485 E-04
673 DSTL3 Combination -10.493 1.492 269.526 -11.7268 -46.0280 -2.716E-04
673 DSTL4 Combination -9.891 -2.116 268.965 14.2887 -41.4738 1.997E-05
673 DSTL5 Combination -10.343 0.590 269.386 -5.2229 -44.8895 -1.987 E-04
673 DSTL6 Combination -10.042 -1.214 269.106 7.7848 -42.6123 -5.292 E-05
673 DSTL7 Combination -7.945 1.570 202.215 -12.0470 -35.0903 -2.401 E-04
673 DSTL8 Combination -7.343 -2.038 201.654 13.9685 -30.5361 5.142E-05
673 DSTL9 Combination -8.493 -0.260 224.371 1.0675 -36.4591 -1.048 E-04
673 DSTL10 Combination -13.416 -0.383 352.914 1.5623 -57.5832 -1.815E-04
674 DEAD LinStatic 7.966 -0.094 225.519 0.3290 34.1987 1.867 E-05
674 LIVE LinStatic 4.621 -0.095 129.752 0.3377 19.8345 2.058 E-05
674 WIND LinStatic -0.269 1.682 -0.309 -11.9955 -2.0380 -1.466 E-04
674 DSTL1 Combination 11.152 -0.131 315.727 0.4606 47.8782 2.613E-05
674 DSTL2 Combination 16.952 -0.265 478.226 0.9351 72.7737 5.533 E-05
674 DSTL3 Combination 9.290 1.570 270.315 -11.6007 39.0004 -1.242E-04
674 DSTL4 Combination 9.828 -1.795 270.932 12.3903 43.0765 1.690 E-04
674 DSTL5 Combination 9.425 0.729 270.469 -5.6029 40.0195 -5.092 E-05
674 DSTL6 Combination 9.694 -0.954 270.778 6.3925 42.0575 9.572 E-05
674 DSTL7 Combination 6.901 1.598 202.659 -11.6994 28.7408 -1.298 E-04
674 DSTL8 Combination 7.438 -1.767 203.276 12.2916 32.8169 1.634 E-04
674 DSTL9 Combination 7.966 -0.094 225.519 0.3290 34.1987 1.867 E-05
674 DSTL10 Combination 12.587 -0.189 355.271 0.6667 54.0332 3.925 E-05
675 DEAD LinStatic 0.098 0.013 468.870 -0.0969 0.4515 3.974E-06
675 LIVE LinStatic 0.075 0.011 277.841 -0.0813 0.3365 3.073 E-06
675 WIND LinStatic -0.289 0.893 0.053 -8.2913 -2.0312 -2.385 E-05
675 DSTL1 Combination 0.137 0.019 656.419 -0.1357 0.6322 5.564 E-06
675 DSTL2 Combination 0.236 0.033 1007.190 -0.2465 1.0803 9.686 E-06
675 DSTL3 Combination -0.172 0.909 562.697 -8.4076 -1.4894 -1.908 E-05
675 DSTL4 Combination 0.406 -0.877 562.592 8.1749 2.5731 2.862 E-05
675 DSTL5 Combination -0.028 0.463 562.671 -4.2620 -0.4738 -7.157E-06
675 DSTL6 Combination 0.262 -0.431 562.618 4.0293 1.5574 1.670E-05
675 DSTL7 Combination -0.201 0.905 422.036 -8.3785 -1.6248 -2.028 E-05
675 DSTL8 Combination 0.377 -0.881 421.931 8.2040 2.4376 2.743 E-05
675 DSTL9 Combination 0.098 0.013 468.870 -0.0969 0.4515 3.974E-06
675 DSTL10 Combination 0.172 0.024 746.711 -0.1783 0.7880 7.047E-06
676 DEAD LinStatic 0.038 0.013 456.327 -0.0971 0.1727 4.629 E-07
676 LIVE LinStatic 0.020 0.011 270.968 -0.0802 0.0906 5.401 E-08
676 WIND LinStatic -0.263 0.800 -1.750E-03 -7.4104 -1.8476 -1.945 E-06
676 DSTL1 Combination 0.053 0.019 638.858 -0.1359 0.2418 6.481 E-07
Q+ri irt
A r.f -17


MRF 3-story.sdb
3-Story MRF
SAP2000 V17.3.0
27 March 2016
Table: Joint Reactions
Joint OutputCase CaseType F1 Kip F2 Kip F3 Kip M1 Kip-ft M2 Kip-ft M3 Kip-ft
676 DSTL2 Combination 0.077 0.033 981.141 -0.2447 0.3523 6.419E-07
676 DSTL3 Combination -0.218 0.817 547.590 -7.5268 -1.6403 -1.389E-06
676 DSTL4 Combination 0.309 -0.784 547.594 7.2939 2.0549 2.500E-06
676 DSTL5 Combination -0.086 0.416 547.591 -3.8217 -0.7165 -4.169E-07
676 DSTL6 Combination 0.177 -0.384 547.593 3.5887 1.1311 1.528E-06
676 DSTL7 Combination -0.229 0.813 410.692 -7.4977 -1.6922 -1.528E-06
676 DSTL8 Combination 0.297 -0.788 410.696 7.3230 2.0031 2.361 E-06
676 DSTL9 Combination 0.038 0.013 456.327 -0.0971 0.1727 4.629E-07
676 DSTL10 Combination 0.058 0.024 727.295 -0.1772 0.2634 5.170E-07
677 DEAD LinStatic -0.019 0.014 457.328 -0.1002 -0.0837 1.095E-08
677 LIVE LinStatic -0.011 0.011 271.549 -0.0822 -0.0493 1.539E-09
677 WIND LinStatic -0.265 0.796 -4.971 E-04 -7.3807 -1.8556 8.542E-07
677 DSTL1 Combination -0.027 0.019 640.260 -0.1402 -0.1172 1.533E-08
677 DSTL2 Combination -0.041 0.034 983.273 -0.2517 -0.1794 1.560E-08
677 DSTL3 Combination -0.288 0.813 548.794 -7.5009 -1.9560 8.673E-07
677 DSTL4 Combination 0.242 -0.779 548.795 7.2605 1.7551 -8.411E-07
677 DSTL5 Combination -0.155 0.415 548.794 -3.8105 -1.0282 4.402E-07
677 DSTL6 Combination 0.109 -0.381 548.794 3.5702 0.8274 -4.140E-07
677 DSTL7 Combination -0.282 0.809 411.595 -7.4709 -1.9309 8.641 E-07
677 DSTL8 Combination 0.247 -0.784 411.596 7.2906 1.7803 -8.443E-07
677 DSTL9 Combination -0.019 0.014 457.328 -0.1002 -0.0837 1.095E-08
677 DSTL10 Combination -0.030 0.025 728.878 -0.1823 -0.1330 1.249E-08
678 DEAD LinStatic -0.190 0.013 455.463 -0.0971 -0.8317 -4.605E-07
678 LIVE LinStatic -0.106 0.011 270.462 -0.0802 -0.4639 -3.861 E-08
678 WIND LinStatic -0.265 0.800 4.343E-03 -7.4105 -1.8602 1.981 E-06
678 DSTL1 Combination -0.267 0.019 637.648 -0.1360 -1.1643 -6.447E-07
678 DSTL2 Combination -0.399 0.033 979.295 -0.2449 -1.7402 -6.143E-07
678 DSTL3 Combination -0.494 0.817 546.560 -7.5270 -2.8582 1.429E-06
678 DSTL4 Combination 0.037 -0.784 546.551 7.2939 0.8622 -2.534E-06
678 DSTL5 Combination -0.361 0.416 546.558 -3.8218 -1.9281 4.381 E-07
678 DSTL6 Combination -0.096 -0.384 546.554 3.5887 -0.0679 -1.543E-06
678 DSTL7 Combination -0.437 0.813 409.921 -7.4979 -2.6087 1.567E-06
678 DSTL8 Combination 0.094 -0.788 409.913 7.3231 1.1117 -2.396E-06
678 DSTL9 Combination -0.190 0.013 455.463 -0.0971 -0.8317 -4.605E-07
678 DSTL10 Combination -0.297 0.024 725.925 -0.1773 -1.2955 -4.991 E-07
679 DEAD LinStatic 0.071 0.013 468.306 -0.0969 0.2660 -4.014E-06
679 LIVE LinStatic 0.021 0.011 277.514 -0.0813 0.0712 -3.120E-06
679 WIND LinStatic -0.293 0.893 -0.056 -8.2921 -2.0628 2.389E-05
679 DSTL1 Combination 0.099 0.019 655.628 -0.1356 0.3724 -5.620E-06
679 DSTL2 Combination 0.119 0.033 1005.989 -0.2463 0.4331 -9.809E-06
679 DSTL3 Combination -0.208 0.909 561.911 -8.4084 -1.7436 1.907E-05
679 DSTL4 Combination 0.378 -0.877 562.024 8.1759 2.3820 -2.870E-05
679 DSTL5 Combination -0.061 0.463 561.939 -4.2623 -0.7122 7.127E-06
679 DSTL6 Combination 0.231 -0.431 561.995 4.0298 1.3506 -1.676E-05
679 DSTL7 Combination -0.229 0.905 421.419 -8.3793 -1.8234 2.027E-05
679 DSTL8 Combination 0.357 -0.881 421.532 8.2049 2.3022 -2.750E-05
679 DSTL9 Combination 0.071 0.013 468.306 -0.0969 0.2660 -4.014E-06
679 DSTL10 Combination 0.092 0.024 745.820 -0.1782 0.3372 -7.134E-06
680 DEAD LinStatic -7.950 -0.094 225.431 0.3292 -34.1342 -1.825E-05
680 LIVE LinStatic -4.611 -0.095 129.699 0.3378 -19.7959 -2.029E-05
680 WIND LinStatic -0.272 1.682 5.892E-03 -11.9986 -2.0580 1.472E-04
680 DSTL1 Combination -11.129 -0.131 315.604 0.4609 -47.7879 -2.554E-05
680 DSTL2 Combination -16.917 -0.265 478.037 0.9355 -72.6345 -5.437E-05
680 DSTL3 Combination -9.812 1.570 270.524 -11.6036 -43.0191 1.253E-04
Q+ri irt
r.f -17
MRF 3-story.sdb
3-Story MRF
SAP2000 V17.3.0
27 March 2016
Table: Joint Reactions
Joint OutputCase CaseType F1 Kip F2 Kip F3 Kip M1 Kip-ft M2 Kip-ft M3 Kip-ft
680 DSTL4 Combination -9.267 -1.795 270.512 12.3936 -38.9031 -1.691 E-04
680 DSTL5 Combination -9.676 0.729 270.521 -5.6043 -41.9901 5.169E-05
680 DSTL6 Combination -9.403 -0.954 270.515 6.3943 -39.9321 -9.548 E-05
680 DSTL7 Combination -7.427 1.598 202.894 -11.7023 -32.7788 1.307E-04
680 DSTL8 Combination -6.883 -1.767 202.882 12.2949 -28.6628 -1.636 E-04
680 DSTL9 Combination -7.950 -0.094 225.431 0.3292 -34.1342 -1.825 E-05
680 DSTL10 Combination -12.560 -0.189 355.131 0.6670 -53.9301 -3.854 E-05
681 DEAD LinStatic 8.779 1.645 225.632 -6.6804 37.6836 -1.862 E-04
681 LIVE LinStatic 5.090 1.383 128.983 -5.6018 21.8443 -1.728 E-04
681 WIND LinStatic -0.325 1.689 0.540 -13.3875 -2.4700 4.478 E-04
681 DSTL1 Combination 12.291 2.302 315.884 -9.3525 52.7570 -2.607E-04
681 DSTL2 Combination 18.680 4.186 477.130 -16.9793 80.1712 -4.999 E-04
681 DSTL3 Combination 10.211 3.662 271.298 -21.4039 42.7503 2.244 E-04
681 DSTL4 Combination 10.860 0.284 270.218 5.3710 47.6903 -6.713E-04
681 DSTL5 Combination 10.373 2.818 271.028 -14.7102 43.9853 4.822 E-07
681 DSTL6 Combination 10.698 1.129 270.488 -1.3227 46.4553 -4.473 E-04
681 DSTL7 Combination 7.577 3.169 203.608 -19.3998 31.4453 2.803 E-04
681 DSTL8 Combination 8.226 -0.209 202.529 7.3752 36.3852 -6.154 E-04
681 DSTL9 Combination 8.779 1.645 225.632 -6.6804 37.6836 -1.862 E-04
681 DSTL10 Combination 13.870 3.027 354.614 -12.2821 59.5279 -3.590 E-04
682 DEAD LinStatic -0.576 0.021 462.592 -0.1129 -2.4480 -1.617E-05
682 LIVE LinStatic -0.316 0.014 273.942 -0.0830 -1.3466 -1.054 E-05
682 WIND LinStatic -0.296 0.892 0.071 -8.2895 -2.0738 -2.817E-05
682 DSTL1 Combination -0.806 0.030 647.629 -0.1581 -3.4272 -2.264 E-05
682 DSTL2 Combination -1.197 0.048 993.419 -0.2682 -5.0921 -3.628 E-05
682 DSTL3 Combination -0.987 0.918 555.182 -8.4250 -5.0114 -4.758 E-05
682 DSTL4 Combination -0.395 -0.866 555.040 8.1540 -0.8638 8.761 E-06
682 DSTL5 Combination -0.839 0.472 555.146 -4.2803 -3.9745 -3.349 E-05
682 DSTL6 Combination -0.543 -0.420 555.075 4.0093 -1.9007 -5.323 E-06
682 DSTL7 Combination -0.814 0.911 416.404 -8.3912 -4.2770 -4.272 E-05
682 DSTL8 Combination -0.222 -0.873 416.262 8.1879 -0.1294 1.361 E-05
682 DSTL9 Combination -0.576 0.021 462.592 -0.1129 -2.4480 -1.617E-05
682 DSTL10 Combination -0.892 0.036 736.535 -0.1959 -3.7946 -2.672 E-05
683 DEAD LinStatic 0.037 1.433E-03 451.901 -0.0338 0.1673 -1.046 E-06
683 LIVE LinStatic 0.020 4.325E-03 268.071 -0.0451 0.0902 1.544 E-07
683 WIND LinStatic -0.262 0.796 3.670E-03 -7.3796 -1.8508 -1.808 E-05
683 DSTL1 Combination 0.052 2.006E-03 632.661 -0.0474 0.2342 -1.465 E-06
683 DSTL2 Combination 0.077 8.640E-03 971.194 -0.1128 0.3450 -1.008 E-06
683 DSTL3 Combination -0.218 0.798 542.285 -7.4202 -1.6500 -1.933 E-05
683 DSTL4 Combination 0.307 -0.794 542.278 7.3390 2.0515 1.682 E-05
683 DSTL5 Combination -0.086 0.400 542.283 -3.7304 -0.7247 -1.029 E-05
683 DSTL6 Combination 0.176 -0.396 542.279 3.6492 1.1261 7.783 E-06
683 DSTL7 Combination -0.229 0.797 406.715 -7.4100 -1.7002 -1.902 E-05
683 DSTL8 Combination 0.296 -0.795 406.707 7.3491 2.0013 1.713E-05
683 DSTL9 Combination 0.037 1.433E-03 451.901 -0.0338 0.1673 -1.046 E-06
683 DSTL10 Combination 0.058 5.758E-03 719.972 -0.0790 0.2574 -8.917E-07
684 DEAD LinStatic -0.037 4.196E-03 452.316 -0.0491 -0.1596 -2.402 E-07
684 LIVE LinStatic -0.022 6.264E-03 268.301 -0.0560 -0.0956 -1.370E-07
684 WIND LinStatic -0.261 0.792 1.230E-03 -7.3523 -1.8405 -7.875E-08
684 DSTL1 Combination -0.051 5.874E-03 633.242 -0.0687 -0.2234 -3.363 E-07
684 DSTL2 Combination -0.079 0.015 972.060 -0.1485 -0.3444 -5.075E-07
684 DSTL3 Combination -0.305 0.797 542.780 -7.4112 -2.0320 -3.670E-07
684 DSTL4 Combination 0.217 -0.787 542.777 7.2934 1.6490 -2.095 E-07
684 DSTL5 Combination -0.175 0.401 542.779 -3.7351 -1.1118 -3.277 E-07
Q+ri i,~+i irac
R nf 17


MRF 3-story.sdb
3-Story MRF
SAP2000 V17.3.0
27 March 2016
Table: Joint Reactions
Joint OutputCase CaseType F1 Kip F2 Kip F3 Kip M1 Kip-ft M2 Kip-ft M3 Kip-ft
684 DSTL6 Combination 0.086 -0.391 542.778 3.6172 0.7288 -2.489 E-07
684 DSTL7 Combination -0.294 0.796 407.085 -7.3965 -1.9842 -2.950E-07
684 DSTL8 Combination 0.228 -0.788 407.083 7.3081 1.6969 -1.375E-07
684 DSTL9 Combination -0.037 4.196E-03 452.316 -0.0491 -0.1596 -2.402 E-07
684 DSTL10 Combination -0.059 0.010 720.616 -0.1051 -0.2551 -3.772 E-07
685 DEAD LinStatic 0.600 0.026 453.555 -0.1312 2.5587 -1.993E-06
685 LIVE LinStatic 0.351 0.019 268.971 -0.1034 1.4992 -2.170E-06
685 WIND LinStatic -0.285 0.875 -3.371 E-03 -8.1693 -2.0159 2.537E-05
685 DSTL1 Combination 0.839 0.036 634.978 -0.1837 3.5822 -2.790E-06
685 DSTL2 Combination 1.281 0.061 974.621 -0.3229 5.4692 -5.864E-06
685 DSTL3 Combination 0.435 0.906 544.263 -8.3268 1.0546 2.298 E-05
685 DSTL4 Combination 1.004 -0.844 544.270 8.0118 5.0863 -2.776E-05
685 DSTL5 Combination 0.577 0.469 544.265 -4.2421 2.0625 1.029 E-05
685 DSTL6 Combination 0.862 -0.407 544.268 3.9272 4.0784 -1.508 E-05
685 DSTL7 Combination 0.255 0.899 408.197 -8.2874 0.2870 2.358 E-05
685 DSTL8 Combination 0.824 -0.852 408.203 8.0512 4.3187 -2.717E-05
685 DSTL9 Combination 0.600 0.026 453.555 -0.1312 2.5587 -1.993E-06
685 DSTL10 Combination 0.950 0.044 722.527 -0.2346 4.0579 -4.163E-06
686 DEAD LinStatic -0.040 0.042 462.896 -0.1943 -0.1985 2.065 E-05
686 LIVE LinStatic -0.043 0.026 274.244 -0.1299 -0.1944 1.316E-05
686 WIND LinStatic -0.299 0.894 -0.037 -8.3039 -2.0804 2.617E-05
686 DSTL1 Combination -0.057 0.059 648.054 -0.2720 -0.2780 2.892 E-05
686 DSTL2 Combination -0.117 0.093 994.266 -0.4409 -0.5493 4.584 E-05
686 DSTL3 Combination -0.348 0.945 555.438 -8.5370 -2.3186 5.096 E-05
686 DSTL4 Combination 0.251 -0.843 555.512 8.0707 1.8421 -1.385E-06
686 DSTL5 Combination -0.198 0.498 555.456 -4.3850 -1.2784 3.787 E-05
686 DSTL6 Combination 0.101 -0.396 555.493 3.9188 0.8019 1.170E-05
686 DSTL7 Combination -0.335 0.932 416.569 -8.4787 -2.2591 4.476E-05
686 DSTL8 Combination 0.263 -0.856 416.643 8.1290 1.9017 -7.582E-06
686 DSTL9 Combination -0.040 0.042 462.896 -0.1943 -0.1985 2.065 E-05
686 DSTL10 Combination -0.083 0.069 737.140 -0.3241 -0.3930 3.382 E-05
687 DEAD LinStatic -8.761 1.647 225.365 -6.6999 -37.6115 1.946E-04
687 LIVE LinStatic -5.079 1.384 128.823 -5.6127 -21.7979 1.776E-04
687 WIND LinStatic -0.322 1.684 0.894 -13.3524 -2.4792 -5.019E-04
687 DSTL1 Combination -12.266 2.306 315.511 -9.3798 -52.6561 2.724E-04
687 DSTL2 Combination -18.640 4.192 476.555 -17.0201 -80.0105 5.177E-04
687 DSTL3 Combination -10.835 3.661 271.332 -21.3922 -47.6130 -2.684E-04
687 DSTL4 Combination -10.192 0.293 269.545 5.3126 -42.6546 7.354 E-04
687 DSTL5 Combination -10.674 2.819 270.885 -14.7160 -46.3734 -1.746 E-05
687 DSTL6 Combination -10.353 1.135 269.992 -1.3636 -43.8942 4.844 E-04
687 DSTL7 Combination -8.207 3.167 203.722 -19.3823 -36.3295 -3.268 E-04
687 DSTL8 Combination -7.564 -0.201 201.935 7.3225 -31.3712 6.770E-04
687 DSTL9 Combination -8.761 1.647 225.365 -6.6999 -37.6115 1.946 E-04
687 DSTL10 Combination -13.840 3.032 354.188 -12.3125 -59.4094 3.722 E-04
688 DEAD LinStatic 13.244 4.012 118.704 -7.1332 75.5149 -6.176E-05
688 LIVE LinStatic 8.055 2.950 67.696 -5.3147 46.1896 -1.324E-05
688 WIND LinStatic -86.695 126.989 22.998 -20.3007 -13.9678 -3.555 E-04
688 DSTL1 Combination 18.542 5.617 166.185 -9.9865 105.7209 -8.646 E-05
688 DSTL2 Combination 28.781 9.535 250.759 -17.0634 164.5212 -9.530 E-05
688 DSTL3 Combination -70.802 131.804 165.442 -28.8606 76.6501 -4.296 E-04
688 DSTL4 Combination 102.589 -122.174 119.447 11.7408 104.5857 2.814E-04
688 DSTL5 Combination -27.455 68.309 153.943 -18.7102 83.6340 -2.519E-04
688 DSTL6 Combination 59.241 -58.680 130.945 1.5904 97.6018 1.036 E-04
688 DSTL7 Combination -74.776 130.600 129.831 -26.7206 53.9956 -4.111 E-04
Q+ri irt
7nf 17
MRF 3-story.sdb
3-Story MRF
SAP2000 V17.3.0
27 March 2016
Table: Joint Reactions
Joint OutputCase CaseType F1 Kip F2 Kip F3 Kip M1 Kip-ft M2 Kip-ft M3 Kip-ft
688 DSTL8 Combination 98.615 -123.378 83.836 13.8807 81.9312 2.999E-04
688 DSTL9 Combination 13.244 4.012 118.704 -7.1332 75.5149 -6.176E-05
688 DSTL10 Combination 21.299 6.963 186.400 -12.4479 121.7045 -7.500E-05
689 DEAD LinStatic 1.620 0.198 231.036 -0.8579 6.5710 -1.430E-05
689 LIVE LinStatic 0.897 0.115 135.027 -0.4993 3.6333 -6.316E-06
689 WIND LinStatic -0.504 0.139 -0.063 -1.1186 -3.5855 -5.959E-05
689 DSTL1 Combination 2.269 0.278 323.451 -1.2011 9.1993 -2.003E-05
689 DSTL2 Combination 3.380 0.422 493.287 -1.8283 13.6985 -2.727E-05
689 DSTL3 Combination 1.441 0.377 277.181 -2.1481 4.2996 -7.676E-05
689 DSTL4 Combination 2.448 0.099 277.306 0.0891 11.4707 4.243E-05
689 DSTL5 Combination 1.693 0.308 277.212 -1.5888 6.0924 -4.696E-05
689 DSTL6 Combination 2.196 0.168 277.275 -0.4702 9.6779 1.263E-05
689 DSTL7 Combination 0.955 0.318 207.870 -1.8907 2.3283 -7.247E-05
689 DSTL8 Combination 1.962 0.039 207.995 0.3464 9.4994 4.672E-05
689 DSTL9 Combination 1.620 0.198 231.036 -0.8579 6.5710 -1.430E-05
689 DSTL10 Combination 2.518 0.314 366.063 -1.3572 10.2043 -2.062E-05
690 DEAD LinStatic -0.282 0.115 234.625 -0.4997 -1.1416 -1.116E-06
690 LIVE LinStatic -0.158 0.068 137.087 -0.2957 -0.6402 -6.819E-07
690 WIND LinStatic -0.528 0.136 0.125 -1.0981 -3.6199 -5.880E-06
690 DSTL1 Combination -0.395 0.161 328.475 -0.6995 -1.5982 -1.563E-06
690 DSTL2 Combination -0.591 0.247 500.889 -1.0726 -2.3943 -2.430E-06
690 DSTL3 Combination -0.866 0.274 281.675 -1.6977 -4.9899 -7.219E-06
690 DSTL4 Combination 0.189 2.177E-03 281.425 0.4985 2.2500 4.541 E-06
690 DSTL5 Combination -0.603 0.206 281.613 -1.1487 -3.1799 -4.279E-06
690 DSTL6 Combination -0.075 0.070 281.488 -0.0505 0.4400 1.601 E-06
690 DSTL7 Combination -0.782 0.240 211.287 -1.5478 -4.6474 -6.885E-06
690 DSTL8 Combination 0.274 -0.032 211.038 0.6484 2.5925 4.876E-06
690 DSTL9 Combination -0.282 0.115 234.625 -0.4997 -1.1416 -1.116E-06
690 DSTL10 Combination -0.440 0.183 371.712 -0.7953 -1.7818 -1.798E-06
691 DEAD LinStatic 0.280 0.115 234.605 -0.5011 1.1298 -7.100E-07
691 LIVE LinStatic 0.155 0.068 137.066 -0.2968 0.6243 -4.227E-07
691 WIND LinStatic -0.513 0.135 0.037 -1.0942 -3.5170 1.142E-06
691 DSTL1 Combination 0.392 0.162 328.446 -0.7016 1.5817 -9.940E-07
691 DSTL2 Combination 0.584 0.247 500.832 -1.0762 2.3546 -1.528E-06
691 DSTL3 Combination -0.177 0.274 281.562 -1.6955 -2.1613 2.901 E-07
691 DSTL4 Combination 0.849 3.082E-03 281.489 0.4928 4.8728 -1.994E-06
691 DSTL5 Combination 0.080 0.206 281.544 -1.1484 -0.4028 -2.809E-07
691 DSTL6 Combination 0.592 0.071 281.507 -0.0542 3.1142 -1.423E-06
691 DSTL7 Combination -0.261 0.239 211.181 -1.5452 -2.5002 5.031 E-07
691 DSTL8 Combination 0.765 -0.032 211.107 0.6432 4.5338 -1.781 E-06
691 DSTL9 Combination 0.280 0.115 234.605 -0.5011 1.1298 -7.100E-07
691 DSTL10 Combination 0.435 0.184 371.671 -0.7979 1.7540 -1.133E-06
692 DEAD LinStatic -1.644 0.197 230.216 -0.8531 -6.6915 -1.109E-06
692 LIVE LinStatic -0.908 0.115 134.625 -0.4993 -3.6923 -5.667E-07
692 WIND LinStatic -0.448 0.136 0.254 -1.0965 -3.2187 6.230E-06
692 DSTL1 Combination -2.302 0.276 322.302 -1.1944 -9.3681 -1.552E-06
692 DSTL2 Combination -3.426 0.421 491.659 -1.8226 -13.9374 -2.237E-06
692 DSTL3 Combination -2.422 0.372 276.512 -2.1202 -11.2486 4.899E-06
692 DSTL4 Combination -1.525 0.101 276.005 0.0727 -4.8111 -7.561 E-06
692 DSTL5 Combination -2.198 0.305 276.386 -1.5720 -9.6392 1.784E-06
692 DSTL6 Combination -1.749 0.169 276.132 -0.4755 -6.4205 -4.446E-06
692 DSTL7 Combination -1.928 0.313 207.448 -1.8643 -9.2411 5.232E-06
692 DSTL8 Combination -1.032 0.042 206.940 0.3287 -2.8037 -7.228E-06
692 DSTL9 Combination -1.644 0.197 230.216 -0.8531 -6.6915 -1.109E-06

Q+n I.M
-,f -17


MRF 3-story.sdb
3-Story MRF
SAP2000 V17.3.0
27 March 2016
00
Table: Joint Reactions
Joint OutputCase CaseType F1 Kip F2 Kip F3 Kip M1 Kip-ft M2 Kip-ft M3 Kip-ft
692 DSTL10 Combination -2.552 0.312 364.840 -1.3524 -10.3838 -1.676E-06
693 DEAD LinStatic 0.066 0.259 231.681 -1.1192 0.2758 1.806E-05
693 LIVE LinStatic 0.034 0.150 135.477 -0.6477 0.1482 8.477E-06
693 WIND LinStatic -0.339 0.138 0.085 -1.1143 -2.7213 5.600E-05
693 DSTL1 Combination 0.093 0.363 324.354 -1.5668 0.3861 2.529E-05
693 DSTL2 Combination 0.134 0.550 494.781 -2.3792 0.5680 3.524E-05
693 DSTL3 Combination -0.259 0.449 278.103 -2.4573 -2.3903 7.767E-05
693 DSTL4 Combination 0.419 0.173 277.932 -0.2287 3.0522 -3.433E-05
693 DSTL5 Combination -0.090 0.380 278.060 -1.9002 -1.0297 4.967E-05
693 DSTL6 Combination 0.249 0.242 277.975 -0.7858 1.6916 -6.326E-06
693 DSTL7 Combination -0.279 0.371 208.598 -2.1216 -2.4731 7.225E-05
693 DSTL8 Combination 0.399 0.095 208.428 0.1071 2.9695 -3.974E-05
693 DSTL9 Combination 0.066 0.259 231.681 -1.1192 0.2758 1.806E-05
693 DSTL10 Combination 0.101 0.409 367.159 -1.7668 0.4240 2.654E-05
694 DEAD LinStatic -13.295 4.031 119.362 -7.1848 -76.7387 6.617E-05
694 LIVE LinStatic -8.083 2.961 68.087 -5.3435 -46.9552 1.584E-05
694 WIND LinStatic -83.566 127.536 60.868 -20.4144 -10.3560 3.513E-04
694 DSTL1 Combination -18.613 5.644 167.106 -10.0588 -107.4342 9.264E-05
694 DSTL2 Combination -28.887 9.575 252.173 -17.1714 -167.2147 1.047E-04
694 DSTL3 Combination -99.520 132.374 204.102 -29.0362 -102.4424 4.307E-04
694 DSTL4 Combination 67.612 -122.698 82.366 11.7926 -81.7305 -2.719E-04
694 DSTL5 Combination -57.737 68.606 173.668 -18.8290 -97.2644 2.551E-04
694 DSTL6 Combination 25.829 -58.930 112.800 1.5854 -86.9084 -9.626E-05
694 DSTL7 Combination -95.532 131.164 168.293 -26.8808 -79.4208 4.109E-04
694 DSTL8 Combination 71.600 -123.908 46.557 13.9481 -58.7088 -2.918E-04
694 DSTL9 Combination -13.295 4.031 119.362 -7.1848 -76.7387 6.617E-05
694 DSTL10 Combination -21.378 6.993 187.448 -12.5283 -123.6939 8.201E-05
Table: Steel Design 1 Summary Data AISC 360-10, Part 1 of 2
Table: Steel Design 1 Summary Data AISC 360-10, Part 1 of 2
Frame DesignSect DesignType Status Ratio RatioType
1 W21X44 Beam No Messages 0.784742 PMM
2 W21X44 Beam No Messages 0.685439 PMM
3 W21X44 Beam No Messages 0.822147 PMM
4 W24X62 Beam No Messages 0.845268 PMM
5 W21X48 Beam No Messages 0.877514 PMM
6 W21X48 Beam No Messages 0.919999 PMM
7 W21X48 Beam No Messages 0.903176 PMM
8 W21X48 Beam No Messages 0.868215 PMM
9 W24X62 Beam No Messages 0.840078 PMM
10 W24X62 Beam No Messages 0.865603 PMM
11 W21X48 Beam No Messages 0.820979 PMM
12 W21X48 Beam No Messages 0.860309 PMM
13 W21X48 Beam No Messages 0.858876 PMM
14 W21X48 Beam No Messages 0.816903 PMM
15 W24X62 Beam No Messages 0.867332 PMM
16 W24X62 Beam No Messages 0.831191 PMM
17 W21X48 Beam No Messages 0.879931 PMM
18 W21X48 Beam No Messages 0.919680 PMM
19 W21X48 Beam No Messages 0.902921 PMM
MRF 3-story.sdb
3-Story MRF
SAP2000 V17.3.0
27 March 2016
Table: Steel Design 1 Summary Data AISC 360-10, Part 1 of 2
Frame DesignSect DesignType Status Ratio RatioType
20 W21X48 Beam No Messages 0.870612 PMM
21 W24X62 Beam No Messages 0.826032 PMM
22 W21X44 Beam No Messages 0.779865 PMM
23 W21X44 Beam No Messages 0.687240 PMM
24 W21X44 Beam No Messages 0.816806 PMM
25 W18X35 Beam No Messages 0.840472 PMM
26 W18X35 Beam No Messages 0.840450 PMM
27 W18X40 Beam No Messages 0.812598 PMM
28 W18X40 Beam No Messages 0.811314 PMM
29 W18X40 Beam No Messages 0.810946 PMM
30 W18X35 Beam No Messages 0.428749 PMM
31 W18X35 Beam No Messages 0.544589 PMM
32 W18X35 Beam No Messages 0.425236 PMM
33 W18X40 Beam No Messages 0.813046 PMM
34 W18X40 Beam No Messages 0.811368 PMM
35 W18X40 Beam No Messages 0.811121 PMM
36 W18X35 Beam No Messages 0.428698 PMM
37 W18X35 Beam No Messages 0.544546 PMM
38 W18X35 Beam No Messages 0.425517 PMM
39 W18X46 Beam No Messages 0.926586 PMM
40 W18X46 Beam No Messages 0.926539 PMM
41 W18X46 Beam No Messages 0.926533 PMM
42 W18X46 Beam No Messages 0.926585 PMM
43 W18X46 Beam No Messages 0.926612 PMM
44 W18X46 Beam No Messages 0.926579 PMM
45 W18X46 Beam No Messages 0.926581 PMM
46 W18X46 Beam No Messages 0.926606 PMM
47 W18X46 Beam No Messages 0.926612 PMM
48 W18X46 Beam No Messages 0.926604 PMM
49 W18X46 Beam No Messages 0.926599 PMM
50 W18X46 Beam No Messages 0.926618 PMM
51 W18X46 Beam No Messages 0.926613 PMM
52 W18X46 Beam No Messages 0.926619 PMM
53 W18X46 Beam No Messages 0.926620 PMM
54 W18X46 Beam No Messages 0.926606 PMM
55 W18X46 Beam No Messages 0.926609 PMM
56 W18X46 Beam No Messages 0.926573 PMM
57 W18X46 Beam No Messages 0.926567 PMM
58 W18X46 Beam No Messages 0.926608 PMM
59 W18X46 Beam No Messages 0.933339 PMM
60 W18X46 Beam No Messages 0.926583 PMM
61 W18X46 Beam No Messages 0.926627 PMM
62 W18X46 Beam No Messages 0.926627 PMM
63 W18X46 Beam No Messages 0.926635 PMM
64 W18X46 Beam No Messages 0.926642 PMM
65 W18X46 Beam No Messages 0.926641 PMM
66 W18X46 Beam No Messages 0.926634 PMM
67 W18X46 Beam No Messages 0.926634 PMM
68 W18X46 Beam No Messages 0.926637 PMM
69 W18X46 Beam No Messages 0.926577 PMM
70 W18X46 Beam No Messages 0.933322 PMM
71 W18X46 Beam No Messages 0.926515 PMM
72 W18X46 Beam No Messages 0.879651 PMM
73 W18X46 Beam No Messages 0.872992 PMM
Qtri i^ti iroc
I n r.f -1 7


MRF 3-story.sdb
3-Story MRF
SAP2000 V17.3.0
27 March 2016
Table: Steel Design 1 Summary Data AISC 360-10, Part 1 of 2
Frame DesignSect DesignType Status Ratio RatioType
74 W18X46 Beam No Messages 0.933226 PMM
75 W18X46 Beam No Messages 0.926628 PMM
76 W18X46 Beam No Messages 0.933156 PMM
77 W18X46 Beam No Messages 0.926636 PMM
78 W18X46 Beam No Messages 0.926628 PMM
79 W18X46 Beam No Messages 0.926616 PMM
80 W18X46 Beam No Messages 0.926603 PMM
81 W18X46 Beam No Messages 0.926628 PMM
82 W18X46 Beam No Messages 0.926607 PMM
83 W18X46 Beam No Messages 0.926594 PMM
84 W18X46 Beam No Messages 0.926603 PMM
85 W18X46 Beam No Messages 0.926597 PMM
86 W18X46 Beam No Messages 0.926596 PMM
87 W18X46 Beam No Messages 0.926637 PMM
88 W18X46 Beam No Messages 0.926639 PMM
89 W18X46 Beam No Messages 0.926640 PMM
90 W18X46 Beam No Messages 0.926638 PMM
91 W18X46 Beam No Messages 0.926585 PMM
92 W18X46 Beam No Messages 0.926597 PMM
93 W18X46 Beam No Messages 0.926592 PMM
94 W18X46 Beam No Messages 0.926593 PMM
95 W18X46 Beam No Messages 0.926543 PMM
96 W18X46 Beam No Messages 0.926563 PMM
97 W18X46 Beam No Messages 0.926538 PMM
98 W18X46 Beam No Messages 0.926551 PMM
99 W18X46 Beam No Messages 0.926618 PMM
100 W18X46 Beam No Messages 0.926630 PMM
101 W18X46 Beam No Messages 0.933176 PMM
102 W18X46 Beam No Messages 0.926634 PMM
103 W18X46 Beam No Messages 0.933261 PMM
104 W18X46 Beam No Messages 0.926498 PMM
105 W18X46 Beam No Messages 0.879566 PMM
106 W18X46 Beam No Messages 0.926516 PMM
335 W18X35 Beam No Messages 0.002362 PMM
336 W18X35 Beam No Messages 0.002465 PMM
337 W18X35 Beam No Messages 0.002362 PMM
338 W18X35 Beam No Messages 0.002362 PMM
339 W18X35 Beam No Messages 0.002465 PMM
340 W18X35 Beam No Messages 0.002876 PMM
341 W18X35 Beam No Messages 0.002465 PMM
342 W18X35 Beam No Messages 0.002362 PMM
343 W18X35 Beam No Messages 0.002362 PMM
344 W18X35 Beam No Messages 0.002876 PMM
345 W18X35 Beam No Messages 0.002362 PMM
346 W18X35 Beam No Messages 0.002362 PMM
347 W18X35 Beam No Messages 0.002465 PMM
348 W18X35 Beam No Messages 0.002362 PMM
349 W18X35 Beam No Messages 0.002465 PMM
350 W18X35 Beam No Messages 0.002876 PMM
351 W21X44 Beam No Messages 0.893765 PMM
352 W21X44 Beam No Messages 0.873431 PMM
353 W21X44 Beam No Messages 0.904491 PMM
354 W24X62 Beam No Messages 0.874403 PMM
355 W24X55 Beam No Messages 0.946458 PMM
Qtri i^ti irac
-,f -17
MRF 3-story.sdb
3-Story MRF
SAP2000 V17.3.0
27 March 2016
Table: Steel Design 1 Summary Data AISC 360-10, Part 1 of 2
Frame DesignSect DesignType Status Ratio RatioType
356 W24X62 Beam No Messages 0.817358 PMM
357 W24X55 Beam No Messages 0.946943 PMM
358 W24X55 Beam No Messages 0.865826 PMM
359 W24X62 Beam No Messages 0.871933 PMM
360 W24X62 Beam No Messages 0.880995 PMM
361 W24X55 Beam No Messages 0.852020 PMM
362 W24X55 Beam No Messages 0.855925 PMM
363 W24X55 Beam No Messages 0.853516 PMM
364 W24X55 Beam No Messages 0.848069 PMM
365 W24X62 Beam No Messages 0.880054 PMM
366 W24X62 Beam No Messages 0.868503 PMM
367 W24X55 Beam No Messages 0.947057 PMM
368 W24X62 Beam No Messages 0.817329 PMM
369 W24X55 Beam No Messages 0.946920 PMM
370 W24X55 Beam No Messages 0.866382 PMM
371 W24X62 Beam No Messages 0.866035 PMM
372 W21X44 Beam No Messages 0.892329 PMM
373 W21X44 Beam No Messages 0.873744 PMM
374 W21X44 Beam No Messages 0.903165 PMM
375 W18X35 Beam No Messages 0.888504 PMM
376 W18X35 Beam No Messages 0.888511 PMM
377 W21X44 Beam No Messages 0.814431 PMM
378 W21X44 Beam No Messages 0.803866 PMM
379 W21X44 Beam No Messages 0.813757 PMM
380 W18X35 Beam No Messages 0.637631 PMM
381 W18X35 Beam No Messages 0.437751 PMM
382 W18X35 Beam No Messages 0.442166 PMM
383 W21X44 Beam No Messages 0.814505 PMM
384 W21X44 Beam No Messages 0.803858 PMM
385 W21X44 Beam No Messages 0.813793 PMM
386 W18X35 Beam No Messages 0.637327 PMM
387 W18X35 Beam No Messages 0.437660 PMM
388 W18X35 Beam No Messages 0.442102 PMM
389 W18X50 Beam No Messages 0.831598 PMM
390 W18X50 Beam No Messages 0.832852 PMM
391 W18X50 Beam No Messages 0.832852 PMM
392 W18X50 Beam No Messages 0.831596 PMM
393 W18X50 Beam No Messages 0.831627 PMM
394 W18X50 Beam No Messages 0.832776 PMM
395 W18X50 Beam No Messages 0.832777 PMM
396 W18X50 Beam No Messages 0.831615 PMM
397 W18X50 Beam No Messages 0.831635 PMM
398 W18X50 Beam No Messages 0.831570 PMM
399 W18X50 Beam No Messages 0.831563 PMM
400 W18X50 Beam No Messages 0.831633 PMM
401 W18X50 Beam No Messages 0.831633 PMM
402 W18X50 Beam No Messages 0.832754 PMM
403 W18X50 Beam No Messages 0.832754 PMM
404 W18X50 Beam No Messages 0.831621 PMM
405 W18X50 Beam No Messages 0.831677 PMM
406 W18X50 Beam No Messages 0.832828 PMM
407 W18X50 Beam No Messages 0.832829 PMM
408 W18X50 Beam No Messages 0.831674 PMM
409 W18X50 Beam No Messages 0.837305 PMM


MRF 3-story.sdb
3-Story MRF
SAP2000 V17.3.0
27 March 2016
Table: Steel Design 1 Summary Data AISC 360-10, Part 1 of 2
Frame DesignSect Design Type Status Ratio RatioType
410 W18X50 Beam No Messages 0.831605 PMM
411 W18X50 Beam No Messages 0.831645 PMM
412 W18X50 Beam No Messages 0.831643 PMM
413 W18X50 Beam No Messages 0.831656 PMM
414 W18X50 Beam No Messages 0.831665 PMM
415 W18X50 Beam No Messages 0.831670 PMM
416 W18X50 Beam No Messages 0.831664 PMM
417 W18X50 Beam No Messages 0.831636 PMM
418 W18X50 Beam No Messages 0.831651 PMM
419 W18X50 Beam No Messages 0.831622 PMM
420 W18X50 Beam No Messages 0.837303 PMM
421 W18X50 Beam No Messages 0.832844 PMM
422 W18X50 Beam No Messages 0.838514 PMM
423 W18X50 Beam No Messages 0.832849 PMM
424 W18X50 Beam No Messages 0.838352 PMM
425 W18X50 Beam No Messages 0.831665 PMM
426 W18X50 Beam No Messages 0.837159 PMM
427 W18X50 Beam No Messages 0.831632 PMM
428 W18X50 Beam No Messages 0.831638 PMM
429 W18X50 Beam No Messages 0.832775 PMM
430 W18X50 Beam No Messages 0.832798 PMM
431 W18X50 Beam No Messages 0.832768 PMM
432 W18X50 Beam No Messages 0.832797 PMM
433 W18X50 Beam No Messages 0.831554 PMM
434 W18X50 Beam No Messages 0.831546 PMM
435 W18X50 Beam No Messages 0.831555 PMM
436 W18X50 Beam No Messages 0.832752 PMM
437 W18X50 Beam No Messages 0.831660 PMM
438 W18X50 Beam No Messages 0.831661 PMM
439 W18X50 Beam No Messages 0.831653 PMM
440 W18X50 Beam No Messages 0.831655 PMM
441 W18X50 Beam No Messages 0.832760 PMM
442 W18X50 Beam No Messages 0.831552 PMM
443 W18X50 Beam No Messages 0.832755 PMM
444 W18X50 Beam No Messages 0.831551 PMM
445 W18X50 Beam No Messages 0.832839 PMM
446 W18X50 Beam No Messages 0.832806 PMM
447 W18X50 Beam No Messages 0.832840 PMM
448 W18X50 Beam No Messages 0.832813 PMM
449 W18X50 Beam No Messages 0.831632 PMM
450 W18X50 Beam No Messages 0.831640 PMM
451 W18X50 Beam No Messages 0.837164 PMM
452 W18X50 Beam No Messages 0.831648 PMM
453 W18X50 Beam No Messages 0.838348 PMM
454 W18X50 Beam No Messages 0.832863 PMM
455 W18X50 Beam No Messages 0.838511 PMM
456 W18X50 Beam No Messages 0.832858 PMM
457 W18X35 Beam No Messages 0.002876 PMM
458 W18X35 Beam No Messages 0.002362 PMM
459 W18X35 Beam No Messages 0.002362 PMM
460 W18X35 Beam No Messages 0.002876 PMM
461 W18X35 Beam No Messages 0.002876 PMM
462 W18X35 Beam No Messages 0.002362 PMM
463 W18X35 Beam No Messages 0.002362 PMM
Q+ri i.~+i irac
I -3 r.f -1 7
MRF 3-story.sdb
3-Story MRF
SAP2000 V17.3.0
27 March 2016
Table: Steel Design 1 Summary Data AISC 360-10, Part 1 of 2
Frame DesignSect DesignType Status Ratio RatioType
464 W18X35 Beam No Messages 0.002877 PMM
465 W18X35 Beam No Messages 0.002876 PMM
466 W18X35 Beam No Messages 0.002362 PMM
467 W18X35 Beam No Messages 0.002362 PMM
468 W18X35 Beam No Messages 0.002876 PMM
469 W18X35 Beam No Messages 0.002362 PMM
470 W18X35 Beam No Messages 0.002877 PMM
471 W18X35 Beam No Messages 0.002876 PMM
472 W18X35 Beam No Messages 0.002362 PMM
473 W21X44 Beam No Messages 0.852189 PMM
474 W21X44 Beam No Messages 0.762916 PMM
475 W21X44 Beam No Messages 0.869603 PMM
476 W24X68 Beam No Messages 0.745904 PMM
477 W24X62 Beam No Messages 0.830731 PMM
478 W24X62 Beam No Messages 0.836167 PMM
479 W24X62 Beam No Messages 0.831043 PMM
480 W24X55 Beam No Messages 0.867345 PMM
481 W24X68 Beam No Messages 0.742701 PMM
482 W24X68 Beam No Messages 0.753325 PMM
483 W24X55 Beam No Messages 0.850834 PMM
484 W24X55 Beam No Messages 0.853665 PMM
485 W24X55 Beam No Messages 0.851666 PMM
486 W24X55 Beam No Messages 0.848528 PMM
487 W24X68 Beam No Messages 0.752522 PMM
488 W24X68 Beam No Messages 0.741000 PMM
489 W24X62 Beam No Messages 0.831073 PMM
490 W24X62 Beam No Messages 0.836147 PMM
491 W24X62 Beam No Messages 0.831028 PMM
492 W24X55 Beam No Messages 0.867702 PMM
493 W24X68 Beam No Messages 0.737804 PMM
494 W21X44 Beam No Messages 0.846424 PMM
495 W21X44 Beam No Messages 0.762718 PMM
496 W21X44 Beam No Messages 0.863760 PMM
497 W18X35 Beam No Messages 0.888488 PMM
498 W18X35 Beam No Messages 0.888502 PMM
499 W21X48 Beam No Messages 0.681151 PMM
500 W21X48 Beam No Messages 0.765751 PMM
501 W21X48 Beam No Messages 0.762421 PMM
502 W21X44 Beam No Messages 0.446284 PMM
503 W21X44 Beam No Messages 0.417982 PMM
504 W21X44 Beam No Messages 0.439893 PMM
505 W21X48 Beam No Messages 0.681076 PMM
506 W21X48 Beam No Messages 0.765871 PMM
507 W21X48 Beam No Messages 0.762461 PMM
508 W21X44 Beam No Messages 0.446384 PMM
509 W21X44 Beam No Messages 0.417959 PMM
510 W21X44 Beam No Messages 0.439863 PMM
511 W18X50 Beam No Messages 0.831558 PMM
512 W18X50 Beam No Messages 0.831749 PMM
513 W18X50 Beam No Messages 0.831737 PMM
514 W18X50 Beam No Messages 0.831561 PMM
515 W18X50 Beam No Messages 0.831589 PMM
516 W18X50 Beam No Messages 0.831727 PMM
517 W18X50 Beam No Messages 0.831730 PMM
Qtri i^ti irac
.f -17


MRF 3-story.sdb
3-Story MRF
SAP2000 V17.3.0
27 March 2016
Table: Steel Design 1 Summary Data AISC 360-10, Part 1 of 2
Frame DesignSect DesignType Status Ratio RatioType
518 W18X50 Beam No Messages 0.831597 PMM
519 W18X50 Beam No Messages 0.831582 PMM
520 W18X50 Beam No Messages 0.831684 PMM
521 W18X50 Beam No Messages 0.831688 PMM
522 W18X50 Beam No Messages 0.831596 PMM
523 W18X50 Beam No Messages 0.831590 PMM
524 W18X50 Beam No Messages 0.831754 PMM
525 W18X50 Beam No Messages 0.831757 PMM
526 W18X50 Beam No Messages 0.831598 PMM
527 W18X50 Beam No Messages 0.832752 PMM
528 W18X50 Beam No Messages 0.831769 PMM
529 W18X50 Beam No Messages 0.831756 PMM
530 W18X50 Beam No Messages 0.832750 PMM
531 W18X50 Beam No Messages 0.838417 PMM
532 W18X50 Beam No Messages 0.832756 PMM
533 W18X50 Beam No Messages 0.831592 PMM
534 W18X50 Beam No Messages 0.831595 PMM
535 W18X50 Beam No Messages 0.831597 PMM
536 W18X50 Beam No Messages 0.831598 PMM
537 W18X50 Beam No Messages 0.831595 PMM
538 W18X50 Beam No Messages 0.831593 PMM
539 W18X50 Beam No Messages 0.831607 PMM
540 W18X50 Beam No Messages 0.831599 PMM
541 W18X50 Beam No Messages 0.832765 PMM
542 W18X50 Beam No Messages 0.838429 PMM
543 W18X50 Beam No Messages 0.831632 PMM
544 W18X50 Beam No Messages 0.838539 PMM
545 W18X50 Beam No Messages 0.831613 PMM
546 W18X50 Beam No Messages 0.838502 PMM
547 W18X50 Beam No Messages 0.832750 PMM
548 W18X50 Beam No Messages 0.838408 PMM
549 W18X50 Beam No Messages 0.831619 PMM
550 W18X50 Beam No Messages 0.831604 PMM
551 W18X50 Beam No Messages 0.831787 PMM
552 W18X50 Beam No Messages 0.831795 PMM
553 W18X50 Beam No Messages 0.831793 PMM
554 W18X50 Beam No Messages 0.831802 PMM
555 W18X50 Beam No Messages 0.831690 PMM
556 W18X50 Beam No Messages 0.831715 PMM
557 W18X50 Beam No Messages 0.831695 PMM
558 W18X50 Beam No Messages 0.831716 PMM
559 W18X50 Beam No Messages 0.831607 PMM
560 W18X50 Beam No Messages 0.831609 PMM
561 W18X50 Beam No Messages 0.831613 PMM
562 W18X50 Beam No Messages 0.831610 PMM
563 W18X50 Beam No Messages 0.831706 PMM
564 W18X50 Beam No Messages 0.831693 PMM
565 W18X50 Beam No Messages 0.831705 PMM
566 W18X50 Beam No Messages 0.831688 PMM
567 W18X50 Beam No Messages 0.831763 PMM
568 W18X50 Beam No Messages 0.831752 PMM
569 W18X50 Beam No Messages 0.831757 PMM
570 W18X50 Beam No Messages 0.831746 PMM
571 W18X50 Beam No Messages 0.831596 PMM
Qtri i^ti irac
I ^ nf A 7
MRF 3-story.sdb
3-Story MRF
SAP2000 V17.3.0
27 March 2016
Table: Steel Design 1 Summary Data AISC 360-10, Part 1 of 2
Frame DesignSect DesignType Status Ratio RatioType
572 W18X50 Beam No Messages 0.831607 PMM
573 W18X50 Beam No Messages 0.838397 PMM
574 W18X50 Beam No Messages 0.831556 PMM
575 W18X50 Beam No Messages 0.838479 PMM
576 W18X50 Beam No Messages 0.831625 PMM
577 W18X50 Beam No Messages 0.838515 PMM
578 W18X50 Beam No Messages 0.831645 PMM
579 W18X35 Beam No Messages 0.002362 PMM
580 W18X35 Beam No Messages 0.002876 PMM
581 W18X35 Beam No Messages 0.002876 PMM
582 W18X35 Beam No Messages 0.002362 PMM
583 W18X35 Beam No Messages 0.002362 PMM
584 W18X35 Beam No Messages 0.002876 PMM
585 W18X35 Beam No Messages 0.002877 PMM
586 W18X35 Beam No Messages 0.002364 PMM
587 W18X35 Beam No Messages 0.002362 PMM
588 W18X35 Beam No Messages 0.002876 PMM
589 W18X35 Beam No Messages 0.002876 PMM
590 W18X35 Beam No Messages 0.002362 PMM
591 W18X35 Beam No Messages 0.002877 PMM
592 W18X35 Beam No Messages 0.002364 PMM
593 W18X35 Beam No Messages 0.002362 PMM
594 W18X35 Beam No Messages 0.002876 PMM
595 W14X68 Column No Messages 0.038087 PMM
596 W14X68 Column No Messages 0.819504 PMM
597 W14X68 Column No Messages 0.769456 PMM
598 W14X68 Column No Messages 0.769339 PMM
599 W14X68 Column No Messages 0.817504 PMM
600 W14X68 Column No Messages 0.770188 PMM
601 W14X68 Column No Messages 0.038002 PMM
630 W14X109 Column No Messages 0.945907 PMM
631 W14X99 Column No Messages 0.894627 PMM
632 W14X90 Column No Messages 0.929305 PMM
633 W14X90 Column No Messages 0.930242 PMM
634 W14X99 Column No Messages 0.877061 PMM
635 W14X99 Column No Messages 0.865613 PMM
636 W14X109 Column No Messages 0.945830 PMM
637 W14X109 Column No Messages 0.874181 PMM
638 W14X99 Column No Messages 0.879476 PMM
639 W14X90 Column No Messages 0.938752 PMM
640 W14X90 Column No Messages 0.940236 PMM
641 W14X90 Column No Messages 0.945640 PMM
642 W14X99 Column No Messages 0.875928 PMM
643 W14X109 Column No Messages 0.873309 PMM
644 W14X132 Column No Messages 0.898600 PMM
645 W14X99 Column No Messages 0.891960 PMM
646 W14X90 Column No Messages 0.929022 PMM
647 W14X90 Column No Messages 0.929903 PMM
648 W14X99 Column No Messages 0.877826 PMM
649 W14X99 Column No Messages 0.866128 PMM
650 W14X132 Column No Messages 0.898548 PMM
651 W14X68 Column No Messages 0.033602 PMM
652 W14X68 Column No Messages 0.819788 PMM
653 W14X68 Column No Messages 0.769890 PMM
Q+ri i.~+i irac
IR nf 1 7


MRF 3-story.sdb
3-Story MRF
SAP2000 V17.3.0
27 March 2016
Table: Steel Design 1 Summary Data AISC 360-10, Part 1 of 2
Frame DesignSect DesignType Status Ratio RatioType
654 W14X68 Column No Messages 0.769708 PMM
655 W14X68 Column No Messages 0.818018 PMM
656 W14X68 Column No Messages 0.769236 PMM
657 W14X68 Column No Messages 0.033944 PMM
00
e onH Q+rii^+iirae
I 7 nf 17


BF 3-story.sdb
3-Story CBF
SAP2000 V17.3.0
27 March 2016
3-Story CBF
Table: Joint Reactions
Table: Joint Reactions
Joint OutputCase CaseType F1 Kip F2 Kip F3 Kip M1 Kip-ft M2 Kip-ft M3 Kip-ft
604 DEAD LinStatic -2.230 -1.685 121.269 0.0000 0.0000 0.0000
604 LIVE LinStatic -1.278 -0.965 68.980 0.0000 0.0000 0.0000
604 WIND LinStatic -82.773 114.302 -62.854 0.0000 0.0000 0.0000
604 DSTL1 Combination -3.122 -2.360 169.777 0.0000 0.0000 0.0000
604 DSTL2 Combination -4.720 -3.566 255.891 0.0000 0.0000 0.0000
604 DSTL3 Combination -85.448 112.280 82.669 0.0000 0.0000 0.0000
604 DSTL4 Combination 80.097 -116.325 208.377 0.0000 0.0000 0.0000
604 DSTL5 Combination -44.062 55.129 114.096 0.0000 0.0000 0.0000
604 DSTL6 Combination 38.711 -59.174 176.950 0.0000 0.0000 0.0000
604 DSTL7 Combination -84.779 112.785 46.288 0.0000 0.0000 0.0000
604 DSTL8 Combination 80.766 -115.819 171.997 0.0000 0.0000 0.0000
604 DSTL9 Combination -2.230 -1.685 121.269 0.0000 0.0000 0.0000
604 DSTL10 Combination -3.508 -2.650 190.250 0.0000 0.0000 0.0000
605 DEAD LinStatic 12.295 -0.197 235.649 0.0000 0.0000 0.0000
605 LIVE LinStatic 7.196 -0.115 138.299 0.0000 0.0000 0.0000
605 WIND LinStatic -4.686 0.024 -3.463 0.0000 0.0000 0.0000
605 DSTL1 Combination 17.212 -0.276 329.908 0.0000 0.0000 0.0000
605 DSTL2 Combination 26.267 -0.420 504.056 0.0000 0.0000 0.0000
605 DSTL3 Combination 10.067 -0.213 279.316 0.0000 0.0000 0.0000
605 DSTL4 Combination 19.440 -0.261 286.241 0.0000 0.0000 0.0000
605 DSTL5 Combination 12.410 -0.225 281.047 0.0000 0.0000 0.0000
605 DSTL6 Combination 17.097 -0.249 284.510 0.0000 0.0000 0.0000
605 DSTL7 Combination 6.379 -0.153 208.621 0.0000 0.0000 0.0000
605 DSTL8 Combination 15.751 -0.202 215.547 0.0000 0.0000 0.0000
605 DSTL9 Combination 12.295 -0.197 235.649 0.0000 0.0000 0.0000
605 DSTL10 Combination 19.490 -0.312 373.947 0.0000 0.0000 0.0000
606 DEAD LinStatic -0.012 -0.192 226.604 0.0000 0.0000 0.0000
606 LIVE LinStatic -7.738E-03 -0.111 132.522 0.0000 0.0000 0.0000
606 WIND LinStatic -0.064 0.024 -7.043E-03 0.0000 0.0000 0.0000
606 DSTL1 Combination -0.016 -0.268 317.245 0.0000 0.0000 0.0000
606 DSTL2 Combination -0.026 -0.408 483.960 0.0000 0.0000 0.0000
606 DSTL3 Combination -0.078 -0.205 271.917 0.0000 0.0000 0.0000
606 DSTL4 Combination 0.050 -0.254 271.932 0.0000 0.0000 0.0000
606 DSTL5 Combination -0.046 -0.218 271.921 0.0000 0.0000 0.0000
606 DSTL6 Combination 0.018 -0.242 271.928 0.0000 0.0000 0.0000
606 DSTL7 Combination -0.075 -0.148 203.936 0.0000 0.0000 0.0000
606 DSTL8 Combination 0.054 -0.197 203.950 0.0000 0.0000 0.0000
606 DSTL9 Combination -0.012 -0.192 226.604 0.0000 0.0000 0.0000
606 DSTL10 Combination -0.019 -0.303 359.126 0.0000 0.0000 0.0000
607 DEAD LinStatic -2.046 -0.192 237.083 0.0000 0.0000 0.0000
607 LIVE LinStatic -1.176 -0.112 138.592 0.0000 0.0000 0.0000
607 WIND LinStatic -8.976 0.024 0.145 0.0000 0.0000 0.0000
607 DSTL1 Combination -2.865 -0.269 331.917 0.0000 0.0000 0.0000
607 DSTL2 Combination -4.337 -0.409 506.247 0.0000 0.0000 0.0000
607 DSTL3 Combination -11.431 -0.206 284.645 0.0000 0.0000 0.0000
607 DSTL4 Combination 6.521 -0.255 284.355 0.0000 0.0000 0.0000
607 DSTL5 Combination -6.943 -0.218 284.573 0.0000 0.0000 0.0000
607 DSTL6 Combination 2.033 -0.243 284.427 0.0000 0.0000 0.0000
607 DSTL7 Combination -10.818 -0.148 213.520 0.0000 0.0000 0.0000
607 DSTL8 Combination 7.134 -0.197 213.230 0.0000 0.0000 0.0000
>m m itorc onH Qtri i^ti i D one, -1 nf -1
BF 3-story.sdb
3-Story CBF
SAP2000 V17.3.0
27 March 2016
Table: Joint Reactions
Joint OutputCase CaseType F1 Kip F2 Kip F3 Kip M1 Kip-ft M2 Kip-ft M3 Kip-ft
607 DSTL9 Combination -2.046 -0.192 237.083 0.0000 0.0000 0.0000
607 DSTL10 Combination -3.222 -0.304 375.675 0.0000 0.0000 0.0000
608 DEAD LinStatic -0.066 -0.191 227.870 0.0000 0.0000 0.0000
608 LIVE LinStatic -0.038 -0.111 133.784 0.0000 0.0000 0.0000
608 WIND LinStatic -0.062 0.025 3.075 0.0000 0.0000 0.0000
608 DSTL1 Combination -0.092 -0.268 319.018 0.0000 0.0000 0.0000
608 DSTL2 Combination -0.139 -0.407 487.499 0.0000 0.0000 0.0000
608 DSTL3 Combination -0.141 -0.205 276.519 0.0000 0.0000 0.0000
608 DSTL4 Combination -0.017 -0.254 270.369 0.0000 0.0000 0.0000
608 DSTL5 Combination -0.110 -0.217 274.982 0.0000 0.0000 0.0000
608 DSTL6 Combination -0.048 -0.242 271.906 0.0000 0.0000 0.0000
608 DSTL7 Combination -0.121 -0.147 208.158 0.0000 0.0000 0.0000
608 DSTL8 Combination 2.953 E-03 -0.197 202.008 0.0000 0.0000 0.0000
608 DSTL9 Combination -0.066 -0.191 227.870 0.0000 0.0000 0.0000
608 DSTL10 Combination -0.103 -0.302 361.654 0.0000 0.0000 0.0000
609 DEAD LinStatic 0.109 -0.196 232.398 0.0000 0.0000 0.0000
609 LIVE LinStatic 0.064 -0.114 137.011 0.0000 0.0000 0.0000
609 WIND LinStatic -0.061 0.024 -0.054 0.0000 0.0000 0.0000
609 DSTL1 Combination 0.153 -0.275 325.357 0.0000 0.0000 0.0000
609 DSTL2 Combination 0.234 -0.418 498.096 0.0000 0.0000 0.0000
609 DSTL3 Combination 0.069 -0.212 278.824 0.0000 0.0000 0.0000
609 DSTL4 Combination 0.192 -0.260 278.931 0.0000 0.0000 0.0000
609 DSTL5 Combination 0.100 -0.224 278.851 0.0000 0.0000 0.0000
609 DSTL6 Combination 0.161 -0.248 278.904 0.0000 0.0000 0.0000
609 DSTL7 Combination 0.037 -0.153 209.105 0.0000 0.0000 0.0000
609 DSTL8 Combination 0.160 -0.201 209.212 0.0000 0.0000 0.0000
609 DSTL9 Combination 0.109 -0.196 232.398 0.0000 0.0000 0.0000
609 DSTL10 Combination 0.173 -0.311 369.409 0.0000 0.0000 0.0000
610 DEAD LinStatic -7.911 -1.468 122.058 0.0000 0.0000 0.0000
610 LIVE LinStatic -4.679 -0.836 69.443 0.0000 0.0000 0.0000
610 WIND LinStatic -78.116 113.737 -27.638 0.0000 0.0000 0.0000
610 DSTL1 Combination -11.076 -2.055 170.881 0.0000 0.0000 0.0000
610 DSTL2 Combination -16.980 -3.100 257.578 0.0000 0.0000 0.0000
610 DSTL3 Combination -87.609 111.975 118.831 0.0000 0.0000 0.0000
610 DSTL4 Combination 68.623 -115.498 174.107 0.0000 0.0000 0.0000
610 DSTL5 Combination -48.551 55.107 132.650 0.0000 0.0000 0.0000
610 DSTL6 Combination 29.565 -58.630 160.288 0.0000 0.0000 0.0000
610 DSTL7 Combination -85.236 112.416 82.214 0.0000 0.0000 0.0000
610 DSTL8 Combination 70.996 -115.058 137.490 0.0000 0.0000 0.0000
610 DSTL9 Combination -7.911 -1.468 122.058 0.0000 0.0000 0.0000
610 DSTL10 Combination -12.590 -2.304 191.501 0.0000 0.0000 0.0000
667 DEAD LinStatic 4.296 -7.801 214.833 0.0000 0.0000 0.0000
667 LIVE LinStatic 2.477 -4.473 122.284 0.0000 0.0000 0.0000
667 WIND LinStatic -0.053 18.940 -0.644 0.0000 0.0000 0.0000
667 DSTL1 Combination 6.014 -10.921 300.766 0.0000 0.0000 0.0000
667 DSTL2 Combination 9.119 -16.518 453.453 0.0000 0.0000 0.0000
667 DSTL3 Combination 5.102 9.579 257.155 0.0000 0.0000 0.0000
667 DSTL4 Combination 5.208 -28.301 258.443 0.0000 0.0000 0.0000
667 DSTL5 Combination 5.129 0.109 257.477 0.0000 0.0000 0.0000
667 DSTL6 Combination 5.182 -18.831 258.121 0.0000 0.0000 0.0000
667 DSTL7 Combination 3.814 11.919 192.705 0.0000 0.0000 0.0000
667 DSTL8 Combination 3.919 -25.961 193.993 0.0000 0.0000 0.0000
667 DSTL9 Combination 4.296 -7.801 214.833 0.0000 0.0000 0.0000
667 DSTL10 Combination 6.773 -12.274 337.116 0.0000 0.0000 0.0000


BF 3-story.sdb
3-Story CBF
SAP2000 V17.3.0
27 March 2016
Table: Joint Reactions
Joint OutputCase CaseType F1 Kip F2 Kip F3 Kip M1 Kip-ft M2 Kip-ft M3 Kip-ft
668 DEAD LinStatic 0.118 -0.055 471.337 0.0000 0.0000 0.0000
668 LIVE LinStatic 0.083 -0.032 279.592 0.0000 0.0000 0.0000
668 WIND LinStatic -0.066 0.123 0.012 0.0000 0.0000 0.0000
668 DSTL1 Combination 0.166 -0.077 659.872 0.0000 0.0000 0.0000
668 DSTL2 Combination 0.275 -0.117 1012.951 0.0000 0.0000 0.0000
668 DSTL3 Combination 0.076 0.057 565.616 0.0000 0.0000 0.0000
668 DSTL4 Combination 0.208 -0.189 565.593 0.0000 0.0000 0.0000
668 DSTL5 Combination 0.109 -4.569E-03 565.610 0.0000 0.0000 0.0000
668 DSTL6 Combination 0.175 -0.127 565.599 0.0000 0.0000 0.0000
668 DSTL7 Combination 0.040 0.073 424.215 0.0000 0.0000 0.0000
668 DSTL8 Combination 0.173 -0.172 424.192 0.0000 0.0000 0.0000
668 DSTL9 Combination 0.118 -0.055 471.337 0.0000 0.0000 0.0000
668 DSTL10 Combination 0.202 -0.087 750.929 0.0000 0.0000 0.0000
669 DEAD LinStatic -0.012 -0.049 452.282 0.0000 0.0000 0.0000
669 LIVE LinStatic -8.167 E-03 -0.029 269.006 0.0000 0.0000 0.0000
669 WIND LinStatic -0.060 0.115 -7.834E-03 0.0000 0.0000 0.0000
669 DSTL1 Combination -0.017 -0.069 633.194 0.0000 0.0000 0.0000
669 DSTL2 Combination -0.027 -0.105 973.148 0.0000 0.0000 0.0000
669 DSTL3 Combination -0.074 0.056 542.730 0.0000 0.0000 0.0000
669 DSTL4 Combination 0.045 -0.174 542.746 0.0000 0.0000 0.0000
669 DSTL5 Combination -0.044 -1.626E-03 542.734 0.0000 0.0000 0.0000
669 DSTL6 Combination 0.016 -0.117 542.742 0.0000 0.0000 0.0000
669 DSTL7 Combination -0.071 0.071 407.046 0.0000 0.0000 0.0000
669 DSTL8 Combination 0.049 -0.159 407.061 0.0000 0.0000 0.0000
669 DSTL9 Combination -0.012 -0.049 452.282 0.0000 0.0000 0.0000
669 DSTL10 Combination -0.020 -0.078 721.288 0.0000 0.0000 0.0000
670 DEAD LinStatic -0.016 -0.050 453.180 0.0000 0.0000 0.0000
670 LIVE LinStatic -9.520 E-03 -0.029 269.508 0.0000 0.0000 0.0000
670 WIND LinStatic -0.059 0.115 -6.975E-03 0.0000 0.0000 0.0000
670 DSTL1 Combination -0.023 -0.070 634.453 0.0000 0.0000 0.0000
670 DSTL2 Combination -0.035 -0.106 975.029 0.0000 0.0000 0.0000
670 DSTL3 Combination -0.078 0.055 543.809 0.0000 0.0000 0.0000
670 DSTL4 Combination 0.039 -0.175 543.823 0.0000 0.0000 0.0000
670 DSTL5 Combination -0.049 -2.158E-03 543.813 0.0000 0.0000 0.0000
670 DSTL6 Combination 9.954 E-03 -0.117 543.820 0.0000 0.0000 0.0000
670 DSTL7 Combination -0.073 0.070 407.855 0.0000 0.0000 0.0000
670 DSTL8 Combination 0.044 -0.160 407.869 0.0000 0.0000 0.0000
670 DSTL9 Combination -0.016 -0.050 453.180 0.0000 0.0000 0.0000
670 DSTL10 Combination -0.026 -0.079 722.688 0.0000 0.0000 0.0000
671 DEAD LinStatic -0.019 -0.046 452.286 0.0000 0.0000 0.0000
671 LIVE LinStatic -9.958 E-03 -0.027 269.010 0.0000 0.0000 0.0000
671 WIND LinStatic -0.059 0.116 -3.436E-03 0.0000 0.0000 0.0000
671 DSTL1 Combination -0.026 -0.065 633.200 0.0000 0.0000 0.0000
671 DSTL2 Combination -0.038 -0.098 973.159 0.0000 0.0000 0.0000
671 DSTL3 Combination -0.081 0.060 542.740 0.0000 0.0000 0.0000
671 DSTL4 Combination 0.036 -0.171 542.746 0.0000 0.0000 0.0000
671 DSTL5 Combination -0.052 2.483E-03 542.741 0.0000 0.0000 0.0000
671 DSTL6 Combination 6.846 E-03 -0.113 542.745 0.0000 0.0000 0.0000
671 DSTL7 Combination -0.076 0.074 407.054 0.0000 0.0000 0.0000
671 DSTL8 Combination 0.042 -0.157 407.061 0.0000 0.0000 0.0000
671 DSTL9 Combination -0.019 -0.046 452.286 0.0000 0.0000 0.0000
671 DSTL10 Combination -0.029 -0.073 721.296 0.0000 0.0000 0.0000
672 DEAD LinStatic -0.153 -0.048 471.352 0.0000 0.0000 0.0000
672 LIVE LinStatic -0.103 -0.028 279.601 0.0000 0.0000 0.0000
onH Qtri mti ir Inr' D one, Q nf -T
BF 3-story.sdb
3-Story CBF
SAP2000 V17.3.0
27 March 2016
Table: Joint Reactions
Joint OutputCase CaseType F1 Kip F2 Kip F3 Kip M1 Kip-ft M2 Kip-ft M3 Kip-ft
672 WIND LinStatic -0.065 0.122 -0.038 0.0000 0.0000 0.0000
672 DSTL1 Combination -0.214 -0.067 659.892 0.0000 0.0000 0.0000
672 DSTL2 Combination -0.349 -0.102 1012.984 0.0000 0.0000 0.0000
672 DSTL3 Combination -0.248 0.065 565.584 0.0000 0.0000 0.0000
672 DSTL4 Combination -0.118 -0.180 565.660 0.0000 0.0000 0.0000
672 DSTL5 Combination -0.216 3.711E-03 565.603 0.0000 0.0000 0.0000
672 DSTL6 Combination -0.151 -0.119 565.641 0.0000 0.0000 0.0000
672 DSTL7 Combination -0.202 0.079 424.179 0.0000 0.0000 0.0000
672 DSTL8 Combination -0.073 -0.165 424.254 0.0000 0.0000 0.0000
672 DSTL9 Combination -0.153 -0.048 471.352 0.0000 0.0000 0.0000
672 DSTL10 Combination -0.256 -0.075 750.953 0.0000 0.0000 0.0000
673 DEAD LinStatic -4.338 -8.201 214.793 0.0000 0.0000 0.0000
673 LIVE LinStatic -2.502 -4.709 122.260 0.0000 0.0000 0.0000
673 WIND LinStatic -0.052 19.214 -0.177 0.0000 0.0000 0.0000
673 DSTL1 Combination -6.074 -11.481 300.711 0.0000 0.0000 0.0000
673 DSTL2 Combination -9.210 -17.376 453.368 0.0000 0.0000 0.0000
673 DSTL3 Combination -5.258 9.373 257.575 0.0000 0.0000 0.0000
673 DSTL4 Combination -5.154 -29.054 257.929 0.0000 0.0000 0.0000
673 DSTL5 Combination -5.232 -0.234 257.664 0.0000 0.0000 0.0000
673 DSTL6 Combination -5.180 -19.448 257.840 0.0000 0.0000 0.0000
673 DSTL7 Combination -3.956 11.833 193.137 0.0000 0.0000 0.0000
673 DSTL8 Combination -3.853 -26.594 193.491 0.0000 0.0000 0.0000
673 DSTL9 Combination -4.338 -8.201 214.793 0.0000 0.0000 0.0000
673 DSTL10 Combination -6.841 -12.910 337.054 0.0000 0.0000 0.0000
674 DEAD LinStatic 3.925 -0.018 213.482 0.0000 0.0000 0.0000
674 LIVE LinStatic 2.270 -0.011 121.818 0.0000 0.0000 0.0000
674 WIND LinStatic -0.049 0.090 -0.223 0.0000 0.0000 0.0000
674 DSTL1 Combination 5.495 -0.025 298.875 0.0000 0.0000 0.0000
674 DSTL2 Combination 8.343 -0.038 451.087 0.0000 0.0000 0.0000
674 DSTL3 Combination 4.661 0.068 255.955 0.0000 0.0000 0.0000
674 DSTL4 Combination 4.759 -0.111 256.401 0.0000 0.0000 0.0000
674 DSTL5 Combination 4.686 0.023 256.067 0.0000 0.0000 0.0000
674 DSTL6 Combination 4.735 -0.066 256.290 0.0000 0.0000 0.0000
674 DSTL7 Combination 3.484 0.073 191.911 0.0000 0.0000 0.0000
674 DSTL8 Combination 3.582 -0.106 192.357 0.0000 0.0000 0.0000
674 DSTL9 Combination 3.925 -0.018 213.482 0.0000 0.0000 0.0000
674 DSTL10 Combination 6.195 -0.029 335.300 0.0000 0.0000 0.0000
675 DEAD LinStatic 0.135 -0.019 474.354 0.0000 0.0000 0.0000
675 LIVE LinStatic 0.095 -0.011 281.378 0.0000 0.0000 0.0000
675 WIND LinStatic -0.061 0.124 0.037 0.0000 0.0000 0.0000
675 DSTL1 Combination 0.189 -0.027 664.096 0.0000 0.0000 0.0000
675 DSTL2 Combination 0.315 -0.041 1019.430 0.0000 0.0000 0.0000
675 DSTL3 Combination 0.101 0.101 569.262 0.0000 0.0000 0.0000
675 DSTL4 Combination 0.224 -0.148 569.188 0.0000 0.0000 0.0000
675 DSTL5 Combination 0.132 0.039 569.244 0.0000 0.0000 0.0000
675 DSTL6 Combination 0.193 -0.085 569.207 0.0000 0.0000 0.0000
675 DSTL7 Combination 0.060 0.107 426.956 0.0000 0.0000 0.0000
675 DSTL8 Combination 0.183 -0.142 426.882 0.0000 0.0000 0.0000
675 DSTL9 Combination 0.135 -0.019 474.354 0.0000 0.0000 0.0000
675 DSTL10 Combination 0.231 -0.031 755.732 0.0000 0.0000 0.0000
676 DEAD LinStatic -0.018 -0.017 453.881 0.0000 0.0000 0.0000
676 LIVE LinStatic -0.012 -9.990E-03 269.994 0.0000 0.0000 0.0000
676 WIND LinStatic -0.055 0.116 -2.925E-04 0.0000 0.0000 0.0000
676 DSTL1 Combination -0.025 -0.024 635.433 0.0000 0.0000 0.0000
.mnutore onH Qtri mti i Inr' D one, >1 nf -1


BF 3-story.sdb
3-Story CBF
SAP2000 V17.3.0
27 March 2016
Table: Joint Reactions
Joint OutputCase CaseType F1 Kip F2 Kip F3 Kip M1 Kip-ft M2 Kip-ft M3 Kip-ft
676 DSTL2 Combination -0.040 -0.037 976.647 0.0000 0.0000 0.0000
676 DSTL3 Combination -0.076 0.095 544.657 0.0000 0.0000 0.0000
676 DSTL4 Combination 0.034 -0.137 544.657 0.0000 0.0000 0.0000
676 DSTL5 Combination -0.049 0.037 544.657 0.0000 0.0000 0.0000
676 DSTL6 Combination 6.242E-03 -0.079 544.657 0.0000 0.0000 0.0000
676 DSTL7 Combination -0.071 0.100 408.492 0.0000 0.0000 0.0000
676 DSTL8 Combination 0.039 -0.131 408.493 0.0000 0.0000 0.0000
676 DSTL9 Combination -0.018 -0.017 453.881 0.0000 0.0000 0.0000
676 DSTL10 Combination -0.030 -0.027 723.875 0.0000 0.0000 0.0000
677 DEAD LinStatic -0.016 -0.017 454.844 0.0000 0.0000 0.0000
677 LIVE LinStatic -9.166E-03 9.928E-03 270.522 0.0000 0.0000 0.0000
677 WIND LinStatic -0.056 0.116 -1.161E-03 0.0000 0.0000 0.0000
677 DSTL1 Combination -0.022 -0.024 636.782 0.0000 0.0000 0.0000
677 DSTL2 Combination -0.033 -0.036 978.649 0.0000 0.0000 0.0000
677 DSTL3 Combination -0.074 0.095 545.812 0.0000 0.0000 0.0000
677 DSTL4 Combination 0.037 -0.136 545.814 0.0000 0.0000 0.0000
677 DSTL5 Combination -0.046 0.037 545.813 0.0000 0.0000 0.0000
677 DSTL6 Combination 9.145E-03 -0.079 545.814 0.0000 0.0000 0.0000
677 DSTL7 Combination -0.070 0.101 409.359 0.0000 0.0000 0.0000
677 DSTL8 Combination 0.042 -0.131 409.361 0.0000 0.0000 0.0000
677 DSTL9 Combination -0.016 -0.017 454.844 0.0000 0.0000 0.0000
677 DSTL10 Combination -0.025 -0.027 725.367 0.0000 0.0000 0.0000
678 DEAD LinStatic -0.014 -0.017 453.877 0.0000 0.0000 0.0000
678 LIVE LinStatic -6.718E-03 9.772E-03 269.991 0.0000 0.0000 0.0000
678 WIND LinStatic -0.056 0.116 -4.102E-03 0.0000 0.0000 0.0000
678 DSTL1 Combination -0.019 -0.024 635.428 0.0000 0.0000 0.0000
678 DSTL2 Combination -0.027 -0.036 976.638 0.0000 0.0000 0.0000
678 DSTL3 Combination -0.072 0.096 544.649 0.0000 0.0000 0.0000
678 DSTL4 Combination 0.039 -0.136 544.657 0.0000 0.0000 0.0000
678 DSTL5 Combination -0.044 0.038 544.651 0.0000 0.0000 0.0000
678 DSTL6 Combination 0.011 -0.078 544.655 0.0000 0.0000 0.0000
678 DSTL7 Combination -0.068 0.101 408.485 0.0000 0.0000 0.0000
678 DSTL8 Combination 0.043 -0.131 408.494 0.0000 0.0000 0.0000
678 DSTL9 Combination -0.014 -0.017 453.877 0.0000 0.0000 0.0000
678 DSTL10 Combination -0.020 -0.027 723.868 0.0000 0.0000 0.0000
679 DEAD LinStatic -0.172 -0.019 474.359 0.0000 0.0000 0.0000
679 LIVE LinStatic -0.117 -0.011 281.380 0.0000 0.0000 0.0000
679 WIND LinStatic -0.063 0.124 -0.035 0.0000 0.0000 0.0000
679 DSTL1 Combination -0.240 -0.026 664.102 0.0000 0.0000 0.0000
679 DSTL2 Combination -0.393 -0.040 1019.438 0.0000 0.0000 0.0000
679 DSTL3 Combination -0.269 0.102 569.195 0.0000 0.0000 0.0000
679 DSTL4 Combination -0.143 -0.147 569.265 0.0000 0.0000 0.0000
679 DSTL5 Combination -0.237 0.040 569.213 0.0000 0.0000 0.0000
679 DSTL6 Combination -0.174 -0.084 569.248 0.0000 0.0000 0.0000
679 DSTL7 Combination -0.217 0.107 426.888 0.0000 0.0000 0.0000
679 DSTL8 Combination -0.091 -0.141 426.958 0.0000 0.0000 0.0000
679 DSTL9 Combination -0.172 -0.019 474.359 0.0000 0.0000 0.0000
679 DSTL10 Combination -0.288 -0.030 755.738 0.0000 0.0000 0.0000
680 DEAD LinStatic -3.963 -0.017 213.454 0.0000 0.0000 0.0000
680 LIVE LinStatic -2.292 9.916E-03 121.801 0.0000 0.0000 0.0000
680 WIND LinStatic -0.050 0.090 0.049 0.0000 0.0000 0.0000
680 DSTL1 Combination -5.548 -0.024 298.835 0.0000 0.0000 0.0000
680 DSTL2 Combination -8.423 -0.036 451.027 0.0000 0.0000 0.0000
680 DSTL3 Combination -4.805 0.069 256.193 0.0000 0.0000 0.0000
>mr>i itore onH Qtri mti i D one, fi nf -1
BF 3-story.sdb
3-Story CBF
SAP2000 V17.3.0
27 March 2016
Table: Joint Reactions
Joint OutputCase CaseType F1 Kip F2 Kip F3 Kip M1 Kip-ft M2 Kip-ft M3 Kip-ft
680 DSTL4 Combination -4.706 -0.110 256.096 0.0000 0.0000 0.0000
680 DSTL5 Combination -4.780 0.024 256.169 0.0000 0.0000 0.0000
680 DSTL6 Combination -4.730 -0.065 256.120 0.0000 0.0000 0.0000
680 DSTL7 Combination -3.616 0.074 192.157 0.0000 0.0000 0.0000
680 DSTL8 Combination -3.517 -0.105 192.060 0.0000 0.0000 0.0000
680 DSTL9 Combination -3.963 -0.017 213.454 0.0000 0.0000 0.0000
680 DSTL10 Combination -6.255 -0.027 335.255 0.0000 0.0000 0.0000
681 DEAD LinStatic 4.360 8.412 219.653 0.0000 0.0000 0.0000
681 LIVE LinStatic 2.517 4.816 125.611 0.0000 0.0000 0.0000
681 WIND LinStatic -0.053 9.854 7.153 0.0000 0.0000 0.0000
681 DSTL1 Combination 6.104 11.777 307.515 0.0000 0.0000 0.0000
681 DSTL2 Combination 9.259 17.800 464.562 0.0000 0.0000 0.0000
681 DSTL3 Combination 5.179 19.948 270.737 0.0000 0.0000 0.0000
681 DSTL4 Combination 5.284 0.241 256.431 0.0000 0.0000 0.0000
681 DSTL5 Combination 5.205 15.021 267.161 0.0000 0.0000 0.0000
681 DSTL6 Combination 5.258 5.168 260.007 0.0000 0.0000 0.0000
681 DSTL7 Combination 3.871 17.424 204.841 0.0000 0.0000 0.0000
681 DSTL8 Combination 3.976 -2.283 190.535 0.0000 0.0000 0.0000
681 DSTL9 Combination 4.360 8.412 219.653 0.0000 0.0000 0.0000
681 DSTL10 Combination 6.877 13.228 345.264 0.0000 0.0000 0.0000
682 DEAD LinStatic 0.133 0.017 471.326 0.0000 0.0000 0.0000
682 LIVE LinStatic 0.092 9.815E-03 279.585 0.0000 0.0000 0.0000
682 WIND LinStatic -0.066 0.123 0.048 0.0000 0.0000 0.0000
682 DSTL1 Combination 0.187 0.024 659.856 0.0000 0.0000 0.0000
682 DSTL2 Combination 0.308 0.036 1012.927 0.0000 0.0000 0.0000
682 DSTL3 Combination 0.094 0.143 565.639 0.0000 0.0000 0.0000
682 DSTL4 Combination 0.226 -0.103 565.544 0.0000 0.0000 0.0000
682 DSTL5 Combination 0.127 0.082 565.615 0.0000 0.0000 0.0000
682 DSTL6 Combination 0.193 -0.041 565.567 0.0000 0.0000 0.0000
682 DSTL7 Combination 0.054 0.138 424.241 0.0000 0.0000 0.0000
682 DSTL8 Combination 0.186 -0.108 424.146 0.0000 0.0000 0.0000
682 DSTL9 Combination 0.133 0.017 471.326 0.0000 0.0000 0.0000
682 DSTL10 Combination 0.226 0.027 750.911 0.0000 0.0000 0.0000
683 DEAD LinStatic -0.014 0.015 452.298 0.0000 0.0000 0.0000
683 LIVE LinStatic -9.656E-03 8.772E-03 269.016 0.0000 0.0000 0.0000
683 WIND LinStatic -0.059 0.114 4.804E-03 0.0000 0.0000 0.0000
683 DSTL1 Combination -0.020 0.021 633.218 0.0000 0.0000 0.0000
683 DSTL2 Combination -0.033 0.032 973.184 0.0000 0.0000 0.0000
683 DSTL3 Combination -0.077 0.132 542.763 0.0000 0.0000 0.0000
683 DSTL4 Combination 0.042 -0.097 542.753 0.0000 0.0000 0.0000
683 DSTL5 Combination -0.047 0.075 542.760 0.0000 0.0000 0.0000
683 DSTL6 Combination 0.012 -0.039 542.756 0.0000 0.0000 0.0000
683 DSTL7 Combination -0.072 0.128 407.073 0.0000 0.0000 0.0000
683 DSTL8 Combination 0.046 -0.101 407.064 0.0000 0.0000 0.0000
683 DSTL9 Combination -0.014 0.015 452.298 0.0000 0.0000 0.0000
683 DSTL10 Combination -0.024 0.024 721.315 0.0000 0.0000 0.0000
684 DEAD LinStatic -0.016 0.016 453.172 0.0000 0.0000 0.0000
684 LIVE LinStatic -9.475E-03 9.179E-03 269.503 0.0000 0.0000 0.0000
684 WIND LinStatic -0.059 0.115 0.012 0.0000 0.0000 0.0000
684 DSTL1 Combination -0.023 0.022 634.441 0.0000 0.0000 0.0000
684 DSTL2 Combination -0.035 0.033 975.012 0.0000 0.0000 0.0000
684 DSTL3 Combination -0.078 0.134 543.819 0.0000 0.0000 0.0000
684 DSTL4 Combination 0.039 -0.096 543.794 0.0000 0.0000 0.0000
684 DSTL5 Combination -0.049 0.076 543.813 0.0000 0.0000 0.0000
>mr>i itorc onH Q+nintu In,-' D one, finf -1


BF 3-story.sdb
3-Story CBF
SAP2000 V17.3.0
27 March 2016
Table: Joint Reactions
Joint OutputCase CaseType F1 Kip F2 Kip F3 Kip M1 Kip-ft M2 Kip-ft M3 Kip-ft
684 DSTL6 Combination 0.010 -0.039 543.801 0.0000 0.0000 0.0000
684 DSTL7 Combination -0.073 0.129 407.867 0.0000 0.0000 0.0000
684 DSTL8 Combination 0.044 -0.101 407.843 0.0000 0.0000 0.0000
684 DSTL9 Combination -0.016 0.016 453.172 0.0000 0.0000 0.0000
684 DSTL10 Combination -0.026 0.025 722.675 0.0000 0.0000 0.0000
685 DEAD LinStatic -0.016 0.012 452.303 0.0000 0.0000 0.0000
685 LIVE LinStatic -8.387 E-03 7.281 E-03 269.020 0.0000 0.0000 0.0000
685 WIND LinStatic -0.059 0.114 9.486E-03 0.0000 0.0000 0.0000
685 DSTL1 Combination -0.023 0.017 633.224 0.0000 0.0000 0.0000
685 DSTL2 Combination -0.033 0.027 973.196 0.0000 0.0000 0.0000
685 DSTL3 Combination -0.079 0.129 542.773 0.0000 0.0000 0.0000
685 DSTL4 Combination 0.040 -0.099 542.754 0.0000 0.0000 0.0000
685 DSTL5 Combination -0.049 0.072 542.768 0.0000 0.0000 0.0000
685 DSTL6 Combination 0.010 -0.042 542.758 0.0000 0.0000 0.0000
685 DSTL7 Combination -0.074 0.125 407.082 0.0000 0.0000 0.0000
685 DSTL8 Combination 0.045 -0.103 407.063 0.0000 0.0000 0.0000
685 DSTL9 Combination -0.016 0.012 452.303 0.0000 0.0000 0.0000
685 DSTL10 Combination -0.025 0.020 721.323 0.0000 0.0000 0.0000
686 DEAD LinStatic -0.168 0.011 471.340 0.0000 0.0000 0.0000
686 LIVE LinStatic -0.113 6.506 E-03 279.594 0.0000 0.0000 0.0000
686 WIND LinStatic -0.065 0.124 -2.883E-03 0.0000 0.0000 0.0000
686 DSTL1 Combination -0.235 0.016 659.876 0.0000 0.0000 0.0000
686 DSTL2 Combination -0.381 0.024 1012.958 0.0000 0.0000 0.0000
686 DSTL3 Combination -0.266 0.137 565.605 0.0000 0.0000 0.0000
686 DSTL4 Combination -0.136 -0.110 565.611 0.0000 0.0000 0.0000
686 DSTL5 Combination -0.234 0.075 565.606 0.0000 0.0000 0.0000
686 DSTL6 Combination -0.168 -0.048 565.609 0.0000 0.0000 0.0000
686 DSTL7 Combination -0.216 0.134 424.203 0.0000 0.0000 0.0000
686 DSTL8 Combination -0.085 -0.113 424.209 0.0000 0.0000 0.0000
686 DSTL9 Combination -0.168 0.011 471.340 0.0000 0.0000 0.0000
686 DSTL10 Combination -0.280 0.018 750.934 0.0000 0.0000 0.0000
687 DEAD LinStatic -4.402 8.436 219.624 0.0000 0.0000 0.0000
687 LIVE LinStatic -2.542 4.830 125.593 0.0000 0.0000 0.0000
687 WIND LinStatic -0.053 9.857 7.356 0.0000 0.0000 0.0000
687 DSTL1 Combination -6.163 11.811 307.473 0.0000 0.0000 0.0000
687 DSTL2 Combination -9.350 17.852 464.498 0.0000 0.0000 0.0000
687 DSTL3 Combination -5.335 19.981 270.905 0.0000 0.0000 0.0000
687 DSTL4 Combination -5.230 0.267 256.192 0.0000 0.0000 0.0000
687 DSTL5 Combination -5.309 15.052 267.227 0.0000 0.0000 0.0000
687 DSTL6 Combination -5.256 5.195 259.871 0.0000 0.0000 0.0000
687 DSTL7 Combination -4.014 17.450 205.018 0.0000 0.0000 0.0000
687 DSTL8 Combination -3.909 -2.264 190.305 0.0000 0.0000 0.0000
687 DSTL9 Combination -4.402 8.436 219.624 0.0000 0.0000 0.0000
687 DSTL10 Combination -6.944 13.266 345.217 0.0000 0.0000 0.0000
688 DEAD LinStatic -1.736 1.267 117.623 0.0000 0.0000 0.0000
688 LIVE LinStatic -0.970 0.735 67.459 0.0000 0.0000 0.0000
688 WIND LinStatic -81.882 118.907 20.736 0.0000 0.0000 0.0000
688 DSTL1 Combination -2.430 1.774 164.672 0.0000 0.0000 0.0000
688 DSTL2 Combination -3.635 2.697 249.082 0.0000 0.0000 0.0000
688 DSTL3 Combination -83.965 120.428 161.884 0.0000 0.0000 0.0000
688 DSTL4 Combination 79.799 -117.386 120.412 0.0000 0.0000 0.0000
688 DSTL5 Combination -43.024 60.974 151.516 0.0000 0.0000 0.0000
688 DSTL6 Combination 38.858 -57.932 130.780 0.0000 0.0000 0.0000
688 DSTL7 Combination -83.444 120.047 126.597 0.0000 0.0000 0.0000
anH Q+ri i.~+i i Inr' D one, 7 nf
BF 3-story.sdb
3-Story CBF
SAP2000 V17.3.0
27 March 2016
Table: Joint Reactions
Joint OutputCase CaseType F1 Kip F2 Kip F3 Kip M1 Kip-ft M2 Kip-ft M3 Kip-ft
688 DSTL8 Combination 80.320 -117.766 85.125 0.0000 0.0000 0.0000
688 DSTL9 Combination -1.736 1.267 117.623 0.0000 0.0000 0.0000
688 DSTL10 Combination -2.706 2.002 185.082 0.0000 0.0000 0.0000
689 DEAD LinStatic 12.350 0.191 235.401 0.0000 0.0000 0.0000
689 LIVE LinStatic 7.231 0.111 138.143 0.0000 0.0000 0.0000
689 WIND LinStatic -4.670 0.025 -3.340 0.0000 0.0000 0.0000
689 DSTL1 Combination 17.290 0.267 329.561 0.0000 0.0000 0.0000
689 DSTL2 Combination 26.388 0.407 503.510 0.0000 0.0000 0.0000
689 DSTL3 Combination 10.150 0.254 279.141 0.0000 0.0000 0.0000
689 DSTL4 Combination 19.489 0.205 285.821 0.0000 0.0000 0.0000
689 DSTL5 Combination 12.485 0.241 280.811 0.0000 0.0000 0.0000
689 DSTL6 Combination 17.154 0.217 284.151 0.0000 0.0000 0.0000
689 DSTL7 Combination 6.445 0.196 208.520 0.0000 0.0000 0.0000
689 DSTL8 Combination 15.785 0.147 215.200 0.0000 0.0000 0.0000
689 DSTL9 Combination 12.350 0.191 235.401 0.0000 0.0000 0.0000
689 DSTL10 Combination 19.580 0.302 373.544 0.0000 0.0000 0.0000
690 DEAD LinStatic -0.016 0.188 226.623 0.0000 0.0000 0.0000
690 LIVE LinStatic -0.010 0.110 132.534 0.0000 0.0000 0.0000
690 WIND LinStatic -0.063 0.024 0.120 0.0000 0.0000 0.0000
690 DSTL1 Combination -0.022 0.264 317.272 0.0000 0.0000 0.0000
690 DSTL2 Combination -0.035 0.401 484.002 0.0000 0.0000 0.0000
690 DSTL3 Combination -0.082 0.250 272.068 0.0000 0.0000 0.0000
690 DSTL4 Combination 0.044 0.202 271.827 0.0000 0.0000 0.0000
690 DSTL5 Combination -0.051 0.238 272.008 0.0000 0.0000 0.0000
690 DSTL6 Combination 0.013 0.214 271.888 0.0000 0.0000 0.0000
690 DSTL7 Combination -0.077 0.194 204.081 0.0000 0.0000 0.0000
690 DSTL8 Combination 0.049 0.145 203.841 0.0000 0.0000 0.0000
690 DSTL9 Combination -0.016 0.188 226.623 0.0000 0.0000 0.0000
690 DSTL10 Combination -0.026 0.298 359.157 0.0000 0.0000 0.0000
691 DEAD LinStatic -2.029 0.189 237.087 0.0000 0.0000 0.0000
691 LIVE LinStatic -1.165 0.110 138.594 0.0000 0.0000 0.0000
691 WIND LinStatic -8.991 0.024 0.260 0.0000 0.0000 0.0000
691 DSTL1 Combination -2.840 0.264 331.922 0.0000 0.0000 0.0000
691 DSTL2 Combination -4.299 0.402 506.254 0.0000 0.0000 0.0000
691 DSTL3 Combination -11.425 0.251 284.764 0.0000 0.0000 0.0000
691 DSTL4 Combination 6.556 0.202 284.244 0.0000 0.0000 0.0000
691 DSTL5 Combination -6.930 0.238 284.634 0.0000 0.0000 0.0000
691 DSTL6 Combination 2.061 0.214 284.374 0.0000 0.0000 0.0000
691 DSTL7 Combination -10.816 0.194 213.638 0.0000 0.0000 0.0000
691 DSTL8 Combination 7.165 0.145 213.118 0.0000 0.0000 0.0000
691 DSTL9 Combination -2.029 0.189 237.087 0.0000 0.0000 0.0000
691 DSTL10 Combination -3.194 0.298 375.681 0.0000 0.0000 0.0000
692 DEAD LinStatic -0.061 0.188 227.915 0.0000 0.0000 0.0000
692 LIVE LinStatic -0.035 0.109 133.812 0.0000 0.0000 0.0000
692 WIND LinStatic -0.063 0.024 3.188 0.0000 0.0000 0.0000
692 DSTL1 Combination -0.085 0.263 319.081 0.0000 0.0000 0.0000
692 DSTL2 Combination -0.129 0.400 487.597 0.0000 0.0000 0.0000
692 DSTL3 Combination -0.136 0.249 276.686 0.0000 0.0000 0.0000
692 DSTL4 Combination -9.744E-03 0.202 270.310 0.0000 0.0000 0.0000
692 DSTL5 Combination -0.104 0.237 275.092 0.0000 0.0000 0.0000
692 DSTL6 Combination -0.041 0.214 271.904 0.0000 0.0000 0.0000
692 DSTL7 Combination -0.118 0.193 208.311 0.0000 0.0000 0.0000
692 DSTL8 Combination 8.473E-03 0.145 201.935 0.0000 0.0000 0.0000
692 DSTL9 Combination -0.061 0.188 227.915 0.0000 0.0000 0.0000
>mr>i itorc onH Q+nmtiir Inr' D via Snf I1


BF 3-story.sdb
3-Story CBF
SAP2000 V17.3.0
27 March 2016
Table: Joint Reactions
Joint OutputCase CaseType F1 Kip F2 Kip F3 Kip M1 Kip-ft M2 Kip-ft M3 Kip-ft
692 DSTL10 Combination -0.096 0.297 361.727 0.0000 0.0000 0.0000
693 DEAD LinStatic 0.046 0.190 232.126 0.0000 0.0000 0.0000
693 LIVE LinStatic 0.025 0.111 136.841 0.0000 0.0000 0.0000
693 WIND LinStatic -0.061 0.025 0.089 0.0000 0.0000 0.0000
693 DSTL1 Combination 0.064 0.266 324.976 0.0000 0.0000 0.0000
693 DSTL2 Combination 0.094 0.405 497.497 0.0000 0.0000 0.0000
693 DSTL3 Combination -5.954E-03 0.253 278.640 0.0000 0.0000 0.0000
693 DSTL4 Combination 0.116 0.204 278.462 0.0000 0.0000 0.0000
693 DSTL5 Combination 0.024 0.241 278.595 0.0000 0.0000 0.0000
693 DSTL6 Combination 0.085 0.216 278.507 0.0000 0.0000 0.0000
693 DSTL7 Combination -0.020 0.196 209.002 0.0000 0.0000 0.0000
693 DSTL8 Combination 0.102 0.147 208.824 0.0000 0.0000 0.0000
693 DSTL9 Combination 0.046 0.190 232.126 0.0000 0.0000 0.0000
693 DSTL10 Combination 0.070 0.301 368.967 0.0000 0.0000 0.0000
694 DEAD LinStatic -8.326 1.362 118.404 0.0000 0.0000 0.0000
694 LIVE LinStatic -4.940 0.791 67.918 0.0000 0.0000 0.0000
694 WIND LinStatic -79.207 119.328 56.204 0.0000 0.0000 0.0000
694 DSTL1 Combination -11.656 1.907 165.766 0.0000 0.0000 0.0000
694 DSTL2 Combination -17.895 2.900 250.753 0.0000 0.0000 0.0000
694 DSTL3 Combination -89.198 120.963 198.289 0.0000 0.0000 0.0000
694 DSTL4 Combination 69.216 -117.693 85.881 0.0000 0.0000 0.0000
694 DSTL5 Combination -49.594 61.299 170.187 0.0000 0.0000 0.0000
694 DSTL6 Combination 29.613 -58.029 113.983 0.0000 0.0000 0.0000
694 DSTL7 Combination -86.700 120.554 162.768 0.0000 0.0000 0.0000
694 DSTL8 Combination 71.714 -118.102 50.360 0.0000 0.0000 0.0000
694 DSTL9 Combination -8.326 1.362 118.404 0.0000 0.0000 0.0000
694 DSTL10 Combination -13.266 2.153 186.322 0.0000 0.0000 0.0000
Table: Steel Design 1 Summary Data AISC 360-10, Part 1 of 2
Table: Steel Design 1 Summary Data AISC 360-10, Part 1 of 2
Frame DesignSect Design Type Status Ratio RatioType
1 W18X35 Beam No Messages 0.814701 PMM
2 W18X35 Beam No Messages 0.526858 PMM
3 W18X35 Beam No Messages 0.814956 PMM
4 W24X68 Beam No Messages 0.870406 PMM
5 W21X44 Beam No Messages 0.729580 PMM
6 W21X44 Beam No Messages 0.769965 PMM
7 W21X44 Beam No Messages 0.770007 PMM
8 W21X44 Beam No Messages 0.729667 PMM
9 W24X68 Beam No Messages 0.870395 PMM
10 W24X68 Beam No Messages 0.876844 PMM
11 W21X44 Beam No Messages 0.729781 PMM
12 W21X44 Beam No Messages 0.773384 PMM
13 W21X44 Beam No Messages 0.773363 PMM
14 W21X44 Beam No Messages 0.729669 PMM
15 W24X68 Beam No Messages 0.876837 PMM
16 W24X68 Beam No Messages 0.871638 PMM
17 W21X44 Beam No Messages 0.730423 PMM
18 W21X44 Beam No Messages 0.769825 PMM
19 W21X44 Beam No Messages 0.769866 PMM
rnmni itorc onrl Q+ri
BF 3-story.sdb
3-Story CBF
SAP2000 V17.3.0
27 March 2016
Table: Steel Design 1 Summary Data AISC 360-10, Part 1 of 2
Frame DesignSect DesignType Status Ratio RatioType
20 W21X44 Beam No Messages 0.730512 PMM
21 W24X68 Beam No Messages 0.886642 PMM
22 W18X35 Beam No Messages 0.780293 PMM
23 W18X35 Beam No Messages 0.528319 PMM
24 W18X35 Beam No Messages 0.780533 PMM
25 W21X44 Beam No Messages 0.572412 PMM
26 W21X44 Beam No Messages 0.572400 PMM
27 W18X35 Beam No Messages 0.526565 PMM
28 W18X35 Beam No Messages 0.551792 PMM
29 W18X35 Beam No Messages 0.551602 PMM
30 W21X44 Beam No Messages 0.572413 PMM
31 W21X44 Beam No Messages 0.572445 PMM
32 W21X44 Beam No Messages 0.572442 PMM
33 W18X35 Beam No Messages 0.527658 PMM
34 W18X35 Beam No Messages 0.551514 PMM
35 W18X35 Beam No Messages 0.551327 PMM
36 W21X44 Beam No Messages 0.572425 PMM
37 W21X44 Beam No Messages 0.572453 PMM
38 W21X44 Beam No Messages 0.572450 PMM
39 W18X46 Beam No Messages 0.926545 PMM
40 W18X46 Beam No Messages 0.873078 PMM
41 W18X46 Beam No Messages 0.873080 PMM
42 W18X46 Beam No Messages 0.926546 PMM
43 W18X46 Beam No Messages 0.926531 PMM
44 W18X46 Beam No Messages 0.873058 PMM
45 W18X46 Beam No Messages 0.873054 PMM
46 W18X46 Beam No Messages 0.926533 PMM
47 W18X46 Beam No Messages 0.926534 PMM
48 W18X46 Beam No Messages 0.872993 PMM
49 W18X46 Beam No Messages 0.926498 PMM
50 W18X46 Beam No Messages 0.926536 PMM
51 W18X46 Beam No Messages 0.926530 PMM
52 W18X46 Beam No Messages 0.873075 PMM
53 W18X46 Beam No Messages 0.873071 PMM
54 W18X46 Beam No Messages 0.926533 PMM
55 W18X46 Beam No Messages 0.926546 PMM
56 W18X46 Beam No Messages 0.873103 PMM
57 W18X46 Beam No Messages 0.873106 PMM
58 W18X46 Beam No Messages 0.926547 PMM
59 W18X46 Beam No Messages 0.933228 PMM
60 W18X46 Beam No Messages 0.926571 PMM
61 W18X46 Beam No Messages 0.926543 PMM
62 W18X46 Beam No Messages 0.926541 PMM
63 W18X46 Beam No Messages 0.926541 PMM
64 W18X46 Beam No Messages 0.926542 PMM
65 W18X46 Beam No Messages 0.926542 PMM
66 W18X46 Beam No Messages 0.926542 PMM
67 W18X46 Beam No Messages 0.926540 PMM
68 W18X46 Beam No Messages 0.926543 PMM
69 W18X46 Beam No Messages 0.926573 PMM
70 W18X46 Beam No Messages 0.933236 PMM
71 W18X46 Beam No Messages 0.926506 PMM
72 W18X46 Beam No Messages 0.933236 PMM
73 W18X46 Beam No Messages 0.926501 PMM
Qtri i (''ti iroc
rinf 17


BF 3-story.sdb
3-Story CBF
SAP2000 V17.3.0
27 March 2016
Table: Steel Design 1 Summary Data AISC 360-10, Part 1 of 2
Frame DesignSect DesignType Status Ratio RatioType
74 W18X46 Beam No Messages 0.933219 PMM
75 W18X46 Beam No Messages 0.926571 PMM
76 W18X46 Beam No Messages 0.933234 PMM
77 W18X46 Beam No Messages 0.926543 PMM
78 W18X46 Beam No Messages 0.926546 PMM
79 W18X46 Beam No Messages 0.873122 PMM
80 W18X46 Beam No Messages 0.873141 PMM
81 W18X46 Beam No Messages 0.873124 PMM
82 W18X46 Beam No Messages 0.873141 PMM
83 W18X46 Beam No Messages 0.873005 PMM
84 W18X46 Beam No Messages 0.873033 PMM
85 W18X46 Beam No Messages 0.873002 PMM
86 W18X46 Beam No Messages 0.873030 PMM
87 W18X46 Beam No Messages 0.926546 PMM
88 W18X46 Beam No Messages 0.926545 PMM
89 W18X46 Beam No Messages 0.926545 PMM
90 W18X46 Beam No Messages 0.926546 PMM
91 W18X46 Beam No Messages 0.873024 PMM
92 W18X46 Beam No Messages 0.873001 PMM
93 W18X46 Beam No Messages 0.873027 PMM
94 W18X46 Beam No Messages 0.873004 PMM
95 W18X46 Beam No Messages 0.873110 PMM
96 W18X46 Beam No Messages 0.873096 PMM
97 W18X46 Beam No Messages 0.873110 PMM
98 W18X46 Beam No Messages 0.873094 PMM
99 W18X46 Beam No Messages 0.926546 PMM
100 W18X46 Beam No Messages 0.926544 PMM
101 W18X46 Beam No Messages 0.933225 PMM
102 W18X46 Beam No Messages 0.926568 PMM
103 W18X46 Beam No Messages 0.933211 PMM
104 W18X46 Beam No Messages 0.926506 PMM
105 W18X46 Beam No Messages 0.933229 PMM
106 W18X46 Beam No Messages 0.926511 PMM
335 W18X35 Beam No Messages 0.002362 PMM
336 W18X35 Beam No Messages 0.002876 PMM
337 W18X35 Beam No Messages 0.002876 PMM
338 W18X35 Beam No Messages 0.002361 PMM
339 W18X35 Beam No Messages 0.002361 PMM
340 W18X35 Beam No Messages 0.002876 PMM
341 W18X35 Beam No Messages 0.002876 PMM
342 W18X35 Beam No Messages 0.002362 PMM
343 W18X35 Beam No Messages 0.002362 PMM
344 W18X35 Beam No Messages 0.002876 PMM
345 W18X35 Beam No Messages 0.002876 PMM
346 W18X35 Beam No Messages 0.002361 PMM
347 W18X35 Beam No Messages 0.002876 PMM
348 W18X35 Beam No Messages 0.002362 PMM
349 W18X35 Beam No Messages 0.002361 PMM
350 W18X35 Beam No Messages 0.002876 PMM
351 W18X35 Beam No Messages 0.625912 PMM
352 W18X35 Beam No Messages 0.601307 PMM
353 W18X35 Beam No Messages 0.789769 PMM
354 W24X62 Beam No Messages 0.775557 PMM
355 W21X48 Beam No Messages 0.661169 PMM
Qtri i^ti irac
.f -17
BF 3-story.sdb
3-Story CBF
SAP2000 V17.3.0
27 March 2016
Table: Steel Design 1 Summary Data AISC 360-10, Part 1 of 2
Frame DesignSect DesignType Status Ratio RatioType
356 W21X48 Beam No Messages 0.659503 PMM
357 W21X48 Beam No Messages 0.659477 PMM
358 W21X48 Beam No Messages 0.661119 PMM
359 W24X62 Beam No Messages 0.776725 PMM
360 W24X62 Beam No Messages 0.855034 PMM
361 W21X48 Beam No Messages 0.665579 PMM
362 W21X48 Beam No Messages 0.665562 PMM
363 W21X48 Beam No Messages 0.665524 PMM
364 W21X48 Beam No Messages 0.665515 PMM
365 W24X62 Beam No Messages 0.855391 PMM
366 W24X62 Beam No Messages 0.779245 PMM
367 W21X48 Beam No Messages 0.660807 PMM
368 W21X48 Beam No Messages 0.659524 PMM
369 W21X48 Beam No Messages 0.659509 PMM
370 W21X48 Beam No Messages 0.660745 PMM
371 W24X62 Beam No Messages 0.780371 PMM
372 W18X35 Beam No Messages 0.648189 PMM
373 W18X35 Beam No Messages 0.774261 PMM
374 W18X35 Beam No Messages 0.804869 PMM
375 W21X44 Beam No Messages 0.456412 PMM
376 W21X44 Beam No Messages 0.455950 PMM
377 W18X35 Beam No Messages 0.775505 PMM
378 W18X35 Beam No Messages 0.597649 PMM
379 W18X35 Beam No Messages 0.599335 PMM
380 W21X44 Beam No Messages 0.605083 PMM
381 W21X44 Beam No Messages 0.454806 PMM
382 W21X44 Beam No Messages 0.604938 PMM
383 W18X35 Beam No Messages 0.774483 PMM
384 W18X35 Beam No Messages 0.597368 PMM
385 W18X35 Beam No Messages 0.599063 PMM
386 W21X44 Beam No Messages 0.605024 PMM
387 W21X44 Beam No Messages 0.454697 PMM
388 W21X44 Beam No Messages 0.604945 PMM
389 W18X50 Beam No Messages 0.832778 PMM
390 W18X50 Beam No Messages 0.832887 PMM
391 W18X50 Beam No Messages 0.832913 PMM
392 W18X50 Beam No Messages 0.832793 PMM
393 W18X50 Beam No Messages 0.832790 PMM
394 W18X50 Beam No Messages 0.832975 PMM
395 W18X50 Beam No Messages 0.832974 PMM
396 W18X50 Beam No Messages 0.832804 PMM
397 W18X50 Beam No Messages 0.832792 PMM
398 W18X50 Beam No Messages 0.832902 PMM
399 W18X50 Beam No Messages 0.832908 PMM
400 W18X50 Beam No Messages 0.832785 PMM
401 W18X50 Beam No Messages 0.832785 PMM
402 W18X50 Beam No Messages 0.832912 PMM
403 W18X50 Beam No Messages 0.832912 PMM
404 W18X50 Beam No Messages 0.832799 PMM
405 W18X50 Beam No Messages 0.832780 PMM
406 W18X50 Beam No Messages 0.832932 PMM
407 W18X50 Beam No Messages 0.832956 PMM
408 W18X50 Beam No Messages 0.832794 PMM
409 W18X50 Beam No Messages 0.837133 PMM


Full Text

PAGE 1

FRAMING THE FUTURE PRACTICAL APPLICATIONS FOR STRUCTURAL SUSTAINABILITY by LIS COLE B.S., University of Colorado Boulder, 2006 M.S., University of Colorado Denver, 2012 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Engineering and Applied Science 2016

PAGE 2

This thesis for the Doctor of Philosophy degree by Lis Cole bas been approved for the Engineering and Applied Science Program by Fred Rutz, Chair Kevin Rens, Advisor Caroline Clevenger Elaine Gallagher Adams Pete Jenkins Date: April 26, 2016 ii

PAGE 3

Cole, Lis (Ph.D., Engineering and Applied Science) Framing the Future Practical Applications for Structural Sustainability Thesis directed by Professor Kevin L. Rens ABSTRACT A structural engineer plays an important role in the design and construction of a building. However, with sustainability moving to the forefront of the design field as a major concern and priority, the structural engineer needs to initiate sustainable practices in their design. Testing of new materials takes time to research and additional time to place it into codes, standards, and everyday practice. The additional cost to construct with a new building material is also a factor and may end up value engineering itself out of the design. What practice approach can a structural engineer take to begin to design a structure more sustainably? Investigating alternate framing methods is an advance toward reducing the amount of materials used on a project overall, which in turn will reduce the amount of carbon emissions, lower the cost, and potentially increase thermal breaks and interior space, among other things. This thesis will evaluate three different heights of steel structures, utilizing three different framing methods, two conventionally framed (moment resisting and concentric braced) and one less conventional (diagrid), to determine if one of the framing methods is more sustainable than the others, or if there will be approaches the structural engineer can take to implement sustainable practices in their design. The form and content of this abstract are approved. I recommend its publication. Approved: Kevin L. Rens iii

PAGE 4

TABLE OF CONTENTS Chapter 1. Literature Review 1 .................................................................................................. 1.1 The Overarching Problem 1 .................................................................................. 1.2 What is Known 1 ................................................................................................... 1.2.1 Energy Usage 1 ................................................................................................... 1.2.2 Sustainability 3 .................................................................................................... 1.2.3 Engineer's Role 4 ................................................................................................ 1.3 The Gap 9 .............................................................................................................. 2. Steel Framing 13 ........................................................................................................ 2.1 Common Structural Framing 13 .............................................................................. 2.1.1 Moment Resisting Frames 13 ............................................................................... 2.1.2 Braced Frames 15 ................................................................................................. 2.2 Alternative Design Method 17 ................................................................................. 2.2.1 Diagrid History 17 ................................................................................................ 2.2.2 Diagrid Framing 20 ............................................................................................... 2.2.3 Diagrid Lateral Design 21 .................................................................................... 2.2.4 Diagrid Sustainability 24 ...................................................................................... 3. Methods and Procedures 27 ...................................................................................... 3.1 Structural Design 27 ................................................................................................ 3.2 Interior, Daylighting, and Thermal Breaks 31 ......................................................... 4. Results 32 ................................................................................................................... 4.1 Structure Design and CO2e 32 ................................................................................ 4.1.1 3-Story 32 .............................................................................................................. 4.1.2 9-Story 38 .............................................................................................................. 4.1.3 20-Story 44 ............................................................................................................ 4.1.4 Initial Trends 50 .................................................................................................... 4.2 9-Story Seismic Design 55 ....................................................................................... 4.3 Interior Space, Daylighting, and Thermal Bridging 58 ........................................... 4.3.1 Interior Space 58 ................................................................................................... 4.3.2 Daylighting 59 ...................................................................................................... iv

PAGE 5

! 4.3.3 Thermal Bridging 59 ............................................................................................. 5. Discussion/Conclusion 61 .......................................................................................... 5.1 Findings 61 .............................................................................................................. 5.2 Other Research 62 .................................................................................................... 5.3 Future Research 65 .................................................................................................. 5.4 Conclusion 66 .......................................................................................................... References 69 ................................................................................................................. Appendix A 75 ............................................................................................................... Appendix B 78 ............................................................................................................... Appendix C 104 ............................................................................................................... Appendix D 120 ............................................................................................................... Appendix E 123 ............................................................................................................... Appendix F 171 ................................................................................................................ Appendix G 197 ............................................................................................................... Appendix H 200 ............................................................................................................... Appendix I 257 ................................................................................................................ Appendix J 278 ................................................................................................................ Appendix K 330 ............................................................................................................... v

PAGE 6

LIST OF TABLES Table 4.1. 3-Story Steel Structure Results 36 ................................................................................... 4.2. 3-Story Foundation Results 37 ........................................................................................ 4.3. 3-Story CO2 Equivalents (tons) 38 .................................................................................. 4.4. 9-Story Steel Structure Results 43 ................................................................................... 4.5. 9-Story Foundation Results 43 ........................................................................................ 4.6. 9-Story CO2 Equivalents (tons) 44 .................................................................................. 4.7. 20-Story Steel Structure Results 49 ................................................................................. 4.8. 20-Story Foundation Results 50 ...................................................................................... 4.9. 20-Story CO2 Equivalents (tons) 50 ................................................................................ 4.10. 9-Story Steel Structure Seismic Results 56 ................................................................... 4.11. 9-Story Seismic Foundation Results 57 ......................................................................... 4.12. 9-Story Seismic Structure CO2 Equivalents 58 ............................................................. vi

PAGE 7

LIST OF FIGURES Figure 2.1. Moment Frame 14 ............................................................................................................ 2.2. Braced Frame 15 .............................................................................................................. 2.3. Concentric and Eccentric Braced Frame 16 ..................................................................... 2.4. Braced Frame Types 17 .................................................................................................... 2.5. I.W. Abel building, formerly known as the IBM building (Peterson, 2010) 18 .............. 2.6. London City Hall Exterior (Foster+Partners, 2002) 19 .................................................. 2.7. London City Hall Interior (Foster+Partners, 2002) 19 ................................................... 2.8. Diagrid Structure 20 ......................................................................................................... 4.1. 3-Story MRF 34 ............................................................................................................... 4.2. 3-Story CBF 35 ................................................................................................................ 4.3. 3-Story Diagrid 35 ........................................................................................................... 4.4. 9-Story MRF 40 ............................................................................................................... 4.5. 9-Story CBF 41 ................................................................................................................ 4.6. 9-Story Diagrid 42 ........................................................................................................... 4.7. 20-Story MRF 46 ............................................................................................................. 4.8. 20-Story CBF 47 .............................................................................................................. 4.9. 20-Story Diagrid 48 ......................................................................................................... 4.10. Structure CO2e 51 .......................................................................................................... 4.11. Structure CO2e per Floor 52 .......................................................................................... 4.12. Substructure CO2e 53 ................................................................................................... 4.13. Substructure CO2e per Floor 53 .................................................................................... 4.14. Overall CO2e 54 ........................................................................................................... 4.15. Overall CO2e per Floor 55 ............................................................................................ vii

PAGE 8

1. Literature Review 1.1 The Overarching P roblem All major scientific climatology organizations in the United States (US) concur that climate change is caused by excessive amounts of greenhouse gas (GHG) emissions being placed into the atmosphere by human activity (IPCC, 2013, Oreskes, 2004, Cicerone et al., 2001). The Environmental Protection Agency (EPA) refers to GHG as emissions that trap heat in the atmosphere, allowing less to directly leave the earth's system, thus causing the earth's surface to increase in temperature (EPA, 2014). Greenhouse gases are made up of many different types of gases, the most common being carbon dioxide (CO 2 ), while others include: methane (CH 4 ), nitrous oxide (N 2 O), water vapor (H 2 O), ozone (O 3 ), and chlorofluorocarbons (CFC's) (Cicerone et al., 2001, EPA, 2014). Each GHG remains in the atmosphere for a different length of time, but all can be equated back to CO 2 in terms of CO 2 equivalents (CO 2 e) to provide a simpler basis of comparison (EPA, 2014). 1.2 W hat is Known 1.2.1 Energy Usage Approximately 97 quadrillion British Thermal Units (Btu) of energy were consumed in the US in 2011; 80 quadrillion of those were created by the burning of fossil fuels (McConnell & Fahnestock, 2014). Buildings account for approximately 40% of energy consumed, with the majority used by construction and daily building operations (Attmann, 2010, McConnell & Fahnestock, 2014, Chwieduk, 2003, Weisenberger, 2011). Operational energy use is the energy used in daily activities, such as heating, cooling, 1

PAGE 9

lighting, and other electrical operations. Embodied energy is the energy consumed by manufacturing and installing a product. Up to 20% of the energy used in typical buildings is embodied energy (Ramesh et al., 2010). Depending on the material, size, and function, the structure can account for 20-29% of the building's embodied energy (Cole & Kernan, 1996). Assuming a structure in the US uses an average of 24% of the building's total embodied energy, this would calculate out to 1.5 quadrillion Btu's of energy in 2011 alone, which equates to approximately 91 million tons of CO 2 The largest production of GHG emissions is from burning fossil fuels for energy use. Following fossil fuels, the next largest producer of emissions come from cement production at 7% (SEI, 2010). Buildings produce 40-50% of the GHG emissions worldwide (Ramesh et al., 2010). As previously discussed, climate change is actually happening due to increased GHG emissions from human activity, and buildings are a major factor in this issue. This is in part why the sustainability movement started and has since gained great momentum in the building industry On December 12, 2015, the United Nations (UN) passed what is known as the Paris Agreement to not allow global temperatures to increase above 2 o C and attempt to keep the increase below 1.5 o C from pre-industrial levels (U.N. General Assembly, 2015). In order to accomplish this President Obama plans to cut US GHG emissions between 26% and 28% by 2025 from 2005 emission levels (McFarland, 2015). With buildings in the US comprising 40% of the overall energy consumed, what will be done in the building sector will play a major role in the success of this goal. 2

PAGE 10

1.2.2 Sustainability The concept of sustainability emerged in the 1960's because of environmental concerns about increasing population (Attmann, 2010). Gro Harlem Brundtland provided the first formal definition of sustainability in his 1987 report, "Our Common Future", for the World Commission on Environment and Development. Brundtland defined sustainable development as "...development that meets the needs of the present without compromising the ability of future generations to meet their own needs" (1987, pg. 54). This early definition, albeit vague, provided a starting basis for future definitions of sustainability. McDonough and Braungart published an important document in 1992 called "The Hannover Principles" to clarify sustainable design (Kibert, 2008, McDonough & Braungart, 1992). In 1993 the U.S. Green Building Council (USGBC) was founded to address the issues of sustainability in the built environment, and began to develop the Leadership in Energy and Environmental Design (LEED) rating system in order to help clarify and quantify sustainability associated with buildings (USGBC, 2009). The Natural Step is an organization created by Dr. Karl-Henrik Robert to create a consensus about how to protect and better human life on the planet (The Natural Step, 2015). With help from governments, business people, and environmentalists, The Natural Step created the four sustainability principles. 1. We cannot dig stuff up from the Earth at a rate faster than it naturally returns and replenishes. 2. We cannot make chemical stuff at a rate faster than it takes nature to break it down. 3

PAGE 11

3. We cannot cause destruction to the planet at a rate faster than it takes to regrow. 4. We cannot do things that cause other to not be able to fulfill their basic needs. 1.2.3 Engineer's Role No reference was made in regard to environmental protection in the American Society of Civil Engineers (ASCE) Code of Ethics prior to 1980 (Vesilind, 1995, Vesilind & Gunn, 1998, Cywinksi, 2001). In 1980 the guidelines of the first canon were amended to mention "improving the environment", but this did not impress the Environmental Impact Analysis Research Council (EIARC) of the Technical Council on Research (an ASCE committee) which felt this did not actually address responsibility to anything other than the human environment. EIARC proposed adding an eighth canon to the Code of Ethics, which would more comprehensively address the environment and natural resources, although it was ultimately denied. However, the term "sustainable development" used by Brundtland in 1987 did not fall on deaf ears. In 1997 the ASCE revised its first canon to read: E ngi ne e r s s hal l hol d par am ount t he s af e t y he al t h and we l f ar e of t he publ i c and s hal l s t r i v e t o c om pl y wi t h t he pr i nc i pl e s of s us t ai nabl e de v e l opm e nt i n t he performance of their professional duties (Vesilind & Gunn, 1998, pg. 73). It wasn't until 2009 that the ASCE provided their definition of the term "sustainable development": Sus t ai nabl e D e v e l opm e nt i s t he pr oc e s s of appl y i ng nat ur al hum an, and e c onom i c r e s our c e s t o e nhanc e t he s af e t y we l f ar e and qual i t y of l i f e f or al l of t he s oc i e t y whi l e m ai nt ai ni ng t he av ai l abi l i t y of t he r e m ai ni ng nat ur al r e s our c e s (ASCE, 2010a, pg. 1). 4

PAGE 12

The major component of the ASCE clarifying their definition of sustainable development is "maintaining the availability of the remaining natural resources." This statement provides a quantifiable approach to sustainability according to the civil engineer. The ASCE's definition of sustainable development better correlates to sustainable construction than others by including social, economic, and ecological building concerns, this is known as the triple bottom line. Chau (2007) also emphasizes these issues when discussing the importance of integrating sustainability into civil engineering curriculum, and Kibert (2008, pg. 6) has provided the following list of principles to more comprehensively address sustainable construction. 1. Reduce resource consumption 2. Reuse resources 3. Use recyclable resources 4. Protect nature (flora & fauna) 5. Eliminate toxics 6. Apply life cycle-costing 7. Focus on quality These principles encompass resource use, nature, toxics, economics, and quality, addressing at a more granular level the ASCE's definition of sustainable development. The International Association for Bridge and Structural Engineering's (IABSE) explanation of structural engineering provides many similarities to that of sustainable construction, reverberating the common theme of the importance of economic, environmental, and social considerations. St r uc t ur al E ngi ne e r i ng i s t he s c i e nc e and ar t of pl anni ng, de s i gn, c ons t r uc t i on, ope r at i on, m oni t or i ng and i ns pe c t i on, m ai nt e nanc e r e habi l i t at i on and pr e s e r v at i on, de m ol i s hi ng and di s m ant l i ng of s t r uc t ur e s t ak i ng i nt o c ons i de r at i on t e c hni c al e c onom i c e nv i r onm e nt al ae s t he t i c and s oc i al as pe c t s (IA B SE 2013, pg. 1). 5

PAGE 13

Applying aspects of the first definition of sustainable development in Brundtland World Commission report, the four sustainability principles from The Natural Step, and the ASCE's definition of sustainable development, sustainable design can be redefined as: Design that does not reduce the natural resources of the Earth, nor produces excess that will destroy the Earth to enhance the safety and welfare of life for the current and future generations through environmental, economic, and social means. The role of a structural engineer in sustainable construction is not merely to attend to ethical considerations; there are tangible aspects as well. In Kibert's list of principles for sustainable construction the structural engineer has the ability to influence each item of the list above. Many of these principles can be interconnected. In 2010 the Structural Engineering Institute (SEI) published a book called "Sustainability Guidelines for the Structural Engineer" (Kestner, 2010). Within this document are aspects that engineers can influence to make a structure more sustainable, such as recycled content, local sourcing and manufacturing, durability, maintenance, adaptable and deconstructable design, building/material reuse, life-cycle assessments, and material toxicity (Kestner, 2010). Some of these areas are related to CO 2 which is the most common greenhouse gas and two of the largest producers of CO 2 occur in the production of concrete and steel (Metha & Burrows, 2001). The structural engineer can design for increasing the durability of the structures, which increases the life of the structure and in turn reduces the resources used as well as the greenhouse gas emissions. Designing for deconstruction can also increase the sustainability of a structure. The construction industry produces large amounts of waste, which can amount to 2.5 6

PAGE 14

pounds of solid waste for each square foot of floor space (Chini & Bruening, 2003, SEI, 2010). Demolition of buildings creates 2.8 pounds of waste each day per person in the US (Kestner, 2010). By designing for deconstruction the materials can be removed from the waste stream and reused directly in another project creating a cradle-to-cradle approach instead of cradle-to-grave. Life-cycle assessments (LCA), sometimes called life-cycle analysis, can be an important role of a structural engineer in sustainable construction practices. LCA is a method of calculating the environmental impact of a building (or structure) over its lifetime (Athena, 2016). This method produces an environmental projection of the useful life of a structure by quantifying the embodied energy and greenhouse gas emissions (Rens et al., 2013). LCA is not to be confused with life-cycle costing (LCC), which refers to the overall cost of a building (or structure) throughout its lifetime, and the most reasonable economics of a structure are dependent on the overall return on the investment put into it. Both LCA and LCC are calculated based on the initial investment (environmentally or monetarily), which is from conception to final commissioning of the structure, and the required investment into the maintenance and eventual deconstruction and disposal of the structure (Kelly, 1984, Rens et al., 2013). Providing an appropriate maintenance plan can substantially increase the useful life of a structure while reducing total costs of operations. By completing a LCA and a LCC based on the environmental or economic benefits, a plan for the total life of the structure can be outlined, and help the triple bottom line. 7

PAGE 15

Structural engineers play an important role in a design team, which typically include the owner, architect, and engineers. Structural engineers are necessary in the planning and design of a building from its schematic design through the construction process, as the structure is a major component of a building and needs to be coordinated with the other disciplines. An approach to a more sustainable project is employing an integrated design team. This would include others not on the design team, such as the contractors, from the beginning of the design process to best plan out the feasibilities of the structure in the design, construction, and maintenance, as well as economically (Kibert, 2008). However, an integrated design team does not always include the others that the project affects, such as local business owners, residents, or other people who might use the space in the future. In order to assess how a building will affect people outside of the design team a Charrette can be held, which is a meeting in which all stakeholders (including the structural engineer) of a project participate to provide solutions and ideas for project conflicts (Kibert, 2008). Many social, economic, and ecologic benefits can come from holding Charrettes, which could in turn impact the triple bottom line and potentially create a more sustainable building The structural engineer has many challenges ahead in order to achieve the ecological, economical, and social requirements needed for sustainable construction. Some of these roles relate to the ethical obligations a structural engineer has to the field, while other roles are related directly to decision-making during the process. During initial design of the structure there are key decisions made by the structural engineer that can reduce the use of virgin resources and maintain "the availability of the remaining 8

PAGE 16

resources" (ASCE, 2010a, pg. 1). Planned maintenance of the building helps achieve the most amount of useful life from both economical and environmental aspects. Once the structure is ready to be decommissioned, thoughtful design of the deconstruction of the structure can reduce the amount of waste through recycling/reuse efforts in a cradle-tocradle approach. Overall there is a vast array of roles that a structural engineer can play during the life of a structure that will greatly impact the sustainability of the construction. 1.3 The G ap As previously mentioned, the USGBC created the LEED rating system, which is the most prevalent rating system for green/sustainable buildings in the US, and is becoming used in other countries. Many design teams in the US follow these guidelines for green buildings. However, the contributions from the structural engineer are not heavily weighted using this rating system (Hayes & Cocke, 2009). The majority of the contributions of the structural engineer remain in the materials and resource category as provided by the LEED system, mainly by dictating recycled content and local sourcing of materials using both recycled and locally sourced materials has the potential to reduce the embodied energy of a structure. Research on the uses of recycled material in structural components can be traced back to the mid 1980's (Simm et al, 2003). For example, structural steel in the US contains approximately 93% recycled content and has a recycling rate (how much steel is sent to be recycled) of 98% (Weisenberger, 2011). Given this data it is not difficult for a building to use at least 75% recycled content in the structure to obtain points in the LEED system, which leaves little motivation for structural engineers and firms to do more than 9

PAGE 17

the minimum required by LEED, especially when coupled with the fact that an equivalent number of points are awarded for providing bicycle racks and showers for 5% of the building occupants (Hayes & Cocke, 2009, USGBC, 2009). Material resources are an important aspect of sustainable design which presents a great opportunity for structural engineers to contribute to reducing GHG emissions, but if the materials specified in the design are inherently recycled materials there is little incentive based on LEED to move beyond the minimum requirements. This is not necessarily the case for concrete, but there are research advances being made to increase recycled content in concrete. Another issue with the practicality of sustainability and the structural engineer is the embodied energy in structural materials, which is the energy used to mine, manufacture, transport, and install the item. Architecture 2030 is on a mission to make all new buildings constructed by the year 2030 net-zero. The National Renewable Energy Laboratory (NREL) defines a net-zero energy building (ZEB) as a building that produces as much energy as it uses in a year (Griffith et al, 2007). NREL acknowledges that there are various definitions for ZEB. However, most definitions are a similar version of what NREL has provided. Thiel et al. define net-zero as "the balance between the energy consumed by the use of the building and the energy produced by the building's renewable systems on an annual basis" (Thiel, 2013, pg 1126). This coincides with NREL's definition. Srinivasan et al. raise a valid concern that net-zero buildings do not address any other energy put into the building other than the annual operational usage (Srinivasan et al., 2012). Embodied energy and "dematerialization" put into the structure and other materials are not considered, which is another downfall with LEED. Often a 10

PAGE 18

net-zero building has a higher embodied energy in its materials than a conventional building (Thiel, 2013). Once net-zero is achieved then all of the energy in a building is embodied energy. Although using recycled materials is beneficial to sustainability, other methods need to be implemented to achieve better sustainable structures. Even though steel has a high recycling and recycled content rate, it still consumes more energy, produces more emissions, and can cost more than it does to make a glulam beam (Thormark 2006), making a wood structure inherently more sustainable. However, as urban areas get more densely populated, currently housing approximately 50% of the population, buildings will continue to get taller (WHO, 2014, Chau et al., 2007), with steel and concrete as the two most common building materials of tall buildings because of their strength and weight. A newer movement of tall timber structures is emerging around the world, but is not currently allowed in the US. The 2015 International Building Code (IBC), only allows wood framed structures up to 5-stories (IBC, 2015). Because of this, tall structures in the US will continue to be made out of steel and concrete. If the current practice of sustainable structural engineering only focuses on the amount of recycled content in the materials used, then the field of structural engineering will still be behind the abilities to reduce the energy consumption of the structure. There are many ideas on what could be done, but very few actually get put into practice. If sustainable structural engineering is to move beyond the narrow focus on material resources as green practice, then alternative framing methods can be employed to make structures more sustainable. Until structural materials are made from renewable 11

PAGE 19

resources with the strength necessary to build tall structures, design and framing methods need to be evaluated in current practice. By utilizing an alternative framing method to the traditional method increases the sustainability of the structure by reducing GHG emissions, increasing usable/adaptable space, increasing thermal breaks, and increase the availability of exterior space for better daylighting designs? If one framing method does not prove to be more sustainable than the others, is there a way for a structural engineer to provide a more sustainable solution? The gap solving solution examined here is considering the framing methods used to greater implement sustainability into a structural engineer's current practice. 12

PAGE 20

2. Steel Framing 2.1 Common Structural Framing Steel frames were developed in the 19th century to accommodate the need/desire for taller buildings to have more usable space and natural light than masonry structures were able to provide (McEntee, 2009). The most frequently used are moment resisting and braced frames, but alternative design has introduced some progressive new advances 2.1.1 Moment Resisting Frames A moment resisting frame (MRF) is a simple boxed frame (Figure 2.1) with moment connections where the beams and columns join. Moment connections are rigid and considered a fixed connection, meaning all forces applied to a framing member transfer through the connection. When a force is applied perpendicularly to a member a rotational force is produced, called a moment. Due to the rigid (fixed) connections in MRF, the moments created by the lateral forces applied perpendicular to the columns are transferred through the columns down to the foundation. Because of the stiffness of the system and the fixed connections from the columns to the substructure this also induces moments on the foundations. Moments in the substructure can increase the size of the foundations because there has to be enough self weight of the building elements (dead load), such as the structure, fade, interior finishes etc., to resist the potential overturning of the structure caused by the moments. 13

PAGE 21

Figure 2.1. Moment Frame 2.1. Moment Frame The 1994 Northridge earthquake in California prompted a reevaluation of how moment connections were designed due to brittle failure of the connections. Because of this reevaluation the American Institute of Steel Construction (AISC) developed the Seismic Provisions for Structural Steel Buildings (McEntee, 2009). MRF are classified into three categories; ordinary moment frames (OMF), used in none to low seismic regions, intermediate moment frames (IMF), used in low to mid seismic regions, and special moment frames (SMF), used in high seismic regions (Richard, 2008). Although these categories are for seismic design, MRF can also be used for wind design. Due to MRF having fixed connections, the cost of the system can be quite high, but benefits include a clean layout and maximization of the amount of space available for natural light (Richard, 2008). 14

PAGE 22

2.1.2 Braced Frames Braced frames were used as an alternative to moment frames. Braced frames have a diagonal member between the beam and column members used to transfer the lateral loads to the substructure. None of the connections are rigid, and considered pinned. A pinned connection means that the rotational moment forces discussed in section 2.1.1 are not transferred through the connections, only vertical and horizontal forces (axial and shear) are. The lateral loads are transferred from the columns of the building into the floor system (diaphragm) and then into the diagonal brace via axial and shear forces. The braces provide a path for the lateral forces to track down to the foundation (Figure 2.2). Because of the pinned connections the moments created in the columns are not transferred into the braces, and all loads are either axial or shear. Braced Figure 2.2. Braced Frame 2.2. Braced Frame 15

PAGE 23

frames can be more cost effective due to the elimination of the moment connections. They also do not induce a moment on the substructure and can reduce the size of the foundation because there is no risk of overturning. There are many ways to arrange a braced frame, the two broad categories are concentric braced frame and eccentric braced frame (Figure 2.3). Within those there are a variety of design options including X bracing, K bracing, chevron, and one directional diagonal, among others (Figure 2.4). While these options may be more cost effective than the MRF, a diagonal member within the frame takes up valuable wall space and decreases the amount of space available for daylighting if on the exterior of the structure (Kestner et al., 2010). Figure 2.3: Concentric and Eccentric Braced Frame 2.3. Concentric and Eccentric Braced Frame 16

PAGE 24

Figure 2.4. Braced Frame Types 2.4. Braced Frame Types 2.2 Alternative Design Method 2.2.1 Diagrid History Diagonal grid structural systems, or diagrids, have the potential to achieve many of the "Sustainability Guidelines for the Structural Engineer" (Kestner et al., 2010). A diagrid is a diagonal framing system typically for tall buildings, originally explored by Russian engineer Vladimir Shukhov in 1896 (Boake, 2014, Moon, 2011). Besides water towers in Russia this construction method had not been used since the end of the 19th century until 1963 with the construction of the IBM building in Pittsburg, PA (Figure 2.5). However, the use of this framing method was sporadic framing method until the 2000's when Norman Foster began further exploring the idea (Boake, 2014). 17

PAGE 25

Figure 2.5. I.W. Abel building, formerly known as the IBM building (Peterson, 2010) 2.5. I.W. Abel building, formerly known as the IBM building (Peterson, 2010) Norman Foster proposed a diagrid structure for the Humana Headquarters competition in the early 1980's, but did not win the design (Moon et al., 2007). His first diagrid structure was constructed in 2002 when he designed London City Hall (Figure 2.6 and 2.7) (Boake, 2014). Along with the increased cost of the curtain wall, this was difficult to design until better computer technology and software were developed (Boake, 2014, Moon et al., 2007 ). 18

PAGE 26

Figure 2.6. London City Hall Exterior (Foster+Partners, 2002) 2.6. London City Hall Exterior (Foster+Partners, 2002) Figure 2.7. London City Hall Interior (Foster+Partners, 2002) 2.7. London City Hall Interior (Foster+Partners, 2002) 19

PAGE 27

2.2.2 Diagrid Framing The diagrid structure employs a method of diagonal framing, typically around the exterior of the structure, which creates triangulation by tying the floor systems into the lattice pattern structure. No vertical members are used in the framing, resulting in the diagonal pattern taking on both the gravity and lateral loads of the structure (Besjak et al., 2009, Moon, 2011). Similar to the braced frame, the diagrid has pinned connections because of the diagonal framing members providing the forces a direct path to the foundation (Figure 2.8). With no moments induced at the substructure the foundations could potentially be reduced in size because there are no overturning forces. Figure 2.8. Diagrid Structure 2.8. Diagrid Structure With an exterior frame that is capable of taking lateral and gravity loads, a concrete core is not always necessary to help support the structure. It is also possible to 20

PAGE 28

eliminate interior columns between the core and the perimeter providing more interior/ usable/adaptable interior space. By the use of axially loading the diagonal members, the diagrid structure is also more effective in minimizing shear deformation (Kim & Lee, 2012, Boake, 2013). The triangulation also helps when designing structures with irregular shapes (Taghizadeh & Seyedinnoor 2013). Moon, who has written most of the research on diagrid structures, focuses on the structural behavior and design methodologies of diagrids. He has investigated at length the optimal angle of the diagrid dependent upon the building height (Moon, 2011, Moon, 2012). His work has even attributed to other researchers work. Leonard has expanded on Moon's work and studied the shear-lag effect of high-rise diagrid structures (2007). 2.2.3 Diagrid Lateral Design Utilizing a steel diagrid structure as the primary system to resist both the lateral and gravity loads on a building presents a challenge when evaluating it for the use in seismic design. Structures are designed to be inelastic during a seismic event, meaning the structure will not return to it original shape after shaking in an earthquake. The goal is to have the structure withstand a large earthquake, with the understanding that it would likely require major repairs or demolition following the seismic event. This is a life safety issue and allows all persons inside the chance to vacate. If structures were designed to remain elastic, able to return to their original form with out an damage or alterations, during a large seismic event, the structures might withstand better but be significantly larger, heavier, and much more costly. 21

PAGE 29

Wind design requires structures to remain elastic, because the probability of large wind gusts are much more likely and frequent than a large seismic event, and it would not be possible to repair or replace a structure every time a storm occurred. As structures get taller wind is more likely to control the design of the lateral systems than seismic. In this case the diagrid is designed using the same parameters as MRF and braced frame systems. Much of the research on diagrid structures focuses on wind loading, as tall buildings typically have long fundamental periods, the time it takes for a tall structure to oscillate back and forth, which makes them less susceptible to seismic loads, because the time it takes the structure to oscillate is much longer than the shorter fast motions from the ground movement (Kim & Lee, 2012 ). Kim and Lee argue that with the increased stiffness of a diagrid, since it is designed for stiffness rather than strength, the diagrid system may be subject to higher seismic load (2012). ASCE 7-10, which is the standard referenced in the International Building Code (IBC), has a provision for steel systems in table 12.2-1 "H. Steel systems not specifically detailed for seismic resistance, excluding cantilever column systems". This has a Response Modification Factor, R -factor, of 3 (ASCE, 2010b). The R -factor is a method of quantifying a lateral system's ductility (ability to deform without breaking) in a seismic event. The higher the R -factor, the more the structure is assumed to be able to deform without collapse. However, this is not accounting for structures that have the lateral and gravity systems as one in the same, such as a diagrid. In order for a diagrid to perform properly during a seismic event, because of the combined system, it must remain elastic (does not permanently deform and returns to its original shape), otherwise it would 22

PAGE 30

compromise the gravity system and pose a life safety concern (Reimann & Black, 2011). Therefore, using R greater than 1.0 for any structure that has a combined gravity and lateral system is not appropriate. The R -factor is important in calculating the seismic base shear (expected lateral force at the base of a structure from a seismic event). Current code uses the R -factor to calculate C s which is the first plastic hinge, or first point where the structure is no longer elastic and permanently deforms, and determined from the ratio of the base shear to the reactive weight of the structure (ASCE, 2010b, Council 2009). To simplify the calculations, the structure is designed linearly to the elastic range of the structural response and assumed to remain ductile, in lieu of the actual response once the structure reaches/passes the plastic hinge and can no longer return to it's original form (Uang, 1991). A larger R -factor reduces the C s and thus lowers the design base shear, because the structure is assumed to be more ductile (or have the ability to deform more) without collapse, so it is able to be designed for a lower lateral force at the base of the structure. This is not accurate for the true structural response and is compensated for with the design over strength factor, 0 used for designing specific elements, such as columns or connections. For a structure, such as a diagrid to return to its original form without permanent deformation during a seismic event it must be designed with a R -factor of 1.0 [or less] (assuming no available ductility of the system) which would be an elastic response to the earthquake. This is compared to a braced frame R -factor 3.25, an ordinary moment frame of 3.5, and a special moment frame of 8, because these framing systems are able to deform during an earthquake and still stand allowing for repair to the 23

PAGE 31

lateral system or replacement of the structure sometime following the seismic event (ASCE, 2010b). Kim and Lee assumed an R -factor of 3 when investigating the seismic performance of diagrid structures (2012). Without more information as to why they used 3 for the R -factor, it is assumed it was chosen from ASCE 7-10 table 12.2-1 as a "steel system not specifically detailed for seismic resistance excluding cantilever column systems". One paper evaluates a diagrid structure to determine an R -factor using the ATC-63 methodology, which was determined to be 3.64 (Baker et al., 2010). Although the higher R -factor calculated in this study would make the seismic design of a diagrid more similar to that of an OMF and braced framed systems, it is only applicable to this case until it can be proven that this would be valid for every case. Until proven otherwise it would be recommended to design for elastic behavior using R of 1.0 or less. 2.2.4 Diagrid Sustainability Much of the research involving diagrid structures has been conducted on tall structures as diagrid has been proven to be a more efficient and sustainable design that utilizes less structural material (Jaswani & Dhyani, 2015, Jani & Patel, 2013, Panchal & Patel, 2014, Moon, 2012, Sarkisian et al., 2012, Moon, 2009). One study was done on 36, 50, 60, 70, and 80 story structures (Jani & Patel, 2013 ), and another on 40, 50, 60, 70, 80, 90, and 100 story buildings (Moon, 2008). However, some jurisdictions limit building height or number of stories providing a need for shorter buildings to be considered with alternative framing methods. 24

PAGE 32

A study by Panchal and Patel compares the material savings of a 20-story diagrid structure to that of a MRF for both steel and concrete structures (2014). Their results showed that the diagrid saved in both materials, 13% less concrete and 58% less steel. According to Korsavi and Maqhareh, the 46-story Hearst Tower in Manhattan was designed as a diagrid and saved 21% less steel than conventional framing methods ( 2014 ). The 112-story Lotte Super Tower in Seoul, Korea, was studied to save 27% of the steel if built as a diagrid (Besjak et al., 2009). While it can be hypothesized from research proving the structural efficiency of a diagrid system that the foundations would be smaller, research into this topic is also nonexistent. One of the areas of potential for increasing efficiency is by altering the framing of a structure to reduce the foundation sizes. Given that concrete production creates approximately 7% of the of the CO 2 emissions in the US annually this reduction would have a large environmental impact (Kestner et al., 2010). Framing plays an important role not only in terms of the structure, but also with the overall building design and architectural planning of the space. Changes in the beam depth of the structure can impact the floor to ceiling height, and alterations in the column sizes can change the amount of usable interior space. Additional user space can mean not only a reduction in the number of buildings needed but also fiscal advantages for the owner, as the increase in available square footage represents additional revenue for each square foot. The exterior facade of the structure can also be impacted by the use of a diagrid system. Expressing the diagrid structure as a visual component of the exterior can impact the cladding, [and] it is more expensive to use this type of system (Boake, 2014). With 25

PAGE 33

many low to mid-rise structures the faade is typically an exterior curtain wall and hangs from the floor slabs outside of the structure. There are many reasons for this. Firstly, placing the facade within the structural members causes complication in the design because the structure can induce loads on the faade causing it fail. Secondly, by having a continuous exterior the thermal properties are not compromised by breaking the facade into sections to allow the structure to pass through. Thirdly, it is more cost effective to have modular sized units of the facade (Z. Wiegand, personal communication, December 3, 2015). Regardless of the type of faade chosen, there are other impacts, specifically in daylighting and thermal breaks, that dependent on design and space can either enhance or reduce an architects opportunity to maximize interior daylighting and thermal breaks which has been shown to have impact on heating, cooling, electrical, and social wellbeing. Although shown to save in material of the structure itself, research combining multiple aspects together, such as the foundations, CO 2 e produced, thermal breaks, daylighting, and interior space, has yet to be pursued. Investigating multiple areas of sustainability can simultaneously help provide clients with important information to better aid their decisions on what structure type to use. This information would also be valuable for the structural engineer using methods in sustainable design. 26

PAGE 34

3. Methods and P rocedures The Structural Engineer's Association of California (SEAOC), the Applied Technology Council (ATC), and the Consortium of Universities for Research in Earthquake Engineering (CUREE), utilizing the first letter of the names of these three groups, combined forces to create a joint venture project called SAC (SAC, 2015). The Federal Emergency Management Agency (FEMA) helped to create and fund SAC in an effort to study welded steel frame structures because of brittle behavior discovered following the 1994 Northridge earthquake. Part of this study involved creating benchmark buildings that could be analyzed and redesigned for future improvements to earthquake design. SAC commissioned Brandow & Johnson Associates, Consulting Structural Engineers, to design three steel framed structures (3-story, 9-story, and 20story) using standard techniques commonly employed prior to the 1994 Northridge earthquake (Ohtori et al., 2004). Each of the three structures consists of exterior steel moment resisting frames, and interior steel beams and columns (Ohtori et al., 2004). Although these structures were only for analysis purposes and never constructed, the engineers designed them as if they would be built. 3.1 Structural Design To investigate the structural efficiency and sustainability of diagrid framing versus conventional methods, the three SAC benchmark buildings (3, 9, and 20-story) were analyzed with standard framing techniques such as moment resisting frame (MRF) and concentric brace frame (CBF) systems, and compared directly to a diagrid structure. 27

PAGE 35

SAP2000 (SAP) (SAP2000, 2017), an industry standard for structural analysis software, was used to design the gravity and lateral systems of each structure. Utilizing the SAC benchmark structures, the 3, 9, and 20-story structures were modeled in SAP maintaining the parameters set in the original design. For example, if the columns of the SAC benchmark structure were wide flanges of 14 inch depth, W14's, then W14's were maintained for the columns of the MRF SAP model. Similarly, the beam depths on the floors were maintained, and the bays where the MRF's were located were the same as those provided by the benchmark structures. Maintaining these parameters was important, because structural engineers must operate within constraints provided by the architect and owner. Originally, the benchmark designs used A36 steel for the beams and girders and A992 steel for the columns, because the SAC structures were designed using the 1989 ASD steel code and this was common practice. Current practice uses A992 steel for all wide flange members, thus all wide flange members for this study will be designed with A992 steel. Changes were made equally to all structures in this study in order to maintain the integrity of the analysis. Lateral design is governed by either seismic or wind loads and determined by calculating the base shear, V of the structure. Typically in Colorado, wind controls the lateral design. Wind loading is calculated by a variety of parameters, such as wind speed, building height, exposure, and directionality. The Colorado front range has high wind speeds and are determined as case specific when using the ASCE 7-10. However, downtown Denver is located east of interstate 25 and does not fall into the case specific 28

PAGE 36

region. Design wind speeds for downtown Denver are taken at 115 miles per hour. Using the Denver design wind speed the wind force for each structure was calculated. The force was then applied to the exterior of the structures to determine the wind base shear. The United States Geological Survey (USGS) provides design maps to calculate the seismic response spectrums for specific sites. Using a location in downtown Denver and defining the default site class D ("stiff soil"), USGS provided the design spectral response acceleration parameters, S DS and S D1 short periods and 1-second periods respectively. These parameters are used to calculate the seismic response coefficient, C S The C S is applied to the building weight, W to determine the seismic base shear. From the SAP models the building weight was determined for use in the seismic base shear. The seismic base shear was compared to the wind base shear for each structure height to determine the controlling lateral load. For all cases wind was determined to be the governing lateral load, which was then applied each SAP model. While running the MRF models, some of the beam members were oversized using the original parameters set by the benchmark structures, which is likely attributed to wind in lieu of seismic controlling the designs, as well as using all A992 steel. To provide the most efficient member sizing with a code check as close to 1.0 (the demand capacity to available member capacity ratio) as possible it was determined to allow SAP to have a broader range of member sizes to choose from. If the SAC structures had a specific member to be a W33, then parameters were set in SAP to not allow the member to be 29

PAGE 37

larger than a W33. However, it was able to use a shallower section such as a W24 if it was the most efficient size as determined by SAP. Once the MRF's had been analyzed in SAP they were modeled in Revit (Revit, 2015), a building information modeling (BIM) program. Revit has the ability to analyze the structure and obtain information such as material quantities, which is useful when assessing the amount of steel used in each structure. The steel beam and column quantities for each MRF were then tabulated to provide total tons of steel. Using the completed SAP model for the MRF structure, the CBF structure was created. All moment frames were replaced with diagonal concentric braced frames. The braces were designed with square HSS sections and all of the connections were pinned instead of fixed as is typical of this type of frame. Following that the diagrid structure was created. The only alterations made to the model was replacing the exterior columns with diagonal members and adjusting the exterior beams to accommodate the varying lengths. Both the CBF and diagrid systems maintained W14's for all columns and diagonal framing members (for the diagrid), and if the beams on one floor were W24's, then the CBF and diagrid structures maintained a maximum size of a W24's. The building size and height, and other design parameters remained untouched from the original MRF model in order to maintain accuracy of the results. The applied live loads and superimposed dead loads to all framing systems were (also) identical to provide consistency through out the analyses. Unfactored dead, live, and wind loads were obtained from the SAP models at the base of each column. Using these loads all the foundations were designed using Enercalc (Enercalc,, 2015). Some 30

PAGE 38

assumptions had to be made in order for this to work, as this is a hypothetical situation and not site specific and a geotechnical report of the soil does not exist. It was assumed that the foundations would be individual spread footings for each column base with a soil bearing capacity of 10 ksf. Although typical foundations for larger structures in the Denver area are drilled piers due to the expansive soils, it was decided to use spread footings as there are fewer variables and simpler to compare across the different structure types. Similar to the SAP design, all of the structures used the same parameters to achieve comparable results. 3.2 Interior, Daylighting, and Thermal Breaks When considering interior space, daylighting, and thermal breaks there are many factors that effect the usable space, such as fire proofing and finishes. Interior finishes are determined by the owner and architect and vary in thicknesses, but are not a direct result of the column sizes. Assuming the same finishes would be used in all three structures, MRF, CBF, and diagrid, the finishes themselves were not considered when determining interior usable space. Sprayed on fire proofing however, does vary in thickness depending on the column size. It is determined by a ratio of the weight, W to perimeter, D of the member. With a larger W/D ratio the amount of fire proofing needed is less than a member with a small W/D ratio. Therefore spray applied fire proofing was considered in the analysis of usable interior space and also daylighting. 31

PAGE 39

4. Results 4.1 Structure Design and CO 2e 4.1.1 3-Story The benchmark 3-story structure consists of six 30' bays in the east/west direction and four 30' bays in the north/south direction. Three bays on all four exterior sides have a moment resisting frame to provide lateral support. All columns are fixed at the base and are W14's. The exterior beams in the moment frames are W24's on the 3rd level (roof), W30's on the 2nd level, and W33's on the 1st level (one above ground). The interior beams consist of W24's as the primary beams, and W18's as the secondary beams. The 3-story structure was modeled in SAP, assigning the appropriate member sizes according to the original benchmark design. A superimposed dead load of 20 psf was applied, which included a partition loading as well as mechanical, electrical, and various other items considered as dead load in a building. SAP was allowed to calculate the self weight of the structure, including the weight of the concrete on metal deck used as the floor system. The live load was assumed to be 100 pounds per square foot (psf) for each floor and the roof. The use of the building was not known, therefore a conservative approach was taken by applying an assembly load on each floor and roof. The SAP model provided the weight of the structure, which was used in determining the seismic base shear, V EQ (Appendix A). From the height of the structure and the geographical location the wind load was calculated for both the east-west and north-south directions, V WIND-EW and V WIND-NS respectively (Appendix A). Comparing the wind base shears to the seismic base shear, it 32

PAGE 40

was found that wind controlled in both directions. Even considering the different R factor for each type of structure; MRF, CBF, and diagrid, wind still controlled. Wind loading was then applied to the structure in SAP and the model was run, allowing SAP to select appropriate member sizes based on the parameters set in the previously discussed methods and procedures section of this paper (Appendix B). From the completed analysis in the SAP model, the MRF structure was then created in Revit to provide the schedules and quantities of the steel framing. The 3-story MRF structure had a total of 409 steel members for a total of 318 tons of steel. Using the carbon dioxide equivalent (CO 2 e) for US steel, in which 0.73 tons of carbon is produced for every ton of steel produced (Kestner, 2010), the MRF structure would produce 232 tons CO 2 e. SAP also provided the unfactored dead, live, and wind loads at the base of each column, which were used to design the spread footings in Enercalc (Appendix C). From the foundation design the building had a total of 33 footings, equal to the number of columns at ground level, for a total of 798 tons of concrete and 7 tons of reinforcement. The CO 2 e for the substructure of the MRF 3-story building was 803 tons. Using the completed SAP model for the MRF structure, the CBF structure was modeled. All moment frames were replaced with diagonal concentric braced frames. The braces were designed with square HSS sections and all of the connections were pinned instead of fixed, as explained in section 2.1.2. Following that the diagrid structure was modeled. The only alterations made to the model were replacing the exterior columns with diagonal members and adjusting the exterior beams to accommodate the 33

PAGE 41

varying lengths. All of the loads, building size and height, and other design parameters remained untouched from the original MRF model. With both the CBF and diagrid structures completed in SAP, the models were run and checked for consistency with the MRF structure. The foundation loads were obtained for design in Enercalc and the models were recreated in Revit (Figures 4.1 through 4.3) to provide the schedule of quantities. Tables 4.1 and 4.2 display the calculated results for the structure and substructure respectively. Figure 4.1. 3-Story MRF 4.1. 3-Story MRF 34

PAGE 42

Figure 4.2. 3-Story CBF 4.2. 3-Story CBF Figure 4.3. 3-Story Diagrid 4.3. 3-Story Diagrid From the structure design it is apparent that the overall weight of the structure is not directly proportionate to the number of framing members. As seen in Table 4.1, the 35

PAGE 43

diagrid has the fewest number of framing members, but also has the highest overall structural weight at 14% more than the MRF. This is due to the longer spans around the exterior that resulted in larger member sizes. The CBF has the most framing members because of the additional members needed to create the braces, but only has a 5% increase in weight from the MRF. The CO 2 e is a direct calculation of the tons of steel which puts MRF at the lowest, CBF at a 5% increase in CO 2 e from the MRF, and the diagrid at a 14% increase over the MRF and a 9% increase over the CBF. 4.1. 3-Story Steel Structure Results Table 4.1. 3-Story Steel Structure Results The substructure size does not have a direct correlation to the overall weight of the structure. Table 4.2 displays the results of the foundation design. The diagrid has the fewest number of footings, which is related to the number of columns in contact with the ground. Because the diagrid has two columns at the same location around the exterior, only one footing is used. Both the CBF and MRF have the same number of columns and therefore the same number of footings. However, this does not mean that the substructure for the CBF and MRF will be the same. Because the MRF induces a moment into the footings each footing will need to be larger to resist the over turning moments. The CBF and diagrid structures do not induce moments into their foundations. # of Members Weight (tons) CO 2 e (tons) MRF 409 318 232 CBF 437 332 242 Diagrid 397 361 263 36

PAGE 44

4.2. 3-Story Foundation Results Table 4.2. 3-Story Foundation Results Concrete produces one ton of CO 2 e for every ton of concrete produced (Kestner, 2010). Reinforcing steel for the footings was also considered in the calculations of CO 2 e. From the results of the substructure the diagrid produced the least number of footings, fewest reinforcing bars, and the lowest overall weight for both. In terms of CO 2 e, the CBF produced the second highest amount at 48% more than the diagrid, and the MRF produced the most with 72% more than the diagrid and 16% more than the CBF. Excavation for the construction of the substructure is also a source of CO 2 e production. Approximately 1.3 tons of CO 2 e are produced for every cubic yard of earth excavated (UST, 2016). There are corresponding increases and decreases to this value depending on the type of earth (sand, dense soil, rock, etc.), but this ratio was determined to be appropriate since the actual information on the soil type is not known. Similar to the reinforcement, this value does not yield high values and is not a major factor in comparing the overall CO 2 e for the substructure. Table 4.3 shows the CO 2 e for the structure, the components of the substructure, and the overall. Although the diagrid produced more CO 2 e for the structural steel members, it was able to produce a much smaller overall substructure system causing it to be the framing method with the lowest amount of CO 2 e produced. The CBF produced # of Footings Weight of Footings (tons) # of Reinforcing Bars Weight of Reinforcement (tons) CO 2 e (tons) MRF 33 798 312 7 803 CBF 33 688 300 6 693 Diagrid 26 465 256 3 467 37

PAGE 45

both a structure and substructure CO 2 e between the MRF and diagrid and has an overall increase of 28% more CO 2 e than the diagrid. The MRF had the overall lightest structure, but the largest substructure causing it to have the largest CO 2 e at 42% more than the diagrid and 11% more than the CBF. 4.3. 3-Story CO 2 Equivalents (tons) Table 4.3. 3-Story CO 2 Equivalents (tons) 4.1.2 9-Story The benchmark 9-story structure consists of five 30' bays in the east/west and the north/south direction. Four bays on all four exterior sides have a moment resisting frame to provide lateral support. All columns are fixed at the base and are W14's. The exterior beams in the moment frames are W24's on the 9th level (roof), W27's on the 8th level, W30's on the 7th level, and W36's on all remaining levels. The interior beams consist of W24's as the primary beams, and W18's as the secondary beams. Ground to level 1 has a floor to floor height of 18', and all the other levels above have a floor to floor height of 13'. The 9-story structure was modeled in SAP, assigning the appropriate member sizes according to the original benchmark design. Similar to the 3-story structure, a superimposed dead load of 20 psf was applied. SAP was allowed to calculate the self weight of the structure, including the weight of the concrete on metal deck used as the floor system. The live load was assumed to be 100 Steel Framing Concrete Foundation Reinforcement Excavation Total MRF 232 798 5 8 1043 CBF 242 688 5 7 942 Diagrid 263 465 2 5 736 38

PAGE 46

pounds per square foot (psf) for each floor and the roof. The SAP model provided the weight of the structure, which was used in determining the seismic base shear, V EQ (Appendix E). From the height of the structure and the geographical location the wind load was calculated for both the east-west and north-south directions, V WIND-EW and V WINDNS respectively (Appendix D). Comparing the wind base shears to the seismic base shear, it was found that wind controlled in both directions, as expected. Considering the different R-factor for each type of structure to be used; MRF, CBF, and diagrid, wind still controlled. Wind loading was then applied to the structure in SAP and the model was run, allowing SAP to select appropriate member sizes based on the parameters set in the previously discussed methods and procedures section of this paper (Appendix E). From the completed analysis in the SAP model, the MRF structure was then created in Revit to provide the schedules and quantities of the steel framing. SAP also provided the unfactored dead, live, and wind loads at the base of each column, which were used to design the spread footings in Enercalc (Appendix F). Using the completed SAP model for the MRF structure, the CBF structure was modeled. All moment frames were replaced with diagonal concentric braced frames. The braces were designed with square HSS sections and all of the connections were pinned instead of fixed, as is typical of this type of frame. Following that the diagrid structure was modeled. The only alterations made to the model were replacing the exterior columns with diagonal members and adjusting the exterior beams to 39

PAGE 47

accommodate the varying lengths. All of the loads, building size and height, and other design parameters remained untouched from the original MRF model. With both the CBF and diagrid structures completed in SAP, the models were run and checked for consistency with the MRF structure. The foundation loads were obtained for design in Enercalc and the models were recreated in Revit (Figures 4.4 through 4.6) to provide the schedule of quantities. Tables 4.4 and 4.5 display the calculated results for the structure and substructure respectively. Figure 4.4. 9-Story MRF 4.4. 9-Story MRF 40

PAGE 48

Figure 4.5. 9-Story CBF 4.5. 9-Story CBF 41

PAGE 49

Figure 4.6. 9-Story Diagrid 4.6. 9-Story Diagrid As was true with the 3-story structure, the CBF had the most members. However, with the 9-story structure it had the lightest structural weight (Table 4.4). The MRF and diagrid had the same number of members, 144 fewer than the CBF, but the diagrid structure weighed 298 tons more than the MRF. In this case, the MRF only produced 1% more CO 2 e than the CBF, and the diagrid produced 35% more CO 2 e than the CBF and 34% more than the MRF. 42

PAGE 50

4.4. 9-Story Steel Structure Results Table 4.4. 9-Story Steel Structure Results The substructure for the 9-story diagrid structure is similar to the 3-story in that it has the fewest number of footings, and the least amount of concrete and reinforcing, thus producing the least amount of CO 2 e. A reverse has also happened though, the CBF produced the most CO 2 e for the 9 story structure at 20% more than the diagrid and 3% more than the MRF. The MRF in turn produced 17% more than the diagrid. 4.5. 9-Story Foundation Results Table 4.5. 9-Story Foundation Results Table 4.6 shows the CO 2 e for the structure, the components of the substructure, and the overall (Table 4.6). Although the diagrid produced much higher CO 2 e for the structural steel members, it was able to produce a smaller overall substructure system causing it to produce a much lower total amount of CO 2 e. However, this is still an increase of 3% compared to that of the overall CO 2 e produced for the MRF and 2% more than the CBF. For the 9-story the CBF produced the lowest amount of CO 2 e for the # of Members Weight (tons) CO 2 e (tons) MRF 1170 843 616 CBF 1314 839 612 Diagrid 1170 1129 824 # of Footings Weight of Footings (tons) # of Reinforcing Bars Weight of Reinforcement (tons) CO 2 e (tons) MRF 36 1003 392 7 1008 CBF 36 1032 560 8 1039 Diagrid 28 855 272 5 858 43

PAGE 51

structure, but the highest for the substructure CO 2 e for an overall CO 2 e at 2% more than the MRF. 4.6. 9-Story CO 2 Equivalents (tons) Table 4.6. 9-Story CO 2 Equivalents (tons) 4.1.3 20-Story The benchmark 20-story structure consists of six 20' bays in the east/west, and five 20' bays the north/south direction. All bays on all four exterior sides have a moment resisting frame to provide lateral support. All columns are fixed at the base and are W14's. There are only four interior column lines instead of each bay (grid intersection) containing a column line as was the case in the 3 and 9-story structures. The exterior beams in the moment frames are W21's on the 20th level (roof), W24's on level 19, W27's on levels 17 and 18, W30's on all remaining levels. The interior beams consist of W24's as the primary beams, and W18's and W14's as the secondary beams. Ground to level 1 has a floor to floor height of 18', and all the other levels above have a floor to floor height of 13'. The 20-story structure was modeled in SAP, assigning the appropriate member sizes according to the original benchmark design. Similar to the 3 and 9-story structures, a superimposed dead load of 20 psf was applied. SAP was allowed to calculate the self weight of the structure, including the weight of the concrete on metal deck used as the floor system. The live load was Steel Framing Concrete Foundation Reinforcement Excavation Total MRF 616 1003 5 10 1634 CBF 612 1039 6 10 1661 Diagrid 824 855 4 9 1691 44

PAGE 52

assumed to be 100 pounds per square foot (psf) for each floor and the roof. The SAP model provided the weight of the structure, which was used in determining the seismic base shear, V EQ (Appendix G). From the height of the structure and the geographical location the wind load was calculated for both the east-west and north-south directions, V WIND-EW and V WIND-NS respectively (Appendix G). Comparing the wind base shears to the seismic base shear, it was found that wind controlled in both directions, as expected. Considering the different R -factor for each type of structure to be used; MRF, CBF, and diagrid, wind still controlled. Wind loading was then applied to the structure in SAP and the model was run, allowing SAP to select appropriate member sizes based on the parameters set in the previously discussed methods and procedures section of this paper (Appendix H). From the completed analysis in the SAP model, the MRF structure was then modeled in Revit to provide the schedules and quantities of the steel framing. SAP also provided the unfactored dead, live, and wind loads at the base of each column, which were used to design the spread footings in Enercalc (Appendix I). Using the completed SAP model for the MRF structure, the CBF structure was modeled. All moment frames were replaced with diagonal concentric braced frames. The braces were designed with square HSS sections and all of the connections were pinned instead of fixed, as is typical of this type of frame. Following that, the diagrid structure was modeled. The only alterations made to the model were replacing the exterior columns with diagonal members and adjusting the exterior beams to 45

PAGE 53

accommodate the varying lengths. All of the loads, building size and height, and other design parameters remained untouched from the original MRF model. With both the CBF and diagrid structures completed in SAP, the models were run and checked for consistency with the MRF structure. The foundation loads were obtained for design in Enercalc and the models were recreated in Revit (Figures 4.7 through 4.9) to provide the schedule of quantities. Tables 4.7 and 4.8 display the calculated results for the structure and substructure respectively. Figure 4.7. 20-Story MRF 4.7. 20-Story MRF 46

PAGE 54

Figure 4.8. 20-Story CBF 4.8. 20-Story CBF 47

PAGE 55

Figure 4.9. 20-Story Diagrid 4.9. 20-Story Diagrid 48

PAGE 56

Consistent with the 3 and 9-story structures, the CBF had the most members, and similar to the 9-story structure it had the lowest overall weight (Table 4.7). The MRF had the fewest framing members, but had the most weight and CO 2 e, with a 14% increase from the CBF and 9% increase from the diagrid. The diagrid had 240 fewer framing members than the CBF, but an increase of 5% in the CO 2 e produced for the CBF, which is a substantial decrease from the 9-story. 4.7. 20-Story Steel Structure Results Table 4.7. 20-Story Steel Structure Results With fewer number of columns and height more than twice that of the 9-story, the footings for the 20-story structures are substantially larger. Since this is a hypothetical situation which takes place in Denver, CO, and typically in Denver drilled concrete piers would be used in lieu of spread footing in this case, but for consistency spread footings were used in these calculations. Once again the diagrid had the fewest number of footings. However, with the 20-story structure the diagrid used more concrete in the substructure. This is because there are two diagonal columns at each footing creating larger loads. With larger loads the footings must not only get wider, they must also get deeper to provide the necessary shear strength. Unlike the 3-story the MRF had the smallest amount of concrete used in the substructure. When the dead loads become large enough it resists the overturning moments. Whereas, the CBF had some challenges resisting the sliding of the concrete footings making them larger than the MRF. The CBF # of Members Weight (tons) CO 2 e (tons) MRF 1428 2172 1586 CBF 1868 1902 1389 Diagrid 1628 1989 1452 49

PAGE 57

footings produced 4% more CO 2 e than the MRF, and the diagrid produced 3% and 7% more CO 2 e than the CBF and MRF respectively. 4.8. 20-Story Foundation Results Table 4.8. 20-Story Foundation Results Table 4.9 shows the CO 2 e for the structure, the components of the substructure, and the overall. Although the CBF produced the least overall CO 2 e, both the MRF and diagrid structures only increased the total amount of CO 2 e by 3%. 4.9. 20-Story CO 2 Equivalents (tons) Table 4.9. 20-Story CO 2 Equivalents (tons) 4.1.4 Initial Trends Based on the results presented in section 4.1.1 through 4.1.2, there are some initial trends developing, even though it is not possible to accurately predict trends with only three case studies. The carbon emissions produced by the structure increases more for the MRF as the structure gets taller, as shown in figure 4.10 below. The CBF acts similarly to the MRF, but at a slower rate, whereas the diagrid is almost linear and has a lower slope than both the MRF and CBF. Looking at the CO 2 e on a per floor basis, CO 2 e for # of Footings Weight of Footings (tons) # of Reinforcing Bars Weight of Reinforcement (tons) CO 2 e (tons) MRF 26 1981 476 86 2043 CBF 26 2072 484 79 2129 Diagrid 20 2113 510 98 2184 Steel Framing Concrete Foundation Reinforcement Excavation Total MRF 1586 1981 63 20 3649 CBF 1389 2072 58 21 3539 Diagrid 1452 2113 71 21 3657 50

PAGE 58

entire structure divided by the number of stories, both the MRF and CBF reduce CO 2 e from the 3-story to the 9-story structure, and then increase from the 9-story to 20-story, less rapidly for the CBF than the MRF, Figure 4.11. Alternatively, the diagrid increases in the amount of CO 2 e per floor from the 3-story to the 9-story, and then decreases dramatically from the 9-story to the 20-story. Figure 4.10. Structure CO 2 e 4.10. Structure CO 2 e 51

PAGE 59

Figure 4.11. Structure CO 2 e per Floor 4.11. Structure CO 2 e per Floor For the substructure of the MRF, CBF, and diagrid, the CO 2 e increases similarly, as shown in Figure 4.12. However, looking at the CO 2 e on a per floor basis all three structure types decrease rapidly from 3-stories to 9-stories, Figure 4.13. The MRF and CBF continue to decrease in CO 2e on a per floor basis from the 9-story to the 20-story, but the diagrid increases. 52

PAGE 60

Figure 4.12. Substructure CO 2 e 4.12. Substructure CO 2 e Figure 4.13. Substructure CO2e per Floor 4.13. Substructure CO 2 e per Floor 53

PAGE 61

The overall CO 2 e produced for each structure type resembles that of the substructure, similar to the overall structure on a per floor basis. This is suggesting that although the diagrid structure begins to save in steel framing material over the MRF and CBF as the building gets taller, the substructure increases and counteracts these effects producing more overall CO 2 e. Refer to Figures 4.14 and 4.15 for the overall CO 2 e and overall CO 2 e per floor. Figure 4.14. Overall CO 2 e 4.14. Overall CO 2 e 54

PAGE 62

Figure 4.15. Overall CO 2 e per Floor 4.15. Overall CO 2 e per Floor 4.2 9-Story Seismic Design For investigative purposes, the MRF, CBF, and diagrid 9-story structures were analyzed for seismic loading. To maintain consistency and allow for comparison the building site was assumed to be in downtown Denver. The default site class D was chosen and SAP was allowed to calculate the seismic loading from USGS using Denver's zip code (80202). As previously discussed in section 2.2.3, a diagrid structure does not have an R -factor associated with it in ASCE 7-10. It was decided to use an R -factor of 1.0 for the diagrid structure to remain elastic, even though one study has proven their diagrid structure to have an R -factor of 3.64. Colorado is not a high seismic area, so special seismic detailing is not required. Because of this it was assumed that both the 55

PAGE 63

MRF and CBF would be ordinary frames with R -factors of 3.5 and 3.25 respectively. Changing the lateral force from wind to seismic was the only parameter s changed from the original MRF, CBF, and diagrid SAP models presented in section 4.1.2. The original models and the seismic models had the same number of framing members, because the layouts did not change. Due to the secondary beams becoming W18x50's, because a W18x35 is not seismically compact, the overall weight of the structure increased, which is visible when comparing Table 4.4 to Table 4.10 (below). The MRF increased by 39%, the CBF by 44%, and the diagrid by 25% from the original wind loading design. 4.10. 9-Story Steel Structure Seismic Results Table 4.10. 9-Story Steel Structure Seismic Results Unlike the wind loaded structure the MRF had the lightest structural weight. The CBF was a 3% increase in CO 2 e compared to the MRF, whereas the diagrid was a 21% increase. For the wind loaded structure the MRF only had a 1% increase of CO 2 e compared to the CBF, but the diagrid had a 35% increase in CO 2 e produced. Although the diagrid produced more CO 2 e than the MRF and the CBF for the seismic design, the overall increase in CO 2 e was less than that of the 9-story wind loaded diagrid structure. As was true with the 3-story structure, the CBF had the most members. # of Members Weight (tons) CO 2e MRF 1170 1171 855 CBF 1314 1210 883 Diagrid 1170 1415 1033 56

PAGE 64

4.11. 9-Story Seismic Foundation Results Table 4.11. 9-Story Seismic Foundation Results Opposite to that of the wind loaded 9-story structure, the diagrid produced the most CO 2 e for the substructure, and the CBF produced the least. Because of the overturning moment in the MRF, the footings produced 39% more CO 2 e than that of the CBF. The diagrid foundations produced more than twice that of the CBF because of the R -factor being 1 in lieu of the 3.25 for the ordinary CBF. This was caused by the increase of shears at the column bases, thus creating larger footings to counteract the sliding forces. Table 4.12 shows the CO 2 e for the structure, the components of the substructure, and the overall. Due to the difference in R -factor, compared to the MRF and the CBF the diagrid produced much higher CO 2 e for the entire structure at 64% more than the CBF, and 38% more than the MRF. This is a substantial increase, because the wind loaded diagrid structure produced close to the same amount of CO 2 e as the MRF, which produced the lowest. # of Footings Weight of Footings (tons) # of Reinforcing Bars Weight of Reinforcement (tons) CO 2 e MRF 36 1310 260 4 1313 CBF 36 942 520 7 947 Diagrid 28 2141 364 14 2151 57

PAGE 65

4.12. 9-Story Seismic Structure CO 2 Equivalents Table 4.12. 9-Story Seismic Structure CO 2 Equivalents 4.3 Interior Space, Daylighting, and Thermal Bridging 4.3.1 Interior Space Interior usable space is important since sale and lease of space is based on square footage. As previously stated, the available interior space is dependent upon the amount of space used by the columns of the structure, and the amount of space used by the finishes were ignored as they would likely be the same no matter what framing method was used. To determine interior space, the amount of spray applied for fire proofing was considered since its thickness is dependent upon the size of the framing member. The 3-story MRF and diagrid structures have similar usable interior space, but the CBF provides approximately 360 ft 2 more of usable space. This is not a substantial difference and likely not large enough to be a selling point for the client. The 9-story and 20-story structures had even less of a difference in interior usable space. Without being able to reduce the number of columns within the diagrid structure the interior space remained similar across all framing types. Steel Framing Concrete Foundation Reinforcement Excavation Total MRF 855 1310 3 4 2172 CBF 883 942 5 3 1834 Diagrid 1033 1952 9 5 3000 58

PAGE 66

4.3.2 Daylighting Allowing daylight into a building can play an important role in the reduction of interior lighting and human well being. Daylighting space for the building was considered as the floor to ceiling height minus any exterior columns or braces blocking a portion of the window. For the 3-story structure the MRF provides the most daylighting space with 512 ft 2 more than the CBF and 740 ft 2 more than the diagrid. Both the CBF and diagrid are still within 95% of the daylighting space available for the MRF, likely not enough to propose to a client. However, there is a substantial difference for the available daylighting space available on the 9-story structure. The diagrid framing provided the most available daylighting space with the MRF providing 7,808 ft 2 (15%) less, and the CBF providing 17,621 ft 2 (33%) less than the diagrid, and 9,813 ft 2 less than the MRF. For the 20-story structure the spread of daylighting space narrowed with the MRF as having the most available, the diagrid providing 3,296 ft 2 (4%) less than the MRF, and the CBF providing 7,665 ft 2 (9%) less than the MFR. If the diagrid was able to have fewer column lines for the 20-story structure similar to that of the 9-story structure, the available daylighting space would likely be more spread out, similar to that of the 9-story. 4.3.3 Thermal Bridging Thermal bridging is similar to that of the daylighting space in that the amount of area taken up by the columns and braces in exterior walls is important for sustainability. The less area steel framing members take up of the exterior the better, because there is less area that could effect the insulation properties of the building. As mentioned with the daylighting, the 3-story structure does not have enough difference in the areas to make it 59

PAGE 67

notable. The 9-story MRF actually had the least amount of thermal bridging with 1,080 ft 2 more than the diagrid, which is likely due to the larger member sizes, albeit fewer members help increase the available daylighting area. The CBF had the most amount of thermal bridging with 7,320 ft 2 more than the MRF. The 20-story structure produced similar results to that of the 9-story structure, with the MRF producing the least amount of thermal bridging, the diagrid with 2,176 ft 2 more than the MRF, and the CBF with 7,665 ft 2 more than that of the MRF. 60

PAGE 68

5. Discussion/Conclusion 5.1 Findings In terms of CO 2 e the diagrid is a clear choice for the 3-story building, as it produced 22% less overall CO 2 e than the CBF, which produced less than the MRF. As mentioned in the results the different framing methods did not produce a significant difference in daylighting, thermal bridging, and interior space for the 3-story structure, likely due to the small size of the structure. This makes CO 2 e the deciding factor when determining the most sustainable 3-story structure. For the 9-story structure the MRF produced the least amount of overall CO 2 e. However, the diagrid only produced 4% more, which may not be a enough of a difference for the MRF to have an advantage when considering sustainability of the structure. The diagrid though had 15% more exterior wall space available for the use of daylighting than the MRF, whereas the MRF had 25% more thermal bridging, which could be enough potential difference to offset the 4% difference of the diagrid. Although it is debatable as to whether the MRF or the diagrid is more sustainable for the 9-story structure, it is clear that the CBF is not the most sustainable option, as it performed the worst in all categories. Evaluating the 20-story structure, it is not clear which framing method is the most sustainable. The CBF produced the least overall CO 2 e, but both the MRF and diagrid structures were within 3% of the amount of CO 2 e produced by CBF. The MRF had the most space available for daylighting and the most area of thermal bridging. However, the diagrid was within 4% of the MRF values and the CBF was within 9% of the MRF 61

PAGE 69

values Unless one of these sustainability aspects is the only consideration in deciding between these framing methods, the decision may come down to overall cost of the structure. Studying the foundation design of the diagrid also proved to be informative as this is an area that has not received much attention from other researchers. By including the substructure, as it is a necessary part of the entire structure, it became evident that the substructure had a major impact on the overall CO 2 e of the entire structure. The foundations produced more CO 2 e than the steel for the MRF, CBF, and diagrid structures for all three building heights, proving that this cannot be ignored when considering the sustainability of a structure. Only in the case of the 9-story diagrid was the amount of CO 2 e produced by the structure and substructure similar. Using an R-factor of 1.0 for the diagrid, making the structure elastic, has proven to be poor choice when considering the sustainability of the structure. The diagrid produced 64% more CO 2 e than the CBF and 38% more than the MRF. Because the MRF produced 18% more CO 2 e than the CBF, due to the foundation size, it is obvious that the CBF is the appropriate choice of structure for the 9-story seismic designed structure. 5.2 Other Research In comparing these results with the information found in section 2.2.4 of the structural literature review there are some discrepancies. The research done by Panchal and Patel, it was discovered that the 20-story diagrid used 58% less steel than the MRF (2014), whereas the design for this research demonstrated a 9% savings as compared to the MRF. Both the 20-story diagrid studied in this thesis, and the one analyzed by 62

PAGE 70

Panchal and Patel, though, saved material compared to that of a MRF. However, their study does not consider a CBF as an alternative solution. Their study also had a different interior framing method than the one used within this thesis The SAC structures were laid out on a standard cartesian coordinate system with the beams framing in one direction and the girders running perpendicular to the beams. Panchal and Patel have their framing on a radial grid with the girders framing from the center to the exterior corners. The differences in the interior framing may play a role in the higher success of their diagrid system compared to the MRF. Moon et al. also use this radial method of framing when studying the optimal angles for 20, 42, and 60-story diagrid structures (2007). For smaller structures, such as the case with the SAC structures, it is common practice to place the framing in bays with the beams in one direction and the girders in another. The radial system evenly distributes the weight of the structure around the entire exterior, which may also aid the foundation design of the 20-story diagrid and potentially help in reducing the number of interior columns. The 112-story Lotte Super Tower in Korea, also used a radial framing method for the diagrid structure and found that the structure would save 27% of the materials if using the diagrid framing (Besjak et al., 2009). However, out of the range of research between Besjak et al., Moon et al., and Panchal and Patel, none considered shorter structures. While the material savings is important on taller structures because taller structures need more material, so the materials savings is a greater total quantity, the majority of 63

PAGE 71

buildings in the US and around the world are shorter than 20-stories. Although the Denver area is growing and expanding, most of the structures are not 20-stories tall. Another area that is lacking in research, is the consideration of foundations when considering material savings. None of the above mentioned researchers included the effects of the diagrid structure on the substructure. Because the amount of CO 2 e produced due to the production of concrete is much higher than that of steel this is something that needs to be considered when investigating material savings. Other areas within sustainability that are lacking on research include, but are not limited to, the amount of space the different framing methods take up on the exterior walls, to consider either daylighting or thermal bridging, and the interior space. With the radial framing system used by the above mentioned research, it may be possible to reduce the number of interior columns and expand the amount of interior usable space. It is known that the lateral design of the structure impacts the amount of material used within the structure. Given that previous research focused on investigating tall structures as well as maintaining elastic design for all of the structural framing types, in order to compare apples to apples, wind has typically governed the lateral design of the research done on diagrids. In the case of Kim and Lee they assumed an R -factor of 3 for the diagrid in the seismic design, no insight was provided as to why this value was chosen (2012). Baker et al., on the other hand, were able to prove that for their specific structure the R -factor was 3.64, but this still leaves limited information on the actual R factor of a diagrid compared to MRF and CBF (2010). However, given that the R -factor is to allow for ductility in the structure during a seismic event by being able to deform 64

PAGE 72

without collapse, it was found that a diagrid structure should remain elastic ( R less than or equal to 1.0) and not allow deformation because of the gravity and lateral systems being one in the same. 5.3 Future Research Energy Analysis: an in-depth energy analysis to determine the amount of operating energy saved by allowing more daylight versus the energy saved from more thermal bridging may be of value to the field given these results. Low to Mid-rise research: in depth research of low to mid-rise structures with different framing methods should be done to predict trends on which framing method would be best for sustainability. This could aid in determining a structure type for a building without doing multiple analyses. However, shorter structures tend to be irregular shapes and sizes, which may not produce trends that are easily discernible. Coordinate systems: the performance of low to mid-rise structures using a interior gird placed on a cartesian coordinate compared to that of a radial coordinate while investigating the MRF, CBF, and diagrid lateral systems is a potential future study specifically given the large difference in result comparison to current research. Timber Construction: should be developed to analyze a diagrid and other framing methods for timber construction, as timber is more sustainable in terms of CO 2 e produced than any other traditional material. If large timber structures were studied and could reduce the amount of CO 2 e produced in 65

PAGE 73

addition to making a substantial impact on the sustainability aspect of structural design. Comparing CO 2 e produced by timber, steel, and concrete would also have a large impact on the future of sustainability. R -Factor: analyzing diagrid structures for their R-factor to provide in future building codes as an option for framing methods would be a worthy investigation. If an R-factor for diagrids was discovered to be similar to that of an ordinary MRF or CBF, then a diagrid may prove to be a viable option in a high seismic area. 5.4 Conclusion The role of the structural engineer historically in relation to sustainability has been a much more passive role, relying on other disciplines such as the architect to drive innovation. The research done here demonstrates how important it is for structural engineers to take an active role employing various techniques to find a more sustainable path for the field, and pushing it to become the new standard expectation. Investigating the sustainability of different framing types is something that should be employed when starting a new project. This may impact a client's decision as to which framing makes the most sense for the project. By investigating the sustainability of a structure at the start of new projects, the structural engineer can begin to take a more active role in sustainability in lieu of the passive approach currently common. Usually the structural engineer relies on the architect and other disciplines to provide the desired sustainable approaches to the project. Making the structural engineer more aware of the 66

PAGE 74

impacts of their design decisions may also lead to further investigation of framing choices, and perhaps innovative new framing techniques This investigation also highlights why a wholistic approach when considering the sustainability of a structure, and therefore more than just the portion of the structure above ground, need to be considered. Beyond analyzing the whole structure as good practice, this thesis showed that it is necessary as the substructure was a major component in the amount of CO 2 e produced for the structures, which many other researchers were not comprehensive in including the substructure, only focusing on the above ground. In all cases the foundation significantly changed the total amount of CO 2 e produced compared to just the CO 2 e produced for the steel framing. As concrete is one of the highest producers of CO 2 e emissions, especially where structural engineering is concerned, this is not an area that can be ignored. While much of this thesis has focused on the role of the structural engineer, there is significant rational for why it should and does matter to the clients. Reducing the amount of material used on the project is beneficial for the client, as this will likely reduce the overall cost of the project. If possible increasing the interior space will make it more adaptable and desirable to rent or sell. Reducing the sizes of the exterior framing members and increasing the thermal bridging will aid in the reduction of heating and cooling loads necessary for the building. The reduction in the sizes of the exterior framing members will also aid in the area available to bring in the most daylighting, which in turn would also aid in the necessary cooling loads and electrical requirements as less lighting would be needed on a constant basis. 67

PAGE 75

Finally, analyzing a structure to consider different aspects of sustainability can help the structural engineer participate better as part of an integrated design team, or in a Charette, to provided the most sustainable product. This is also something a structural engineer can put into practice immediately, instead of waiting for years to get something implemented into the codes and standards. In lieu of the traditional approach where the structural engineers starts with a couple design possibilities and allows the client to decide based on cost of the systemit would be a better to consider sustainability as an approach to the initial design and determine the design possibilities based on that for presentation. With an evaluation of the sustainability of the structure, albeit more initial work for the structural engineer, the structural engineer can present design possibilities that affect the economic, social, and environmental aspects and achieve the overall triple bottom line, thus providing the best product for the client, the occupants, and the environment. In summation, there is not one best design or one best approach to sustainability as related to the structural engineer, but a spectrum of opportunity to work toward making the entire field more sustainable all while not costing the client more or sacrificing structural integrity, but reducing environmental impact substantially. 68

PAGE 76

REFERENCES References ASCE. (2010a). Code of Ethics. Retrieved from ASCE website: http:// www.asce.org/Leadership-and-Management/Ethics/Code-of-Ethics/ ASCE (2010b). Minimum Design Loads for Buildings and Other Structures. Reston, VA: American Society of Civil Engineers. Athena Sustainable Materials Institute (2014, March, 24) Retrieved from Athena website: http://www.athenasmi.org/resources/about-lca/whats-the-difference/ Attmann, O. (2010). Green architecture: Advanced technologies and materials. United States: McGraw-Hill. Baker, W., Besjak, C., Sarkisian, M., Lee, P., & Doo, C. S. (2010). Proposed methodology to determine seismic performance factors for steel diagrid framed systems. Council of Tall Buildings and Urban Habitat. Besjak, C., Kim, B., and Biswas, P. (2009) 555m Tall Lotte Super Tower, Seoul, Korea. Structures Congress 2009: pp. 1-10. Boake, T. M. (2013). Diagrids, the New Stablity System: Combining Architecture with Engineering. In Architectural Engineering Institute Conference. Boake, T. (2014). Diagrid Structures: Systems, Connections, Details. Germany: Walter de Gruyter. Brundtland, G. H. (1987). Our common future, Oxford University Press, Oxford, U.K. Chau, K. W. (2007). Incorporation of sustainability concepts into a civil engineering curriculum. Journal of Professional Issues in Engineering Education and Practice, 133(3), 188-191. Chau, K. W., Wong, S. K., Yau, Y., & Yeung, A. K. C. (2007). Determining optimal building height. Urban Studies, 44(3), 591-607. Chini, A. R., & Bruening, S. F. (2003). Deconstruction and material reuse in the United States. The Future of Sustainable Construction, May, 1-22. Chwieduk, D. (2003). Towards sustainable-energy buildings. Applied energy, 76(1), 211217. Cicerone, R., Barron, E., Dickinson, R., Fung, I., Hansen, J., Karl, T., Lindzen, R., McWilliams, J., Rowland, F., Sarachik, E. & Wallace, J. (2001). Climate Change 69

PAGE 77

Science: An Analysis of Some Key Questions. Washington, D.C.: National Academy Press. Cole, R. J., & Kernan, P. C. (1996). Life-cycle energy use in office buildings. Building and Environment, 31(4), 307-317. Council, B. S. S. (2009). NEHRP recommended seismic provisions for new buildings and other structures (FEMA P-750). Washington, DC: Federal Emergency Management Agency. Cywinski, Z. (2001). Current philosophy of sustainability in civil engineering. Journal of Professional Issues in Engineering Education and Practice, 127(1), 12-16. Enercalc (Version 6) [Computer software]. Corona del Mar, CA: Enercalc Inc. EPA. (2014, May 6). Retrieved from Climate Change website: http://www.epa.gov/ climatechange/ Foster+Partners (2002), City Hall [photo], Retrieved March 18, 2016 from http:// www.fosterandpartners.com/projects/city-hall/ Griffith, B., Long, N., Torcellini, P., Judkoff, R., Crawley, D. & Ryan, J. U.S. Department of Energy. (2007, December ). Assessment of the Technical Potential for Achieving Net Zero-Energy Buildings in the Commercial Sector. (pp. 1-114). Golden, CO: National Renewable Energy Laboratory. Hays, B. & Cocke, D. (2009, April ). Missed Opportunities in Structural Sustainability Structure Magazine, 27-28. IABSE. (2013). Structural engineering. Retrieved from IABSE website: http:// www.iabse.org/IABSE/Structural_Engineering/IABSE/structural/ about_structural.aspx?hkey=ee9b28cf-6a1a-4fdc-a1b5-aed61219be77 IPCC, Intergovernmental Panel on Climate Change. (2013). Climate Change 2013: The Physical Science Basis. New York, NY: Cambridge University Press. Jani, K. & Patel, P. (2013). Analysis and Design of Diagrid Structural System for High Rise Steel Buildings. Chemical, Civil and Mechanical Engineering Tracks of 3rd Nirma University International Conference on Engineering. Jaswani, N. & Dhyani, D. (2015). Parametric Study on Diagrid Structure System for High-Rise Building. International Journal of Advanced Engineering and Research Development, 2(15), 369-376. 70

PAGE 78

Kelly, A. (1984). Maintenance planning and control. Great Britan: Butterworth & Co. Kestner, D. M., Goupil, J., & Lorenz, E. (Eds.). (2010). Sustainability guidelines for the structural engineer. ASCE Publications. Kibert, C. J. (2008). Sustainable construction: Green building design and delivery. Hoboken, New Jersey: John Wiley & Sons Inc. Kim, J., & Lee, Y. H. (2012). Seismic performance evaluation of diagrid system buildings. The Structural Design of Tall and Special Buildings, 21(10), 736-749. Korsavi, S., & Maqhareh, M. R. (2014). The Evolutionary Process of Diagrid Structure Towards Architectural, Structural and Sustainability Concepts: Reviewing Case Studies. Journal of Architectural Engineering Technology, 2014. Leonard, J. (2007). Investigation of shear lag effect in high-rise buildings with diagrid system (Doctoral thesis, Massachusetts Institute of Technology). McEntee, P. (2009, February). Steel moment frames history and evolution. Structural Engineer. Retrieved from https://www.strongtie.com/resources/technical-topics/ published-articles McFarland, P. (2015). Officials Reach Historic Climate Deal. Engineering News Record. Retrieved from http://www.enr.com/articles/38236-officials-still-face-long-roadto-paris-climate-pact McConnell, J. R., & Fahnestock, L. A. (2014). Innovations in Steel Design: Research Needs for Global Sustainability. Journal of Structural Engineering. McDonough, W., & Braungart, M. (1992). The Hannover Principles. William McDonough Architects. Metha, P. K., & Burrows, R. W. (2001). Building durable structures in the 21st century. Concrete International, March, 57-63. Moon, K. S., Connor, J. J., & Fernandez, J. E. (2007). Diagrid structural systems for tall buildings: characteristics and methodology for preliminary design. The Structural Design of Tall and Special Buildings, 16(2), 205-230. 71

PAGE 79

Moon, K. S. (2008). Sustainable Structural Engineering Strategies for Tall Buildings. Structural Design of Tall and Special Buildings, 17, 895-914. Moon, K. S. (2009). Design and Construction of Steel Diagrid Structures. NSCC 2009. Moon, K. S. (2011). Sustainable Structural Systems and Configurations for Tall Buildings. In Reston, VA: ASCE copyright Proceedings of the 2011 Architectural Engineering National Conference, March 30-April 2, 2011, Oakland, CA| d 20110000. American Society of Civil Engineers. Moon, K. S. (2012). Optimal Configuration of Structural Systems for Tall Buildings. 20th Analysis and Computation Specialty Conference, 300-309. The Natural Step (2015, December). Principles of Sustainability. Retrieved from The Natural Step website: http://www.thenaturalstep.org Ohtori, Y., Christenson, R. E., Spencer, B.F., & Dyke, S.J. (2004). Benchmark Control Problems for Seismically Excited Nonlinear Buildings. Journal of Engineering Mechanics, 133(4), 366-385. Oreskes, N. (2004, December 3). The Scientific Consensus on Climate Change. Science, 306, 1686. Panchal, N. B., & Patel, V. R. (2014). Diagrid structural system: Strategies to reduce lateral forces on high-rise buildings. International Journal of Research in Engineering and Technology, 3(03), 374-378. Peterson, I. (2010). [Photo]. Retrieved March 19, 2016 from http:// mathtourist.blogspot.gr/2010/08/diamond-lattice-exoskeleton.html Ramesh, T., Prakash, R., & Shukla, K. K. (2010). Life cycle energy analysis of buildings: An overview. Energy and Buildings, 42(10), 1592-1600. Riemann, D., & Black, J. (2011, June). Diagrid on display. Structure. Retrieved from http://www.structuremag.org/?p=135 Rens, K. L., Liu, R., & Foltz, S. D. (2013). Sustainable approach for optimal steel sheet pile structure assessment, maintenance, and rehabilitation. Journal of Performance of Constructed Facilities, 27(2), 181-190. Revit (Version 15) [Computer software]. Autodesk. 72

PAGE 80

Richard, D. (2008, June). Steel moment frames 101: What to consider when creating wide-open spaces. Structural Engineer. Retrieved from http://cenews.com/article/ 5840/steel_moment_frames_101__what_to_consider_when_creating_wide_ open_spaces SAC. (2015, July 31). Retrieved from SAC Steel Project website: http:// www.sacsteel.org/index.html SAP2000 (Version 17) [Computer software]. Walnut Creek, CA: CSI America. Sarkisian, M., Long, E., Shook, D., Doo, C. (2012). Optimization Tools for the Design of Structures. 20th Analysis & Computational Specialty Conference, 221-230. Simm, J., Wallis, M., Hedges, T., Emmanuel, B., & Brampton, A. (2003). Developments in the use of recycled and secondary materials in costal structures. Costal Structures, 147(23), 270-282. Srinivasan, R., Braham, W., Campbell, D., & Curcija, C. (2012). Re(de)fining net zero energy: Renewable emergy balance in environmental building design. Building and Environment, 47, 300-315. Taghizadeh, K., & Seyedinnoor, S. (2013). Super-Tall Buildings Forms Based on Structural Concepts and Energy Conservation Principles. Architecture Research, 3(2), 13-19. Thiel, C., Campion, N., Landis, A., Jones, A., Schaefer, L., & Bilec, M. (2013) A Materials Life Cycle Assessment of a Net-Zero Energy Building. Energies 6, 1125-1141. Thormark, C. (2006). The effect of material choice on the total energy need and recycling potential of a building. Building and Environment, 41, 1019-1026. Uang, C. M. (1991). Establishing R (or R w) and C d factors for building seismic provisions. Journal of Structural Engineering, 117(1), 19-28. U.N. General Assembly, 21st Session. R e por t of t he Com m i t t e e on t he A dopt i on of t he Paris Agreement. Draft Desicion. Paris, 2015. USGBC, (2009). LEED 2009 for new construction and major renovations. Washington, D.C.: United States Green Building Council. UST, (2016). Leaking UST Footprint Calculator. Retrieved from http://www.ustcalc.org/CarbonCalc.aspx 73

PAGE 81

Vesilind, P. A. (1995). Evolution of the American Society of Civil Engineers Code of Ethics. Journal of Professional Issues in Engineering Education and Practice, 121(1), 4-10. Vesilind, P. A., & Gunn, A. S. (1998). Sustainable development and the ASCE code of ethics. Journal of Professional Issues in Engineering Education and Practice, 124(3), 72-74. Weisenberger, G. (2011). Sustainability and the Structural Engineer. Practice Periodical on Structural Design and Construction, 16(4), 146-150. WHO, (2014). Global Health Observatory (GHO): Urban population growth World Health Organization (WHO). 2014. Retrieved January 6, 2015 from http:// www.who.int/gho/urban_health/situation_trends/urban_population_growth_text / en/ 74

PAGE 82

APPENDIX A Appendix A 75

PAGE 83

! 76 !"#$%&'(#)*+,*!"#$%&'())%*%+%!#",,%!-"' $ %/%012 .34-5#(67$%8(7#-5%,-5%9"):%&(#$;-5<%.. =%/%>???%: @,,$7#"A$%!$")3"7%=$";B# 9$)4-6)$%C-D","7(#"-6%8(7#-5 EC98 E&F8 *"(;5"D 9%/ ?1G ?1HG 012 !$")3"7%9$)4-6)$%&-$,,"7"$6#I%& ) & ) %/ *! JK9J. $ L%/% 210MG & ) %6-#%#-%$N7$$DO P%/%& # B 6 N %/% K21HLQK?ML 21RG %/%?10H%)$7 S%P T />%)$7 & ) %U%! *0 JVPK9J. $ LW%/%2120> & ) %6-#%'$))%#B(6O & ) %X%212>>! *! $ %X%2120 /%2122YZ%S%2120> [ @\ %/%Z0%:

PAGE 84

! 77 !"#$%&'()*+, !"#$%&'()* +,%-)*./(0$'1)22 !345$%(6)7&,56,30 23/('3.5)8'(%%&'( 9:* #, ;<=>?@A B,'(4/,$3.5,/1)C.4/$' D 6 <>?AE F(5$4,/1)8'(%%&'()!"#$%&'()*$(GG,4,(3/ D H <>?IA J$#$0'.#H,4)C.4/$' :<>?AE # <>?A K,36L.'6 # ?E N((L.'6 203$',30)O5/,/&6()O6P&%/Q(3/ R S <>?>>TEUH S/ 6 F T `) /$)@E`)H(,0H/)H <>?AE^)/H('(G$'()#
PAGE 85

APPENDIX B Appendix B 78

PAGE 86

! 79 MRF 3 story.sdb SAP2000 v17.3.0 3 Story MRF 27 March 2016 Computers and Structures, Inc. Page 1 of 17 3 Story MRF Table: Joint Reactions Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 604 DEAD LinStatic 13.877 5.418 118.830 36.5589 80.0503 9.934E 05 604 LIVE LinStatic 8.466 4.206 67.232 30.9158 49.1536 5.133E 05 604 WIND LinStatic 87.295 123.927 61.493 32.6013 9.3635 3.869E 05 604 DSTL1 Combination 19.428 7.585 166.361 51.1825 112.0704 1.391E 04 604 DSTL2 Combination 30.198 13.231 250.167 93.3361 174.7061 2.013E 04 604 DSTL3 Combination 70.643 117.426 81.103 11.2694 86.6968 1.579E 04 604 DSTL4 Combination 103.947 130.428 204.088 76.4720 105.4239 8.053E 05 604 DSTL5 Combination 26.995 55.462 111.849 27.5701 91.3786 1.386E 04 604 DSTL6 Combination 60.300 68.465 173.342 60.1714 100.7421 9.987E 05 604 DSTL7 Combination 74.806 119.051 45.454 0.3017 62.6817 1.281E 04 604 DSTL8 Combination 99.784 128.803 168.440 65.5044 81.4088 5.072E 05 604 DSTL9 Combination 13.877 5.418 118.830 36.5589 80.0503 9.934E 05 604 DSTL10 Combination 22.343 9.624 186.062 67.4748 129.2039 1.507E 04 605 DEAD LinStatic 1.604 0.196 231.196 0.8368 6.4893 2.031E 05 605 LIVE LinStatic 0.887 0.113 135.124 0.4807 3.5822 1.133E 05 605 WIND LinStatic 0.473 0.137 0.271 1.1044 3.3999 1.043E 05 605 DSTL1 Combination 2.246 0.274 323.674 1.1715 9.0851 2.843E 05 605 DSTL2 Combination 3.345 0.415 493.634 1.7734 13.5187 4.250E 05 605 DSTL3 Combination 1.452 0.098 277.164 0.1002 4.3873 3.480E 05 605 DSTL4 Combination 2.398 0.372 277.706 2.1086 11.1871 1.394E 05 605 DSTL5 Combination 1.688 0.166 277.300 0.4520 6.0873 2.958E 05 605 DSTL6 Combination 2.162 0.303 277.571 1.5564 9.4872 1.916E 05 605 DSTL7 Combination 0.970 0.039 207.805 0.3513 2.4405 2.871E 05 605 DSTL8 Combination 1.917 0.313 208.347 1.8575 9.2403 7.849E 06 605 DSTL9 Combination 1.604 0.196 231.196 0.8368 6.4893 2.031E 05 605 DSTL10 Combination 2.492 0.309 366.320 1.3176 10.0715 3.164E 05 606 DEAD LinStatic 0.284 0.111 234.601 0.4720 1.1542 1.657E 06 606 LIVE LinStatic 0.159 0.065 137.073 0.2727 0.6489 6.586E 07 606 WIND LinStatic 0.516 0.137 0.029 1.1034 3.5401 7.405E 07 606 DSTL1 Combination 0.397 0.156 328.441 0.6608 1.6159 2.320E 06 606 DSTL2 Combination 0.594 0.237 500.837 1.0028 2.4234 3.042E 06 606 DSTL3 Combination 0.856 3.219E 03 281.492 0.5370 4.9252 2.729E 06 606 DSTL4 Combination 0.176 0.270 281.550 1.6699 2.1551 1.248E 06 606 DSTL5 Combination 0.598 0.065 281.506 0.0147 3.1551 2.359E 06 606 DSTL6 Combination 0.082 0.202 281.535 1.1182 0.3850 1.618E 06 606 DSTL7 Combination 0.771 0.037 211.112 0.6786 4.5789 2.232E 06 606 DSTL8 Combination 0.261 0.237 211.169 1.5283 2.5013 7.509E 07 606 DSTL9 Combination 0.284 0.111 234.601 0.4720 1.1542 1.657E 06 606 DSTL10 Combination 0.442 0.176 371.674 0.7447 1.8032 2.316E 06 607 DEAD LinStatic 0.280 0.111 234.612 0.4730 1.1290 7.300E 07 607 LIVE LinStatic 0.155 0.065 137.072 0.2735 0.6238 4.273E 07 607 WIND LinStatic 0.513 0.136 0.124 1.1003 3.5181 1.574E 08 607 DSTL1 Combination 0.392 0.156 328.457 0.6622 1.5806 1.022E 06 607 DSTL2 Combination 0.583 0.237 500.849 1.0052 2.3529 1.560E 06 607 DSTL3 Combination 0.177 2.616E 03 281.410 0.5327 2.1632 8.602E 07 607 DSTL4 Combination 0.848 0.270 281.659 1.6679 4.8729 8.917E 07 607 DSTL5 Combination 0.079 0.066 281.472 0.0174 0.4042 8.681E 07 607 DSTL6 Combination 0.592 0.202 281.597 1.1178 3.1139 8.838E 07 607 DSTL7 Combination 0.261 0.036 211.026 0.6746 2.5019 6.412E 07 607 DSTL8 Combination 0.764 0.237 211.275 1.5260 4.5342 6.727E 07 MRF 3 story.sdb SAP2000 v17.3.0 3 Story MRF 27 March 2016 Computers and Structures, Inc. Page 2 of 17 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 607 DSTL9 Combination 0.280 0.111 234.612 0.4730 1.1290 7.300E 07 607 DSTL10 Combination 0.434 0.176 371.684 0.7465 1.7529 1.157E 06 608 DEAD LinStatic 1.642 0.193 230.193 0.8254 6.6755 6.361E 07 608 LIVE LinStatic 0.906 0.112 134.612 0.4763 3.6817 6.592E 07 608 WIND LinStatic 0.464 0.137 0.092 1.1034 3.3168 1.484E 06 608 DSTL1 Combination 2.299 0.271 322.271 1.1556 9.3457 8.905E 07 608 DSTL2 Combination 3.421 0.411 491.612 1.7527 13.9013 1.818E 06 608 DSTL3 Combination 2.435 0.095 276.324 0.1129 11.3274 7.202E 07 608 DSTL4 Combination 1.506 0.369 276.140 2.0939 4.6938 2.247E 06 608 DSTL5 Combination 2.203 0.164 276.278 0.4388 9.6690 2.154E 08 608 DSTL6 Combination 1.739 0.300 276.186 1.5422 6.3522 1.505E 06 608 DSTL7 Combination 1.942 0.037 207.266 0.3605 9.3248 9.111E 07 608 DSTL8 Combination 1.014 0.311 207.082 1.8463 2.6912 2.056E 06 608 DSTL9 Combination 1.642 0.193 230.193 0.8254 6.6755 6.361E 07 608 DSTL10 Combination 2.549 0.305 364.806 1.3018 10.3572 1.295E 06 609 DEAD LinStatic 0.086 0.256 231.834 1.0973 0.3714 2.418E 05 609 LIVE LinStatic 0.046 0.147 135.569 0.6284 0.2075 1.360E 05 609 WIND LinStatic 0.369 0.137 0.104 1.1032 2.9103 6.514E 06 609 DSTL1 Combination 0.120 0.359 324.567 1.5363 0.5199 3.386E 05 609 DSTL2 Combination 0.177 0.543 495.111 2.3222 0.7777 5.078E 05 609 DSTL3 Combination 0.266 0.171 278.096 0.2136 2.4646 3.554E 05 609 DSTL4 Combination 0.472 0.444 278.305 2.4200 3.3559 2.251E 05 609 DSTL5 Combination 0.081 0.239 278.148 0.7652 1.0095 3.228E 05 609 DSTL6 Combination 0.287 0.376 278.253 1.8684 1.9008 2.576E 05 609 DSTL7 Combination 0.291 0.094 208.546 0.1156 2.5760 2.828E 05 609 DSTL8 Combination 0.446 0.367 208.755 2.0908 3.2445 1.525E 05 609 DSTL9 Combination 0.086 0.256 231.834 1.0973 0.3714 2.418E 05 609 DSTL10 Combination 0.132 0.403 367.403 1.7257 0.5789 3.779E 05 610 DEAD LinStatic 13.927 5.435 119.488 36.6432 81.3576 1.032E 04 610 LIVE LinStatic 8.493 4.216 67.623 30.9604 49.9732 5.358E 05 610 WIND LinStatic 82.700 123.506 23.687 32.8225 9.1498 3.402E 05 610 DSTL1 Combination 19.498 7.608 167.283 51.3004 113.9006 1.445E 04 610 DSTL2 Combination 30.301 13.267 251.582 93.5084 177.5861 2.096E 04 610 DSTL3 Combination 99.412 116.985 119.698 11.1493 106.7788 1.579E 04 610 DSTL4 Combination 65.988 130.028 167.073 76.7943 88.4793 8.984E 05 610 DSTL5 Combination 58.062 55.232 131.542 27.5605 102.2040 1.409E 04 610 DSTL6 Combination 24.638 68.275 155.229 60.3831 93.0542 1.068E 04 610 DSTL7 Combination 95.234 118.615 83.852 0.1563 82.3716 1.269E 04 610 DSTL8 Combination 70.166 128.397 131.226 65.8014 64.0720 5.887E 05 610 DSTL9 Combination 13.927 5.435 119.488 36.6432 81.3576 1.032E 04 610 DSTL10 Combination 22.420 9.650 187.111 67.6036 131.3307 1.568E 04 667 DEAD LinStatic 8.511 0.257 224.634 1.0483 36.5298 9.687E 05 667 LIVE LinStatic 4.933 0.122 128.700 0.4838 21.1695 7.191E 05 667 WIND LinStatic 0.299 1.787 0.103 12.9165 2.2657 1.944E 04 667 DSTL1 Combination 11.916 0.360 314.487 1.4676 51.1417 1.356E 04 667 DSTL2 Combination 18.107 0.503 475.480 2.0320 77.7070 2.313E 04 667 DSTL3 Combination 9.914 1.479 269.457 11.6586 41.5700 3.107E 04 667 DSTL4 Combination 10.513 2.095 269.664 14.1744 46.1014 7.820E 05 667 DSTL5 Combination 10.064 0.585 269.509 5.2003 42.7029 2.135E 04 667 DSTL6 Combination 10.363 1.202 269.612 7.7162 44.9686 1.902E 05 667 DSTL7 Combination 7.361 1.556 202.067 11.9731 30.6111 2.816E 04 667 DSTL8 Combination 7.959 2.018 202.274 13.8600 35.1425 1.073E 04 667 DSTL9 Combination 8.511 0.257 224.634 1.0483 36.5298 9.687E 05 667 DSTL10 Combination 13.444 0.379 353.334 1.5321 57.6993 1.688E 04

PAGE 87

! 80 MRF 3 story.sdb SAP2000 v17.3.0 3 Story MRF 27 March 2016 Computers and Structures, Inc. Page 3 of 17 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 668 DEAD LinStatic 0.612 4.727E 03 463.275 0.0805 2.6053 1.872E 05 668 LIVE LinStatic 0.337 7.233E 03 274.349 0.0799 1.4378 1.094E 05 668 WIND LinStatic 0.295 0.889 0.052 8.2614 2.0668 1.793E 05 668 DSTL1 Combination 0.856 6.618E 03 648.585 0.1127 3.6474 2.621E 05 668 DSTL2 Combination 1.273 0.017 994.888 0.2245 5.4268 3.997E 05 668 DSTL3 Combination 1.029 0.894 555.982 8.3581 5.1931 4.039E 05 668 DSTL4 Combination 0.439 0.883 555.877 8.1648 1.0595 4.533E 06 668 DSTL5 Combination 0.881 0.450 555.956 4.2273 4.1597 3.143E 05 668 DSTL6 Combination 0.587 0.439 555.904 4.0341 2.0929 1.350E 05 668 DSTL7 Combination 0.845 0.893 417.000 8.3339 4.4115 3.478E 05 668 DSTL8 Combination 0.256 0.884 416.895 8.1890 0.2780 1.082E 06 668 DSTL9 Combination 0.612 4.727E 03 463.275 0.0805 2.6053 1.872E 05 668 DSTL10 Combination 0.949 0.012 737.623 0.1605 4.0430 2.966E 05 669 DEAD LinStatic 0.038 0.025 451.834 0.1597 0.1696 4.186E 06 669 LIVE LinStatic 0.021 0.017 268.030 0.1148 0.0913 2.373E 06 669 WIND LinStatic 0.261 0.800 2.754E 03 7.4198 1.8408 5.566E 06 669 DSTL1 Combination 0.054 0.035 632.568 0.2236 0.2375 5.860E 06 669 DSTL2 Combination 0.079 0.058 971.048 0.3754 0.3496 8.820E 06 669 DSTL3 Combination 0.215 0.831 542.198 7.6114 1.6372 5.433E 07 669 DSTL4 Combination 0.307 0.770 542.204 7.2281 2.0443 1.059E 05 669 DSTL5 Combination 0.084 0.431 542.199 3.9015 0.7168 2.240E 06 669 DSTL6 Combination 0.176 0.370 542.202 3.5182 1.1239 7.806E 06 669 DSTL7 Combination 0.226 0.823 406.648 7.5635 1.6881 1.799E 06 669 DSTL8 Combination 0.295 0.778 406.653 7.2760 1.9934 9.333E 06 669 DSTL9 Combination 0.038 0.025 451.834 0.1597 0.1696 4.186E 06 669 DSTL10 Combination 0.059 0.043 719.864 0.2745 0.2609 6.559E 06 670 DEAD LinStatic 0.037 0.023 452.327 0.1501 0.1596 2.483E 07 670 LIVE LinStatic 0.022 0.016 268.307 0.1077 0.0956 1.544E 07 670 WIND LinStatic 0.261 0.796 9.060E 03 7.3875 1.8418 1.393E 06 670 DSTL1 Combination 0.051 0.033 633.258 0.2101 0.2235 3.476E 07 670 DSTL2 Combination 0.079 0.053 972.085 0.3524 0.3445 5.449E 07 670 DSTL3 Combination 0.305 0.824 542.784 7.5676 2.0333 1.095E 06 670 DSTL4 Combination 0.217 0.768 542.802 7.2074 1.6503 1.691E 06 670 DSTL5 Combination 0.175 0.426 542.788 3.8739 1.1124 3.986E 07 670 DSTL6 Combination 0.087 0.370 542.797 3.5136 0.7294 9.945E 07 670 DSTL7 Combination 0.294 0.817 407.086 7.5226 1.9854 1.170E 06 670 DSTL8 Combination 0.228 0.775 407.104 7.2524 1.6981 1.617E 06 670 DSTL9 Combination 0.037 0.023 452.327 0.1501 0.1596 2.483E 07 670 DSTL10 Combination 0.059 0.039 720.635 0.2578 0.2552 4.026E 07 671 DEAD LinStatic 0.598 3.789E 03 453.488 0.0834 2.5560 2.110E 06 671 LIVE LinStatic 0.350 5.220E 03 268.930 0.0739 1.4979 1.176E 06 671 WIND LinStatic 0.286 0.879 9.935E 03 8.1985 2.0276 7.511E 06 671 DSTL1 Combination 0.838 5.304E 03 634.883 0.1167 3.5784 2.955E 06 671 DSTL2 Combination 1.279 0.013 974.474 0.2182 5.4639 4.414E 06 671 DSTL3 Combination 0.432 0.883 544.176 8.2985 1.0396 4.978E 06 671 DSTL4 Combination 1.004 0.874 544.196 8.0984 5.0948 1.004E 05 671 DSTL5 Combination 0.575 0.444 544.181 4.1992 2.0534 1.223E 06 671 DSTL6 Combination 0.861 0.435 544.191 3.9992 4.0810 6.288E 06 671 DSTL7 Combination 0.252 0.882 408.129 8.2735 0.2728 5.612E 06 671 DSTL8 Combination 0.825 0.875 408.149 8.1234 4.3280 9.410E 06 671 DSTL9 Combination 0.598 3.789E 03 453.488 0.0834 2.5560 2.110E 06 671 DSTL10 Combination 0.949 9.009E 03 722.418 0.1572 4.0539 3.286E 06 672 DEAD LinStatic 4.494E 03 0.016 463.580 0.0010 0.0414 2.324E 05 672 LIVE LinStatic 0.022 4.877E 03 274.652 0.0329 0.1033 1.354E 05 MRF 3 story.sdb SAP2000 v17.3.0 3 Story MRF 27 March 2016 Computers and Structures, Inc. Page 4 of 17 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 672 WIND LinStatic 0.301 0.887 0.060 8.2489 2.0908 1.224E 05 672 DSTL1 Combination 6.291E 03 0.023 649.012 0.0014 0.0580 3.253E 05 672 DSTL2 Combination 0.040 0.027 995.739 0.0514 0.2150 4.955E 05 672 DSTL3 Combination 0.306 0.867 556.235 8.2477 2.1405 4.012E 05 672 DSTL4 Combination 0.296 0.906 556.356 8.2501 2.0411 1.565E 05 672 DSTL5 Combination 0.156 0.424 556.265 4.1232 1.0951 3.400E 05 672 DSTL6 Combination 0.145 0.463 556.326 4.1257 0.9957 2.176E 05 672 DSTL7 Combination 0.305 0.872 417.161 8.2480 2.1281 3.315E 05 672 DSTL8 Combination 0.297 0.901 417.282 8.2498 2.0535 8.675E 06 672 DSTL9 Combination 4.494E 03 0.016 463.580 0.0010 0.0414 2.324E 05 672 DSTL10 Combination 0.026 0.021 738.232 0.0319 0.1447 3.678E 05 673 DEAD LinStatic 8.493 0.260 224.371 1.0675 36.4591 1.048E 04 673 LIVE LinStatic 4.922 0.123 128.542 0.4948 21.1241 7.666E 05 673 WIND LinStatic 0.301 1.804 0.280 13.0077 2.2771 1.458E 04 673 DSTL1 Combination 11.891 0.364 314.120 1.4944 51.0427 1.468E 04 673 DSTL2 Combination 18.067 0.509 474.914 2.0727 77.5495 2.485E 04 673 DSTL3 Combination 10.493 1.492 269.526 11.7268 46.0280 2.716E 04 673 DSTL4 Combination 9.891 2.116 268.965 14.2887 41.4738 1.997E 05 673 DSTL5 Combination 10.343 0.590 269.386 5.2229 44.8895 1.987E 04 673 DSTL6 Combination 10.042 1.214 269.106 7.7848 42.6123 5.292E 05 673 DSTL7 Combination 7.945 1.570 202.215 12.0470 35.0903 2.401E 04 673 DSTL8 Combination 7.343 2.038 201.654 13.9685 30.5361 5.142E 05 673 DSTL9 Combination 8.493 0.260 224.371 1.0675 36.4591 1.048E 04 673 DSTL10 Combination 13.416 0.383 352.914 1.5623 57.5832 1.815E 04 674 DEAD LinStatic 7.966 0.094 225.519 0.3290 34.1987 1.867E 05 674 LIVE LinStatic 4.621 0.095 129.752 0.3377 19.8345 2.058E 05 674 WIND LinStatic 0.269 1.682 0.309 11.9955 2.0380 1.466E 04 674 DSTL1 Combination 11.152 0.131 315.727 0.4606 47.8782 2.613E 05 674 DSTL2 Combination 16.952 0.265 478.226 0.9351 72.7737 5.533E 05 674 DSTL3 Combination 9.290 1.570 270.315 11.6007 39.0004 1.242E 04 674 DSTL4 Combination 9.828 1.795 270.932 12.3903 43.0765 1.690E 04 674 DSTL5 Combination 9.425 0.729 270.469 5.6029 40.0195 5.092E 05 674 DSTL6 Combination 9.694 0.954 270.778 6.3925 42.0575 9.572E 05 674 DSTL7 Combination 6.901 1.598 202.659 11.6994 28.7408 1.298E 04 674 DSTL8 Combination 7.438 1.767 203.276 12.2916 32.8169 1.634E 04 674 DSTL9 Combination 7.966 0.094 225.519 0.3290 34.1987 1.867E 05 674 DSTL10 Combination 12.587 0.189 355.271 0.6667 54.0332 3.925E 05 675 DEAD LinStatic 0.098 0.013 468.870 0.0969 0.4515 3.974E 06 675 LIVE LinStatic 0.075 0.011 277.841 0.0813 0.3365 3.073E 06 675 WIND LinStatic 0.289 0.893 0.053 8.2913 2.0312 2.385E 05 675 DSTL1 Combination 0.137 0.019 656.419 0.1357 0.6322 5.564E 06 675 DSTL2 Combination 0.236 0.033 1007.190 0.2465 1.0803 9.686E 06 675 DSTL3 Combination 0.172 0.909 562.697 8.4076 1.4894 1.908E 05 675 DSTL4 Combination 0.406 0.877 562.592 8.1749 2.5731 2.862E 05 675 DSTL5 Combination 0.028 0.463 562.671 4.2620 0.4738 7.157E 06 675 DSTL6 Combination 0.262 0.431 562.618 4.0293 1.5574 1.670E 05 675 DSTL7 Combination 0.201 0.905 422.036 8.3785 1.6248 2.028E 05 675 DSTL8 Combination 0.377 0.881 421.931 8.2040 2.4376 2.743E 05 675 DSTL9 Combination 0.098 0.013 468.870 0.0969 0.4515 3.974E 06 675 DSTL10 Combination 0.172 0.024 746.711 0.1783 0.7880 7.047E 06 676 DEAD LinStatic 0.038 0.013 456.327 0.0971 0.1727 4.629E 07 676 LIVE LinStatic 0.020 0.011 270.968 0.0802 0.0906 5.401E 08 676 WIND LinStatic 0.263 0.800 1.750E 03 7.4104 1.8476 1.945E 06 676 DSTL1 Combination 0.053 0.019 638.858 0.1359 0.2418 6.481E 07

PAGE 88

! 81 MRF 3 story.sdb SAP2000 v17.3.0 3 Story MRF 27 March 2016 Computers and Structures, Inc. Page 5 of 17 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 676 DSTL2 Combination 0.077 0.033 981.141 0.2447 0.3523 6.419E 07 676 DSTL3 Combination 0.218 0.817 547.590 7.5268 1.6403 1.389E 06 676 DSTL4 Combination 0.309 0.784 547.594 7.2939 2.0549 2.500E 06 676 DSTL5 Combination 0.086 0.416 547.591 3.8217 0.7165 4.169E 07 676 DSTL6 Combination 0.177 0.384 547.593 3.5887 1.1311 1.528E 06 676 DSTL7 Combination 0.229 0.813 410.692 7.4977 1.6922 1.528E 06 676 DSTL8 Combination 0.297 0.788 410.696 7.3230 2.0031 2.361E 06 676 DSTL9 Combination 0.038 0.013 456.327 0.0971 0.1727 4.629E 07 676 DSTL10 Combination 0.058 0.024 727.295 0.1772 0.2634 5.170E 07 677 DEAD LinStatic 0.019 0.014 457.328 0.1002 0.0837 1.095E 08 677 LIVE LinStatic 0.011 0.011 271.549 0.0822 0.0493 1.539E 09 677 WIND LinStatic 0.265 0.796 4.971E 04 7.3807 1.8556 8.542E 07 677 DSTL1 Combination 0.027 0.019 640.260 0.1402 0.1172 1.533E 08 677 DSTL2 Combination 0.041 0.034 983.273 0.2517 0.1794 1.560E 08 677 DSTL3 Combination 0.288 0.813 548.794 7.5009 1.9560 8.673E 07 677 DSTL4 Combination 0.242 0.779 548.795 7.2605 1.7551 8.411E 07 677 DSTL5 Combination 0.155 0.415 548.794 3.8105 1.0282 4.402E 07 677 DSTL6 Combination 0.109 0.381 548.794 3.5702 0.8274 4.140E 07 677 DSTL7 Combination 0.282 0.809 411.595 7.4709 1.9309 8.641E 07 677 DSTL8 Combination 0.247 0.784 411.596 7.2906 1.7803 8.443E 07 677 DSTL9 Combination 0.019 0.014 457.328 0.1002 0.0837 1.095E 08 677 DSTL10 Combination 0.030 0.025 728.878 0.1823 0.1330 1.249E 08 678 DEAD LinStatic 0.190 0.013 455.463 0.0971 0.8317 4.605E 07 678 LIVE LinStatic 0.106 0.011 270.462 0.0802 0.4639 3.861E 08 678 WIND LinStatic 0.265 0.800 4.343E 03 7.4105 1.8602 1.981E 06 678 DSTL1 Combination 0.267 0.019 637.648 0.1360 1.1643 6.447E 07 678 DSTL2 Combination 0.399 0.033 979.295 0.2449 1.7402 6.143E 07 678 DSTL3 Combination 0.494 0.817 546.560 7.5270 2.8582 1.429E 06 678 DSTL4 Combination 0.037 0.784 546.551 7.2939 0.8622 2.534E 06 678 DSTL5 Combination 0.361 0.416 546.558 3.8218 1.9281 4.381E 07 678 DSTL6 Combination 0.096 0.384 546.554 3.5887 0.0679 1.543E 06 678 DSTL7 Combination 0.437 0.813 409.921 7.4979 2.6087 1.567E 06 678 DSTL8 Combination 0.094 0.788 409.913 7.3231 1.1117 2.396E 06 678 DSTL9 Combination 0.190 0.013 455.463 0.0971 0.8317 4.605E 07 678 DSTL10 Combination 0.297 0.024 725.925 0.1773 1.2955 4.991E 07 679 DEAD LinStatic 0.071 0.013 468.306 0.0969 0.2660 4.014E 06 679 LIVE LinStatic 0.021 0.011 277.514 0.0813 0.0712 3.120E 06 679 WIND LinStatic 0.293 0.893 0.056 8.2921 2.0628 2.389E 05 679 DSTL1 Combination 0.099 0.019 655.628 0.1356 0.3724 5.620E 06 679 DSTL2 Combination 0.119 0.033 1005.989 0.2463 0.4331 9.809E 06 679 DSTL3 Combination 0.208 0.909 561.911 8.4084 1.7436 1.907E 05 679 DSTL4 Combination 0.378 0.877 562.024 8.1759 2.3820 2.870E 05 679 DSTL5 Combination 0.061 0.463 561.939 4.2623 0.7122 7.127E 06 679 DSTL6 Combination 0.231 0.431 561.995 4.0298 1.3506 1.676E 05 679 DSTL7 Combination 0.229 0.905 421.419 8.3793 1.8234 2.027E 05 679 DSTL8 Combination 0.357 0.881 421.532 8.2049 2.3022 2.750E 05 679 DSTL9 Combination 0.071 0.013 468.306 0.0969 0.2660 4.014E 06 679 DSTL10 Combination 0.092 0.024 745.820 0.1782 0.3372 7.134E 06 680 DEAD LinStatic 7.950 0.094 225.431 0.3292 34.1342 1.825E 05 680 LIVE LinStatic 4.611 0.095 129.699 0.3378 19.7959 2.029E 05 680 WIND LinStatic 0.272 1.682 5.892E 03 11.9986 2.0580 1.472E 04 680 DSTL1 Combination 11.129 0.131 315.604 0.4609 47.7879 2.554E 05 680 DSTL2 Combination 16.917 0.265 478.037 0.9355 72.6345 5.437E 05 680 DSTL3 Combination 9.812 1.570 270.524 11.6036 43.0191 1.253E 04 MRF 3 story.sdb SAP2000 v17.3.0 3 Story MRF 27 March 2016 Computers and Structures, Inc. Page 6 of 17 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 680 DSTL4 Combination 9.267 1.795 270.512 12.3936 38.9031 1.691E 04 680 DSTL5 Combination 9.676 0.729 270.521 5.6043 41.9901 5.169E 05 680 DSTL6 Combination 9.403 0.954 270.515 6.3943 39.9321 9.548E 05 680 DSTL7 Combination 7.427 1.598 202.894 11.7023 32.7788 1.307E 04 680 DSTL8 Combination 6.883 1.767 202.882 12.2949 28.6628 1.636E 04 680 DSTL9 Combination 7.950 0.094 225.431 0.3292 34.1342 1.825E 05 680 DSTL10 Combination 12.560 0.189 355.131 0.6670 53.9301 3.854E 05 681 DEAD LinStatic 8.779 1.645 225.632 6.6804 37.6836 1.862E 04 681 LIVE LinStatic 5.090 1.383 128.983 5.6018 21.8443 1.728E 04 681 WIND LinStatic 0.325 1.689 0.540 13.3875 2.4700 4.478E 04 681 DSTL1 Combination 12.291 2.302 315.884 9.3525 52.7570 2.607E 04 681 DSTL2 Combination 18.680 4.186 477.130 16.9793 80.1712 4.999E 04 681 DSTL3 Combination 10.211 3.662 271.298 21.4039 42.7503 2.244E 04 681 DSTL4 Combination 10.860 0.284 270.218 5.3710 47.6903 6.713E 04 681 DSTL5 Combination 10.373 2.818 271.028 14.7102 43.9853 4.822E 07 681 DSTL6 Combination 10.698 1.129 270.488 1.3227 46.4553 4.473E 04 681 DSTL7 Combination 7.577 3.169 203.608 19.3998 31.4453 2.803E 04 681 DSTL8 Combination 8.226 0.209 202.529 7.3752 36.3852 6.154E 04 681 DSTL9 Combination 8.779 1.645 225.632 6.6804 37.6836 1.862E 04 681 DSTL10 Combination 13.870 3.027 354.614 12.2821 59.5279 3.590E 04 682 DEAD LinStatic 0.576 0.021 462.592 0.1129 2.4480 1.617E 05 682 LIVE LinStatic 0.316 0.014 273.942 0.0830 1.3466 1.054E 05 682 WIND LinStatic 0.296 0.892 0.071 8.2895 2.0738 2.817E 05 682 DSTL1 Combination 0.806 0.030 647.629 0.1581 3.4272 2.264E 05 682 DSTL2 Combination 1.197 0.048 993.419 0.2682 5.0921 3.628E 05 682 DSTL3 Combination 0.987 0.918 555.182 8.4250 5.0114 4.758E 05 682 DSTL4 Combination 0.395 0.866 555.040 8.1540 0.8638 8.761E 06 682 DSTL5 Combination 0.839 0.472 555.146 4.2803 3.9745 3.349E 05 682 DSTL6 Combination 0.543 0.420 555.075 4.0093 1.9007 5.323E 06 682 DSTL7 Combination 0.814 0.911 416.404 8.3912 4.2770 4.272E 05 682 DSTL8 Combination 0.222 0.873 416.262 8.1879 0.1294 1.361E 05 682 DSTL9 Combination 0.576 0.021 462.592 0.1129 2.4480 1.617E 05 682 DSTL10 Combination 0.892 0.036 736.535 0.1959 3.7946 2.672E 05 683 DEAD LinStatic 0.037 1.433E 03 451.901 0.0338 0.1673 1.046E 06 683 LIVE LinStatic 0.020 4.325E 03 268.071 0.0451 0.0902 1.544E 07 683 WIND LinStatic 0.262 0.796 3.670E 03 7.3796 1.8508 1.808E 05 683 DSTL1 Combination 0.052 2.006E 03 632.661 0.0474 0.2342 1.465E 06 683 DSTL2 Combination 0.077 8.640E 03 971.194 0.1128 0.3450 1.008E 06 683 DSTL3 Combination 0.218 0.798 542.285 7.4202 1.6500 1.933E 05 683 DSTL4 Combination 0.307 0.794 542.278 7.3390 2.0515 1.682E 05 683 DSTL5 Combination 0.086 0.400 542.283 3.7304 0.7247 1.029E 05 683 DSTL6 Combination 0.176 0.396 542.279 3.6492 1.1261 7.783E 06 683 DSTL7 Combination 0.229 0.797 406.715 7.4100 1.7002 1.902E 05 683 DSTL8 Combination 0.296 0.795 406.707 7.3491 2.0013 1.713E 05 683 DSTL9 Combination 0.037 1.433E 03 451.901 0.0338 0.1673 1.046E 06 683 DSTL10 Combination 0.058 5.758E 03 719.972 0.0790 0.2574 8.917E 07 684 DEAD LinStatic 0.037 4.196E 03 452.316 0.0491 0.1596 2.402E 07 684 LIVE LinStatic 0.022 6.264E 03 268.301 0.0560 0.0956 1.370E 07 684 WIND LinStatic 0.261 0.792 1.230E 03 7.3523 1.8405 7.875E 08 684 DSTL1 Combination 0.051 5.874E 03 633.242 0.0687 0.2234 3.363E 07 684 DSTL2 Combination 0.079 0.015 972.060 0.1485 0.3444 5.075E 07 684 DSTL3 Combination 0.305 0.797 542.780 7.4112 2.0320 3.670E 07 684 DSTL4 Combination 0.217 0.787 542.777 7.2934 1.6490 2.095E 07 684 DSTL5 Combination 0.175 0.401 542.779 3.7351 1.1118 3.277E 07

PAGE 89

! 82 MRF 3 story.sdb SAP2000 v17.3.0 3 Story MRF 27 March 2016 Computers and Structures, Inc. Page 7 of 17 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 684 DSTL6 Combination 0.086 0.391 542.778 3.6172 0.7288 2.489E 07 684 DSTL7 Combination 0.294 0.796 407.085 7.3965 1.9842 2.950E 07 684 DSTL8 Combination 0.228 0.788 407.083 7.3081 1.6969 1.375E 07 684 DSTL9 Combination 0.037 4.196E 03 452.316 0.0491 0.1596 2.402E 07 684 DSTL10 Combination 0.059 0.010 720.616 0.1051 0.2551 3.772E 07 685 DEAD LinStatic 0.600 0.026 453.555 0.1312 2.5587 1.993E 06 685 LIVE LinStatic 0.351 0.019 268.971 0.1034 1.4992 2.170E 06 685 WIND LinStatic 0.285 0.875 3.371E 03 8.1693 2.0159 2.537E 05 685 DSTL1 Combination 0.839 0.036 634.978 0.1837 3.5822 2.790E 06 685 DSTL2 Combination 1.281 0.061 974.621 0.3229 5.4692 5.864E 06 685 DSTL3 Combination 0.435 0.906 544.263 8.3268 1.0546 2.298E 05 685 DSTL4 Combination 1.004 0.844 544.270 8.0118 5.0863 2.776E 05 685 DSTL5 Combination 0.577 0.469 544.265 4.2421 2.0625 1.029E 05 685 DSTL6 Combination 0.862 0.407 544.268 3.9272 4.0784 1.508E 05 685 DSTL7 Combination 0.255 0.899 408.197 8.2874 0.2870 2.358E 05 685 DSTL8 Combination 0.824 0.852 408.203 8.0512 4.3187 2.717E 05 685 DSTL9 Combination 0.600 0.026 453.555 0.1312 2.5587 1.993E 06 685 DSTL10 Combination 0.950 0.044 722.527 0.2346 4.0579 4.163E 06 686 DEAD LinStatic 0.040 0.042 462.896 0.1943 0.1985 2.065E 05 686 LIVE LinStatic 0.043 0.026 274.244 0.1299 0.1944 1.316E 05 686 WIND LinStatic 0.299 0.894 0.037 8.3039 2.0804 2.617E 05 686 DSTL1 Combination 0.057 0.059 648.054 0.2720 0.2780 2.892E 05 686 DSTL2 Combination 0.117 0.093 994.266 0.4409 0.5493 4.584E 05 686 DSTL3 Combination 0.348 0.945 555.438 8.5370 2.3186 5.096E 05 686 DSTL4 Combination 0.251 0.843 555.512 8.0707 1.8421 1.385E 06 686 DSTL5 Combination 0.198 0.498 555.456 4.3850 1.2784 3.787E 05 686 DSTL6 Combination 0.101 0.396 555.493 3.9188 0.8019 1.170E 05 686 DSTL7 Combination 0.335 0.932 416.569 8.4787 2.2591 4.476E 05 686 DSTL8 Combination 0.263 0.856 416.643 8.1290 1.9017 7.582E 06 686 DSTL9 Combination 0.040 0.042 462.896 0.1943 0.1985 2.065E 05 686 DSTL10 Combination 0.083 0.069 737.140 0.3241 0.3930 3.382E 05 687 DEAD LinStatic 8.761 1.647 225.365 6.6999 37.6115 1.946E 04 687 LIVE LinStatic 5.079 1.384 128.823 5.6127 21.7979 1.776E 04 687 WIND LinStatic 0.322 1.684 0.894 13.3524 2.4792 5.019E 04 687 DSTL1 Combination 12.266 2.306 315.511 9.3798 52.6561 2.724E 04 687 DSTL2 Combination 18.640 4.192 476.555 17.0201 80.0105 5.177E 04 687 DSTL3 Combination 10.835 3.661 271.332 21.3922 47.6130 2.684E 04 687 DSTL4 Combination 10.192 0.293 269.545 5.3126 42.6546 7.354E 04 687 DSTL5 Combination 10.674 2.819 270.885 14.7160 46.3734 1.746E 05 687 DSTL6 Combination 10.353 1.135 269.992 1.3636 43.8942 4.844E 04 687 DSTL7 Combination 8.207 3.167 203.722 19.3823 36.3295 3.268E 04 687 DSTL8 Combination 7.564 0.201 201.935 7.3225 31.3712 6.770E 04 687 DSTL9 Combination 8.761 1.647 225.365 6.6999 37.6115 1.946E 04 687 DSTL10 Combination 13.840 3.032 354.188 12.3125 59.4094 3.722E 04 688 DEAD LinStatic 13.244 4.012 118.704 7.1332 75.5149 6.176E 05 688 LIVE LinStatic 8.055 2.950 67.696 5.3147 46.1896 1.324E 05 688 WIND LinStatic 86.695 126.989 22.998 20.3007 13.9678 3.555E 04 688 DSTL1 Combination 18.542 5.617 166.185 9.9865 105.7209 8.646E 05 688 DSTL2 Combination 28.781 9.535 250.759 17.0634 164.5212 9.530E 05 688 DSTL3 Combination 70.802 131.804 165.442 28.8606 76.6501 4.296E 04 688 DSTL4 Combination 102.589 122.174 119.447 11.7408 104.5857 2.814E 04 688 DSTL5 Combination 27.455 68.309 153.943 18.7102 83.6340 2.519E 04 688 DSTL6 Combination 59.241 58.680 130.945 1.5904 97.6018 1.036E 04 688 DSTL7 Combination 74.776 130.600 129.831 26.7206 53.9956 4.111E 04 MRF 3 story.sdb SAP2000 v17.3.0 3 Story MRF 27 March 2016 Computers and Structures, Inc. Page 8 of 17 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 688 DSTL8 Combination 98.615 123.378 83.836 13.8807 81.9312 2.999E 04 688 DSTL9 Combination 13.244 4.012 118.704 7.1332 75.5149 6.176E 05 688 DSTL10 Combination 21.299 6.963 186.400 12.4479 121.7045 7.500E 05 689 DEAD LinStatic 1.620 0.198 231.036 0.8579 6.5710 1.430E 05 689 LIVE LinStatic 0.897 0.115 135.027 0.4993 3.6333 6.316E 06 689 WIND LinStatic 0.504 0.139 0.063 1.1186 3.5855 5.959E 05 689 DSTL1 Combination 2.269 0.278 323.451 1.2011 9.1993 2.003E 05 689 DSTL2 Combination 3.380 0.422 493.287 1.8283 13.6985 2.727E 05 689 DSTL3 Combination 1.441 0.377 277.181 2.1481 4.2996 7.676E 05 689 DSTL4 Combination 2.448 0.099 277.306 0.0891 11.4707 4.243E 05 689 DSTL5 Combination 1.693 0.308 277.212 1.5888 6.0924 4.696E 05 689 DSTL6 Combination 2.196 0.168 277.275 0.4702 9.6779 1.263E 05 689 DSTL7 Combination 0.955 0.318 207.870 1.8907 2.3283 7.247E 05 689 DSTL8 Combination 1.962 0.039 207.995 0.3464 9.4994 4.672E 05 689 DSTL9 Combination 1.620 0.198 231.036 0.8579 6.5710 1.430E 05 689 DSTL10 Combination 2.518 0.314 366.063 1.3572 10.2043 2.062E 05 690 DEAD LinStatic 0.282 0.115 234.625 0.4997 1.1416 1.116E 06 690 LIVE LinStatic 0.158 0.068 137.087 0.2957 0.6402 6.819E 07 690 WIND LinStatic 0.528 0.136 0.125 1.0981 3.6199 5.880E 06 690 DSTL1 Combination 0.395 0.161 328.475 0.6995 1.5982 1.563E 06 690 DSTL2 Combination 0.591 0.247 500.889 1.0726 2.3943 2.430E 06 690 DSTL3 Combination 0.866 0.274 281.675 1.6977 4.9899 7.219E 06 690 DSTL4 Combination 0.189 2.177E 03 281.425 0.4985 2.2500 4.541E 06 690 DSTL5 Combination 0.603 0.206 281.613 1.1487 3.1799 4.279E 06 690 DSTL6 Combination 0.075 0.070 281.488 0.0505 0.4400 1.601E 06 690 DSTL7 Combination 0.782 0.240 211.287 1.5478 4.6474 6.885E 06 690 DSTL8 Combination 0.274 0.032 211.038 0.6484 2.5925 4.876E 06 690 DSTL9 Combination 0.282 0.115 234.625 0.4997 1.1416 1.116E 06 690 DSTL10 Combination 0.440 0.183 371.712 0.7953 1.7818 1.798E 06 691 DEAD LinStatic 0.280 0.115 234.605 0.5011 1.1298 7.100E 07 691 LIVE LinStatic 0.155 0.068 137.066 0.2968 0.6243 4.227E 07 691 WIND LinStatic 0.513 0.135 0.037 1.0942 3.5170 1.142E 06 691 DSTL1 Combination 0.392 0.162 328.446 0.7016 1.5817 9.940E 07 691 DSTL2 Combination 0.584 0.247 500.832 1.0762 2.3546 1.528E 06 691 DSTL3 Combination 0.177 0.274 281.562 1.6955 2.1613 2.901E 07 691 DSTL4 Combination 0.849 3.082E 03 281.489 0.4928 4.8728 1.994E 06 691 DSTL5 Combination 0.080 0.206 281.544 1.1484 0.4028 2.809E 07 691 DSTL6 Combination 0.592 0.071 281.507 0.0542 3.1142 1.423E 06 691 DSTL7 Combination 0.261 0.239 211.181 1.5452 2.5002 5.031E 07 691 DSTL8 Combination 0.765 0.032 211.107 0.6432 4.5338 1.781E 06 691 DSTL9 Combination 0.280 0.115 234.605 0.5011 1.1298 7.100E 07 691 DSTL10 Combination 0.435 0.184 371.671 0.7979 1.7540 1.133E 06 692 DEAD LinStatic 1.644 0.197 230.216 0.8531 6.6915 1.109E 06 692 LIVE LinStatic 0.908 0.115 134.625 0.4993 3.6923 5.667E 07 692 WIND LinStatic 0.448 0.136 0.254 1.0965 3.2187 6.230E 06 692 DSTL1 Combination 2.302 0.276 322.302 1.1944 9.3681 1.552E 06 692 DSTL2 Combination 3.426 0.421 491.659 1.8226 13.9374 2.237E 06 692 DSTL3 Combination 2.422 0.372 276.512 2.1202 11.2486 4.899E 06 692 DSTL4 Combination 1.525 0.101 276.005 0.0727 4.8111 7.561E 06 692 DSTL5 Combination 2.198 0.305 276.386 1.5720 9.6392 1.784E 06 692 DSTL6 Combination 1.749 0.169 276.132 0.4755 6.4205 4.446E 06 692 DSTL7 Combination 1.928 0.313 207.448 1.8643 9.2411 5.232E 06 692 DSTL8 Combination 1.032 0.042 206.940 0.3287 2.8037 7.228E 06 692 DSTL9 Combination 1.644 0.197 230.216 0.8531 6.6915 1.109E 06

PAGE 90

! 83 MRF 3 story.sdb SAP2000 v17.3.0 3 Story MRF 27 March 2016 Computers and Structures, Inc. Page 9 of 17 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 692 DSTL10 Combination 2.552 0.312 364.840 1.3524 10.3838 1.676E 06 693 DEAD LinStatic 0.066 0.259 231.681 1.1192 0.2758 1.806E 05 693 LIVE LinStatic 0.034 0.150 135.477 0.6477 0.1482 8.477E 06 693 WIND LinStatic 0.339 0.138 0.085 1.1143 2.7213 5.600E 05 693 DSTL1 Combination 0.093 0.363 324.354 1.5668 0.3861 2.529E 05 693 DSTL2 Combination 0.134 0.550 494.781 2.3792 0.5680 3.524E 05 693 DSTL3 Combination 0.259 0.449 278.103 2.4573 2.3903 7.767E 05 693 DSTL4 Combination 0.419 0.173 277.932 0.2287 3.0522 3.433E 05 693 DSTL5 Combination 0.090 0.380 278.060 1.9002 1.0297 4.967E 05 693 DSTL6 Combination 0.249 0.242 277.975 0.7858 1.6916 6.326E 06 693 DSTL7 Combination 0.279 0.371 208.598 2.1216 2.4731 7.225E 05 693 DSTL8 Combination 0.399 0.095 208.428 0.1071 2.9695 3.974E 05 693 DSTL9 Combination 0.066 0.259 231.681 1.1192 0.2758 1.806E 05 693 DSTL10 Combination 0.101 0.409 367.159 1.7668 0.4240 2.654E 05 694 DEAD LinStatic 13.295 4.031 119.362 7.1848 76.7387 6.617E 05 694 LIVE LinStatic 8.083 2.961 68.087 5.3435 46.9552 1.584E 05 694 WIND LinStatic 83.566 127.536 60.868 20.4144 10.3560 3.513E 04 694 DSTL1 Combination 18.613 5.644 167.106 10.0588 107.4342 9.264E 05 694 DSTL2 Combination 28.887 9.575 252.173 17.1714 167.2147 1.047E 04 694 DSTL3 Combination 99.520 132.374 204.102 29.0362 102.4424 4.307E 04 694 DSTL4 Combination 67.612 122.698 82.366 11.7926 81.7305 2.719E 04 694 DSTL5 Combination 57.737 68.606 173.668 18.8290 97.2644 2.551E 04 694 DSTL6 Combination 25.829 58.930 112.800 1.5854 86.9084 9.626E 05 694 DSTL7 Combination 95.532 131.164 168.293 26.8808 79.4208 4.109E 04 694 DSTL8 Combination 71.600 123.908 46.557 13.9481 58.7088 2.918E 04 694 DSTL9 Combination 13.295 4.031 119.362 7.1848 76.7387 6.617E 05 694 DSTL10 Combination 21.378 6.993 187.448 12.5283 123.6939 8.201E 05 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 1 W21X44 Beam No Messages 0.784742 PMM 2 W21X44 Beam No Messages 0.685439 PMM 3 W21X44 Beam No Messages 0.822147 PMM 4 W24X62 Beam No Messages 0.845268 PMM 5 W21X48 Beam No Messages 0.877514 PMM 6 W21X48 Beam No Messages 0.919999 PMM 7 W21X48 Beam No Messages 0.903176 PMM 8 W21X48 Beam No Messages 0.868215 PMM 9 W24X62 Beam No Messages 0.840078 PMM 10 W24X62 Beam No Messages 0.865603 PMM 11 W21X48 Beam No Messages 0.820979 PMM 12 W21X48 Beam No Messages 0.860309 PMM 13 W21X48 Beam No Messages 0.858876 PMM 14 W21X48 Beam No Messages 0.816903 PMM 15 W24X62 Beam No Messages 0.867332 PMM 16 W24X62 Beam No Messages 0.831191 PMM 17 W21X48 Beam No Messages 0.879931 PMM 18 W21X48 Beam No Messages 0.919680 PMM 19 W21X48 Beam No Messages 0.902921 PMM MRF 3 story.sdb SAP2000 v17.3.0 3 Story MRF 27 March 2016 Computers and Structures, Inc. Page 10 of 17 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 20 W21X48 Beam No Messages 0.870612 PMM 21 W24X62 Beam No Messages 0.826032 PMM 22 W21X44 Beam No Messages 0.779865 PMM 23 W21X44 Beam No Messages 0.687240 PMM 24 W21X44 Beam No Messages 0.816806 PMM 25 W18X35 Beam No Messages 0.840472 PMM 26 W18X35 Beam No Messages 0.840450 PMM 27 W18X40 Beam No Messages 0.812598 PMM 28 W18X40 Beam No Messages 0.811314 PMM 29 W18X40 Beam No Messages 0.810946 PMM 30 W18X35 Beam No Messages 0.428749 PMM 31 W18X35 Beam No Messages 0.544589 PMM 32 W18X35 Beam No Messages 0.425236 PMM 33 W18X40 Beam No Messages 0.813046 PMM 34 W18X40 Beam No Messages 0.811368 PMM 35 W18X40 Beam No Messages 0.811121 PMM 36 W18X35 Beam No Messages 0.428698 PMM 37 W18X35 Beam No Messages 0.544546 PMM 38 W18X35 Beam No Messages 0.425517 PMM 39 W18X46 Beam No Messages 0.926586 PMM 40 W18X46 Beam No Messages 0.926539 PMM 41 W18X46 Beam No Messages 0.926533 PMM 42 W18X46 Beam No Messages 0.926585 PMM 43 W18X46 Beam No Messages 0.926612 PMM 44 W18X46 Beam No Messages 0.926579 PMM 45 W18X46 Beam No Messages 0.926581 PMM 46 W18X46 Beam No Messages 0.926606 PMM 47 W18X46 Beam No Messages 0.926612 PMM 48 W18X46 Beam No Messages 0.926604 PMM 49 W18X46 Beam No Messages 0.926599 PMM 50 W18X46 Beam No Messages 0.926618 PMM 51 W18X46 Beam No Messages 0.926613 PMM 52 W18X46 Beam No Messages 0.926619 PMM 53 W18X46 Beam No Messages 0.926620 PMM 54 W18X46 Beam No Messages 0.926606 PMM 55 W18X46 Beam No Messages 0.926609 PMM 56 W18X46 Beam No Messages 0.926573 PMM 57 W18X46 Beam No Messages 0.926567 PMM 58 W18X46 Beam No Messages 0.926608 PMM 59 W18X46 Beam No Messages 0.933339 PMM 60 W18X46 Beam No Messages 0.926583 PMM 61 W18X46 Beam No Messages 0.926627 PMM 62 W18X46 Beam No Messages 0.926627 PMM 63 W18X46 Beam No Messages 0.926635 PMM 64 W18X46 Beam No Messages 0.926642 PMM 65 W18X46 Beam No Messages 0.926641 PMM 66 W18X46 Beam No Messages 0.926634 PMM 67 W18X46 Beam No Messages 0.926634 PMM 68 W18X46 Beam No Messages 0.926637 PMM 69 W18X46 Beam No Messages 0.926577 PMM 70 W18X46 Beam No Messages 0.933322 PMM 71 W18X46 Beam No Messages 0.926515 PMM 72 W18X46 Beam No Messages 0.879651 PMM 73 W18X46 Beam No Messages 0.872992 PMM

PAGE 91

! 84 MRF 3 story.sdb SAP2000 v17.3.0 3 Story MRF 27 March 2016 Computers and Structures, Inc. Page 11 of 17 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 74 W18X46 Beam No Messages 0.933226 PMM 75 W18X46 Beam No Messages 0.926628 PMM 76 W18X46 Beam No Messages 0.933156 PMM 77 W18X46 Beam No Messages 0.926636 PMM 78 W18X46 Beam No Messages 0.926628 PMM 79 W18X46 Beam No Messages 0.926616 PMM 80 W18X46 Beam No Messages 0.926603 PMM 81 W18X46 Beam No Messages 0.926628 PMM 82 W18X46 Beam No Messages 0.926607 PMM 83 W18X46 Beam No Messages 0.926594 PMM 84 W18X46 Beam No Messages 0.926603 PMM 85 W18X46 Beam No Messages 0.926597 PMM 86 W18X46 Beam No Messages 0.926596 PMM 87 W18X46 Beam No Messages 0.926637 PMM 88 W18X46 Beam No Messages 0.926639 PMM 89 W18X46 Beam No Messages 0.926640 PMM 90 W18X46 Beam No Messages 0.926638 PMM 91 W18X46 Beam No Messages 0.926585 PMM 92 W18X46 Beam No Messages 0.926597 PMM 93 W18X46 Beam No Messages 0.926592 PMM 94 W18X46 Beam No Messages 0.926593 PMM 95 W18X46 Beam No Messages 0.926543 PMM 96 W18X46 Beam No Messages 0.926563 PMM 97 W18X46 Beam No Messages 0.926538 PMM 98 W18X46 Beam No Messages 0.926551 PMM 99 W18X46 Beam No Messages 0.926618 PMM 100 W18X46 Beam No Messages 0.926630 PMM 101 W18X46 Beam No Messages 0.933176 PMM 102 W18X46 Beam No Messages 0.926634 PMM 103 W18X46 Beam No Messages 0.933261 PMM 104 W18X46 Beam No Messages 0.926498 PMM 105 W18X46 Beam No Messages 0.879566 PMM 106 W18X46 Beam No Messages 0.926516 PMM 335 W18X35 Beam No Messages 0.002362 PMM 336 W18X35 Beam No Messages 0.002465 PMM 337 W18X35 Beam No Messages 0.002362 PMM 338 W18X35 Beam No Messages 0.002362 PMM 339 W18X35 Beam No Messages 0.002465 PMM 340 W18X35 Beam No Messages 0.002876 PMM 341 W18X35 Beam No Messages 0.002465 PMM 342 W18X35 Beam No Messages 0.002362 PMM 343 W18X35 Beam No Messages 0.002362 PMM 344 W18X35 Beam No Messages 0.002876 PMM 345 W18X35 Beam No Messages 0.002362 PMM 346 W18X35 Beam No Messages 0.002362 PMM 347 W18X35 Beam No Messages 0.002465 PMM 348 W18X35 Beam No Messages 0.002362 PMM 349 W18X35 Beam No Messages 0.002465 PMM 350 W18X35 Beam No Messages 0.002876 PMM 351 W21X44 Beam No Messages 0.893765 PMM 352 W21X44 Beam No Messages 0.873431 PMM 353 W21X44 Beam No Messages 0.904491 PMM 354 W24X62 Beam No Messages 0.874403 PMM 355 W24X55 Beam No Messages 0.946458 PMM MRF 3 story.sdb SAP2000 v17.3.0 3 Story MRF 27 March 2016 Computers and Structures, Inc. Page 12 of 17 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 356 W24X62 Beam No Messages 0.817358 PMM 357 W24X55 Beam No Messages 0.946943 PMM 358 W24X55 Beam No Messages 0.865826 PMM 359 W24X62 Beam No Messages 0.871933 PMM 360 W24X62 Beam No Messages 0.880995 PMM 361 W24X55 Beam No Messages 0.852020 PMM 362 W24X55 Beam No Messages 0.855925 PMM 363 W24X55 Beam No Messages 0.853516 PMM 364 W24X55 Beam No Messages 0.848069 PMM 365 W24X62 Beam No Messages 0.880054 PMM 366 W24X62 Beam No Messages 0.868503 PMM 367 W24X55 Beam No Messages 0.947057 PMM 368 W24X62 Beam No Messages 0.817329 PMM 369 W24X55 Beam No Messages 0.946920 PMM 370 W24X55 Beam No Messages 0.866382 PMM 371 W24X62 Beam No Messages 0.866035 PMM 372 W21X44 Beam No Messages 0.892329 PMM 373 W21X44 Beam No Messages 0.873744 PMM 374 W21X44 Beam No Messages 0.903165 PMM 375 W18X35 Beam No Messages 0.888504 PMM 376 W18X35 Beam No Messages 0.888511 PMM 377 W21X44 Beam No Messages 0.814431 PMM 378 W21X44 Beam No Messages 0.803866 PMM 379 W21X44 Beam No Messages 0.813757 PMM 380 W18X35 Beam No Messages 0.637631 PMM 381 W18X35 Beam No Messages 0.437751 PMM 382 W18X35 Beam No Messages 0.442166 PMM 383 W21X44 Beam No Messages 0.814505 PMM 384 W21X44 Beam No Messages 0.803858 PMM 385 W21X44 Beam No Messages 0.813793 PMM 386 W18X35 Beam No Messages 0.637327 PMM 387 W18X35 Beam No Messages 0.437660 PMM 388 W18X35 Beam No Messages 0.442102 PMM 389 W18X50 Beam No Messages 0.831598 PMM 390 W18X50 Beam No Messages 0.832852 PMM 391 W18X50 Beam No Messages 0.832852 PMM 392 W18X50 Beam No Messages 0.831596 PMM 393 W18X50 Beam No Messages 0.831627 PMM 394 W18X50 Beam No Messages 0.832776 PMM 395 W18X50 Beam No Messages 0.832777 PMM 396 W18X50 Beam No Messages 0.831615 PMM 397 W18X50 Beam No Messages 0.831635 PMM 398 W18X50 Beam No Messages 0.831570 PMM 399 W18X50 Beam No Messages 0.831563 PMM 400 W18X50 Beam No Messages 0.831633 PMM 401 W18X50 Beam No Messages 0.831633 PMM 402 W18X50 Beam No Messages 0.832754 PMM 403 W18X50 Beam No Messages 0.832754 PMM 404 W18X50 Beam No Messages 0.831621 PMM 405 W18X50 Beam No Messages 0.831677 PMM 406 W18X50 Beam No Messages 0.832828 PMM 407 W18X50 Beam No Messages 0.832829 PMM 408 W18X50 Beam No Messages 0.831674 PMM 409 W18X50 Beam No Messages 0.837305 PMM

PAGE 92

! 85 MRF 3 story.sdb SAP2000 v17.3.0 3 Story MRF 27 March 2016 Computers and Structures, Inc. Page 13 of 17 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 410 W18X50 Beam No Messages 0.831605 PMM 411 W18X50 Beam No Messages 0.831645 PMM 412 W18X50 Beam No Messages 0.831643 PMM 413 W18X50 Beam No Messages 0.831656 PMM 414 W18X50 Beam No Messages 0.831665 PMM 415 W18X50 Beam No Messages 0.831670 PMM 416 W18X50 Beam No Messages 0.831664 PMM 417 W18X50 Beam No Messages 0.831636 PMM 418 W18X50 Beam No Messages 0.831651 PMM 419 W18X50 Beam No Messages 0.831622 PMM 420 W18X50 Beam No Messages 0.837303 PMM 421 W18X50 Beam No Messages 0.832844 PMM 422 W18X50 Beam No Messages 0.838514 PMM 423 W18X50 Beam No Messages 0.832849 PMM 424 W18X50 Beam No Messages 0.838352 PMM 425 W18X50 Beam No Messages 0.831665 PMM 426 W18X50 Beam No Messages 0.837159 PMM 427 W18X50 Beam No Messages 0.831632 PMM 428 W18X50 Beam No Messages 0.831638 PMM 429 W18X50 Beam No Messages 0.832775 PMM 430 W18X50 Beam No Messages 0.832798 PMM 431 W18X50 Beam No Messages 0.832768 PMM 432 W18X50 Beam No Messages 0.832797 PMM 433 W18X50 Beam No Messages 0.831554 PMM 434 W18X50 Beam No Messages 0.831546 PMM 435 W18X50 Beam No Messages 0.831555 PMM 436 W18X50 Beam No Messages 0.832752 PMM 437 W18X50 Beam No Messages 0.831660 PMM 438 W18X50 Beam No Messages 0.831661 PMM 439 W18X50 Beam No Messages 0.831653 PMM 440 W18X50 Beam No Messages 0.831655 PMM 441 W18X50 Beam No Messages 0.832760 PMM 442 W18X50 Beam No Messages 0.831552 PMM 443 W18X50 Beam No Messages 0.832755 PMM 444 W18X50 Beam No Messages 0.831551 PMM 445 W18X50 Beam No Messages 0.832839 PMM 446 W18X50 Beam No Messages 0.832806 PMM 447 W18X50 Beam No Messages 0.832840 PMM 448 W18X50 Beam No Messages 0.832813 PMM 449 W18X50 Beam No Messages 0.831632 PMM 450 W18X50 Beam No Messages 0.831640 PMM 451 W18X50 Beam No Messages 0.837164 PMM 452 W18X50 Beam No Messages 0.831648 PMM 453 W18X50 Beam No Messages 0.838348 PMM 454 W18X50 Beam No Messages 0.832863 PMM 455 W18X50 Beam No Messages 0.838511 PMM 456 W18X50 Beam No Messages 0.832858 PMM 457 W18X35 Beam No Messages 0.002876 PMM 458 W18X35 Beam No Messages 0.002362 PMM 459 W18X35 Beam No Messages 0.002362 PMM 460 W18X35 Beam No Messages 0.002876 PMM 461 W18X35 Beam No Messages 0.002876 PMM 462 W18X35 Beam No Messages 0.002362 PMM 463 W18X35 Beam No Messages 0.002362 PMM MRF 3 story.sdb SAP2000 v17.3.0 3 Story MRF 27 March 2016 Computers and Structures, Inc. Page 14 of 17 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 464 W18X35 Beam No Messages 0.002877 PMM 465 W18X35 Beam No Messages 0.002876 PMM 466 W18X35 Beam No Messages 0.002362 PMM 467 W18X35 Beam No Messages 0.002362 PMM 468 W18X35 Beam No Messages 0.002876 PMM 469 W18X35 Beam No Messages 0.002362 PMM 470 W18X35 Beam No Messages 0.002877 PMM 471 W18X35 Beam No Messages 0.002876 PMM 472 W18X35 Beam No Messages 0.002362 PMM 473 W21X44 Beam No Messages 0.852189 PMM 474 W21X44 Beam No Messages 0.762916 PMM 475 W21X44 Beam No Messages 0.869603 PMM 476 W24X68 Beam No Messages 0.745904 PMM 477 W24X62 Beam No Messages 0.830731 PMM 478 W24X62 Beam No Messages 0.836167 PMM 479 W24X62 Beam No Messages 0.831043 PMM 480 W24X55 Beam No Messages 0.867345 PMM 481 W24X68 Beam No Messages 0.742701 PMM 482 W24X68 Beam No Messages 0.753325 PMM 483 W24X55 Beam No Messages 0.850834 PMM 484 W24X55 Beam No Messages 0.853665 PMM 485 W24X55 Beam No Messages 0.851666 PMM 486 W24X55 Beam No Messages 0.848528 PMM 487 W24X68 Beam No Messages 0.752522 PMM 488 W24X68 Beam No Messages 0.741000 PMM 489 W24X62 Beam No Messages 0.831073 PMM 490 W24X62 Beam No Messages 0.836147 PMM 491 W24X62 Beam No Messages 0.831028 PMM 492 W24X55 Beam No Messages 0.867702 PMM 493 W24X68 Beam No Messages 0.737804 PMM 494 W21X44 Beam No Messages 0.846424 PMM 495 W21X44 Beam No Messages 0.762718 PMM 496 W21X44 Beam No Messages 0.863760 PMM 497 W18X35 Beam No Messages 0.888488 PMM 498 W18X35 Beam No Messages 0.888502 PMM 499 W21X48 Beam No Messages 0.681151 PMM 500 W21X48 Beam No Messages 0.765751 PMM 501 W21X48 Beam No Messages 0.762421 PMM 502 W21X44 Beam No Messages 0.446284 PMM 503 W21X44 Beam No Messages 0.417982 PMM 504 W21X44 Beam No Messages 0.439893 PMM 505 W21X48 Beam No Messages 0.681076 PMM 506 W21X48 Beam No Messages 0.765871 PMM 507 W21X48 Beam No Messages 0.762461 PMM 508 W21X44 Beam No Messages 0.446384 PMM 509 W21X44 Beam No Messages 0.417959 PMM 510 W21X44 Beam No Messages 0.439863 PMM 511 W18X50 Beam No Messages 0.831558 PMM 512 W18X50 Beam No Messages 0.831749 PMM 513 W18X50 Beam No Messages 0.831737 PMM 514 W18X50 Beam No Messages 0.831561 PMM 515 W18X50 Beam No Messages 0.831589 PMM 516 W18X50 Beam No Messages 0.831727 PMM 517 W18X50 Beam No Messages 0.831730 PMM

PAGE 93

! 86 MRF 3 story.sdb SAP2000 v17.3.0 3 Story MRF 27 March 2016 Computers and Structures, Inc. Page 15 of 17 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 518 W18X50 Beam No Messages 0.831597 PMM 519 W18X50 Beam No Messages 0.831582 PMM 520 W18X50 Beam No Messages 0.831684 PMM 521 W18X50 Beam No Messages 0.831688 PMM 522 W18X50 Beam No Messages 0.831596 PMM 523 W18X50 Beam No Messages 0.831590 PMM 524 W18X50 Beam No Messages 0.831754 PMM 525 W18X50 Beam No Messages 0.831757 PMM 526 W18X50 Beam No Messages 0.831598 PMM 527 W18X50 Beam No Messages 0.832752 PMM 528 W18X50 Beam No Messages 0.831769 PMM 529 W18X50 Beam No Messages 0.831756 PMM 530 W18X50 Beam No Messages 0.832750 PMM 531 W18X50 Beam No Messages 0.838417 PMM 532 W18X50 Beam No Messages 0.832756 PMM 533 W18X50 Beam No Messages 0.831592 PMM 534 W18X50 Beam No Messages 0.831595 PMM 535 W18X50 Beam No Messages 0.831597 PMM 536 W18X50 Beam No Messages 0.831598 PMM 537 W18X50 Beam No Messages 0.831595 PMM 538 W18X50 Beam No Messages 0.831593 PMM 539 W18X50 Beam No Messages 0.831607 PMM 540 W18X50 Beam No Messages 0.831599 PMM 541 W18X50 Beam No Messages 0.832765 PMM 542 W18X50 Beam No Messages 0.838429 PMM 543 W18X50 Beam No Messages 0.831632 PMM 544 W18X50 Beam No Messages 0.838539 PMM 545 W18X50 Beam No Messages 0.831613 PMM 546 W18X50 Beam No Messages 0.838502 PMM 547 W18X50 Beam No Messages 0.832750 PMM 548 W18X50 Beam No Messages 0.838408 PMM 549 W18X50 Beam No Messages 0.831619 PMM 550 W18X50 Beam No Messages 0.831604 PMM 551 W18X50 Beam No Messages 0.831787 PMM 552 W18X50 Beam No Messages 0.831795 PMM 553 W18X50 Beam No Messages 0.831793 PMM 554 W18X50 Beam No Messages 0.831802 PMM 555 W18X50 Beam No Messages 0.831690 PMM 556 W18X50 Beam No Messages 0.831715 PMM 557 W18X50 Beam No Messages 0.831695 PMM 558 W18X50 Beam No Messages 0.831716 PMM 559 W18X50 Beam No Messages 0.831607 PMM 560 W18X50 Beam No Messages 0.831609 PMM 561 W18X50 Beam No Messages 0.831613 PMM 562 W18X50 Beam No Messages 0.831610 PMM 563 W18X50 Beam No Messages 0.831706 PMM 564 W18X50 Beam No Messages 0.831693 PMM 565 W18X50 Beam No Messages 0.831705 PMM 566 W18X50 Beam No Messages 0.831688 PMM 567 W18X50 Beam No Messages 0.831763 PMM 568 W18X50 Beam No Messages 0.831752 PMM 569 W18X50 Beam No Messages 0.831757 PMM 570 W18X50 Beam No Messages 0.831746 PMM 571 W18X50 Beam No Messages 0.831596 PMM MRF 3 story.sdb SAP2000 v17.3.0 3 Sto ry MRF 27 March 2016 Computers and Structures, Inc. Page 16 of 17 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 572 W18X50 Beam No Messages 0.831607 PMM 573 W18X50 Beam No Messages 0.838397 PMM 574 W18X50 Beam No Messages 0.831556 PMM 575 W18X50 Beam No Messages 0.838479 PMM 576 W18X50 Beam No Messages 0.831625 PMM 577 W18X50 Beam No Messages 0.838515 PMM 578 W18X50 Beam No Messages 0.831645 PMM 579 W18X35 Beam No Messages 0.002362 PMM 580 W18X35 Beam No Messages 0.002876 PMM 581 W18X35 Beam No Messages 0.002876 PMM 582 W18X35 Beam No Messages 0.002362 PMM 583 W18X35 Beam No Messages 0.002362 PMM 584 W18X35 Beam No Messages 0.002876 PMM 585 W18X35 Beam No Messages 0.002877 PMM 586 W18X35 Beam No Messages 0.002364 PMM 587 W18X35 Beam No Messages 0.002362 PMM 588 W18X35 Beam No Messages 0.002876 PMM 589 W18X35 Beam No Messages 0.002876 PMM 590 W18X35 Beam No Messages 0.002362 PMM 591 W18X35 Beam No Messages 0.002877 PMM 592 W18X35 Beam No Messages 0.002364 PMM 593 W18X35 Beam No Messages 0.002362 PMM 594 W18X35 Beam No Messages 0.002876 PMM 595 W14X68 Column No Messages 0.038087 PMM 596 W14X68 Column No Messages 0.819504 PMM 597 W14X68 Column No Messages 0.769456 PMM 598 W14X68 Column No Messages 0.769339 PMM 599 W14X68 Column No Messages 0.817504 PMM 600 W14X68 Column No Messages 0.770188 PMM 601 W14X68 Column No Messages 0.038002 PMM 630 W14X109 Column No Messages 0.945907 PMM 631 W14X99 Column No Messages 0.894627 PMM 632 W14X90 Column No Messages 0.929305 PMM 633 W14X90 Column No Messages 0.930242 PMM 634 W14X99 Column No Messages 0.877061 PMM 635 W14X99 Column No Messages 0.865613 PMM 636 W14X109 Column No Messages 0.945830 PMM 637 W14X109 Column No Messages 0.874181 PMM 638 W14X99 Column No Messages 0.879476 PMM 639 W14X90 Column No Messages 0.938752 PMM 640 W14X90 Column No Messages 0.940236 PMM 641 W14X90 Column No Messages 0.945640 PMM 642 W14X99 Column No Messages 0.875928 PMM 643 W14X109 Column No Messages 0.873309 PMM 644 W14X132 Column No Messages 0.898600 PMM 645 W14X99 Column No Messages 0.891960 PMM 646 W14X90 Column No Messages 0.929022 PMM 647 W14X90 Column No Messages 0.929903 PMM 648 W14X99 Column No Messages 0.877826 PMM 649 W14X99 Column No Messages 0.866128 PMM 650 W14X132 Column No Messages 0.898548 PMM 651 W14X68 Column No Messages 0.033602 PMM 652 W14X68 Column No Messages 0.819788 PMM 653 W14X68 Column No Messages 0.769890 PMM

PAGE 94

! 87 MRF 3 story.sdb SAP2000 v17.3.0 3 Story MRF 27 March 2016 Computers and Structures, Inc. Page 17 of 17 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 654 W14X68 Column No Messages 0.769708 PMM 655 W14X68 Column No Messages 0.818018 PMM 656 W14X68 Column No Messages 0.769236 PMM 657 W14X68 Column No Messages 0.033944 PMM

PAGE 95

! 88 BF 3 story.sdb SAP2000 v17.3.0 3 Story CBF 27 March 2016 Computers and Structures, Inc. Page 1 of 17 3 Story CBF Table: Joint Reactions Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 604 DEAD LinStatic 2.230 1.685 121.269 0.0000 0.0000 0.0000 604 LIVE LinStatic 1.278 0.965 68.980 0.0000 0.0000 0.0000 604 WIND LinStatic 82.773 114.302 62.854 0.0000 0.0000 0.0000 604 DSTL1 Combination 3.122 2.360 169.777 0.0000 0.0000 0.0000 604 DSTL2 Combination 4.720 3.566 255.891 0.0000 0.0000 0.0000 604 DSTL3 Combination 85.448 112.280 82.669 0.0000 0.0000 0.0000 604 DSTL4 Combination 80.097 116.325 208.377 0.0000 0.0000 0.0000 604 DSTL5 Combination 44.062 55.129 114.096 0.0000 0.0000 0.0000 604 DSTL6 Combination 38.711 59.174 176.950 0.0000 0.0000 0.0000 604 DSTL7 Combination 84.779 112.785 46.288 0.0000 0.0000 0.0000 604 DSTL8 Combination 80.766 115.819 171.997 0.0000 0.0000 0.0000 604 DSTL9 Combination 2.230 1.685 121.269 0.0000 0.0000 0.0000 604 DSTL10 Combination 3.508 2.650 190.250 0.0000 0.0000 0.0000 605 DEAD LinStatic 12.295 0.197 235.649 0.0000 0.0000 0.0000 605 LIVE LinStatic 7.196 0.115 138.299 0.0000 0.0000 0.0000 605 WIND LinStatic 4.686 0.024 3.463 0.0000 0.0000 0.0000 605 DSTL1 Combination 17.212 0.276 329.908 0.0000 0.0000 0.0000 605 DSTL2 Combination 26.267 0.420 504.056 0.0000 0.0000 0.0000 605 DSTL3 Combination 10.067 0.213 279.316 0.0000 0.0000 0.0000 605 DSTL4 Combination 19.440 0.261 286.241 0.0000 0.0000 0.0000 605 DSTL5 Combination 12.410 0.225 281.047 0.0000 0.0000 0.0000 605 DSTL6 Combination 17.097 0.249 284.510 0.0000 0.0000 0.0000 605 DSTL7 Combination 6.379 0.153 208.621 0.0000 0.0000 0.0000 605 DSTL8 Combination 15.751 0.202 215.547 0.0000 0.0000 0.0000 605 DSTL9 Combination 12.295 0.197 235.649 0.0000 0.0000 0.0000 605 DSTL10 Combination 19.490 0.312 373.947 0.0000 0.0000 0.0000 606 DEAD LinStatic 0.012 0.192 226.604 0.0000 0.0000 0.0000 606 LIVE LinStatic 7.738E 03 0.111 132.522 0.0000 0.0000 0.0000 606 WIND LinStatic 0.064 0.024 7.043E 03 0.0000 0.0000 0.0000 606 DSTL1 Combination 0.016 0.268 317.245 0.0000 0.0000 0.0000 606 DSTL2 Combination 0.026 0.408 483.960 0.0000 0.0000 0.0000 606 DSTL3 Combination 0.078 0.205 271.917 0.0000 0.0000 0.0000 606 DSTL4 Combination 0.050 0.254 271.932 0.0000 0.0000 0.0000 606 DSTL5 Combination 0.046 0.218 271.921 0.0000 0.0000 0.0000 606 DSTL6 Combination 0.018 0.242 271.928 0.0000 0.0000 0.0000 606 DSTL7 Combination 0.075 0.148 203.936 0.0000 0.0000 0.0000 606 DSTL8 Combination 0.054 0.197 203.950 0.0000 0.0000 0.0000 606 DSTL9 Combination 0.012 0.192 226.604 0.0000 0.0000 0.0000 606 DSTL10 Combination 0.019 0.303 359.126 0.0000 0.0000 0.0000 607 DEAD LinStatic 2.046 0.192 237.083 0.0000 0.0000 0.0000 607 LIVE LinStatic 1.176 0.112 138.592 0.0000 0.0000 0.0000 607 WIND LinStatic 8.976 0.024 0.145 0.0000 0.0000 0.0000 607 DSTL1 Combination 2.865 0.269 331.917 0.0000 0.0000 0.0000 607 DSTL2 Combination 4.337 0.409 506.247 0.0000 0.0000 0.0000 607 DSTL3 Combination 11.431 0.206 284.645 0.0000 0.0000 0.0000 607 DSTL4 Combination 6.521 0.255 284.355 0.0000 0.0000 0.0000 607 DSTL5 Combination 6.943 0.218 284.573 0.0000 0.0000 0.0000 607 DSTL6 Combination 2.033 0.243 284.427 0.0000 0.0000 0.0000 607 DSTL7 Combination 10.818 0.148 213.520 0.0000 0.0000 0.0000 607 DSTL8 Combination 7.134 0.197 213.230 0.0000 0.0000 0.0000 BF 3 story.sdb SAP2000 v17.3.0 3 Story CBF 27 March 2016 Computers and Structures, Inc. Page 2 of 17 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 607 DSTL9 Combination 2.046 0.192 237.083 0.0000 0.0000 0.0000 607 DSTL10 Combination 3.222 0.304 375.675 0.0000 0.0000 0.0000 608 DEAD LinStatic 0.066 0.191 227.870 0.0000 0.0000 0.0000 608 LIVE LinStatic 0.038 0.111 133.784 0.0000 0.0000 0.0000 608 WIND LinStatic 0.062 0.025 3.075 0.0000 0.0000 0.0000 608 DSTL1 Combination 0.092 0.268 319.018 0.0000 0.0000 0.0000 608 DSTL2 Combination 0.139 0.407 487.499 0.0000 0.0000 0.0000 608 DSTL3 Combination 0.141 0.205 276.519 0.0000 0.0000 0.0000 608 DSTL4 Combination 0.017 0.254 270.369 0.0000 0.0000 0.0000 608 DSTL5 Combination 0.110 0.217 274.982 0.0000 0.0000 0.0000 608 DSTL6 Combination 0.048 0.242 271.906 0.0000 0.0000 0.0000 608 DSTL7 Combination 0.121 0.147 208.158 0.0000 0.0000 0.0000 608 DSTL8 Combination 2.953E 03 0.197 202.008 0.0000 0.0000 0.0000 608 DSTL9 Combination 0.066 0.191 227.870 0.0000 0.0000 0.0000 608 DSTL10 Combination 0.103 0.302 361.654 0.0000 0.0000 0.0000 609 DEAD LinStatic 0.109 0.196 232.398 0.0000 0.0000 0.0000 609 LIVE LinStatic 0.064 0.114 137.011 0.0000 0.0000 0.0000 609 WIND LinStatic 0.061 0.024 0.054 0.0000 0.0000 0.0000 609 DSTL1 Combination 0.153 0.275 325.357 0.0000 0.0000 0.0000 609 DSTL2 Combination 0.234 0.418 498.096 0.0000 0.0000 0.0000 609 DSTL3 Combination 0.069 0.212 278.824 0.0000 0.0000 0.0000 609 DSTL4 Combination 0.192 0.260 278.931 0.0000 0.0000 0.0000 609 DSTL5 Combination 0.100 0.224 278.851 0.0000 0.0000 0.0000 609 DSTL6 Combination 0.161 0.248 278.904 0.0000 0.0000 0.0000 609 DSTL7 Combination 0.037 0.153 209.105 0.0000 0.0000 0.0000 609 DSTL8 Combination 0.160 0.201 209.212 0.0000 0.0000 0.0000 609 DSTL9 Combination 0.109 0.196 232.398 0.0000 0.0000 0.0000 609 DSTL10 Combination 0.173 0.311 369.409 0.0000 0.0000 0.0000 610 DEAD LinStatic 7.911 1.468 122.058 0.0000 0.0000 0.0000 610 LIVE LinStatic 4.679 0.836 69.443 0.0000 0.0000 0.0000 610 WIND LinStatic 78.116 113.737 27.638 0.0000 0.0000 0.0000 610 DSTL1 Combination 11.076 2.055 170.881 0.0000 0.0000 0.0000 610 DSTL2 Combination 16.980 3.100 257.578 0.0000 0.0000 0.0000 610 DSTL3 Combination 87.609 111.975 118.831 0.0000 0.0000 0.0000 610 DSTL4 Combination 68.623 115.498 174.107 0.0000 0.0000 0.0000 610 DSTL5 Combination 48.551 55.107 132.650 0.0000 0.0000 0.0000 610 DSTL6 Combination 29.565 58.630 160.288 0.0000 0.0000 0.0000 610 DSTL7 Combination 85.236 112.416 82.214 0.0000 0.0000 0.0000 610 DSTL8 Combination 70.996 115.058 137.490 0.0000 0.0000 0.0000 610 DSTL9 Combination 7.911 1.468 122.058 0.0000 0.0000 0.0000 610 DSTL10 Combination 12.590 2.304 191.501 0.0000 0.0000 0.0000 667 DEAD LinStatic 4.296 7.801 214.833 0.0000 0.0000 0.0000 667 LIVE LinStatic 2.477 4.473 122.284 0.0000 0.0000 0.0000 667 WIND LinStatic 0.053 18.940 0.644 0.0000 0.0000 0.0000 667 DSTL1 Combination 6.014 10.921 300.766 0.0000 0.0000 0.0000 667 DSTL2 Combination 9.119 16.518 453.453 0.0000 0.0000 0.0000 667 DSTL3 Combination 5.102 9.579 257.155 0.0000 0.0000 0.0000 667 DSTL4 Combination 5.208 28.301 258.443 0.0000 0.0000 0.0000 667 DSTL5 Combination 5.129 0.109 257.477 0.0000 0.0000 0.0000 667 DSTL6 Combination 5.182 18.831 258.121 0.0000 0.0000 0.0000 667 DSTL7 Combination 3.814 11.919 192.705 0.0000 0.0000 0.0000 667 DSTL8 Combination 3.919 25.961 193.993 0.0000 0.0000 0.0000 667 DSTL9 Combination 4.296 7.801 214.833 0.0000 0.0000 0.0000 667 DSTL10 Combination 6.773 12.274 337.116 0.0000 0.0000 0.0000

PAGE 96

! 89 BF 3 story.sdb SAP2000 v17.3.0 3 Story CBF 27 March 2016 Computers and Structures, Inc. Page 3 of 17 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 668 DEAD LinStatic 0.118 0.055 471.337 0.0000 0.0000 0.0000 668 LIVE LinStatic 0.083 0.032 279.592 0.0000 0.0000 0.0000 668 WIND LinStatic 0.066 0.123 0.012 0.0000 0.0000 0.0000 668 DSTL1 Combination 0.166 0.077 659.872 0.0000 0.0000 0.0000 668 DSTL2 Combination 0.275 0.117 1012.951 0.0000 0.0000 0.0000 668 DSTL3 Combination 0.076 0.057 565.616 0.0000 0.0000 0.0000 668 DSTL4 Combination 0.208 0.189 565.593 0.0000 0.0000 0.0000 668 DSTL5 Combination 0.109 4.569E 03 565.610 0.0000 0.0000 0.0000 668 DSTL6 Combination 0.175 0.127 565.599 0.0000 0.0000 0.0000 668 DSTL7 Combination 0.040 0.073 424.215 0.0000 0.0000 0.0000 668 DSTL8 Combination 0.173 0.172 424.192 0.0000 0.0000 0.0000 668 DSTL9 Combination 0.118 0.055 471.337 0.0000 0.0000 0.0000 668 DSTL10 Combination 0.202 0.087 750.929 0.0000 0.0000 0.0000 669 DEAD LinStatic 0.012 0.049 452.282 0.0000 0.0000 0.0000 669 LIVE LinStatic 8.167E 03 0.029 269.006 0.0000 0.0000 0.0000 669 WIND LinStatic 0.060 0.115 7.834E 03 0.0000 0.0000 0.0000 669 DSTL1 Combination 0.017 0.069 633.194 0.0000 0.0000 0.0000 669 DSTL2 Combination 0.027 0.105 973.148 0.0000 0.0000 0.0000 669 DSTL3 Combination 0.074 0.056 542.730 0.0000 0.0000 0.0000 669 DSTL4 Combination 0.045 0.174 542.746 0.0000 0.0000 0.0000 669 DSTL5 Combination 0.044 1.626E 03 542.734 0.0000 0.0000 0.0000 669 DSTL6 Combination 0.016 0.117 542.742 0.0000 0.0000 0.0000 669 DSTL7 Combination 0.071 0.071 407.046 0.0000 0.0000 0.0000 669 DSTL8 Combination 0.049 0.159 407.061 0.0000 0.0000 0.0000 669 DSTL9 Combination 0.012 0.049 452.282 0.0000 0.0000 0.0000 669 DSTL10 Combination 0.020 0.078 721.288 0.0000 0.0000 0.0000 670 DEAD LinStatic 0.016 0.050 453.180 0.0000 0.0000 0.0000 670 LIVE LinStatic 9.520E 03 0.029 269.508 0.0000 0.0000 0.0000 670 WIND LinStatic 0.059 0.115 6.975E 03 0.0000 0.0000 0.0000 670 DSTL1 Combination 0.023 0.070 634.453 0.0000 0.0000 0.0000 670 DSTL2 Combination 0.035 0.106 975.029 0.0000 0.0000 0.0000 670 DSTL3 Combination 0.078 0.055 543.809 0.0000 0.0000 0.0000 670 DSTL4 Combination 0.039 0.175 543.823 0.0000 0.0000 0.0000 670 DSTL5 Combination 0.049 2.158E 03 543.813 0.0000 0.0000 0.0000 670 DSTL6 Combination 9.954E 03 0.117 543.820 0.0000 0.0000 0.0000 670 DSTL7 Combination 0.073 0.070 407.855 0.0000 0.0000 0.0000 670 DSTL8 Combination 0.044 0.160 407.869 0.0000 0.0000 0.0000 670 DSTL9 Combination 0.016 0.050 453.180 0.0000 0.0000 0.0000 670 DSTL10 Combination 0.026 0.079 722.688 0.0000 0.0000 0.0000 671 DEAD LinStatic 0.019 0.046 452.286 0.0000 0.0000 0.0000 671 LIVE LinStatic 9.958E 03 0.027 269.010 0.0000 0.0000 0.0000 671 WIND LinStatic 0.059 0.116 3.436E 03 0.0000 0.0000 0.0000 671 DSTL1 Combination 0.026 0.065 633.200 0.0000 0.0000 0.0000 671 DSTL2 Combination 0.038 0.098 973.159 0.0000 0.0000 0.0000 671 DSTL3 Combination 0.081 0.060 542.740 0.0000 0.0000 0.0000 671 DSTL4 Combination 0.036 0.171 542.746 0.0000 0.0000 0.0000 671 DSTL5 Combination 0.052 2.483E 03 542.741 0.0000 0.0000 0.0000 671 DSTL6 Combination 6.846E 03 0.113 542.745 0.0000 0.0000 0.0000 671 DSTL7 Combination 0.076 0.074 407.054 0.0000 0.0000 0.0000 671 DSTL8 Combination 0.042 0.157 407.061 0.0000 0.0000 0.0000 671 DSTL9 Combination 0.019 0.046 452.286 0.0000 0.0000 0.0000 671 DSTL10 Combination 0.029 0.073 721.296 0.0000 0.0000 0.0000 672 DEAD LinStatic 0.153 0.048 471.352 0.0000 0.0000 0.0000 672 LIVE LinStatic 0.103 0.028 279.601 0.0000 0.0000 0.0000 BF 3 story.sdb SAP2000 v17.3.0 3 Story CBF 27 March 2016 Computers and Structures, Inc. Page 4 of 17 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 672 WIND LinStatic 0.065 0.122 0.038 0.0000 0.0000 0.0000 672 DSTL1 Combination 0.214 0.067 659.892 0.0000 0.0000 0.0000 672 DSTL2 Combination 0.349 0.102 1012.984 0.0000 0.0000 0.0000 672 DSTL3 Combination 0.248 0.065 565.584 0.0000 0.0000 0.0000 672 DSTL4 Combination 0.118 0.180 565.660 0.0000 0.0000 0.0000 672 DSTL5 Combination 0.216 3.711E 03 565.603 0.0000 0.0000 0.0000 672 DSTL6 Combination 0.151 0.119 565.641 0.0000 0.0000 0.0000 672 DSTL7 Combination 0.202 0.079 424.179 0.0000 0.0000 0.0000 672 DSTL8 Combination 0.073 0.165 424.254 0.0000 0.0000 0.0000 672 DSTL9 Combination 0.153 0.048 471.352 0.0000 0.0000 0.0000 672 DSTL10 Combination 0.256 0.075 750.953 0.0000 0.0000 0.0000 673 DEAD LinStatic 4.338 8.201 214.793 0.0000 0.0000 0.0000 673 LIVE LinStatic 2.502 4.709 122.260 0.0000 0.0000 0.0000 673 WIND LinStatic 0.052 19.214 0.177 0.0000 0.0000 0.0000 673 DSTL1 Combination 6.074 11.481 300.711 0.0000 0.0000 0.0000 673 DSTL2 Combination 9.210 17.376 453.368 0.0000 0.0000 0.0000 673 DSTL3 Combination 5.258 9.373 257.575 0.0000 0.0000 0.0000 673 DSTL4 Combination 5.154 29.054 257.929 0.0000 0.0000 0.0000 673 DSTL5 Combination 5.232 0.234 257.664 0.0000 0.0000 0.0000 673 DSTL6 Combination 5.180 19.448 257.840 0.0000 0.0000 0.0000 673 DSTL7 Combination 3.956 11.833 193.137 0.0000 0.0000 0.0000 673 DSTL8 Combination 3.853 26.594 193.491 0.0000 0.0000 0.0000 673 DSTL9 Combination 4.338 8.201 214.793 0.0000 0.0000 0.0000 673 DSTL10 Combination 6.841 12.910 337.054 0.0000 0.0000 0.0000 674 DEAD LinStatic 3.925 0.018 213.482 0.0000 0.0000 0.0000 674 LIVE LinStatic 2.270 0.011 121.818 0.0000 0.0000 0.0000 674 WIND LinStatic 0.049 0.090 0.223 0.0000 0.0000 0.0000 674 DSTL1 Combination 5.495 0.025 298.875 0.0000 0.0000 0.0000 674 DSTL2 Combination 8.343 0.038 451.087 0.0000 0.0000 0.0000 674 DSTL3 Combination 4.661 0.068 255.955 0.0000 0.0000 0.0000 674 DSTL4 Combination 4.759 0.111 256.401 0.0000 0.0000 0.0000 674 DSTL5 Combination 4.686 0.023 256.067 0.0000 0.0000 0.0000 674 DSTL6 Combination 4.735 0.066 256.290 0.0000 0.0000 0.0000 674 DSTL7 Combination 3.484 0.073 191.911 0.0000 0.0000 0.0000 674 DSTL8 Combination 3.582 0.106 192.357 0.0000 0.0000 0.0000 674 DSTL9 Combination 3.925 0.018 213.482 0.0000 0.0000 0.0000 674 DSTL10 Combination 6.195 0.029 335.300 0.0000 0.0000 0.0000 675 DEAD LinStatic 0.135 0.019 474.354 0.0000 0.0000 0.0000 675 LIVE LinStatic 0.095 0.011 281.378 0.0000 0.0000 0.0000 675 WIND LinStatic 0.061 0.124 0.037 0.0000 0.0000 0.0000 675 DSTL1 Combination 0.189 0.027 664.096 0.0000 0.0000 0.0000 675 DSTL2 Combination 0.315 0.041 1019.430 0.0000 0.0000 0.0000 675 DSTL3 Combination 0.101 0.101 569.262 0.0000 0.0000 0.0000 675 DSTL4 Combination 0.224 0.148 569.188 0.0000 0.0000 0.0000 675 DSTL5 Combination 0.132 0.039 569.244 0.0000 0.0000 0.0000 675 DSTL6 Combination 0.193 0.085 569.207 0.0000 0.0000 0.0000 675 DSTL7 Combination 0.060 0.107 426.956 0.0000 0.0000 0.0000 675 DSTL8 Combination 0.183 0.142 426.882 0.0000 0.0000 0.0000 675 DSTL9 Combination 0.135 0.019 474.354 0.0000 0.0000 0.0000 675 DSTL10 Combination 0.231 0.031 755.732 0.0000 0.0000 0.0000 676 DEAD LinStatic 0.018 0.017 453.881 0.0000 0.0000 0.0000 676 LIVE LinStatic 0.012 9.990E 03 269.994 0.0000 0.0000 0.0000 676 WIND LinStatic 0.055 0.116 2.925E 04 0.0000 0.0000 0.0000 676 DSTL1 Combination 0.025 0.024 635.433 0.0000 0.0000 0.0000

PAGE 97

! 90 BF 3 story.sdb SAP2000 v17.3.0 3 Story CBF 27 March 2016 Computers and Structures, Inc. Page 5 of 17 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 676 DSTL2 Combination 0.040 0.037 976.647 0.0000 0.0000 0.0000 676 DSTL3 Combination 0.076 0.095 544.657 0.0000 0.0000 0.0000 676 DSTL4 Combination 0.034 0.137 544.657 0.0000 0.0000 0.0000 676 DSTL5 Combination 0.049 0.037 544.657 0.0000 0.0000 0.0000 676 DSTL6 Combination 6.242E 03 0.079 544.657 0.0000 0.0000 0.0000 676 DSTL7 Combination 0.071 0.100 408.492 0.0000 0.0000 0.0000 676 DSTL8 Combination 0.039 0.131 408.493 0.0000 0.0000 0.0000 676 DSTL9 Combination 0.018 0.017 453.881 0.0000 0.0000 0.0000 676 DSTL10 Combination 0.030 0.027 723.875 0.0000 0.0000 0.0000 677 DEAD LinStatic 0.016 0.017 454.844 0.0000 0.0000 0.0000 677 LIVE LinStatic 9.166E 03 9.928E 03 270.522 0.0000 0.0000 0.0000 677 WIND LinStatic 0.056 0.116 1.161E 03 0.0000 0.0000 0.0000 677 DSTL1 Combination 0.022 0.024 636.782 0.0000 0.0000 0.0000 677 DSTL2 Combination 0.033 0.036 978.649 0.0000 0.0000 0.0000 677 DSTL3 Combination 0.074 0.095 545.812 0.0000 0.0000 0.0000 677 DSTL4 Combination 0.037 0.136 545.814 0.0000 0.0000 0.0000 677 DSTL5 Combination 0.046 0.037 545.813 0.0000 0.0000 0.0000 677 DSTL6 Combination 9.145E 03 0.079 545.814 0.0000 0.0000 0.0000 677 DSTL7 Combination 0.070 0.101 409.359 0.0000 0.0000 0.0000 677 DSTL8 Combination 0.042 0.131 409.361 0.0000 0.0000 0.0000 677 DSTL9 Combination 0.016 0.017 454.844 0.0000 0.0000 0.0000 677 DSTL10 Combination 0.025 0.027 725.367 0.0000 0.0000 0.0000 678 DEAD LinStatic 0.014 0.017 453.877 0.0000 0.0000 0.0000 678 LIVE LinStatic 6.718E 03 9.772E 03 269.991 0.0000 0.0000 0.0000 678 WIND LinStatic 0.056 0.116 4.102E 03 0.0000 0.0000 0.0000 678 DSTL1 Combination 0.019 0.024 635.428 0.0000 0.0000 0.0000 678 DSTL2 Combination 0.027 0.036 976.638 0.0000 0.0000 0.0000 678 DSTL3 Combination 0.072 0.096 544.649 0.0000 0.0000 0.0000 678 DSTL4 Combination 0.039 0.136 544.657 0.0000 0.0000 0.0000 678 DSTL5 Combination 0.044 0.038 544.651 0.0000 0.0000 0.0000 678 DSTL6 Combination 0.011 0.078 544.655 0.0000 0.0000 0.0000 678 DSTL7 Combination 0.068 0.101 408.485 0.0000 0.0000 0.0000 678 DSTL8 Combination 0.043 0.131 408.494 0.0000 0.0000 0.0000 678 DSTL9 Combination 0.014 0.017 453.877 0.0000 0.0000 0.0000 678 DSTL10 Combination 0.020 0.027 723.868 0.0000 0.0000 0.0000 679 DEAD LinStatic 0.172 0.019 474.359 0.0000 0.0000 0.0000 679 LIVE LinStatic 0.117 0.011 281.380 0.0000 0.0000 0.0000 679 WIND LinStatic 0.063 0.124 0.035 0.0000 0.0000 0.0000 679 DSTL1 Combination 0.240 0.026 664.102 0.0000 0.0000 0.0000 679 DSTL2 Combination 0.393 0.040 1019.438 0.0000 0.0000 0.0000 679 DSTL3 Combination 0.269 0.102 569.195 0.0000 0.0000 0.0000 679 DSTL4 Combination 0.143 0.147 569.265 0.0000 0.0000 0.0000 679 DSTL5 Combination 0.237 0.040 569.213 0.0000 0.0000 0.0000 679 DSTL6 Combination 0.174 0.084 569.248 0.0000 0.0000 0.0000 679 DSTL7 Combination 0.217 0.107 426.888 0.0000 0.0000 0.0000 679 DSTL8 Combination 0.091 0.141 426.958 0.0000 0.0000 0.0000 679 DSTL9 Combination 0.172 0.019 474.359 0.0000 0.0000 0.0000 679 DSTL10 Combination 0.288 0.030 755.738 0.0000 0.0000 0.0000 680 DEAD LinStatic 3.963 0.017 213.454 0.0000 0.0000 0.0000 680 LIVE LinStatic 2.292 9.916E 03 121.801 0.0000 0.0000 0.0000 680 WIND LinStatic 0.050 0.090 0.049 0.0000 0.0000 0.0000 680 DSTL1 Combination 5.548 0.024 298.835 0.0000 0.0000 0.0000 680 DSTL2 Combination 8.423 0.036 451.027 0.0000 0.0000 0.0000 680 DSTL3 Combination 4.805 0.069 256.193 0.0000 0.0000 0.0000 BF 3 story.sdb SAP2000 v17.3.0 3 Story CBF 27 March 2016 Computers and Structures, Inc. Page 6 of 17 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 680 DSTL4 Combination 4.706 0.110 256.096 0.0000 0.0000 0.0000 680 DSTL5 Combination 4.780 0.024 256.169 0.0000 0.0000 0.0000 680 DSTL6 Combination 4.730 0.065 256.120 0.0000 0.0000 0.0000 680 DSTL7 Combination 3.616 0.074 192.157 0.0000 0.0000 0.0000 680 DSTL8 Combination 3.517 0.105 192.060 0.0000 0.0000 0.0000 680 DSTL9 Combination 3.963 0.017 213.454 0.0000 0.0000 0.0000 680 DSTL10 Combination 6.255 0.027 335.255 0.0000 0.0000 0.0000 681 DEAD LinStatic 4.360 8.412 219.653 0.0000 0.0000 0.0000 681 LIVE LinStatic 2.517 4.816 125.611 0.0000 0.0000 0.0000 681 WIND LinStatic 0.053 9.854 7.153 0.0000 0.0000 0.0000 681 DSTL1 Combination 6.104 11.777 307.515 0.0000 0.0000 0.0000 681 DSTL2 Combination 9.259 17.800 464.562 0.0000 0.0000 0.0000 681 DSTL3 Combination 5.179 19.948 270.737 0.0000 0.0000 0.0000 681 DSTL4 Combination 5.284 0.241 256.431 0.0000 0.0000 0.0000 681 DSTL5 Combination 5.205 15.021 267.161 0.0000 0.0000 0.0000 681 DSTL6 Combination 5.258 5.168 260.007 0.0000 0.0000 0.0000 681 DSTL7 Combination 3.871 17.424 204.841 0.0000 0.0000 0.0000 681 DSTL8 Combination 3.976 2.283 190.535 0.0000 0.0000 0.0000 681 DSTL9 Combination 4.360 8.412 219.653 0.0000 0.0000 0.0000 681 DSTL10 Combination 6.877 13.228 345.264 0.0000 0.0000 0.0000 682 DEAD LinStatic 0.133 0.017 471.326 0.0000 0.0000 0.0000 682 LIVE LinStatic 0.092 9.815E 03 279.585 0.0000 0.0000 0.0000 682 WIND LinStatic 0.066 0.123 0.048 0.0000 0.0000 0.0000 682 DSTL1 Combination 0.187 0.024 659.856 0.0000 0.0000 0.0000 682 DSTL2 Combination 0.308 0.036 1012.927 0.0000 0.0000 0.0000 682 DSTL3 Combination 0.094 0.143 565.639 0.0000 0.0000 0.0000 682 DSTL4 Combination 0.226 0.103 565.544 0.0000 0.0000 0.0000 682 DSTL5 Combination 0.127 0.082 565.615 0.0000 0.0000 0.0000 682 DSTL6 Combination 0.193 0.041 565.567 0.0000 0.0000 0.0000 682 DSTL7 Combination 0.054 0.138 424.241 0.0000 0.0000 0.0000 682 DSTL8 Combination 0.186 0.108 424.146 0.0000 0.0000 0.0000 682 DSTL9 Combination 0.133 0.017 471.326 0.0000 0.0000 0.0000 682 DSTL10 Combination 0.226 0.027 750.911 0.0000 0.0000 0.0000 683 DEAD LinStatic 0.014 0.015 452.298 0.0000 0.0000 0.0000 683 LIVE LinStatic 9.656E 03 8.772E 03 269.016 0.0000 0.0000 0.0000 683 WIND LinStatic 0.059 0.114 4.804E 03 0.0000 0.0000 0.0000 683 DSTL1 Combination 0.020 0.021 633.218 0.0000 0.0000 0.0000 683 DSTL2 Combination 0.033 0.032 973.184 0.0000 0.0000 0.0000 683 DSTL3 Combination 0.077 0.132 542.763 0.0000 0.0000 0.0000 683 DSTL4 Combination 0.042 0.097 542.753 0.0000 0.0000 0.0000 683 DSTL5 Combination 0.047 0.075 542.760 0.0000 0.0000 0.0000 683 DSTL6 Combination 0.012 0.039 542.756 0.0000 0.0000 0.0000 683 DSTL7 Combination 0.072 0.128 407.073 0.0000 0.0000 0.0000 683 DSTL8 Combination 0.046 0.101 407.064 0.0000 0.0000 0.0000 683 DSTL9 Combination 0.014 0.015 452.298 0.0000 0.0000 0.0000 683 DSTL10 Combination 0.024 0.024 721.315 0.0000 0.0000 0.0000 684 DEAD LinStatic 0.016 0.016 453.172 0.0000 0.0000 0.0000 684 LIVE LinStatic 9.475E 03 9.179E 03 269.503 0.0000 0.0000 0.0000 684 WIND LinStatic 0.059 0.115 0.012 0.0000 0.0000 0.0000 684 DSTL1 Combination 0.023 0.022 634.441 0.0000 0.0000 0.0000 684 DSTL2 Combination 0.035 0.033 975.012 0.0000 0.0000 0.0000 684 DSTL3 Combination 0.078 0.134 543.819 0.0000 0.0000 0.0000 684 DSTL4 Combination 0.039 0.096 543.794 0.0000 0.0000 0.0000 684 DSTL5 Combination 0.049 0.076 543.813 0.0000 0.0000 0.0000

PAGE 98

! 91 BF 3 story.sdb SAP2000 v17.3.0 3 Story CBF 27 March 2016 Computers and Structures, Inc. Page 7 of 17 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 684 DSTL6 Combination 0.010 0.039 543.801 0.0000 0.0000 0.0000 684 DSTL7 Combination 0.073 0.129 407.867 0.0000 0.0000 0.0000 684 DSTL8 Combination 0.044 0.101 407.843 0.0000 0.0000 0.0000 684 DSTL9 Combination 0.016 0.016 453.172 0.0000 0.0000 0.0000 684 DSTL10 Combination 0.026 0.025 722.675 0.0000 0.0000 0.0000 685 DEAD LinStatic 0.016 0.012 452.303 0.0000 0.0000 0.0000 685 LIVE LinStatic 8.387E 03 7.281E 03 269.020 0.0000 0.0000 0.0000 685 WIND LinStatic 0.059 0.114 9.486E 03 0.0000 0.0000 0.0000 685 DSTL1 Combination 0.023 0.017 633.224 0.0000 0.0000 0.0000 685 DSTL2 Combination 0.033 0.027 973.196 0.0000 0.0000 0.0000 685 DSTL3 Combination 0.079 0.129 542.773 0.0000 0.0000 0.0000 685 DSTL4 Combination 0.040 0.099 542.754 0.0000 0.0000 0.0000 685 DSTL5 Combination 0.049 0.072 542.768 0.0000 0.0000 0.0000 685 DSTL6 Combination 0.010 0.042 542.758 0.0000 0.0000 0.0000 685 DSTL7 Combination 0.074 0.125 407.082 0.0000 0.0000 0.0000 685 DSTL8 Combination 0.045 0.103 407.063 0.0000 0.0000 0.0000 685 DSTL9 Combination 0.016 0.012 452.303 0.0000 0.0000 0.0000 685 DSTL10 Combination 0.025 0.020 721.323 0.0000 0.0000 0.0000 686 DEAD LinStatic 0.168 0.011 471.340 0.0000 0.0000 0.0000 686 LIVE LinStatic 0.113 6.506E 03 279.594 0.0000 0.0000 0.0000 686 WIND LinStatic 0.065 0.124 2.883E 03 0.0000 0.0000 0.0000 686 DSTL1 Combination 0.235 0.016 659.876 0.0000 0.0000 0.0000 686 DSTL2 Combination 0.381 0.024 1012.958 0.0000 0.0000 0.0000 686 DSTL3 Combination 0.266 0.137 565.605 0.0000 0.0000 0.0000 686 DSTL4 Combination 0.136 0.110 565.611 0.0000 0.0000 0.0000 686 DSTL5 Combination 0.234 0.075 565.606 0.0000 0.0000 0.0000 686 DSTL6 Combination 0.168 0.048 565.609 0.0000 0.0000 0.0000 686 DSTL7 Combination 0.216 0.134 424.203 0.0000 0.0000 0.0000 686 DSTL8 Combination 0.085 0.113 424.209 0.0000 0.0000 0.0000 686 DSTL9 Combination 0.168 0.011 471.340 0.0000 0.0000 0.0000 686 DSTL10 Combination 0.280 0.018 750.934 0.0000 0.0000 0.0000 687 DEAD LinStatic 4.402 8.436 219.624 0.0000 0.0000 0.0000 687 LIVE LinStatic 2.542 4.830 125.593 0.0000 0.0000 0.0000 687 WIND LinStatic 0.053 9.857 7.356 0.0000 0.0000 0.0000 687 DSTL1 Combination 6.163 11.811 307.473 0.0000 0.0000 0.0000 687 DSTL2 Combination 9.350 17.852 464.498 0.0000 0.0000 0.0000 687 DSTL3 Combination 5.335 19.981 270.905 0.0000 0.0000 0.000 0 687 DSTL4 Combination 5.230 0.267 256.192 0.0000 0.0000 0.0000 687 DSTL5 Combination 5.309 15.052 267.227 0.0000 0.0000 0.0000 687 DSTL6 Combination 5.256 5.195 259.871 0.0000 0.0000 0.0000 687 DSTL7 Combination 4.014 17.450 205.018 0.0000 0.0000 0.0000 687 DSTL8 Combination 3.909 2.264 190.305 0.0000 0.0000 0.0000 687 DSTL9 Combination 4.402 8.436 219.624 0.0000 0.0000 0.0000 687 DSTL10 Combination 6.944 13.266 345.217 0.0000 0.0000 0.0000 688 DEAD LinStatic 1.736 1.267 117.623 0.0000 0.0000 0.0000 688 LIVE LinStatic 0.970 0.735 67.459 0.0000 0.0000 0.0000 688 WIND LinStatic 81.882 118.907 20.736 0.0000 0.0000 0.0000 688 DSTL1 Combination 2.430 1.774 164.672 0.0000 0.0000 0.0000 688 DSTL2 Combination 3.635 2.697 249.082 0.0000 0.0000 0.0000 688 DSTL3 Combination 83.965 120.428 161.884 0.0000 0.0000 0.0000 688 DSTL4 Combination 79.799 117.386 120.412 0.0000 0.0000 0.0000 688 DSTL5 Combination 43.024 60.974 151.516 0.0000 0.0000 0.0000 688 DSTL6 Combination 38.858 57.932 130.780 0.0000 0.0000 0.0000 688 DSTL7 Combination 83.444 120.047 126.597 0.0000 0.0000 0.0000 BF 3 story.sdb SAP2000 v17.3.0 3 Story CBF 27 March 2016 Computers and Structures, Inc. Page 8 of 17 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 688 DSTL8 Combination 80.320 117.766 85.125 0.0000 0.0000 0.0000 688 DSTL9 Combination 1.736 1.267 117.623 0.0000 0.0000 0.0000 688 DSTL10 Combination 2.706 2.002 185.082 0.0000 0.0000 0.0000 689 DEAD LinStatic 12.350 0.191 235.401 0.0000 0.0000 0.0000 689 LIVE LinStatic 7.231 0.111 138.143 0.0000 0.0000 0.0000 689 WIND LinStatic 4.670 0.025 3.340 0.0000 0.0000 0.0000 689 DSTL1 Combination 17.290 0.267 329.561 0.0000 0.0000 0.0000 689 DSTL2 Combination 26.388 0.407 503.510 0.0000 0.0000 0.0000 689 DSTL3 Combination 10.150 0.254 279.141 0.0000 0.0000 0.0000 689 DSTL4 Combination 19.489 0.205 285.821 0.0000 0.0000 0.0000 689 DSTL5 Combination 12.485 0.241 280.811 0.0000 0.0000 0.0000 689 DSTL6 Combination 17.154 0.217 284.151 0.0000 0.0000 0.0000 689 DSTL7 Combination 6.445 0.196 208.520 0.0000 0.0000 0.0000 689 DSTL8 Combination 15.785 0.147 215.200 0.0000 0.0000 0.0000 689 DSTL9 Combination 12.350 0.191 235.401 0.0000 0.0000 0.0000 689 DSTL10 Combination 19.580 0.302 373.544 0.0000 0.0000 0.0000 690 DEAD LinStatic 0.016 0.188 226.623 0.0000 0.0000 0.0000 690 LIVE LinStatic 0.010 0.110 132.534 0.0000 0.0000 0.0000 690 WIND LinStatic 0.063 0.024 0.120 0.0000 0.0000 0.0000 690 DSTL1 Combination 0.022 0.264 317.272 0.0000 0.0000 0.0000 690 DSTL2 Combination 0.035 0.401 484.002 0.0000 0.0000 0.0000 690 DSTL3 Combination 0.082 0.250 272.068 0.0000 0.0000 0.0000 690 DSTL4 Combination 0.044 0.202 271.827 0.0000 0.0000 0.0000 690 DSTL5 Combination 0.051 0.238 272.008 0.0000 0.0000 0.0000 690 DSTL6 Combination 0.013 0.214 271.888 0.0000 0.0000 0.0000 690 DSTL7 Combination 0.077 0.194 204.081 0.0000 0.0000 0.0000 690 DSTL8 Combination 0.049 0.145 203.841 0.0000 0.0000 0.0000 690 DSTL9 Combination 0.016 0.188 226.623 0.0000 0.0000 0.0000 690 DSTL10 Combination 0.026 0.298 359.157 0.0000 0.0000 0.0000 691 DEAD LinStatic 2.029 0.189 237.087 0.0000 0.0000 0.0000 691 LIVE LinStatic 1.165 0.110 138.594 0.0000 0.0000 0.0000 691 WIND LinStatic 8.991 0.024 0.260 0.0000 0.0000 0.0000 691 DSTL1 Combination 2.840 0.264 331.922 0.0000 0.0000 0.0000 691 DSTL2 Combination 4.299 0.402 506.254 0.0000 0.0000 0.0000 691 DSTL3 Combination 11.425 0.251 284.764 0.0000 0.0000 0.0000 691 DSTL4 Combination 6.556 0.202 284.244 0.0000 0.0000 0.0000 691 DSTL5 Combination 6.930 0.238 284.634 0.0000 0.0000 0.0000 691 DSTL6 Combination 2.061 0.214 284.374 0.0000 0.0000 0.0000 691 DSTL7 Combination 10.816 0.194 213.638 0.0000 0.0000 0.0000 691 DSTL8 Combination 7.165 0.145 213.118 0.0000 0.0000 0.0000 691 DSTL9 Combination 2.029 0.189 237.087 0.0000 0.0000 0.0000 691 DSTL10 Combination 3.194 0.298 375.681 0.0000 0.0000 0.0000 692 DEAD LinStatic 0.061 0.188 227.915 0.0000 0.0000 0.0000 692 LIVE LinStatic 0.035 0.109 133.812 0.0000 0.0000 0.0000 692 WIND LinStatic 0.063 0.024 3.188 0.0000 0.0000 0.0000 692 DSTL1 Combination 0.085 0.263 319.081 0.0000 0.0000 0.0000 692 DSTL2 Combination 0.129 0.400 487.597 0.0000 0.0000 0.0000 692 DSTL3 Combination 0.136 0.249 276.686 0.0000 0.0000 0.0000 692 DSTL4 Combination 9.744E 03 0.202 270.310 0.0000 0.0000 0.0000 692 DSTL5 Combination 0.104 0.237 275.092 0.0000 0.0000 0.0000 692 DSTL6 Combination 0.041 0.214 271.904 0.0000 0.0000 0.0000 692 DSTL7 Combination 0.118 0.193 208.311 0.0000 0.0000 0.0000 692 DSTL8 Combination 8.473E 03 0.145 201.935 0.0000 0.0000 0.0000 692 DSTL9 Combination 0.061 0.188 227.915 0.0000 0.0000 0.0000

PAGE 99

! 92 BF 3 story.sdb SAP2000 v17.3.0 3 Story CBF 27 March 2016 Computers and Structures, Inc. Page 9 of 17 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 692 DSTL10 Combination 0.096 0.297 361.727 0.0000 0.0000 0.0000 693 DEAD LinStatic 0.046 0.190 232.126 0.0000 0.0000 0.0000 693 LIVE LinStatic 0.025 0.111 136.841 0.0000 0.0000 0.0000 693 WIND LinStatic 0.061 0.025 0.089 0.0000 0.0000 0.0000 693 DSTL1 Combination 0.064 0.266 324.976 0.0000 0.0000 0.0000 693 DSTL2 Combination 0.094 0.405 497.497 0.0000 0.0000 0.0000 693 DSTL3 Combination 5.954E 03 0.253 278.640 0.0000 0.0000 0.0000 693 DSTL4 Combination 0.116 0.204 278.462 0.0000 0.0000 0.0000 693 DSTL5 Combination 0.024 0.241 278.595 0.0000 0.0000 0.0000 693 DSTL6 Combination 0.085 0.216 278.507 0.0000 0.0000 0.0000 693 DSTL7 Combination 0.020 0.196 209.002 0.0000 0.0000 0.0000 693 DSTL8 Combination 0.102 0.147 208.824 0.0000 0.0000 0.0000 693 DSTL9 Combination 0.046 0.190 232.126 0.0000 0.0000 0.0000 693 DSTL10 Combination 0.070 0.301 368.967 0.0000 0.0000 0.0000 694 DEAD LinStatic 8.326 1.362 118.404 0.0000 0.0000 0.0000 694 LIVE LinStatic 4.940 0.791 67.918 0.0000 0.0000 0.0000 694 WIND LinStatic 79.207 119.328 56.204 0.0000 0.0000 0.0000 694 DSTL1 Combination 11.656 1.907 165.766 0.0000 0.0000 0.0000 694 DSTL2 Combination 17.895 2.900 250.753 0.0000 0.0000 0.0000 694 DSTL3 Combination 89.198 120.963 198.289 0.0000 0.0000 0.0000 694 DSTL4 Combination 69.216 117.693 85.881 0.0000 0.0000 0.0000 694 DSTL5 Combination 49.594 61.299 170.187 0.0000 0.0000 0.0000 694 DSTL6 Combination 29.613 58.029 113.983 0.0000 0.0000 0.0000 694 DSTL7 Combination 86.700 120.554 162.768 0.0000 0.0000 0.0000 694 DSTL8 Combination 71.714 118.102 50.360 0.0000 0.0000 0.0000 694 DSTL9 Combination 8.326 1.362 118.404 0.0000 0.0000 0.0000 694 DSTL10 Combination 13.266 2.153 186.322 0.0000 0.0000 0.0000 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 1 W18X35 Beam No Messages 0.814701 PMM 2 W18X35 Beam No Messages 0.526858 PMM 3 W18X35 Beam No Messages 0.814956 PMM 4 W24X68 Beam No Messages 0.870406 PMM 5 W21X44 Beam No Messages 0.729580 PMM 6 W21X44 Beam No Messages 0.769965 PMM 7 W21X44 Beam No Messages 0.770007 PMM 8 W21X44 Beam No Messages 0.729667 PMM 9 W24X68 Beam No Messages 0.870395 PMM 10 W24X68 Beam No Messages 0.876844 PMM 11 W21X44 Beam No Messages 0.729781 PMM 12 W21X44 Beam No Messages 0.773384 PMM 13 W21X44 Beam No Messages 0.773363 PMM 14 W21X44 Beam No Messages 0.729669 PMM 15 W24X68 Beam No Messages 0.876837 PMM 16 W24X68 Beam No Messages 0.871638 PMM 17 W21X44 Beam No Messages 0.730423 PMM 18 W21X44 Beam No Messages 0.769825 PMM 19 W21X44 Beam No Messages 0.769866 PMM BF 3 story.sdb SAP2000 v17.3.0 3 Story CBF 27 March 2016 Computers and Structures, Inc. Page 10 of 17 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 20 W21X44 Beam No Messages 0.730512 PMM 21 W24X68 Beam No Messages 0.886642 PMM 22 W18X35 Beam No Messages 0.780293 PMM 23 W18X35 Beam No Messages 0.528319 PMM 24 W18X35 Beam No Messages 0.780533 PMM 25 W21X44 Beam No Messages 0.572412 PMM 26 W21X44 Beam No Messages 0.572400 PMM 27 W18X35 Beam No Messages 0.526565 PMM 28 W18X35 Beam No Messages 0.551792 PMM 29 W18X35 Beam No Messages 0.551602 PMM 30 W21X44 Beam No Messages 0.572413 PMM 31 W21X44 Beam No Messages 0.572445 PMM 32 W21X44 Beam No Messages 0.572442 PMM 33 W18X35 Beam No Messages 0.527658 PMM 34 W18X35 Beam No Messages 0.551514 PMM 35 W18X35 Beam No Messages 0.551327 PMM 36 W21X44 Beam No Messages 0.572425 PMM 37 W21X44 Beam No Messages 0.572453 PMM 38 W21X44 Beam No Messages 0.572450 PMM 39 W18X46 Beam No Messages 0.926545 PMM 40 W18X46 Beam No Messages 0.873078 PMM 41 W18X46 Beam No Messages 0.873080 PMM 42 W18X46 Beam No Messages 0.926546 PMM 43 W18X46 Beam No Messages 0.926531 PMM 44 W18X46 Beam No Messages 0.873058 PMM 45 W18X46 Beam No Messages 0.873054 PMM 46 W18X46 Beam No Messages 0.926533 PMM 47 W18X46 Beam No Messages 0.926534 PMM 48 W18X46 Beam No Messages 0.872993 PMM 49 W18X46 Beam No Messages 0.926498 PMM 50 W18X46 Beam No Messages 0.926536 PMM 51 W18X46 Beam No Messages 0.926530 PMM 52 W18X46 Beam No Messages 0.873075 PMM 53 W18X46 Beam No Messages 0.873071 PMM 54 W18X46 Beam No Messages 0.926533 PMM 55 W18X46 Beam No Messages 0.926546 PMM 56 W18X46 Beam No Messages 0.873103 PMM 57 W18X46 Beam No Messages 0.873106 PMM 58 W18X46 Beam No Messages 0.926547 PMM 59 W18X46 Beam No Messages 0.933228 PMM 60 W18X46 Beam No Messages 0.926571 PMM 61 W18X46 Beam No Messages 0.926543 PMM 62 W18X46 Beam No Messages 0.926541 PMM 63 W18X46 Beam No Messages 0.926541 PMM 64 W18X46 Beam No Messages 0.926542 PMM 65 W18X46 Beam No Messages 0.926542 PMM 66 W18X46 Beam No Messages 0.926542 PMM 67 W18X46 Beam No Messages 0.926540 PMM 68 W18X46 Beam No Messages 0.926543 PMM 69 W18X46 Beam No Messages 0.926573 PMM 70 W18X46 Beam No Messages 0.933236 PMM 71 W18X46 Beam No Messages 0.926506 PMM 72 W18X46 Beam No Messages 0.933236 PMM 73 W18X46 Beam No Messages 0.926501 PMM

PAGE 100

! 93 BF 3 story.sdb SAP2000 v17.3.0 3 Story CBF 27 March 2016 Computers and Structures, Inc. Page 11 of 17 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 74 W18X46 Beam No Messages 0.933219 PMM 75 W18X46 Beam No Messages 0.926571 PMM 76 W18X46 Beam No Messages 0.933234 PMM 77 W18X46 Beam No Messages 0.926543 PMM 78 W18X46 Beam No Messages 0.926546 PMM 79 W18X46 Beam No Messages 0.873122 PMM 80 W18X46 Beam No Messages 0.873141 PMM 81 W18X46 Beam No Mes sages 0.873124 PMM 82 W18X46 Beam No Messages 0.873141 PMM 83 W18X46 Beam No Messages 0.873005 PMM 84 W18X46 Beam No Messages 0.873033 PMM 85 W18X46 Beam No Messages 0.873002 PMM 86 W18X46 Beam No Messages 0.873030 PMM 87 W18X46 Beam No Messages 0.926546 PMM 88 W18X46 Beam No Messages 0.926545 PMM 89 W18X46 Beam No Messages 0.926545 PMM 90 W18X46 Beam No Messages 0.926546 PMM 91 W18X46 Beam No Messages 0.873024 PMM 92 W18X46 Beam No Messages 0.873001 PMM 93 W18X46 Beam No Messages 0.873027 PMM 94 W18X46 Beam No Messages 0.873004 PMM 95 W18X46 Beam No Messages 0.873110 PMM 96 W18X46 Beam No Messages 0.873096 PMM 97 W18X46 Beam No Messages 0.873110 PMM 98 W18X46 Beam No Messages 0.873094 PMM 99 W18X46 Beam No Messages 0.926546 PMM 100 W18X46 Beam No Messages 0.926544 PMM 101 W18X46 Beam No Messages 0.933225 PMM 102 W18X46 Beam No Messages 0.926568 PMM 103 W18X46 Beam No Messages 0.933211 PMM 104 W18X46 Beam No Messages 0.926506 PMM 105 W18X46 Beam No Messages 0.933229 PMM 106 W18X46 Beam No Messages 0.926511 PMM 335 W18X35 Beam No Messages 0.002362 PMM 336 W18X35 Beam No Messages 0.002876 PMM 337 W18X35 Beam No Messages 0.002876 PMM 338 W18X35 Beam No Messages 0.002361 PMM 339 W18X35 Beam No Messages 0.002361 PMM 340 W18X35 Beam No Messages 0.002876 PMM 341 W18X35 Beam No Messages 0.002876 PMM 342 W18X35 Beam No Messages 0.002362 PMM 343 W18X35 Beam No Messages 0.002362 PMM 344 W18X35 Beam No Messages 0.002876 PMM 345 W18X35 Beam No Messages 0.002876 PMM 346 W18X35 Beam No Messages 0.002361 PMM 347 W18X35 Beam No Messages 0.002876 PMM 348 W18X35 Beam No Messages 0.002362 PMM 349 W18X35 Beam No Messages 0.002361 PMM 350 W18X35 Beam No Messages 0.002876 PMM 351 W18X35 Beam No Messages 0.625912 PMM 352 W18X35 Beam No Messages 0.601307 PMM 353 W18X35 Beam No Messages 0.789769 PMM 354 W24X62 Beam No Messages 0.775557 PMM 355 W21X48 Beam No Messages 0.661169 PMM BF 3 story.sdb SAP2000 v17.3.0 3 Story CBF 27 March 2016 Computers and Structures, Inc. Page 12 of 17 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 356 W21X48 Beam No Messages 0.659503 PMM 357 W21X48 Beam No Messages 0.659477 PMM 358 W21X48 Beam No Messages 0.661119 PMM 359 W24X62 Beam No Messages 0.776725 PMM 360 W24X62 Beam No Messages 0.855034 PMM 361 W21X48 Beam No Messages 0.665579 PMM 362 W21X48 Beam No Messages 0.665562 PMM 363 W21X48 Beam No Messages 0.665524 PMM 364 W21X48 Beam No Messages 0.665515 PMM 365 W24X62 Beam No Messages 0.855391 PMM 366 W24X62 Beam No Messages 0.779245 PMM 367 W21X48 Beam No Messages 0.660807 PMM 368 W21X48 Beam No Messages 0.659524 PMM 369 W21X48 Beam No Messages 0.659509 PMM 370 W21X48 Beam No Messages 0.660745 PMM 371 W24X62 Beam No Messages 0.780371 PMM 372 W18X35 Beam No Messages 0.648189 PMM 373 W18X35 Beam No Messages 0.774261 PMM 374 W18X35 Beam No Messages 0.804869 PMM 375 W21X44 Beam No Messages 0.456412 PMM 376 W21X44 Beam No Messages 0.455950 PMM 377 W18X35 Beam No Messages 0.775505 PMM 378 W18X35 Beam No Messages 0.597649 PMM 379 W18X35 Beam No Messages 0.599335 PMM 380 W21X44 Beam No Messages 0.605083 PMM 381 W21X44 Beam No Messages 0.454806 PMM 382 W21X44 Beam No Messages 0.604938 PMM 383 W18X35 Beam No Messages 0.774483 PMM 384 W18X35 Beam No Messages 0.597368 PMM 385 W18X35 Beam No Messages 0.599063 PMM 386 W21X44 Beam No Messages 0.605024 PMM 387 W21X44 Beam No Messages 0.454697 PMM 388 W21X44 Beam No Messages 0.604945 PMM 389 W18X50 Beam No Messages 0.832778 PMM 390 W18X50 Beam No Messages 0.832887 PMM 391 W18X50 Beam No Messages 0.832913 PMM 392 W18X50 Beam No Messages 0.832793 PMM 393 W18X50 Beam No Messages 0.832790 PMM 394 W18X50 Beam No Messages 0.832975 PMM 395 W18X50 Beam No Messages 0.832974 PMM 396 W18X50 Beam No Messages 0.832804 PMM 397 W18X50 Beam No Messages 0.832792 PMM 398 W18X50 Beam No Messages 0.832902 PMM 399 W18X50 Beam No Messages 0.832908 PMM 400 W18X50 Beam No Messages 0.832785 PMM 401 W18X50 Beam No Messages 0.832785 PMM 402 W18X50 Beam No Messages 0.832912 PMM 403 W18X50 Beam No Messages 0.832912 PMM 404 W18X50 Beam No Messages 0.832799 PMM 405 W18X50 Beam No Messages 0.832780 PMM 406 W18X50 Beam No Messages 0.832932 PMM 407 W18X50 Beam No Messages 0.832956 PMM 408 W18X50 Beam No Messages 0.832794 PMM 409 W18X50 Beam No Messages 0.837133 PMM

PAGE 101

! 94 BF 3 story.sdb SAP2000 v17.3.0 3 Story CBF 27 March 2016 Computers and Structures, Inc. Page 13 of 17 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 410 W18X50 Beam No Messages 0.832845 PMM 411 W18X50 Beam No Messages 0.832827 PMM 412 W18X50 Beam No Messages 0.832841 PMM 413 W18X50 Beam No Messages 0.832838 PMM 414 W18X50 Beam No Messages 0.832828 PMM 415 W18X50 Beam No Messages 0.832824 PMM 416 W18X50 Beam No Messages 0.832831 PMM 417 W18X50 Beam No Messages 0.832832 PMM 418 W18X50 Beam No Messages 0.832825 PMM 419 W18X50 Beam No Messages 0.832857 PMM 420 W18X50 Beam No Messages 0.837126 PMM 421 W18X50 Beam No Messages 0.832855 PMM 422 W18X50 Beam No Messages 0.838534 PMM 423 W18X50 Beam No Messages 0.832903 PMM 424 W18X50 Beam No Messages 0.837465 PMM 425 W18X50 Beam No Messages 0.832781 PMM 426 W18X50 Beam No Messages 0.838415 PMM 427 W18X50 Beam No Messages 0.832831 PMM 428 W18X50 Beam No Messages 0.832845 PMM 429 W18X50 Beam No Messages 0.832940 PMM 430 W18X50 Beam No Messages 0.832952 PMM 431 W18X50 Beam No Messages 0.832915 PMM 432 W18X50 Beam No Messages 0.832933 PMM 433 W18X50 Beam No Messages 0.832886 PMM 434 W18X50 Beam No Messages 0.832882 PMM 435 W18X50 Beam No Messages 0.832881 PMM 436 W18X50 Beam No Messages 0.832894 PMM 437 W18X50 Beam No Messages 0.832828 PMM 438 W18X50 Beam No Messages 0.832822 PMM 439 W18X50 Beam No Messages 0.832830 PMM 440 W18X50 Beam No Messages 0.832832 PMM 441 W18X50 Beam No Messages 0.832952 PMM 442 W18X50 Beam No Messages 0.832920 PMM 443 W18X50 Beam No Messages 0.832939 PMM 444 W18X50 Beam No Messages 0.832925 PMM 445 W18X50 Beam No Messages 0.832955 PMM 446 W18X50 Beam No Messages 0.832966 PMM 447 W18X50 Beam No Messages 0.832974 PMM 448 W18X50 Beam No Messages 0.832992 PMM 449 W18X50 Beam No Messages 0.832848 PMM 450 W18X50 Beam No Messages 0.832840 PMM 451 W18X50 Beam No Messages 0.838417 PMM 452 W18X50 Beam No Messages 0.832766 PMM 453 W18X50 Beam No Messages 0.837575 PMM 454 W18X50 Beam No Messages 0.832817 PMM 455 W18X50 Beam No Messages 0.838481 PMM 456 W18X50 Beam No Messages 0.832766 PMM 457 W18X35 Beam No Messages 0.002876 PMM 458 W18X35 Beam No Messages 0.002465 PMM 459 W18X35 Beam No Messages 0.002361 PMM 460 W18X35 Beam No Messages 0.002876 PMM 461 W18X35 Beam No Messages 0.002876 PMM 462 W18X35 Beam No Messages 0.002361 PMM 463 W18X35 Beam No Messages 0.002465 PMM BF 3 story.sdb SAP2000 v17.3.0 3 Story CBF 27 March 2016 Computers and Structures, Inc. Page 14 of 17 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 464 W18X35 Beam No Messages 0.002876 PMM 465 W18X35 Beam No Messages 0.002876 PMM 466 W18X35 Beam No Messages 0.002362 PMM 467 W18X35 Beam No Messages 0.002362 PMM 468 W18X35 Beam No Messages 0.002876 PMM 469 W18X35 Beam No Messages 0.002362 PMM 470 W18X35 Beam No Messages 0.002876 PMM 471 W18X35 Beam No Messages 0.002876 PMM 472 W18X35 Beam No Messages 0.002362 PMM 473 W18X35 Beam No Messages 0.866767 PMM 474 W18X35 Beam No Messages 0.597044 PMM 475 W18X35 Beam No Messages 0.751714 PMM 476 W24X68 Beam No Messages 0.729858 PMM 477 W21X48 Beam No Messages 0.773644 PMM 478 W21X48 Beam No Messages 0.770720 PMM 479 W21X48 Beam No Messages 0.770783 PMM 480 W21X48 Beam No Messages 0.773644 PMM 481 W24X68 Beam No Messages 0.729807 PMM 482 W24X68 Beam No Messages 0.758944 PMM 483 W21X48 Beam No Messages 0.780482 PMM 484 W21X48 Beam No Messages 0.776441 PMM 485 W21X48 Beam No Messages 0.776453 PMM 486 W21X48 Beam No Messages 0.780617 PMM 487 W24X68 Beam No Messages 0.759105 PMM 488 W24X68 Beam No Messages 0.728350 PMM 489 W21X48 Beam No Messages 0.774022 PMM 490 W 21X48 Beam No Messages 0.770656 PMM 491 W21X48 Beam No Messages 0.770710 PMM 492 W21X48 Beam No Messages 0.774025 PMM 493 W24X68 Beam No Messages 0.728305 PMM 494 W18X35 Beam No Messages 0.847328 PMM 495 W18X35 Beam No Messages 0.598455 PMM 496 W18X35 Beam No Messages 0.718539 PMM 497 W21X44 Beam No Messages 0.605173 PMM 498 W21X44 Beam No Messages 0.605086 PMM 499 W18X35 Beam No Messages 0.771452 PMM 500 W18X35 Beam No Messages 0.772391 PMM 501 W18X35 Beam No Messages 0.772684 PMM 502 W21X44 Beam No Messages 0.605148 PMM 503 W21X44 Beam No Messages 0.454216 PMM 504 W21X44 Beam No Messages 0.454552 PMM 505 W18X35 Beam No Messages 0.772183 PMM 506 W18X35 Beam No Messages 0.772310 PMM 507 W18X35 Beam No Messages 0.772590 PMM 508 W21X44 Beam No Messages 0.605228 PMM 509 W21X44 Beam No Messages 0.604965 PMM 510 W21X44 Beam No Messages 0.604943 PMM 511 W18X50 Beam No Messages 0.831678 PMM 512 W18X50 Beam No Messages 0.832865 PMM 513 W18X50 Beam No Messages 0.832870 PMM 514 W18X50 Beam No Messages 0.831671 PMM 515 W18X50 Beam No Messages 0.831705 PMM 516 W18X50 Beam No Messages 0.832779 PMM 517 W18X50 Beam No Messages 0.832785 PMM

PAGE 102

! 95 BF 3 story.sdb SAP2000 v17.3.0 3 Story CBF 27 March 2016 Computers and Structures, Inc. Page 15 of 17 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 518 W18X50 Beam No Messages 0.831691 PMM 519 W18X50 Beam No Messages 0.831706 PMM 520 W18X50 Beam No Messages 0.832770 PMM 521 W18X50 Beam No Messages 0.832776 PMM 522 W18X50 Beam No Messages 0.831697 PMM 523 W18X50 Beam No Messages 0.831722 PMM 524 W18X50 Beam No Messages 0.831802 PMM 525 W18X50 Beam No Messages 0.831791 PMM 526 W18X50 Beam No Messages 0.831709 PMM 527 W18X50 Beam No Messages 0.831638 PMM 528 W18X50 Beam No Messages 0.831821 PMM 529 W18X50 Beam No Messages 0.831813 PMM 530 W18X50 Beam No Messages 0.831632 PMM 531 W18X50 Beam No Messages 0.837285 PMM 532 W18X50 Beam No Messages 0.831751 PMM 533 W18X50 Beam No Messages 0.831766 PMM 534 W18X50 Beam No Messages 0.831764 PMM 535 W18X50 Beam No Messages 0.831772 PMM 536 W18X50 Beam No Messages 0.831773 PMM 537 W18X50 Beam No Messages 0.831768 PMM 538 W18X50 Beam No Messages 0.831769 PMM 539 W18X50 Beam No Messages 0.831787 PMM 540 W18X50 Beam No Messages 0.831784 PMM 541 W18X50 Beam No Messages 0.831666 PMM 542 W18X50 Beam No Messages 0.838411 PMM 543 W18X50 Beam No Messages 0.832778 PMM 544 W18X50 Beam No Messages 0.838668 PMM 545 W18X50 Beam No Messages 0.832768 PMM 546 W18X50 Beam No Messages 0.838587 PMM 547 W18X50 Beam No Messages 0.831684 PMM 548 W18X50 Beam No Messages 0.838371 PMM 549 W18X50 Beam No Messages 0.831768 PMM 550 W18X50 Beam No Messages 0.831763 PMM 551 W18X50 Beam No Messages 0.831949 PMM 552 W18X50 Beam No Messages 0.831937 PMM 553 W18X50 Beam No Messages 0.831960 PMM 554 W18X50 Beam No Messages 0.831946 PMM 555 W18X50 Beam No Messages 0.832765 PMM 556 W18X50 Beam No Messages 0.831599 PMM 557 W18X50 Beam No Messages 0.832768 PMM 558 W18X50 Beam No Messages 0.831591 PMM 559 W18X50 Beam No Messages 0.831751 PMM 560 W18X50 Beam No Messages 0.831754 PMM 561 W18X50 Beam No Messages 0.831755 PMM 562 W18X50 Beam No Messages 0.831756 PMM 563 W18X50 Beam No Messages 0.832786 PMM 564 W18X50 Beam No Messages 0.832783 PMM 565 W18X50 Beam No Messages 0.832780 PMM 566 W18X50 Beam No Messages 0.832779 PMM 567 W18X50 Beam No Messages 0.832838 PMM 568 W18X50 Beam No Messages 0.832802 PMM 569 W18X50 Beam No Messages 0.832844 PMM 570 W18X50 Beam No Messages 0.832809 PMM 571 W18X50 Beam No Messages 0.831744 PMM BF 3 story.sdb SAP2000 v17.3.0 3 Story CBF 27 March 2016 Computers and Structures, Inc. Page 16 of 17 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 572 W18X50 Beam No Messages 0.831744 PMM 573 W18X50 Beam No Messages 0.837353 PMM 574 W18X50 Beam No Messages 0.831772 PMM 575 W18X50 Beam No Messages 0.838405 PMM 576 W18X50 Beam No Messages 0.832895 PMM 577 W18X50 Beam No Messages 0.838496 PMM 578 W18X50 Beam No Messages 0.832906 PMM 579 W18X35 Beam No Messages 0.002876 PMM 580 W18X35 Beam No Messages 0.002362 PMM 581 W18X35 Beam No Messages 0.002465 PMM 582 W18X35 Beam No Messages 0.002876 PMM 583 W18X35 Beam No Messages 0.002876 PMM 584 W18X35 Beam No Messages 0.002465 PMM 585 W18X35 Beam No Messages 0.002362 PMM 586 W18X35 Beam No Messages 0.002876 PMM 587 W18X35 Beam No Messages 0.002465 PMM 588 W18X35 Beam No Messages 0.002876 PMM 589 W18X35 Beam No Messages 0.002876 PMM 590 W18X35 Beam No Messages 0.002465 PMM 591 W18X35 Beam No Messages 0.002876 PMM 592 W18X35 Beam No Messages 0.002361 PMM 593 W18X35 Beam No Messages 0.002465 PMM 594 W18X35 Beam No Messages 0.002876 PMM 595 W14X68 Column No Messages 0.134941 PMM 596 W14X68 Column No Messages 0.776636 PMM 597 W14X68 Column No Messages 0.754821 PMM 598 W14X68 Column No Messages 0.753597 PMM 599 W14X68 Column No Messages 0.763033 PMM 600 W14X68 Column No Messages 0.782295 PMM 601 W14X68 Column No Messages 0.137707 PMM 630 W14X109 Column No Messages 0.881605 PMM 631 W14X99 Column No Messages 0.890850 PMM 632 W14X90 Column No Messages 0.931525 PMM 633 W14X90 Column No Messages 0.933653 PMM 634 W14X90 Column No Messages 0.931866 PMM 635 W14X99 Column No Messages 0.893334 PMM 636 W14X109 Column No Messages 0.878291 PMM 637 W14X99 Column No Messages 0.906039 PMM 638 W14X99 Column No Messages 0.896601 PMM 639 W14X90 Column No Messages 0.934034 PMM 640 W14X90 Column No Messages 0.935646 PMM 641 W14X90 Column No Messages 0.933456 PMM 642 W14X99 Column No Messages 0.899470 PMM 643 W14X99 Column No Messages 0.902478 PMM 644 W14X109 Column No Messages 0.889785 PMM 645 W14X99 Column No Messages 0.890597 PMM 646 W14X90 Column No Messages 0.930308 PMM 647 W14X90 Column No Messages 0.932161 PMM 648 W14X90 Column No Messages 0.930223 PMM 649 W14X99 Column No Messages 0.893133 PMM 650 W14X109 Column No Messages 0.886110 PMM 651 W14X68 Column No Messages 0.124349 PMM 652 W14X68 Column No Messages 0.770946 PMM 653 W14X68 Column No Messages 0.754535 PMM

PAGE 103

! 96 BF 3 story.sdb SAP2000 v17.3.0 3 Story CBF 27 March 2016 Computers and Structures, Inc. Page 17 of 17 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 654 W14X68 Column No Messages 0.752915 PMM 655 W14X68 Column No Messages 0.762319 PMM 656 W14X68 Column No Messages 0.776578 PMM 657 W14X68 Column No Messages 0.127131 PMM 107 HSS5X5X1/2 Brace No M essages 0.838018 PMM 108 HSS5X5X1/2 Brace No Messages 0.589883 PMM 109 HSS5X5X1/8 Brace No Messages 0.188582 PMM 110 HSS5X5X1/8 Brace No Messages 0.329170 PMM 111 HSS5X5X1/2 Brace No Messages 0.611465 PMM 112 HSS5X5X1/2 Brace No Messages 0.895486 PMM 113 HSS5X5X1/2 Brace No Messages 0.773759 PMM 114 HSS5X5X1/2 Brace No Messages 0.490428 PMM 115 HSS5X5X1/8 Brace No Messages 0.323010 PMM 116 HSS5X5X1/2 Brace No Messages 0.837477 PMM 117 HSS5X5X1/2 Brace No Messages 0.585013 PMM 118 HSS5X5X1/8 Brace No Messages 0.187269 PMM 119 HSS5X5X1/8 Brace No Messages 0.329819 PMM 120 HSS5X5X1/2 Brace No Messages 0.611577 PMM 121 HSS5X5X1/2 Brace No Messages 0.896166 PMM 122 HSS5X5X1/2 Brace No Messages 0.775495 PMM 123 HSS5X5X1/2 Brace No Messages 0.492071 PMM 124 HSS5X5X1/8 Brace No Messages 0.324265 PMM 125 HSS5X5X1/2 Brace No Messages 0.644307 PMM 126 HSS5X5X1/2 Brace No Messages 0.379207 PMM 127 HSS5X5X1/8 Brace No Messages 0.191053 PMM 128 HSS5X5X1/8 Brace No Messages 0.307734 PMM 129 HSS5X5X1/2 Brace No Messages 0.403187 PMM 130 HSS5X5X1/2 Brace No Messages 0.639765 PMM 131 HSS5X5X1/2 Brace No Messages 0.350366 PMM 132 HSS5X5X1/2 Brace No Messages 0.692140 PMM 133 HSS4X4X1/8 Brace No Messages 0.152014 PMM 134 HSS5X5X1/2 Brace No Messages 0.643877 PMM 135 HSS5X5X1/2 Brace No Messages 0.381782 PMM 136 HSS5X5X1/8 Brace No Messages 0.190920 PMM 137 HSS5X5X1/8 Brace No Messages 0.309551 PMM 138 HSS5X5X1/2 Brace No Messages 0.401124 PMM 139 HSS5X5X1/2 Brace No Messages 0.640739 PMM 140 HSS5X5X1/2 Brace No Messages 0.355763 PMM 141 HSS5X5X1/2 Brace No Mess ages 0.715310 PMM 142 HSS4X4X1/8 Brace No Messages 0.152007 PMM

PAGE 104

! 97 Diagrid 3 story.sdb SAP2000 v17.3.0 3 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 1 of 14 3 Story Diagrid Table: Joint Reactions Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 605 DEAD LinStatic 21.377 0.483 439.645 0.0000 0.0000 0.0000 605 LIVE LinStatic 13.407 0.277 244.338 0.0000 0.0000 0.0000 605 WIND LinStatic 28.234 0.982 46.083 0.0000 0.0000 0.0000 605 DSTL1 Combination 29.928 0.676 615.504 0.0000 0.0000 0.0000 605 DSTL2 Combination 47.105 1.023 918.515 0.0000 0.0000 0.0000 605 DSTL3 Combination 2.581 0.402 481.492 0.0000 0.0000 0.0000 605 DSTL4 Combination 53.887 1.561 573.657 0.0000 0.0000 0.0000 605 DSTL5 Combination 11.536 0.088 504.533 0.0000 0.0000 0.0000 605 DSTL6 Combination 39.770 1.070 550.616 0.0000 0.0000 0.0000 605 DSTL7 Combination 8.994 0.547 349.598 0.0000 0.0000 0.0000 605 DSTL8 Combination 47.474 1.416 441.763 0.0000 0.0000 0.0000 605 DSTL9 Combination 21.377 0.483 439.645 0.0000 0.0000 0.0000 605 DSTL10 Combination 34.785 0.760 683.983 0.0000 0.0000 0.0000 607 DEAD LinStatic 3.908E 04 0.735 476.809 0.0000 0.0000 0.0000 607 LIVE LinStatic 1.255E 04 0.418 267.022 0.0000 0.0000 0.0000 607 WIND LinStatic 61.230 0.960 1.255 0.0000 0.0000 0.0000 607 DSTL1 Combination 5.471E 04 1.029 667.533 0.0000 0.0000 0.0000 607 DSTL2 Combination 6.698E 04 1.551 999.405 0.0000 0.0000 0.0000 607 DSTL3 Combination 61.230 0.078 573.426 0.0000 0.0000 0.0000 607 DSTL4 Combination 61.229 1.842 570.916 0.0000 0.0000 0.0000 607 DSTL5 Combination 30.615 0.402 572.798 0.0000 0.0000 0.0000 607 DSTL6 Combination 30.614 1.362 571.543 0.0000 0.0000 0.0000 607 DSTL7 Combination 61.230 0.299 430.383 0.0000 0.0000 0.0000 607 DSTL8 Combination 61.229 1.621 427.873 0.0000 0.0000 0.0000 607 DSTL9 Combination 3.908E 04 0.735 476.809 0.0000 0.0000 0.0000 607 DSTL10 Combination 5.163E 04 1.153 743.831 0.0000 0.0000 0.0000 609 DEAD LinStatic 21.377 0.479 439.665 0.0000 0.0000 0.0000 609 LIVE LinStatic 13.407 0.275 244.350 0.0000 0.0000 0.0000 609 WIND LinStatic 81.407 0.972 26.423 0.0000 0.0000 0.0000 609 DSTL1 Combination 29.928 0.671 615.531 0.0000 0.0000 0.0000 609 DSTL2 Combination 47.104 1.015 918.558 0.0000 0.0000 0.0000 609 DSTL3 Combination 107.060 0.397 501.175 0.0000 0.0000 0.0000 609 DSTL4 Combination 55.754 1.547 554.021 0.0000 0.0000 0.0000 609 DSTL5 Combination 66.356 0.089 514.386 0.0000 0.0000 0.0000 609 DSTL6 Combination 15.051 1.061 540.809 0.0000 0.0000 0.0000 609 DSTL7 Combination 100.647 0.540 369.275 0.0000 0.0000 0.0000 609 DSTL8 Combination 62.168 1.403 422.121 0.0000 0.0000 0.0000 609 DSTL9 Combination 21.377 0.479 439.665 0.0000 0.0000 0.0000 609 DSTL10 Combination 34.785 0.754 684.015 0.0000 0.0000 0.0000 667 DEAD LinStatic 2.863E 03 17.306 353.073 0.0000 0.0353 0.0458 667 LIVE LinStatic 1.810E 03 9.610 196.540 0.0000 0.0217 0.0282 667 WIND LinStatic 0.072 110.393 28.723 0.0000 9.068E 04 0.0012 667 DSTL1 Combination 4.008E 03 24.228 494.302 0.0000 0.0494 0.0642 667 DSTL2 Combination 6.331E 03 36.143 738.152 0.0000 0.0771 0.1002 667 DSTL3 Combination 0.068 89.626 394.965 0.0000 0.0414 0.0538 667 DSTL4 Combination 0.075 131.160 452.411 0.0000 0.0432 0.0562 667 DSTL5 Combination 0.032 34.430 409.326 0.0000 0.0419 0.0544 667 DSTL6 Combination 0.039 75.964 438.049 0.0000 0.0428 0.0556 667 DSTL7 Combination 0.069 94.818 289.043 0.0000 0.0308 0.0401 667 DSTL8 Combination 0.074 125.969 346.489 0.0000 0.0326 0.0424 Diagrid 3 story.sdb SAP2000 v17.3.0 3 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 2 of 14 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 667 DSTL9 Combination 2.863E 03 17.306 353.073 0.0000 0.0353 0.0458 667 DSTL10 Combination 4.672E 03 26.916 549.613 0.0000 0.0570 0.0741 668 DEAD LinStatic 0.833 0.138 508.305 0.0000 0.0000 0.0000 668 LIVE LinStatic 0.451 0.078 296.181 0.0000 0.0000 0.0000 668 WIND LinStatic 0.579 2.779 0.533 0.0000 0.0000 0.0000 668 DSTL1 Combination 1.166 0.193 711.627 0.0000 0.0000 0.0000 668 DSTL2 Combination 1.720 0.290 1083.856 0.0000 0.0000 0.0000 668 DSTL3 Combination 1.579 2.614 609.433 0.0000 0.0000 0.0000 668 DSTL4 Combination 0.420 2.944 610.500 0.0000 0.0000 0.0000 668 DSTL5 Combination 1.289 1.224 609.700 0.0000 0.0000 0.0000 668 DSTL6 Combination 0.710 1.555 610.233 0.0000 0.0000 0.0000 668 DSTL7 Combination 1.329 2.655 456.942 0.0000 0.0000 0.0000 668 DSTL8 Combination 0.170 2.903 458.008 0.0000 0.0000 0.0000 668 DSTL9 Combination 0.833 0.138 508.305 0.0000 0.0000 0.0000 668 DSTL10 Combination 1.283 0.216 804.486 0.0000 0.0000 0.0000 669 DEAD LinStatic 0.087 0.512 459.100 0.0000 0.0000 0.0000 669 LIVE LinStatic 0.048 0.286 267.757 0.0000 0.0000 0.0000 669 WIND LinStatic 0.585 2.443 0.045 0.0000 0.0000 0.0000 669 DSTL1 Combination 0.122 0.716 642.740 0.0000 0.0000 0.0000 669 DSTL2 Combination 0.181 1.072 979.331 0.0000 0.0000 0.0000 669 DSTL3 Combination 0.481 3.057 550.965 0.0000 0.0000 0.0000 669 DSTL4 Combination 0.689 1.829 550.874 0.0000 0.0000 0.0000 669 DSTL5 Combination 0.188 1.836 550.942 0.0000 0.0000 0.0000 669 DSTL6 Combination 0.397 0.608 550.897 0.0000 0.0000 0.0000 669 DSTL7 Combination 0.507 2.904 413.235 0.0000 0.0000 0.0000 669 DSTL8 Combination 0.663 1.983 413.145 0.0000 0.0000 0.0000 669 DSTL9 Combination 0.087 0.512 459.100 0.0000 0.0000 0.0000 669 DSTL10 Combination 0.135 0.798 726.857 0.0000 0.0000 0.0000 670 DEAD LinStatic 1.329E 04 0.079 463.866 0.0000 0.0000 0.0000 670 LIVE LinStatic 7.155E 05 0.046 270.781 0.0000 0.0000 0.0000 670 WIND LinStatic 0.513 2.242 0.049 0.0000 0.0000 0.0000 670 DSTL1 Combination 1.861E 04 0.110 649.412 0.0000 0.0000 0.0000 670 DSTL2 Combination 2.740E 04 0.167 989.889 0.0000 0.0000 0.0000 670 DSTL3 Combination 0.513 2.147 556.689 0.0000 0.0000 0.0000 670 DSTL4 Combination 0.513 2.336 556.590 0.0000 0.0000 0.0000 670 DSTL5 Combination 0.257 1.026 556.664 0.0000 0.0000 0.0000 670 DSTL6 Combination 0.256 1.215 556.614 0.0000 0.0000 0.0000 670 DSTL7 Combination 0.513 2.171 417.529 0.0000 0.0000 0.0000 670 DSTL8 Combination 0.513 2.313 417.430 0.0000 0.0000 0.0000 670 DSTL9 Combination 1.329E 04 0.079 463.866 0.0000 0.0000 0.0000 670 DSTL10 Combination 2.045E 04 0.124 734.647 0.0000 0.0000 0.0000 671 DEAD LinStatic 0.086 0.512 459.116 0.0000 0.0000 0.0000 671 LIVE LinStatic 0.048 0.286 267.767 0.0000 0.0000 0.0000 671 WIND LinStatic 0.589 2.439 0.024 0.0000 0.0000 0.0000 671 DSTL1 Combination 0.121 0.716 642.762 0.0000 0.0000 0.0000 671 DSTL2 Combination 0.180 1.072 979.366 0.0000 0.0000 0.0000 671 DSTL3 Combination 0.693 3.053 550.915 0.0000 0.0000 0.0000 671 DSTL4 Combination 0.486 1.825 550.963 0.0000 0.0000 0.0000 671 DSTL5 Combination 0.398 1.833 550.927 0.0000 0.0000 0.0000 671 DSTL6 Combination 0.191 0.605 550.951 0.0000 0.0000 0.0000 671 DSTL7 Combination 0.667 2.899 413.181 0.0000 0.0000 0.0000 671 DSTL8 Combination 0.511 1.978 413.228 0.0000 0.0000 0.0000 671 DSTL9 Combination 0.086 0.512 459.116 0.0000 0.0000 0.0000 671 DSTL10 Combination 0.134 0.798 726.882 0.0000 0.0000 0.0000

PAGE 105

! 98 Diagrid 3 story.sdb SAP2000 v17.3.0 3 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 3 of 14 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 672 DEAD LinStatic 0.833 0.137 508.246 0.0000 0.0000 0.0000 672 LIVE LinStatic 0.451 0.077 296.145 0.0000 0.0000 0.0000 672 WIND LinStatic 0.636 2.777 0.183 0.0000 0.0000 0.0000 672 DSTL1 Combination 1.166 0.192 711.544 0.0000 0.0000 0.0000 672 DSTL2 Combination 1.720 0.288 1083.728 0.0000 0.0000 0.0000 672 DSTL3 Combination 0.363 2.613 609.712 0.0000 0.0000 0.0000 672 DSTL4 Combination 1.635 2.941 610.079 0.0000 0.0000 0.0000 672 DSTL5 Combination 0.681 1.224 609.803 0.0000 0.0000 0.0000 672 DSTL6 Combination 1.317 1.553 609.987 0.0000 0.0000 0.0000 672 DSTL7 Combination 0.114 2.654 457.238 0.0000 0.0000 0.0000 672 DSTL8 Combination 1.386 2.900 457.605 0.0000 0.0000 0.0000 672 DSTL9 Combination 0.833 0.137 508.246 0.0000 0.0000 0.0000 672 DSTL10 Combination 1.283 0.214 804.391 0.0000 0.0000 0.0000 673 DEAD LinStatic 2.849E 03 17.284 353.089 1.002E 16 0.0353 0.0458 673 LIVE LinStatic 1.801E 03 9.596 196.550 6.174E 17 0.0217 0.0282 673 WIND LinStatic 0.076 130.063 3.010 2.547E 18 8.961E 04 0.0012 673 DSTL1 Combination 3.988E 03 24.197 494.325 1.403E 16 0.0494 0.0642 673 DSTL2 Combination 6.299E 03 36.094 738.187 2.190E 16 0.0771 0.1002 673 DSTL3 Combination 0.079 109.322 420.697 1.228E 16 0.0432 0.0562 673 DSTL4 Combination 0.072 150.803 426.717 1.177E 16 0.0414 0.0538 673 DSTL5 Combination 0.041 44.291 422.202 1.215E 16 0.0428 0.0556 673 DSTL6 Combination 0.034 85.772 425.212 1.190E 16 0.0419 0.0544 673 DSTL7 Combination 0.078 114.507 314.770 9.273E 17 0.0326 0.0424 673 DSTL8 Combination 0.073 145.618 320.790 8.764E 17 0.0308 0.0401 673 DSTL9 Combination 2.849E 03 17.284 353.089 1.002E 16 0.0353 0.0458 673 DSTL10 Combination 4.649E 03 26.880 549.639 1.619E 16 0.0570 0.0741 675 DEAD LinStatic 2.184 8.848E 05 503.345 0.0000 0.0000 0.0000 675 LIVE LinStatic 1.195 3.105E 05 293.036 0.0000 0.0000 0.0000 675 WIND LinStatic 0.700 3.063 0.068 0.0000 0.0000 0.0000 675 DSTL1 Combination 3.058 1.239E 04 704.683 0.0000 0.0000 0.0000 675 DSTL2 Combination 4.533 5.650E 05 1072.872 0.0000 0.0000 0.0000 675 DSTL3 Combination 3.322 3.063 603.945 0.0000 0.0000 0.0000 675 DSTL4 Combination 1.921 3.063 604.082 0.0000 0.0000 0.0000 675 DSTL5 Combination 2.971 1.532 603.980 0.0000 0.0000 0.0000 675 DSTL6 Combination 2.271 1.532 604.048 0.0000 0.0000 0.0000 675 DSTL7 Combination 2.666 3.063 452.942 0.0000 0.0000 0.0000 675 DSTL8 Combination 1.266 3.063 453.079 0.0000 0.0000 0.0000 675 DSTL9 Combination 2.184 8.848E 05 503.345 0.0000 0.0000 0.0000 675 DSTL10 Combination 3.379 5.743E 05 796.381 0.0000 0.0000 0.0000 676 DEAD LinStatic 0.156 3.424E 05 452.876 0.0000 0.0000 0.0000 676 LIVE LinStatic 0.086 2.899E 05 264.699 0.0000 0.0000 0.0000 676 WIND LinStatic 0.547 2.248 0.044 0.0000 0.0000 0.0000 676 DSTL1 Combination 0.218 4.794E 05 634.026 0.0000 0.0000 0.0000 676 DSTL2 Combination 0.324 5.296E 06 966.969 0.0000 0.0000 0.0000 676 DSTL3 Combination 0.360 2.248 543.494 0.0000 0.0000 0.0000 676 DSTL4 Combination 0.733 2.248 543.407 0.0000 0.0000 0.0000 676 DSTL5 Combination 0.087 1.124 543.473 0.0000 0.0000 0.0000 676 DSTL6 Combination 0.460 1.124 543.429 0.0000 0.0000 0.0000 676 DSTL7 Combination 0.407 2.248 407.632 0.0000 0.0000 0.0000 676 DSTL8 Combination 0.687 2.248 407.544 0.0000 0.0000 0.0000 676 DSTL9 Combination 0.156 3.424E 05 452.876 0.0000 0.0000 0.0000 676 DSTL10 Combination 0.241 5.250E 06 717.575 0.0000 0.0000 0.0000 677 DEAD LinStatic 8.992E 05 2.114E 05 461.424 0.0000 0.0000 0.0000 677 LIVE LinStatic 5.143E 05 3.341E 05 269.658 0.0000 0.0000 0.0000 Diagrid 3 story.sdb SAP2000 v17.3.0 3 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 4 of 14 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 677 WIND LinStatic 0.552 2.234 4.588E 05 0.0000 0.0000 0.0000 677 DSTL1 Combination 1.259E 04 2.960E 05 645.994 0.0000 0.0000 0.0000 677 DSTL2 Combination 1.902E 04 2.809E 05 985.163 0.0000 0.0000 0.0000 677 DSTL3 Combination 0.552 2.234 553.709 0.0000 0.0000 0.0000 677 DSTL4 Combination 0.552 2.234 553.709 0.0000 0.0000 0.0000 677 DSTL5 Combination 0.276 1.117 553.709 0.0000 0.0000 0.0000 677 DSTL6 Combination 0.276 1.117 553.709 0.0000 0.0000 0.0000 677 DSTL7 Combination 0.552 2.234 415.282 0.0000 0.0000 0.0000 677 DSTL8 Combination 0.552 2.234 415.282 0.0000 0.0000 0.0000 677 DSTL9 Combination 8.992E 05 2.114E 05 461.424 0.0000 0.0000 0.0000 677 DSTL10 Combination 1.414E 04 1.227E 05 731.083 0.0000 0.0000 0.0000 678 DEAD LinStatic 0.156 3.232E 05 452.872 0.0000 0.0000 0.0000 678 LIVE LinStatic 0.086 3.008E 05 264.697 0.0000 0.0000 0.0000 678 WIND LinStatic 0.547 2.248 0.044 0.0000 0.0000 0.0000 678 DSTL1 Combination 0.218 4.525E 05 634.021 0.0000 0.0000 0.0000 678 DSTL2 Combination 0.324 9.333E 06 966.962 0.0000 0.0000 0.0000 678 DSTL3 Combination 0.734 2.248 543.402 0.0000 0.0000 0.0000 678 DSTL4 Combination 0.360 2.248 543.490 0.0000 0.0000 0.0000 678 DSTL5 Combination 0.460 1.124 543.424 0.0000 0.0000 0.0000 678 DSTL6 Combination 0.087 1.124 543.468 0.0000 0.0000 0.0000 678 DSTL7 Combination 0.687 2.248 407.541 0.0000 0.0000 0.0000 678 DSTL8 Combination 0.407 2.248 407.629 0.0000 0.0000 0.0000 678 DSTL9 Combination 0.156 3.232E 05 452.872 0.0000 0.0000 0.0000 678 DSTL10 Combination 0.242 2.247E 06 717.569 0.0000 0.0000 0.0000 679 DEAD LinStatic 2.185 9.206E 05 503.362 0.0000 0.0000 0.0000 679 LIVE LinStatic 1.195 2.876E 05 293.046 0.0000 0.0000 0.0000 679 WIND LinStatic 0.701 3.063 0.069 0.0000 0.0000 0.0000 679 DSTL1 Combination 3.058 1.289E 04 704.706 0.0000 0.0000 0.0000 679 DSTL2 Combination 4.533 6.445E 05 1072.908 0.0000 0.0000 0.0000 679 DSTL3 Combination 1.921 3.063 604.103 0.0000 0.0000 0.0000 679 DSTL4 Combination 3.322 3.063 603.965 0.0000 0.0000 0.0000 679 DSTL5 Combination 2.271 1.532 604.069 0.0000 0.0000 0.0000 679 DSTL6 Combination 2.972 1.531 603.999 0.0000 0.0000 0.0000 679 DSTL7 Combination 1.265 3.063 453.095 0.0000 0.0000 0.0000 679 DSTL8 Combination 2.667 3.063 452.956 0.0000 0.0000 0.0000 679 DSTL9 Combination 2.185 9.206E 05 503.362 0.0000 0.0000 0.0000 679 DSTL10 Combination 3.379 6.330E 05 796.408 0.0000 0.0000 0.0000 681 DEAD LinStatic 2.131E 03 17.305 353.125 0.0000 6.038E 04 7.849E 04 681 LIVE LinStatic 1.282E 03 9.610 196.538 0.0000 3.527E 04 4.586E 04 681 WIND LinStatic 0.076 130.755 2.117 0.0000 0.0034 0.0044 681 DSTL1 Combination 2.983E 03 24.228 494.374 0.0000 8.453E 04 0.0011 681 DSTL2 Combination 4.608E 03 36.143 738.210 0.0000 0.0013 0.0017 681 DSTL3 Combination 0.073 151.521 425.867 0.0000 0.0041 0.0054 681 DSTL4 Combination 0.078 109.988 421.632 0.0000 0.0027 0.0035 681 DSTL5 Combination 0.035 86.144 424.808 0.0000 0.0024 0.0031 681 DSTL6 Combination 0.040 44.611 422.691 0.0000 9.719E 04 0.0013 681 DSTL7 Combination 0.074 146.330 319.929 0.0000 0.0039 0.0051 681 DSTL8 Combination 0.077 115.180 315.695 0.0000 0.0028 0.0037 681 DSTL9 Combination 2.131E 03 17.305 353.125 0.0000 6.038E 04 7.849E 04 681 DSTL10 Combination 3.412E 03 26.916 549.663 0.0000 9.565E 04 0.0012 682 DEAD LinStatic 0.832 0.138 508.344 0.0000 0.0000 0.0000 682 LIVE LinStatic 0.451 0.078 296.184 0.0000 0.0000 0.0000 682 WIND LinStatic 0.636 2.777 0.180 0.0000 0.0000 0.0000 682 DSTL1 Combination 1.165 0.193 711.681 0.0000 0.0000 0.0000

PAGE 106

! 99 Diagrid 3 story.sdb SAP2000 v17.3.0 3 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 5 of 14 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 682 DSTL2 Combination 1.720 0.290 1083.908 0.0000 0.0000 0.0000 682 DSTL3 Combination 1.635 2.943 610.192 0.0000 0.0000 0.0000 682 DSTL4 Combination 0.363 2.612 609.833 0.0000 0.0000 0.0000 682 DSTL5 Combination 1.317 1.554 610.102 0.0000 0.0000 0.0000 682 DSTL6 Combination 0.681 1.223 609.922 0.0000 0.0000 0.0000 682 DSTL7 Combination 1.385 2.901 457.689 0.0000 0.0000 0.0000 682 DSTL8 Combination 0.113 2.653 457.329 0.0000 0.0000 0.0000 682 DSTL9 Combination 0.832 0.138 508.344 0.0000 0.0000 0.0000 682 DSTL10 Combination 1.283 0.216 804.528 0.0000 0.0000 0.0000 683 DEAD LinStatic 0.087 0.512 459.099 0.0000 0.0000 0.0000 683 LIVE LinStatic 0.048 0.286 267.757 0.0000 0.0000 0.0000 683 WIND LinStatic 0.590 2.439 0.024 0.0000 0.0000 0.0000 683 DSTL1 Combination 0.122 0.716 642.738 0.0000 0.0000 0.0000 683 DSTL2 Combination 0.181 1.072 979.330 0.0000 0.0000 0.0000 683 DSTL3 Combination 0.486 1.825 550.943 0.0000 0.0000 0.0000 683 DSTL4 Combination 0.694 3.053 550.894 0.0000 0.0000 0.0000 683 DSTL5 Combination 0.191 0.606 550.930 0.0000 0.0000 0.0000 683 DSTL6 Combination 0.399 1.833 550.906 0.0000 0.0000 0.0000 683 DSTL7 Combination 0.512 1.978 413.213 0.0000 0.0000 0.0000 683 DSTL8 Combination 0.668 2.899 413.164 0.0000 0.0000 0.0000 683 DSTL9 Combination 0.087 0.512 459.099 0.0000 0.0000 0.0000 683 DSTL10 Combination 0.135 0.798 726.856 0.0000 0.0000 0.0000 684 DEAD LinStatic 1.341E 04 0.079 463.866 0.0000 0.0000 0.0000 684 LIVE LinStatic 7.231E 05 0.045 270.781 0.0000 0.0000 0.0000 684 WIND LinStatic 0.513 2.242 0.048 0.0000 0.0000 0.0000 684 DSTL1 Combination 1.877E 04 0.110 649.412 0.0000 0.0000 0.0000 684 DSTL2 Combination 2.766E 04 0.167 989.889 0.0000 0.0000 0.0000 684 DSTL3 Combination 0.513 2.336 556.591 0.0000 0.0000 0.0000 684 DSTL4 Combination 0.513 2.147 556.687 0.0000 0.0000 0.0000 684 DSTL5 Combination 0.257 1.215 556.615 0.0000 0.0000 0.0000 684 DSTL6 Combination 0.256 1.026 556.663 0.0000 0.0000 0.0000 684 DSTL7 Combination 0.513 2.313 417.431 0.0000 0.0000 0.0000 684 DSTL8 Combination 0.513 2.171 417.527 0.0000 0.0000 0.0000 684 DSTL9 Combination 1.341E 04 0.079 463.866 0.0000 0.0000 0.0000 684 DSTL10 Combination 2.064E 04 0.124 734.647 0.0000 0.0000 0.0000 685 DEAD LinStatic 0.086 0.512 459.115 0.0000 0.0000 0.0000 685 LIVE LinStatic 0.048 0.286 267.767 0.0000 0.0000 0.0000 685 WIND LinStatic 0.585 2.443 0.044 0.0000 0.0000 0.0000 685 DSTL1 Combination 0.121 0.716 642.761 0.0000 0.0000 0.0000 685 DSTL2 Combination 0.180 1.072 979.365 0.0000 0.0000 0.0000 685 DSTL3 Combination 0.689 1.830 550.894 0.0000 0.0000 0.0000 685 DSTL4 Combination 0.481 3.057 550.982 0.0000 0.0000 0.0000 685 DSTL5 Combination 0.396 0.608 550.916 0.0000 0.0000 0.0000 685 DSTL6 Combination 0.189 1.836 550.960 0.0000 0.0000 0.0000 685 DSTL7 Combination 0.663 1.983 413.159 0.0000 0.0000 0.0000 685 DSTL8 Combination 0.507 2.904 413.248 0.0000 0.0000 0.0000 685 DSTL9 Combination 0.086 0.512 459.115 0.0000 0.0000 0.0000 685 DSTL10 Combination 0.134 0.798 726.882 0.0000 0.0000 0.0000 686 DEAD LinStatic 0.832 0.137 508.284 0.0000 0.0000 0.0000 686 LIVE LinStatic 0.451 0.077 296.149 0.0000 0.0000 0.0000 686 WIND LinStatic 0.579 2.778 0.529 0.0000 0.0000 0.0000 686 DSTL1 Combination 1.165 0.192 711.598 0.0000 0.0000 0.0000 686 DSTL2 Combination 1.720 0.288 1083.779 0.0000 0.0000 0.0000 686 DSTL3 Combination 0.420 2.943 610.470 0.0000 0.0000 0.0000 Diagrid 3 story.sdb SAP2000 v17.3.0 3 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 6 of 14 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 686 DSTL4 Combination 1.578 2.614 609.412 0.0000 0.0000 0.0000 686 DSTL5 Combination 0.709 1.554 610.206 0.0000 0.0000 0.0000 686 DSTL6 Combination 1.288 1.225 609.677 0.0000 0.0000 0.0000 686 DSTL7 Combination 0.170 2.902 457.985 0.0000 0.0000 0.0000 686 DSTL8 Combination 1.328 2.655 456.927 0.0000 0.0000 0.0000 686 DSTL9 Combination 0.832 0.137 508.284 0.0000 0.0000 0.0000 686 DSTL10 Combination 1.283 0.214 804.433 0.0000 0.0000 0.0000 687 DEAD LinStatic 2.112E 03 17.283 353.141 0.0000 6.041E 04 7.853E 04 687 LIVE LinStatic 1.270E 03 9.596 196.548 0.0000 3.529E 04 4.588E 04 687 WIND LinStatic 0.072 111.087 27.830 0.0000 0.0037 0.0048 687 DSTL1 Combination 2.957E 03 24.197 494.397 0.0000 8.457E 04 0.0011 687 DSTL2 Combination 4.567E 03 36.094 738.245 0.0000 0.0013 0.0017 687 DSTL3 Combination 0.075 131.827 451.599 0.0000 0.0030 0.0039 687 DSTL4 Combination 0.069 90.347 395.938 0.0000 0.0044 0.0058 687 DSTL5 Combination 0.039 76.283 437.684 0.0000 0.0011 0.0015 687 DSTL6 Combination 0.033 34.803 409.854 0.0000 0.0026 0.0034 687 DSTL7 Combination 0.074 126.642 345.657 0.0000 0.0032 0.0041 687 DSTL8 Combination 0.070 95.532 289.996 0.0000 0.0043 0.0055 687 DSTL9 Combination 2.112E 03 17.283 353.141 0.0000 6.041E 04 7.853E 04 687 DSTL10 Combination 3.383E 03 26.880 549.688 0.0000 9.570E 04 0.0012 689 DEAD LinStatic 21.322 0.483 439.715 0.0018 1.162E 18 0.0023 689 LIVE LinStatic 13.408 0.277 244.337 0.0011 6.882E 19 0.0014 689 WIND LinStatic 82.253 0.970 27.154 0.0035 2.280E 18 0.0046 689 DSTL1 Combination 29.851 0.676 615.601 0.0025 1.627E 18 0.0033 689 DSTL2 Combination 47.039 1.023 918.597 0.0039 2.496E 18 0.0050 689 DSTL3 Combination 56.666 1.549 554.812 0.0014 8.850E 19 0.0018 689 DSTL4 Combination 107.839 0.391 500.504 0.0057 3.675E 18 0.0074 689 DSTL5 Combination 15.539 1.064 541.235 3.953E 04 2.550E 19 5.139E 04 689 DSTL6 Combination 66.713 0.094 514.081 0.0039 2.535E 18 0.0051 689 DSTL7 Combination 63.062 1.404 422.897 0.0019 1.234E 18 0.0025 689 DSTL8 Combination 101.443 0.536 368.590 0.0052 3.326E 18 0.0067 689 DSTL9 Combination 21.322 0.483 439.715 0.0018 1.162E 18 0.0023 689 DSTL10 Combination 34.730 0.760 684.052 0.0029 1.851E 18 0.0037 691 DEAD LinStatic 5.261E 04 0.735 476.811 0.0051 9.438E 18 0.0066 691 LIVE LinStatic 2.039E 04 0.418 267.023 0.0029 5.373E 18 0.0038 691 WIND LinStatic 61.231 0.960 0.927 0.0036 6.688E 18 0.0047 691 DSTL1 Combination 7.366E 04 1.029 667.535 0.0071 1.321E 17 0.0093 691 DSTL2 Combination 9.576E 04 1.551 999.409 0.0107 1.992E 17 0.0140 691 DSTL3 Combination 61.232 1.842 571.246 0.0025 4.638E 18 0.0033 691 DSTL4 Combination 61.231 0.078 573.100 0.0097 1.801E 17 0.0126 691 DSTL5 Combination 30.616 1.362 571.709 0.0043 7.982E 18 0.0056 691 DSTL6 Combination 30.615 0.402 572.637 0.0079 1.467E 17 0.0103 691 DSTL7 Combination 61.232 1.622 428.203 9.745E 04 1.806E 18 0.0013 691 DSTL8 Combination 61.231 0.299 430.057 0.0082 1.518E 17 0.0106 691 DSTL9 Combination 5.261E 04 0.735 476.811 0.0051 9.438E 18 0.0066 691 DSTL10 Combination 7.300E 04 1.153 743.833 0.0080 1.481E 17 0.0104 693 DEAD LinStatic 21.322 0.479 439.735 0.0049 1.371E 17 0.0063 693 LIVE LinStatic 13.408 0.275 244.348 0.0028 7.798E 18 0.0036 693 WIND LinStatic 27.390 0.982 46.813 0.0036 1.024E 17 0.0047 693 DSTL1 Combination 29.851 0.671 615.629 0.0068 1.919E 17 0.0088 693 DSTL2 Combination 47.039 1.015 918.639 0.0102 2.893E 17 0.0133 693 DSTL3 Combination 52.977 1.557 574.495 0.0022 6.208E 18 0.0029 693 DSTL4 Combination 1.804 0.407 480.868 0.0094 2.669E 17 0.0123 693 DSTL5 Combination 39.282 1.066 551.088 0.0040 1.133E 17 0.0052

PAGE 107

! 100 Diagrid 3 story.sdb SAP2000 v17.3.0 3 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 7 of 14 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 693 DSTL6 Combination 11.891 0.084 504.275 0.0076 2.157E 17 0.0099 693 DSTL7 Combination 46.580 1.413 442.575 7.417E 04 2.095E 18 9.641E 04 693 DSTL8 Combination 8.200 0.550 348.948 0.0080 2.258E 17 0.0104 693 DSTL9 Combination 21.322 0.479 439.735 0.0049 1.371E 17 0.0063 693 DSTL10 Combination 34.730 0.754 684.083 0.0076 2.151E 17 0.0099 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 4 W24X68 Beam No Messages 0.768696 PMM 5 W24X55 Beam No Messages 0.675762 PMM 6 W24X55 Beam No Messages 0.876163 PMM 7 W24X55 Beam No Messages 0.877197 PMM 8 W24X55 Beam No Messages 0.674556 PMM 9 W24X68 Beam No Messages 0.768337 PMM 10 W24X76 Beam No Messages 0.908199 PMM 11 W24X55 Beam No Messages 0.697430 PMM 12 W24X55 Beam No Messages 0.817323 PMM 13 W24X55 Beam No Messages 0.816946 PMM 14 W24X55 Beam No Messages 0.697831 PMM 15 W24X76 Beam No Messages 0.908329 PMM 16 W24X68 Beam No Messages 0.768891 PMM 17 W24X55 Beam No Messages 0.675753 PMM 18 W24X55 Beam No Messages 0.876161 PMM 19 W24X55 Beam No Messages 0.877200 PMM 20 W24X55 Beam No Messages 0.674545 PMM 21 W24X68 Beam No Messages 0.768535 PMM 39 W18X76 Beam No Messages 0.804565 PMM 40 W18X76 Beam No Messages 0.804089 PMM 41 W18X76 Beam No Messages 0.804091 PMM 42 W18X76 Beam No Messages 0.804563 PMM 43 W18X76 Beam No Messages 0.648544 PMM 44 W18X76 Beam No Messages 0.648843 PMM 45 W18X76 Beam No Messages 0.648838 PMM 46 W18X76 Beam No Messages 0.648547 PMM 47 W18X76 Beam No Messages 0.648522 PMM 48 W18X76 Beam No Messages 0.649703 PMM 49 W18X76 Beam No Messages 0.649706 PMM 50 W18X76 Beam No Messages 0.648517 PMM 51 W18X76 Beam No Messages 0.648543 PMM 52 W18X76 Beam No Messages 0.648838 PMM 53 W18X76 Beam No Messages 0.648836 PMM 54 W18X76 Beam No Messages 0.648543 PMM 55 W18X76 Beam No Messages 0.804566 PMM 56 W18X76 Beam No Messages 0.804092 PMM 57 W18X76 Beam No Messages 0.804093 PMM 58 W18X76 Beam No Messages 0.804565 PMM 59 W18X50 Beam No Messages 0.912161 PMM 60 W18X76 Beam No Messages 0.804380 PMM 61 W18X76 Beam No Messages 0.804720 PMM Diagrid 3 story.sdb SAP2000 v17.3.0 3 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 8 of 14 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 62 W18X76 Beam No Messages 0.647723 PMM 63 W18X76 Beam No Messages 0.648246 PMM 64 W18X76 Beam No Messages 0.648297 PMM 65 W18X76 Beam No Messages 0.648296 PMM 66 W18X76 Beam No Messages 0.648245 PMM 67 W18X76 Beam No Messages 0.647722 PMM 68 W18X76 Beam No Messages 0.804721 PMM 69 W18X76 Beam No Messages 0.804383 PMM 70 W18X50 Beam No Messages 0.912160 PMM 71 W18X76 Beam No Mes sages 0.803414 PMM 72 W18X50 Beam No Messages 0.912377 PMM 73 W18X76 Beam No Messages 0.803413 PMM 74 W18X50 Beam No Messages 0.912375 PMM 75 W18X76 Beam No Messages 0.804384 PMM 76 W18X50 Beam No Messages 0.912159 PMM 77 W18X76 Beam No Messages 0.647722 PMM 78 W18X76 Beam No Messages 0.804721 PMM 79 W18X76 Beam No Messages 0.647898 PMM 80 W18X76 Beam No Messages 0.804532 PMM 81 W18X76 Beam No Messages 0.647898 PMM 82 W18X76 Beam No Messages 0.804532 PMM 83 W18X76 Beam No Messages 0.649785 PMM 84 W18X76 Beam No Messages 0.649571 PMM 85 W18X76 Beam No Messages 0.649780 PMM 86 W18X76 Beam No Messages 0.649575 PMM 87 W18X76 Beam No Messages 0.648299 PMM 88 W18X76 Beam No Messages 0.648238 PMM 89 W18X76 Beam No Messages 0.648244 PMM 90 W18X76 Beam No Messages 0.648297 PMM 91 W18X76 Beam No Messages 0.649577 PMM 92 W18X76 Beam No Messages 0.649784 PMM 93 W18X76 Beam No Messages 0.649575 PMM 94 W18X76 Beam No Messages 0.649786 PMM 95 W18X76 Beam No Messages 0.804532 PMM 96 W18X76 Beam No Messages 0.647897 PMM 97 W18X76 Beam No Messages 0.804530 PMM 98 W18X76 Beam No Messages 0.647905 PMM 99 W18X76 Beam No Messages 0.804722 PMM 100 W18X76 Beam No Messages 0.647712 PMM 101 W18X50 Beam No Messages 0.912161 PMM 102 W18X76 Beam No Messages 0.804382 PMM 103 W18X50 Beam No Messages 0.912378 PMM 104 W18X76 Beam No Messages 0.803406 PMM 105 W18X50 Beam No Messages 0.912379 PMM 106 W18X76 Beam No Messages 0.803407 PMM 335 W18X35 Beam No Messages 0.002876 PMM 336 W18X35 Beam No Messages 0.002876 PMM 337 W18X35 Beam No Messages 0.002466 PMM 338 W18X35 Beam No Messages 0.002876 PMM 339 W18X35 Beam No Messages 0.002876 PMM 340 W18X35 Beam No Messages 0.002466 PMM 341 W18X35 Beam No Messages 0.002876 PMM 342 W18X35 Beam No Messages 0.002876 PMM 343 W18X35 Beam No Messages 0.002876 PMM

PAGE 108

! 101 Diagrid 3 story.sdb SAP2000 v17.3.0 3 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 9 of 14 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 344 W18X35 Beam No Messages 0.002876 PMM 345 W18X35 Beam No Messages 0.002466 PMM 346 W18X35 Beam No Messages 0.002876 PMM 347 W18X35 Beam No Messages 0.002876 PMM 348 W18X35 Beam No Messages 0.002876 PMM 349 W18X35 Beam No Messages 0.002876 PMM 350 W18X35 Beam No Messages 0.002466 PMM 354 W24X68 Beam No Messages 0.886550 PMM 355 W24X62 Beam No Messages 0.886398 PMM 356 W24X62 Beam No Messages 0.936323 PMM 357 W24X62 Beam No Messages 0.936364 PMM 358 W24X62 Beam No Messages 0.886393 PMM 359 W24X68 Beam No Messages 0.886516 PMM 360 W24X68 Beam No Messages 0.921699 PMM 361 W24X55 Beam No Messages 0.812409 PMM 362 W24X55 Beam No Messages 0.856050 PMM 363 W24X55 Beam No Messages 0.856017 PMM 364 W24X55 Beam No Messages 0.812416 PMM 365 W24X68 Beam No Messages 0.921732 PMM 366 W24X68 Beam No Messages 0.887097 PMM 367 W24X62 Beam No Messages 0.886363 PMM 368 W24X62 Beam No Messages 0.936318 PMM 369 W24X62 Beam No Messages 0.936372 PMM 370 W24X62 Beam No Messages 0.886362 PMM 371 W24X68 Beam No Messages 0.887070 PMM 389 W18X76 Beam No Messages 0.851361 PMM 390 W18X76 Beam No Messages 0.849424 PMM 391 W18X76 Beam No Messages 0.849425 PMM 392 W18X76 Beam No Messages 0.851361 PMM 393 W18X76 Beam No Messages 0.726756 PMM 394 W18X76 Beam No Messages 0.725911 PMM 395 W18X76 Beam No Messages 0.725905 PMM 396 W18X76 Beam No Messages 0.726770 PMM 397 W18X76 Beam No Messages 0.726264 PMM 398 W18X76 Beam No Messages 0.850749 PMM 399 W18X76 Beam No Messages 0.850749 PMM 400 W18X76 Beam No Messages 0.726271 PMM 401 W18X76 Beam No Messages 0.726764 PMM 402 W18X76 Beam No Messages 0.725911 PMM 403 W18X76 Beam No Messages 0.725910 PMM 404 W18X76 Beam No Messages 0.726773 PMM 405 W18X76 Beam No Messages 0.851357 PMM 406 W18X76 Beam No Messages 0.849418 PMM 407 W18X76 Beam No Messages 0.849417 PMM 408 W18X76 Beam No Messages 0.851358 PMM 409 W18X50 Beam No Messages 0.932198 PMM 410 W18X76 Beam No Messages 0.729526 PMM 411 W18X76 Beam No Messages 0.727817 PMM 412 W18X76 Beam No Messages 0.727740 PMM 413 W18X76 Beam No Messages 0.728466 PMM 414 W18X76 Beam No Messages 0.728341 PMM 415 W18X76 Beam No Messages 0.728339 PMM 416 W18X76 Beam No Messages 0.728467 PMM 417 W18X76 Beam No Messages 0.727725 PMM Diagrid 3 story.sdb SAP2000 v17.3.0 3 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 10 of 14 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 418 W18X76 Beam No Messages 0.727815 PMM 419 W18X76 Beam No Messages 0.729506 PMM 420 W18X50 Beam No Messages 0.932175 PMM 421 W18X76 Beam No Messages 0.849315 PMM 422 W18X55 Beam No Messages 0.865050 PMM 423 W18X76 Beam No Messages 0.849314 PMM 424 W18X55 Beam No Messages 0.865024 PMM 425 W18X76 Beam No Messages 0.729506 PMM 426 W18X50 Beam No Messages 0.936284 PMM 427 W18X76 Beam No Messages 0.727730 PMM 428 W18X76 Beam No Messages 0.727811 PMM 429 W18X76 Beam No Messages 0.850824 PMM 430 W18X76 Beam No Messages 0.849699 PMM 431 W18X76 Beam No Messages 0.850824 PMM 432 W18X76 Beam No Messages 0.849698 PMM 433 W18X76 Beam No Messages 0.850796 PMM 434 W18X76 Beam No Messages 0.851376 PMM 435 W18X76 Beam No Messages 0.850797 PMM 436 W18X76 Beam No Messages 0.851377 PMM 437 W18X76 Beam No Messages 0.728345 PMM 438 W18X76 Beam No Messages 0.728470 PMM 439 W18X76 Beam No Messages 0.728468 PMM 440 W18X76 Beam No Messages 0.728344 PMM 441 W18X76 Beam No Messages 0.851376 PMM 442 W18X76 Beam No Messages 0.850796 PMM 443 W18X76 Beam No Messages 0.851375 PMM 444 W18X76 Beam No Messages 0.850796 PMM 445 W18X76 Beam No Messages 0.849702 PMM 446 W18X76 Beam No Messages 0.850823 PMM 447 W18X76 Beam No Messages 0.849701 PMM 448 W18X76 Beam No Messages 0.850824 PMM 449 W18X76 Beam No Messages 0.727827 PMM 450 W18X76 Beam No Messages 0.727737 PMM 451 W18X50 Beam No Messages 0.936308 PMM 452 W18X76 Beam No Messages 0.729534 PMM 453 W18X55 Beam No Messages 0.865017 PMM 454 W18X76 Beam No Messages 0.849328 PMM 455 W18X55 Beam No Messages 0.865041 PMM 456 W18X76 Beam No Messages 0.849331 PMM 457 W18X35 Beam No Messages 0.002469 PMM 458 W18X35 Beam No Messages 0.002879 PMM 459 W18X35 Beam No Messages 0.002876 PMM 460 W18X35 Beam No Messages 0.002476 PMM 461 W18X35 Beam No Messages 0.002472 PMM 462 W18X35 Beam No Messages 0.002877 PMM 463 W18X35 Beam No Messages 0.002876 PMM 464 W18X35 Beam No Messages 0.002472 PMM 465 W18X35 Beam No Messages 0.002470 PMM 466 W18X35 Beam No Messages 0.002879 PMM 467 W18X35 Beam No Messages 0.002876 PMM 468 W18X35 Beam No Messages 0.002473 PMM 469 W18X35 Beam No Messages 0.002876 PMM 470 W18X35 Beam No Messages 0.002470 PMM 471 W18X35 Beam No Messages 0.002475 PMM

PAGE 109

! 102 Diagrid 3 story.sdb SAP2000 v17.3.0 3 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 11 of 14 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 472 W18X35 Beam No Messages 0.002877 PMM 476 W24X76 Beam No Messages 0.868829 PMM 477 W24X62 Beam No Messages 0.905189 PMM 478 W24X62 Beam No Messages 0.933145 PMM 479 W24X62 Beam No Messages 0.933097 PMM 480 W24X62 Beam No Messages 0.905233 PMM 481 W24X76 Beam No Messages 0.868837 PMM 482 W24X68 Beam No Messages 0.838543 PMM 483 W24X55 Beam No Messages 0.658505 PMM 484 W24X55 Beam No Messages 0.732536 PMM 485 W24X55 Beam No Messages 0.732594 PMM 486 W24X55 Beam No Messages 0.658460 PMM 487 W24X68 Beam No Messages 0.838507 PMM 488 W24X76 Beam No Messages 0.868826 PMM 489 W24X62 Beam No Messages 0.905193 PMM 490 W24X62 Beam No Messages 0.933143 PMM 491 W24X62 Beam No Messages 0.933096 PMM 492 W24X62 Beam No Messages 0.905236 PMM 493 W24X76 Beam No Messages 0.868836 PMM 511 W18X76 Beam No Messages 0.851263 PMM 512 W18X76 Beam No Messages 0.849912 PMM 513 W18X76 Beam No Messages 0.849912 PMM 514 W18X76 Beam No Messages 0.851263 PMM 515 W18X76 Beam No Messages 0.726009 PMM 516 W18X76 Beam No Messages 0.727991 PMM 517 W18X76 Beam No Messages 0.727993 PMM 518 W18X76 Beam No Messages 0.726005 PMM 519 W18X76 Beam No Messages 0.725726 PMM 520 W18X76 Beam No Messages 0.850706 PMM 521 W18X76 Beam No Messages 0.850705 PMM 522 W18X76 Beam No Messages 0.725725 PMM 523 W18X76 Beam No Messages 0.726009 PMM 524 W18X76 Beam No Messages 0.727989 PMM 525 W18X76 Beam No Messages 0.727991 PMM 526 W18X76 Beam No Messages 0.726006 PMM 527 W18X76 Beam No Messages 0.851263 PMM 528 W18X76 Beam No Messages 0.849916 PMM 529 W18X76 Beam No Messages 0.849916 PMM 530 W18X76 Beam No Messages 0.851263 PMM 531 W18X55 Beam No Messages 0.865900 PMM 532 W18X76 Beam No Messages 0.850533 PMM 533 W18X76 Beam No Messages 0.851072 PMM 534 W18X76 Beam No Messages 0.851258 PMM 535 W18X76 Beam No Messages 0.851353 PMM 536 W18X76 Beam No Messages 0.851239 PMM 537 W18X76 Beam No Messages 0.851240 PMM 538 W18X76 Beam No Messages 0.851352 PMM 539 W18X76 Beam No Messages 0.851259 PMM 540 W18X76 Beam No Messages 0.851074 PMM 541 W18X76 Beam No Messages 0.850536 PMM 542 W18X55 Beam No Messages 0.865900 PMM 543 W18X76 Beam No Messages 0.849775 PMM 544 W18X55 Beam No Messages 0.865271 PMM 545 W18X76 Beam No Messages 0.849775 PMM Diagrid 3 story.sdb SAP2000 v17.3.0 3 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 12 of 14 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 546 W18X55 Beam No Messages 0.865214 PMM 547 W18X76 Beam No Messages 0.850536 PMM 548 W18X55 Beam No Messages 0.865845 PMM 549 W18X76 Beam No Messages 0.851259 PMM 550 W18X76 Beam No Messages 0.851073 PMM 551 W18X76 Beam No Messages 0.726794 PMM 552 W18X76 Beam No Messages 0.850915 PMM 553 W18X76 Beam No Messages 0.726796 PMM 554 W18X76 Beam No Messages 0.850915 PMM 555 W18X76 Beam No Messages 0.851319 PMM 556 W18X76 Beam No Messages 0.727644 PMM 557 W18X76 Beam No Messages 0.851319 PMM 558 W18X76 Beam No Messages 0.727642 PMM 559 W18X76 Beam No Messages 0.851240 PMM 560 W18X76 Beam No Messages 0.851352 PMM 561 W18X76 Beam No Messages 0.851353 PMM 562 W18X76 Beam No Messages 0.851239 PMM 563 W18X76 Beam No Messages 0.727642 PMM 564 W18X76 Beam No Messages 0.851319 PMM 565 W18X76 Beam No Messages 0.727645 PMM 566 W18X76 Beam No Messages 0.851319 PMM 567 W18X76 Beam No Messages 0.850913 PMM 568 W18X76 Beam No Messages 0.726797 PMM 569 W18X76 Beam No Messages 0.850914 PMM 570 W18X76 Beam No Messages 0.726794 PMM 571 W18X76 Beam No Messages 0.851072 PMM 572 W18X76 Beam No Messages 0.851258 PMM 573 W18X55 Beam No Messages 0.865846 PMM 574 W18X76 Beam No Messages 0.850533 PMM 575 W18X55 Beam No Messages 0.865215 PMM 576 W18X76 Beam No Messages 0.849768 PMM 577 W18X55 Beam No Messages 0.865272 PMM 578 W18X76 Beam No Messages 0.849767 PMM 579 W18X35 Beam No Messages 0.002881 PMM 580 W18X35 Beam No Messages 0.002880 PMM 581 W18X35 Beam No Messages 0.002878 PMM 582 W18X35 Beam No Messages 0.002497 PMM 583 W18X35 Beam No Messages 0.002496 PMM 584 W18X35 Beam No Messages 0.002879 PMM 585 W18X35 Beam No Messages 0.002880 PMM 586 W18X35 Beam No Messages 0.002881 PMM 587 W18X35 Beam No Messages 0.002881 PMM 588 W18X35 Beam No Messages 0.002880 PMM 589 W18X35 Beam No Messages 0.002878 PMM 590 W18X35 Beam No Messages 0.002497 PMM 591 W18X35 Beam No Messages 0.002880 PMM 592 W18X35 Beam No Messages 0.002881 PMM 593 W18X35 Beam No Messages 0.002496 PMM 594 W18X35 Beam No Messages 0.002879 PMM 631 W14X109 Column No Messages 0.915432 PMM 632 W14X99 Column No Messages 0.875237 PMM 633 W14X90 Column No Messages 0.947620 PMM 634 W14X99 Column No Messages 0.875234 PMM 635 W14X109 Column No Messages 0.915297 PMM

PAGE 110

! 103 Diagrid 3 story.sdb SAP2000 v17.3.0 3 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 13 of 14 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 638 W14X120 Column No Messages 0.902389 PMM 639 W14X90 Column No Messages 0.936072 PMM 640 W14X90 Column No Messages 0.941066 PMM 641 W14X90 Column No Messages 0.936073 PMM 642 W14X120 Column No Messages 0.902419 PMM 645 W14X109 Column No Messages 0.915458 PMM 646 W14X99 Column No Messages 0.875234 PMM 647 W14X90 Column No Messages 0.947619 PMM 648 W14X99 Column No Messages 0.875231 PMM 649 W14X109 Column No Messages 0.915323 PMM 143 W14X90 Brace No Messages 0.819295 PMM 144 W14X90 Brace No Messages 0.830617 PMM 145 W14X90 Brace No Messages 0.841281 PMM 146 W14X90 Brace No Messages 0.841728 PMM 147 W14X90 Brace No Messages 0.830242 PMM 148 W14X90 Brace No Messages 0.819403 PMM 149 W14X90 Brace No Messages 0.819495 PMM 150 W14X90 Brace No Messages 0.830615 PMM 151 W14X90 Brace No Messages 0.841288 PMM 152 W14X90 Brace No Messages 0.841732 PMM 153 W14X90 Brace No Messages 0.830244 PMM 154 W14X90 Brace No Messages 0.819587 PMM 155 W14X74 Brace No Messages 0.867234 PMM 156 W14X68 Brace No Messages 0.871689 PMM 157 W14X68 Brace No Messages 0.871616 PMM 158 W14X74 Brace No Messages 0.867246 PMM 159 W14X74 Brace No Messages 0.867343 PMM 160 W14X68 Brace No Messages 0.871664 PMM 161 W14X68 Brace No Messages 0.871587 PMM 162 W14X74 Brace No Messages 0.867356 PMM 163 W24X176 Beam No Messages 0.932265 PMM 164 W24X162 Beam No Messages 0.945301 PMM 165 W24X176 Beam No Messages 0.932740 PMM 166 W24X55 Beam No Messages 0.704963 PMM 167 W24X84 Beam No Messages 0.843416 PMM 169 W24X55 Beam No Messages 0.388717 PMM 170 W24X94 Beam No Messages 0.882246 PMM 171 W24X55 Beam No Messages 0.388715 PMM 172 W24X76 Beam No Messages 0.940743 PMM 173 W24X55 Beam No Messages 0.704946 PMM 174 W24X55 Beam No Messages 0.401214 PMM 175 W24X55 Beam No Messages 0.561011 PMM 176 W24X94 Beam No Messages 0.865216 PMM 177 W24X55 Beam No Messages 0.408461 PMM 178 W24X94 Beam No Messages 0.865211 PMM 179 W24X55 Beam No Messages 0.526972 PMM 180 W24X55 Beam No Messages 0.401265 PMM 181 W24X176 Beam No Messages 0.932309 PMM 182 W24X162 Beam No Messages 0.945301 PMM 183 W24X176 Beam No Messages 0.932779 PMM 184 W24X55 Beam No Messages 0.704993 PMM 185 W24X84 Beam No Messages 0.843477 PMM 186 W24X55 Beam No Messages 0.388690 PMM 187 W24X94 Beam No Messages 0.882247 PMM Diagrid 3 story.sdb SAP2000 v17.3.0 3 S tory Diagrid 27 March 2016 Computers and Structures, Inc. Page 14 of 14 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 188 W24X55 Beam No Messages 0.388702 PMM 189 W24X76 Beam No Messages 0.940782 PMM 190 W24X55 Beam No Messages 0.704984 PMM 191 W24X55 Beam No Messages 0.401335 PMM 192 W24X55 Beam No Messages 0.561036 PMM 193 W24X94 Beam No Messages 0.865219 PMM 194 W24X55 Beam No Messages 0.408461 PMM 195 W24X94 Beam No Messages 0.865211 PMM 196 W24X55 Beam No Messages 0.527000 PMM 197 W24X55 Beam No Messages 0.401388 PMM 198 W24X162 Beam No Messages 0.921788 PMM 199 W24X162 Beam No Messages 0.921886 PMM 200 W24X55 Beam No Messages 0.863613 PMM 201 W24X94 Beam No Messages 0.910840 PMM 202 W24X76 Beam No Messages 0.857646 PMM 203 W24X94 Beam No Messages 0.909159 PMM 204 W24X55 Beam No Messages 0.862587 PMM 205 W24X55 Beam No Messages 0.365102 PMM 206 W24X62 Beam No Messages 0.831910 PMM 207 W24X131 Beam No Messages 0.871447 PMM 208 W24X62 Beam No Messages 0.845154 PMM 209 W24X55 Beam No Messages 0.365259 PMM 210 W24X162 Beam No Messages 0.922369 PMM 211 W24X162 Beam No Messages 0.922466 PMM 212 W24X55 Beam No Messages 0.863876 PMM 213 W24X94 Beam No Messages 0.910928 PMM 214 W24X76 Beam No Messages 0.857652 PMM 215 W24X94 Beam No Messages 0.909218 PMM 216 W24X55 Beam No Messages 0.862850 PMM 217 W24X55 Beam No Messages 0.365029 PMM 218 W24X62 Beam No Messages 0.831794 PMM 219 W24X131 Beam No Messages 0.871472 PMM 220 W24X62 Beam No Messages 0.844984 PMM 221 W24X55 Beam No Messages 0.365184 PMM

PAGE 111

APPENDIX C Appendix C 104

PAGE 112

! 105 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\3-STOR~1.EC6 Description : A1/A7 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 21'-0" 10'-6" 2'-0" 21'-0" 10'-6" 2'-0" Z Z X X 24 # 9 Bars 3" X-X Section Looking to +Z 24 # 9 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 21.0 ft Length parallel to Z-Z Axis = 21.0 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 51.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 9 Number of Bars = 24.0 Bars parallel to Z-Z Axis Reinforcing Bar Size = 9 Number of Bars = 24.0 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 119.0 68.0 61.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = 13.0 k 4.0 8.0 87.0 V-z k 3.0 128.0 14.0 M-xx = 77.0 k-ft = 47.0 7.0 k-ft 5.0 20.0 H = 3-Story MRF General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\3-STOR~1.EC6 Description : A1/A7 PASS 1.355 Sliding X-X 60.0 k 81.318 k +0.60D+0.60W+0.60H PASS 1.027 Sliding Z-Z 79.20 k 81.318 k +0.60D+0.60W+0.60H DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.1515 Soil Bearing 1.515 ksf 10.0 ksf 39.2 deg CCW PASS 7.377 Overturning X-X 385.80 k-ft 2,846.13 k-ft +0.60D+0.60W+0.60H PASS 8.506 Overturning Z-Z 334.60 k-ft 2,846.13 k-ft +0.60D+0.60W+0.60H PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.3699 Z Flexure (+X) 90.246 k-ft 243.976 k-ft +1.20D+0.50Lr+0.50L+W+1.60H PASS 0.2579 Z Flexure (-X) 62.927 k-ft 243.976 k-ft +1.20D+0.50Lr+0.50L+W+1.60H PASS 0.3698 X Flexure (+Z) 90.213 k-ft 243.976 k-ft +1.20D+0.50Lr+0.50L+W+1.60H PASS 0.2579 X Flexure (-Z) 62.927 k-ft 243.976 k-ft +1.20D+0.50Lr+0.50L+W+1.60H PASS 0.1686 1-way Shear (+X) 19.592 psi 116.190 psi +1.20D+0.50Lr+0.50L+W+1.60H PASS 0.1154 1-way Shear (-X) 13.410 psi 116.190 psi +1.20D+0.50Lr+0.50L+W+1.60H PASS 0.1686 1-way Shear (+Z) 19.592 psi 116.190 psi +1.20D+0.50Lr+0.50L+W+1.60H PASS 0.1271 1-way Shear (-Z) 14.763 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.1637 2-way Punching 38.030 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 10.6 deg CCW 10.0 0.9574 0.8147 0.7820 0.9901 0.099 0.7882 4.228 +D+L+H 0.000 11.4 deg CCW 10.0 1.153 0.9273 0.8704 1.210 0.121 1.168 5.807 +D+Lr+H 0.000 10.6 deg CCW 10.0 0.9574 0.8147 0.7820 0.9901 0.099 0.7882 4.228 +D+S+H 0.000 10.6 deg CCW 10.0 0.9574 0.8147 0.7820 0.9901 0.099 0.7882 4.228 +D+0.750Lr+0.750L+H 0.000 11.2 deg CCW 10.0 1.104 0.8992 0.8483 1.155 0.116 1.084 5.458 +D+0.750L+0.750S+H 0.000 11.2 deg CCW 10.0 1.104 0.8992 0.8483 1.155 0.116 1.084 5.458 +D+0.60W+H 0.000 45.5 deg CCW 10.0 0.9650 0.9732 0.4685 1.470 0.147 11.121 10.941 +D+0.70E+H 0.000 10.6 deg CCW 10.0 0.9574 0.8147 0.7820 0.9901 0.099 0.7882 4.228 +D+0.750Lr+0.750L+0.450W+H 0.000 39.2 deg CCW 10.0 1.110 1.018 0.6132 1.515 0.152 8.125 9.972 +D+0.750L+0.750S+0.450W+H 0.000 39.2 deg CCW 10.0 1.110 1.018 0.6132 1.515 0.152 8.125 9.972 +D+0.750L+0.750S+0.5250E+H 0.000 11.2 deg CCW 10.0 1.104 0.8992 0.8483 1.155 0.116 1.084 5.458 +0.60D+0.60W+0.60H 0.000 49.1 deg CCW 10.0 0.5820 0.6473 0.1557 1.074 0.107 17.080 14.813 +0.60D+0.70E+0.60H 0.000 10.6 deg CCW 10.0 0.5745 0.4888 0.4692 0.5941 0.059 0.7882 4.228 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio X-X, +D+H 25.667 k-ft 4,103.05 k-ft 159.859 OK X-X, +D+L+H 44.667 k-ft 4,817.05 k-ft 107.844 OK X-X, +D+Lr+H 25.667 k-ft 4,103.05 k-ft 159.859 OK X-X, +D+S+H 25.667 k-ft 4,103.05 k-ft 159.859 OK X-X, +D+0.750Lr+0.750L+H 39.917 k-ft 4,638.55 k-ft 116.206 OK X-X, +D+0.750L+0.750S+H 39.917 k-ft 4,638.55 k-ft 116.206 OK X-X, +D+0.60W+H 396.067 k-ft 4,487.35 k-ft 11.330 OK X-X, +D+0.70E+H 25.667 k-ft 4,103.05 k-ft 159.859 OK X-X, +D+0.750Lr+0.750L+0.450W+H 317.717 k-ft 4,926.77 k-ft 15.507 OK X-X, +D+0.750L+0.750S+0.450W+H 317.717 k-ft 4,926.77 k-ft 15.507 OK 3-Story MRF

PAGE 113

! 106 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\3-story\3-STOR~1\MRFFOU~1.EC6 Description : E1/E7 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 21'-0" 10'-6" 2'-0" 21'-0" 10'-6" 2'-0" Z Z X X 22 # 9 Bars 3" X-X Section Looking to +Z 22 # 9 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 21.0 ft Length parallel to Z-Z Axis = 21.0 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 48.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 9 Number of Bars = 22 Bars parallel to Z-Z Axis Reinforcing Bar Size = 9 Number of Bars = 22 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 119.0 68.0 61.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = 14.0 k 5.0 8.0 87.0 V-z k 4.0 124.0 9.0 M-xx = 81.0 k-ft = 50.0 37.0 k-ft 31.0 33.0 H = 3-Story MRF General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\3-story\3-STOR~1\MRFFOU~1.EC6 Description : E1/E7 PASS 1.294 Sliding X-X 60.60 k 78.440 k +0.60D+0.60W+0.60H PASS 1.013 Sliding Z-Z 77.40 k 78.440 k +0.60D+0.60W+0.60H DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.150 Soil Bearing 1.50 ksf 10.0 ksf 42.9 deg CCW PASS 7.152 Overturning X-X 383.850 k-ft 2,745.41 k-ft +0.60D+0.60W+0.60H PASS 8.535 Overturning Z-Z 321.650 k-ft 2,745.41 k-ft +0.60D+0.60W+0.60H PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.4202 Z Flexure (+X) 88.134 k-ft 209.722 k-ft +1.20D+0.50Lr+0.50L+W+1.60H PASS 0.2941 Z Flexure (-X) 61.687 k-ft 209.722 k-ft +1.20D+0.50L+0.50S+W+1.60H PASS 0.4199 X Flexure (+Z) 88.059 k-ft 209.722 k-ft +1.20D+0.50Lr+0.50L+W+1.60H PASS 0.2941 X Flexure (-Z) 61.687 k-ft 209.722 k-ft +1.20D+0.50L+0.50S+W+1.60H PASS 0.1756 1-way Shear (+X) 20.408 psi 116.190 psi +1.20D+0.50Lr+0.50L+W+1.60H PASS 0.1207 1-way Shear (-X) 14.024 psi 116.190 psi +1.20D+0.50Lr+0.50L+W+1.60H PASS 0.1756 1-way Shear (+Z) 20.408 psi 116.190 psi +1.20D+0.50Lr+0.50L+W+1.60H PASS 0.1278 1-way Shear (-Z) 14.846 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.1798 2-way Punching 41.773 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 22.5 deg CCW 10.0 0.9032 0.7965 0.7212 0.9785 0.098 1.892 4.573 +D+L+H 0.000 25.3 deg CCW 10.0 1.081 0.9273 0.790 1.218 0.122 2.920 6.184 +D+Lr+H 0.000 22.5 deg CCW 10.0 0.9032 0.7965 0.7212 0.9785 0.098 1.892 4.573 +D+S+H 0.000 22.5 deg CCW 10.0 0.9032 0.7965 0.7212 0.9785 0.098 1.892 4.573 +D+0.750Lr+0.750L+H 0.000 24.8 deg CCW 10.0 1.036 0.8946 0.7728 1.158 0.116 2.694 5.829 +D+0.750L+0.750S+H 0.000 24.8 deg CCW 10.0 1.036 0.8946 0.7728 1.158 0.116 2.694 5.829 +D+0.60W+H 0.000 47.1 deg CCW 10.0 0.9146 0.9511 0.4319 1.434 0.143 11.886 11.049 +D+0.70E+H 0.000 22.5 deg CCW 10.0 0.9032 0.7965 0.7212 0.9785 0.098 1.892 4.573 +D+0.750Lr+0.750L+0.450W+H 0.000 42.9 deg CCW 10.0 1.045 1.011 0.5559 1.50 0.150 9.449 10.162 +D+0.750L+0.750S+0.450W+H 0.000 42.9 deg CCW 10.0 1.045 1.011 0.5559 1.50 0.150 9.449 10.162 +D+0.750L+0.750S+0.5250E+H 0.000 24.8 deg CCW 10.0 1.036 0.8946 0.7728 1.158 0.116 2.694 5.829 +0.60D+0.60W+0.60H 0.000 50.0 deg CCW 10.0 0.5533 0.6325 0.1434 1.042 0.104 17.617 14.762 +0.60D+0.70E+0.60H 0.000 22.5 deg CCW 10.0 0.5419 0.4779 0.4327 0.5871 0.059 1.892 4.573 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio X-X, +D+H 59.083 k-ft 3,935.19 k-ft 66.604 OK X-X, +D+L+H 107.750 k-ft 4,649.19 k-ft 43.148 OK X-X, +D+Lr+H 59.083 k-ft 3,935.19 k-ft 66.604 OK X-X, +D+S+H 59.083 k-ft 3,935.19 k-ft 66.604 OK X-X, +D+0.750Lr+0.750L+H 95.583 k-ft 4,470.69 k-ft 46.773 OK X-X, +D+0.750L+0.750S+H 95.583 k-ft 4,470.69 k-ft 46.773 OK X-X, +D+0.60W+H 407.483 k-ft 4,319.49 k-ft 10.60 OK X-X, +D+0.70E+H 59.083 k-ft 3,935.19 k-ft 66.604 OK X-X, +D+0.750Lr+0.750L+0.450W+H 356.883 k-ft 4,758.92 k-ft 13.335 OK X-X, +D+0.750L+0.750S+0.450W+H 356.883 k-ft 4,758.92 k-ft 13.335 OK X-X, +D+0.750L+0.750S+0.5250E+H 95.583 k-ft 4,470.69 k-ft 46.773 OK 3-Story MRF

PAGE 114

! 107 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\3-story\3-STOR~1\MRFFOU~1.EC6 Description : A2/A3/A4/A5/A6/E2/E3/E4/E5/E6 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 6'-6" 3'-3" 2'-0" 6'-6" 3'-3" 2'-0" Z Z X X 8 # 6 Bars 3" X-X Section Looking to +Z 8 # 6 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 6.50 ft Length parallel to Z-Z Axis = 6.50 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 18.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 6 Number of Bars = 8 Bars parallel to Z-Z Axis Reinforcing Bar Size = 6 Number of Bars = 8 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 235.0 137.0 0.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = 2.0 k 1.0 1.0 V-z k 4.0 M-xx = 7.0 k-ft = 4.0 1.0 k-ft 1.0 1.0 H = 3-Story MRF General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\3-story\3-STOR~1\MRFFOU~1.EC6 Description : A2/A3/A4/A5/A6/E2/E3/E4/E5/E6 PASS 24.419 Sliding X-X 1.80 k 43.954 k +0.60D+0.60W+0.60H PASS n/a Sliding Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9425 Soil Bearing 9.425 ksf 10.0 ksf 6.8 deg CCW PASS 396.808 Overturning X-X 1.20 k-ft 476.169 k-ft +0.60D+0.60W+0.60H PASS 47.380 Overturning Z-Z 10.050 k-ft 476.169 k-ft +0.60D+0.60W+0.60H PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9433 Z Flexure (+X) 33.870 k-ft 35.907 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.8865 Z Flexure (-X) 31.832 k-ft 35.907 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9421 X Flexure (+Z) 33.829 k-ft 35.907 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.8865 X Flexure (-Z) 31.832 k-ft 35.907 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.6259 1-way Shear (+X) 72.718 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.5844 1-way Shear (-X) 67.897 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.6234 1-way Shear (+Z) 72.428 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.6182 1-way Shear (-Z) 71.827 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7065 2-way Punching 164.175 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 5.3 deg CCW 10.0 5.991 5.568 5.525 6.034 0.603 0.04914 0.5324 +D+L+H 0.000 6.8 deg CCW 10.0 9.339 8.705 8.619 9.425 0.943 0.06296 0.5273 +D+Lr+H 0.000 5.3 deg CCW 10.0 5.991 5.568 5.525 6.034 0.603 0.04914 0.5324 +D+S+H 0.000 5.3 deg CCW 10.0 5.991 5.568 5.525 6.034 0.603 0.04914 0.5324 +D+0.750Lr+0.750L+H 0.000 6.5 deg CCW 10.0 8.502 7.921 7.846 8.577 0.858 0.06053 0.5282 +D+0.750L+0.750S+H 0.000 6.5 deg CCW 10.0 8.502 7.921 7.846 8.577 0.858 0.06053 0.5282 +D+0.60W+H 0.000 6.3 deg CCW 10.0 6.054 5.505 5.436 6.123 0.612 0.07863 0.7068 +D+0.70E+H 0.000 5.3 deg CCW 10.0 5.991 5.568 5.525 6.034 0.603 0.04914 0.5324 +D+0.750Lr+0.750L+0.450W+H 0.000 7.0 deg CCW 10.0 8.550 7.874 7.779 8.644 0.864 0.07609 0.6203 +D+0.750L+0.750S+0.450W+H 0.000 7.0 deg CCW 10.0 8.550 7.874 7.779 8.644 0.864 0.07609 0.6203 +D+0.750L+0.750S+0.5250E+H 0.000 6.5 deg CCW 10.0 8.502 7.921 7.846 8.577 0.858 0.06053 0.5282 +0.60D+0.60W+0.60H 0.000 6.8 deg CCW 10.0 3.658 3.278 3.226 3.709 0.371 0.09828 0.8231 +0.60D+0.70E+0.60H 0.000 5.3 deg CCW 10.0 3.595 3.341 3.315 3.620 0.362 0.04914 0.5324 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio X-X, +D+H 1.0 k-ft 793.62 k-ft 793.62 OK X-X, +D+L+H 2.0 k-ft 1,238.87 k-ft 619.43 OK X-X, +D+Lr+H 1.0 k-ft 793.62 k-ft 793.62 OK X-X, +D+S+H 1.0 k-ft 793.62 k-ft 793.62 OK X-X, +D+0.750Lr+0.750L+H 1.750 k-ft 1,127.55 k-ft 644.32 OK X-X, +D+0.750L+0.750S+H 1.750 k-ft 1,127.55 k-ft 644.32 OK X-X, +D+0.60W+H 1.60 k-ft 793.62 k-ft 496.010 OK X-X, +D+0.70E+H 1.0 k-ft 793.62 k-ft 793.62 OK X-X, +D+0.750Lr+0.750L+0.450W+H 2.20 k-ft 1,127.55 k-ft 512.52 OK X-X, +D+0.750L+0.750S+0.450W+H 2.20 k-ft 1,127.55 k-ft 512.52 OK X-X, +D+0.750L+0.750S+0.5250E+H 1.750 k-ft 1,127.55 k-ft 644.32 OK 3-Story MRF

PAGE 115

! 108 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\3-story\3-STOR~1\MRFFOU~1.EC6 Description : Interior Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 9'-0" 4'-6" 2'-0" 9'-0" 4'-6" 2'-0" Z Z X X 14 # 7 Bars 3" X-X Section Looking to +Z 14 # 7 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 9.0 ft Length parallel to Z-Z Axis = 9.0 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 24.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 7 Number of Bars = 14 Bars parallel to Z-Z Axis Reinforcing Bar Size = 7 Number of Bars = 14 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 469.0 278.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = 1.0 k 1.0 V-z k 2.0 M-xx = 3.0 k-ft = 1.0 k-ft 8.0 H = 3-Story MRF General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\3-story\3-STOR~1\MRFFOU~1.EC6 Description : Interior PASS 73.874 Sliding X-X 1.20 k 88.648 k +0.60D+0.60W+0.60H PASS n/a Sliding Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9564 Soil Bearing 9.564 ksf 10.0 ksf 0.0 deg CCW PASS 277.026 Overturning X-X 4.80 k-ft 1,329.72 k-ft +0.60D+0.60W+0.60H PASS 225.377 Overturning Z-Z 5.90 k-ft 1,329.72 k-ft +0.60D+0.60W+0.60H PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9719 Z Flexure (+X) 83.851 k-ft 86.278 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9644 Z Flexure (-X) 83.205 k-ft 86.278 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9718 X Flexure (+Z) 83.847 k-ft 86.278 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9644 X Flexure (-Z) 83.205 k-ft 86.278 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.8420 1-way Shear (+X) 97.835 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.8350 1-way Shear (-X) 97.022 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.8417 1-way Shear (+Z) 97.801 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.8417 1-way Shear (-Z) 97.801 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.9578 2-way Punching 222.564 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 0.0 deg CCW 10.0 6.124 6.036 6.036 6.124 0.612 0.0 0.1320 +D+L+H 0.000 0.0 deg CCW 10.0 9.564 9.460 9.460 9.564 0.956 0.0 0.09994 +D+Lr+H 0.000 0.0 deg CCW 10.0 6.124 6.036 6.036 6.124 0.612 0.0 0.1320 +D+S+H 0.000 0.0 deg CCW 10.0 6.124 6.036 6.036 6.124 0.612 0.0 0.1320 +D+0.750Lr+0.750L+H 0.000 0.0 deg CCW 10.0 8.704 8.604 8.604 8.704 0.870 0.0 0.1056 +D+0.750L+0.750S+H 0.000 0.0 deg CCW 10.0 8.704 8.604 8.604 8.704 0.870 0.0 0.1056 +D+0.60W+H 0.000 30.8 deg CCW 10.0 6.107 6.054 5.976 6.184 0.618 0.1170 0.1966 +D+0.70E+H 0.000 0.0 deg CCW 10.0 6.124 6.036 6.036 6.124 0.612 0.0 0.1320 +D+0.750Lr+0.750L+0.450W+H 0.000 23.8 deg CCW 10.0 8.691 8.617 8.559 8.749 0.875 0.06163 0.1396 +D+0.750L+0.750S+0.450W+H 0.000 23.8 deg CCW 10.0 8.691 8.617 8.559 8.749 0.875 0.06163 0.1396 +D+0.750L+0.750S+0.5250E+H 0.000 0.0 deg CCW 10.0 8.704 8.604 8.604 8.704 0.870 0.0 0.1056 +0.60D+0.60W+0.60H 0.000 39.1 deg CCW 10.0 3.657 3.639 3.561 3.735 0.374 0.1949 0.2396 +0.60D+0.70E+0.60H 0.000 0.0 deg CCW 10.0 3.674 3.622 3.622 3.674 0.367 0.0 0.1320 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio X-X, +D+H None 0.0 k-ft Infinity OK X-X, +D+L+H None 0.0 k-ft Infinity OK X-X, +D+Lr+H None 0.0 k-ft Infinity OK X-X, +D+S+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+H None 0.0 k-ft Infinity OK X-X, +D+0.60W+H 4.80 k-ft 2,216.21 k-ft 461.709 OK X-X, +D+0.70E+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+0.450W+H 3.60 k-ft 3,154.46 k-ft 876.24 OK X-X, +D+0.750L+0.750S+0.450W+H 3.60 k-ft 3,154.46 k-ft 876.24 OK X-X, +D+0.750L+0.750S+0.5250E+H None 0.0 k-ft Infinity OK 3-Story MRF

PAGE 116

! 109 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\3-story\3-STOR~1\MRFFOU~1.EC6 Description : B1/B7/C1/C7/D1/D7 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 7'-0" 3'-6" 2'-0" 7'-0" 3'-6" 2'-0" Z Z X X 10 # 6 Bars 3" X-X Section Looking to +Z 10 # 6 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 7.0 ft Length parallel to Z-Z Axis = 7.0 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 18.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 6 Number of Bars = 10 Bars parallel to Z-Z Axis Reinforcing Bar Size = 6 Number of Bars = 10 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 226.0 130.0 1.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = 9.0 k 2.0 5.0 V-z k 1.0 2.0 2.0 M-xx = 38.0 k-ft = 22.0 7.0 k-ft 6.0 13.0 H = 3-Story MRF General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\3-story\3-STOR~1\MRFFOU~1.EC6 Description : B1/B7/C1/C7/D1/D7 PASS 7.857 Sliding X-X 14.0 k 109.997 k +D+L+H PASS 17.824 Sliding Z-Z 2.40 k 42.778 k +0.60D+0.60W+0.60H DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9299 Soil Bearing 9.299 ksf 10.0 ksf 12.2 deg CCW PASS 30.065 Overturning X-X 16.60 k-ft 499.081 k-ft +0.60D+0.60W+0.60H PASS 14.529 Overturning Z-Z 34.350 k-ft 499.081 k-ft +0.60D+0.60W+0.60H PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9563 Z Flexure (+X) 39.740 k-ft 41.557 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.7066 Z Flexure (-X) 29.364 k-ft 41.557 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9526 X Flexure (+Z) 39.589 k-ft 41.557 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.7066 X Flexure (-Z) 29.364 k-ft 41.557 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.7880 1-way Shear (+X) 91.555 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.5695 1-way Shear (-X) 66.169 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7793 1-way Shear (+Z) 90.544 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7313 1-way Shear (-Z) 84.967 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7077 2-way Punching 164.464 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 11.1 deg CCW 10.0 5.594 4.066 3.693 5.966 0.597 0.5493 2.802 +D+L+H 0.000 12.2 deg CCW 10.0 8.654 6.312 5.667 9.299 0.930 0.6137 2.842 +D+Lr+H 0.000 11.1 deg CCW 10.0 5.594 4.066 3.693 5.966 0.597 0.5493 2.802 +D+S+H 0.000 11.1 deg CCW 10.0 5.594 4.066 3.693 5.966 0.597 0.5493 2.802 +D+0.750Lr+0.750L+H 0.000 12.0 deg CCW 10.0 7.889 5.750 5.173 8.466 0.847 0.6023 2.835 +D+0.750L+0.750S+H 0.000 12.0 deg CCW 10.0 7.889 5.750 5.173 8.466 0.847 0.6023 2.835 +D+0.60W+H 0.000 20.3 deg CCW 10.0 5.453 4.231 3.511 6.173 0.617 1.059 2.855 +D+0.70E+H 0.000 11.1 deg CCW 10.0 5.594 4.066 3.693 5.966 0.597 0.5493 2.802 +D+0.750Lr+0.750L+0.450W+H 0.000 17.0 deg CCW 10.0 7.783 5.874 5.037 8.621 0.862 0.8731 2.863 +D+0.750L+0.750S+0.450W+H 0.000 17.0 deg CCW 10.0 7.783 5.874 5.037 8.621 0.862 0.8731 2.863 +D+0.750L+0.750S+0.5250E+H 0.000 12.0 deg CCW 10.0 7.889 5.750 5.173 8.466 0.847 0.6023 2.835 +0.60D+0.60W+0.60H 0.000 25.8 deg CCW 10.0 3.215 2.605 2.034 3.786 0.379 1.397 2.891 +0.60D+0.70E+0.60H 0.000 11.1 deg CCW 10.0 3.356 2.439 2.216 3.580 0.358 0.5493 2.802 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio X-X, +D+H 10.833 k-ft 828.30 k-ft 76.459 OK X-X, +D+L+H 18.750 k-ft 1,283.30 k-ft 68.443 OK X-X, +D+Lr+H 10.833 k-ft 828.30 k-ft 76.459 OK X-X, +D+S+H 10.833 k-ft 828.30 k-ft 76.459 OK X-X, +D+0.750Lr+0.750L+H 16.771 k-ft 1,169.55 k-ft 69.737 OK X-X, +D+0.750L+0.750S+H 16.771 k-ft 1,169.55 k-ft 69.737 OK X-X, +D+0.60W+H 20.933 k-ft 830.40 k-ft 39.669 OK X-X, +D+0.70E+H 10.833 k-ft 828.30 k-ft 76.459 OK X-X, +D+0.750Lr+0.750L+0.450W+H 24.346 k-ft 1,171.13 k-ft 48.104 OK X-X, +D+0.750L+0.750S+0.450W+H 24.346 k-ft 1,171.13 k-ft 48.104 OK X-X, +D+0.750L+0.750S+0.5250E+H 16.771 k-ft 1,169.55 k-ft 69.737 OK 3-Story MRF

PAGE 117

! 110 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\3-story\3-STOR~2\BFFOUN~1.EC6 Description : A1/A7 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 19'-9" 9'-10-1/2" 2'-0" 19'-9" 9'-10-1/2" 2'-0" Z Z X X 21 # 9 Bars 3" X-X Section Looking to +Z 21 # 9 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 19.750 ft Length parallel to Z-Z Axis = 19.750 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 48.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 9 Number of Bars = 21 Bars parallel to Z-Z Axis Reinforcing Bar Size = 9 Number of Bars = 21 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 118.0 68.0 56.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = 8.0 k 1.0 5.0 82.0 V-z k 1.0 119.0 M-xx = k-ft = k-ft H = 3-Story CBF General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\3-story\3-STOR~2\BFFOUN~1.EC6 Description : A1/A7 PASS 1.334 Sliding X-X 54.0 k 72.043 k +0.60D+0.60W+0.60H PASS 1.001 Sliding Z-Z 72.0 k 72.043 k +0.60D+0.60W+0.60H DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.1429 Soil Bearing 1.429 ksf 10.0 ksf 48.7 deg CCW PASS 7.457 Overturning X-X 318.0 k-ft 2,371.40 k-ft +0.60D+0.60W+0.60H PASS 9.943 Overturning Z-Z 238.50 k-ft 2,371.40 k-ft +0.60D+0.60W+0.60H PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.3594 Z Flexure (+X) 76.492 k-ft 212.823 k-ft +1.20D+0.50Lr+0.50L+W+1.60H PASS 0.2699 Z Flexure (-X) 57.449 k-ft 212.823 k-ft +1.20D+0.50Lr+0.50L+W+1.60H PASS 0.3588 X Flexure (+Z) 76.365 k-ft 212.823 k-ft +1.20D+0.50Lr+0.50L+W+1.60H PASS 0.2699 X Flexure (-Z) 57.449 k-ft 212.823 k-ft +1.20D+0.50Lr+0.50L+W+1.60H PASS 0.1640 1-way Shear (+X) 19.055 psi 116.190 psi +1.20D+0.50Lr+0.50L+W+1.60H PASS 0.1215 1-way Shear (-X) 14.116 psi 116.190 psi +1.20D+0.50Lr+0.50L+W+1.60H PASS 0.1640 1-way Shear (+Z) 19.055 psi 116.190 psi +1.20D+0.50Lr+0.50L+W+1.60H PASS 0.1231 1-way Shear (-Z) 14.307 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.1645 2-way Punching 38.238 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 7.1 deg CCW 10.0 0.9062 0.8588 0.8521 0.9130 0.091 0.1540 1.232 +D+L+H 0.000 8.7 deg CCW 10.0 1.094 1.020 1.006 1.108 0.111 0.2571 1.671 +D+Lr+H 0.000 7.1 deg CCW 10.0 0.9062 0.8588 0.8521 0.9130 0.091 0.1540 1.232 +D+S+H 0.000 7.1 deg CCW 10.0 0.9062 0.8588 0.8521 0.9130 0.091 0.1540 1.232 +D+0.750Lr+0.750L+H 0.000 8.5 deg CCW 10.0 1.047 0.9794 0.9676 1.059 0.106 0.2347 1.576 +D+0.750L+0.750S+H 0.000 8.5 deg CCW 10.0 1.047 0.9794 0.9676 1.059 0.106 0.2347 1.576 +D+0.60W+H 0.000 51.7 deg CCW 10.0 0.9172 1.020 0.5303 1.407 0.141 10.156 8.024 +D+0.70E+H 0.000 7.1 deg CCW 10.0 0.9062 0.8588 0.8521 0.9130 0.091 0.1540 1.232 +D+0.750Lr+0.750L+0.450W+H 0.000 48.7 deg CCW 10.0 1.055 1.10 0.7263 1.429 0.143 6.971 6.133 +D+0.750L+0.750S+0.450W+H 0.000 48.7 deg CCW 10.0 1.055 1.10 0.7263 1.429 0.143 6.971 6.133 +D+0.750L+0.750S+0.5250E+H 0.000 8.5 deg CCW 10.0 1.047 0.9794 0.9676 1.059 0.106 0.2347 1.576 +0.60D+0.60W+0.60H 0.000 53.1 deg CCW 10.0 0.5548 0.6765 0.1894 1.042 0.104 15.891 11.918 +0.60D+0.70E+0.60H 0.000 7.1 deg CCW 10.0 0.5437 0.5153 0.5112 0.5478 0.055 0.1540 1.232 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio X-X, +D+H 4.417 k-ft 3,399.33 k-ft 769.66 OK X-X, +D+L+H 8.833 k-ft 4,070.83 k-ft 460.849 OK X-X, +D+Lr+H 4.417 k-ft 3,399.33 k-ft 769.66 OK X-X, +D+S+H 4.417 k-ft 3,399.33 k-ft 769.66 OK X-X, +D+0.750Lr+0.750L+H 7.729 k-ft 3,902.96 k-ft 504.96 OK X-X, +D+0.750L+0.750S+H 7.729 k-ft 3,902.96 k-ft 504.96 OK X-X, +D+0.60W+H 319.767 k-ft 3,731.13 k-ft 11.668 OK X-X, +D+0.70E+H 4.417 k-ft 3,399.33 k-ft 769.66 OK X-X, +D+0.750Lr+0.750L+0.450W+H 244.242 k-ft 4,151.81 k-ft 16.999 OK X-X, +D+0.750L+0.750S+0.450W+H 244.242 k-ft 4,151.81 k-ft 16.999 OK X-X, +D+0.750L+0.750S+0.5250E+H 7.729 k-ft 3,902.96 k-ft 504.96 OK 3-Story CBF

PAGE 118

! 111 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\3-story\3-STOR~2\BFFOUN~1.EC6 Description : E1/E7 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 20'-0" 10'-0" 2'-0" 20'-0" 10'-0" 2'-0" Z Z X X 23 # 8 Bars 3" X-X Section Looking to +Z 23 # 8 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 20.0 ft Length parallel to Z-Z Axis = 20.0 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 42.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 8 Number of Bars = 23 Bars parallel to Z-Z Axis Reinforcing Bar Size = 8 Number of Bars = 23 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 122.0 69.0 63.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = 8.0 k 2.0 5.0 83.0 V-z k 1.0 114.0 M-xx = k-ft = k-ft H = 3-Story CBF General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\3-story\3-STOR~2\BFFOUN~1.EC6 Description : E1/E7 PASS 1.279 Sliding X-X 54.60 k 69.840 k +0.60D+0.60W+0.60H PASS 1.003 Sliding Z-Z 69.60 k 69.840 k +0.60D+0.60W+0.60H DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.1311 Soil Bearing 1.311 ksf 10.0 ksf 47.7 deg CCW PASS 8.540 Overturning X-X 272.60 k-ft 2,328.0 k-ft +0.60D+0.60W+0.60H PASS 10.886 Overturning Z-Z 213.850 k-ft 2,328.0 k-ft +0.60D+0.60W+0.60H PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.4566 Z Flexure (+X) 71.974 k-ft 157.621 k-ft +1.20D+0.50L+0.50S+W+1.60H PASS 0.3495 Z Flexure (-X) 55.083 k-ft 157.621 k-ft +1.20D+0.50Lr+0.50L+W+1.60H PASS 0.4560 X Flexure (+Z) 71.881 k-ft 157.621 k-ft +1.20D+0.50Lr+0.50L+W+1.60H PASS 0.3495 X Flexure (-Z) 55.083 k-ft 157.621 k-ft +1.20D+0.50Lr+0.50L+W+1.60H PASS 0.1857 1-way Shear (+X) 21.579 psi 116.190 psi +1.20D+0.50Lr+0.50L+W+1.60H PASS 0.1412 1-way Shear (-X) 16.407 psi 116.190 psi +1.20D+0.50Lr+0.50L+W+1.60H PASS 0.1856 1-way Shear (+Z) 21.565 psi 116.190 psi +1.20D+0.50Lr+0.50L+W+1.60H PASS 0.1423 1-way Shear (-Z) 16.538 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.2035 2-way Punching 47.295 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 14.0 deg CCW 10.0 0.8298 0.7952 0.7836 0.8414 0.084 0.2892 1.157 +D+L+H 0.000 13.0 deg CCW 10.0 1.014 0.9561 0.9388 1.031 0.103 0.3579 1.551 +D+Lr+H 0.000 14.0 deg CCW 10.0 0.8298 0.7952 0.7836 0.8414 0.084 0.2892 1.157 +D+S+H 0.000 14.0 deg CCW 10.0 0.8298 0.7952 0.7836 0.8414 0.084 0.2892 1.157 +D+0.750Lr+0.750L+H 0.000 13.2 deg CCW 10.0 0.9679 0.9159 0.90 0.9838 0.098 0.3431 1.466 +D+0.750L+0.750S+H 0.000 13.2 deg CCW 10.0 0.9679 0.9159 0.90 0.9838 0.098 0.3431 1.466 +D+0.60W+H 0.000 50.6 deg CCW 10.0 0.8706 0.9434 0.5367 1.277 0.128 9.120 7.488 +D+0.70E+H 0.000 14.0 deg CCW 10.0 0.8298 0.7952 0.7836 0.8414 0.084 0.2892 1.157 +D+0.750Lr+0.750L+0.450W+H 0.000 47.7 deg CCW 10.0 0.9985 1.027 0.7148 1.311 0.131 6.271 5.697 +D+0.750L+0.750S+0.450W+H 0.000 47.7 deg CCW 10.0 0.9985 1.027 0.7148 1.311 0.131 6.271 5.697 +D+0.750L+0.750S+0.5250E+H 0.000 13.2 deg CCW 10.0 0.9679 0.9159 0.90 0.9838 0.098 0.3431 1.466 +0.60D+0.60W+0.60H 0.000 51.9 deg CCW 10.0 0.5387 0.6253 0.2232 0.9408 0.094 14.052 11.023 +0.60D+0.70E+0.60H 0.000 14.0 deg CCW 10.0 0.4979 0.4771 0.4702 0.5048 0.050 0.2892 1.157 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio X-X, +D+H 7.833 k-ft 3,250.0 k-ft 414.894 OK X-X, +D+L+H 11.750 k-ft 3,940.0 k-ft 335.319 OK X-X, +D+Lr+H 7.833 k-ft 3,250.0 k-ft 414.894 OK X-X, +D+S+H 7.833 k-ft 3,250.0 k-ft 414.894 OK X-X, +D+0.750Lr+0.750L+H 10.771 k-ft 3,767.50 k-ft 349.787 OK X-X, +D+0.750L+0.750S+H 10.771 k-ft 3,767.50 k-ft 349.787 OK X-X, +D+0.60W+H 275.733 k-ft 3,628.0 k-ft 13.158 OK X-X, +D+0.70E+H 7.833 k-ft 3,250.0 k-ft 414.894 OK X-X, +D+0.750Lr+0.750L+0.450W+H 211.696 k-ft 4,051.0 k-ft 19.136 OK X-X, +D+0.750L+0.750S+0.450W+H 211.696 k-ft 4,051.0 k-ft 19.136 OK X-X, +D+0.750L+0.750S+0.5250E+H 10.771 k-ft 3,767.50 k-ft 349.787 OK 3-Story CBF

PAGE 119

! 112 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\3-story\3-STOR~2\BFFOUN~1.EC6 Description : A2/A3/A4/A5/A6/E2/E3/E4/E5/E6 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 6'-6" 3'-3" 2'-0" 6'-6" 3'-3" 2'-0" Z Z X X 8 # 6 Bars 3" X-X Section Looking to +Z 8 # 6 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 6.50 ft Length parallel to Z-Z Axis = 6.50 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 18.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 6 Number of Bars = 8 Bars parallel to Z-Z Axis Reinforcing Bar Size = 6 Number of Bars = 8 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 237.0 139.0 3.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = 12.0 k 7.0 9.0 V-z k M-xx = k-ft = k-ft H = 3-Story CBF General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\3-story\3-STOR~2\BFFOUN~1.EC6 Description : A2/A3/A4/A5/A6/E2/E3/E4/E5/E6 PASS 3.560 Sliding X-X 12.60 k 44.854 k +0.60D+0.60W+0.60H PASS n/a Sliding Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9899 Soil Bearing 9.899 ksf 10.0 ksf 0.0 deg CCW PASS n/a Overturning X-X 0.0 k-ft 0.0 k-ft No Overturning PASS 20.121 Overturning Z-Z 24.150 k-ft 485.919 k-ft +0.60D+0.60W+0.60H PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9835 Z Flexure (+X) 35.313 k-ft 35.907 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.8595 Z Flexure (-X) 30.862 k-ft 35.907 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9806 X Flexure (+Z) 35.210 k-ft 35.907 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.8595 X Flexure (-Z) 30.862 k-ft 35.907 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.6548 1-way Shear (+X) 76.079 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.5642 1-way Shear (-X) 65.549 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.6486 1-way Shear (+Z) 75.356 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.6486 1-way Shear (-Z) 75.356 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7142 2-way Punching 165.970 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 0.0 deg CCW 10.0 6.321 5.333 5.333 6.321 0.632 0.0 1.121 +D+L+H 0.000 0.0 deg CCW 10.0 9.899 8.335 8.335 9.899 0.990 0.0 1.135 +D+Lr+H 0.000 0.0 deg CCW 10.0 6.321 5.333 5.333 6.321 0.632 0.0 1.121 +D+S+H 0.000 0.0 deg CCW 10.0 6.321 5.333 5.333 6.321 0.632 0.0 1.121 +D+0.750Lr+0.750L+H 0.000 0.0 deg CCW 10.0 9.005 7.584 7.584 9.005 0.901 0.0 1.132 +D+0.750L+0.750S+H 0.000 0.0 deg CCW 10.0 9.005 7.584 7.584 9.005 0.901 0.0 1.132 +D+0.60W+H 0.000 0.0 deg CCW 10.0 6.586 5.153 5.153 6.586 0.659 0.0 1.614 +D+0.70E+H 0.000 0.0 deg CCW 10.0 6.321 5.333 5.333 6.321 0.632 0.0 1.121 +D+0.750Lr+0.750L+0.450W+H 0.000 0.0 deg CCW 10.0 9.203 7.449 7.449 9.203 0.920 0.0 1.393 +D+0.750L+0.750S+0.450W+H 0.000 0.0 deg CCW 10.0 9.203 7.449 7.449 9.203 0.920 0.0 1.393 +D+0.750L+0.750S+0.5250E+H 0.000 0.0 deg CCW 10.0 9.005 7.584 7.584 9.005 0.901 0.0 1.132 +0.60D+0.60W+0.60H 0.000 0.0 deg CCW 10.0 4.058 3.020 3.020 4.058 0.406 0.0 1.938 +0.60D+0.70E+0.60H 0.000 0.0 deg CCW 10.0 3.793 3.20 3.20 3.793 0.379 0.0 1.121 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio X-X, +D+H None 0.0 k-ft Infinity OK X-X, +D+L+H None 0.0 k-ft Infinity OK X-X, +D+Lr+H None 0.0 k-ft Infinity OK X-X, +D+S+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+H None 0.0 k-ft Infinity OK X-X, +D+0.60W+H None 0.0 k-ft Infinity OK X-X, +D+0.70E+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+0.450W+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+0.450W+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+0.5250E+H None 0.0 k-ft Infinity OK 3-Story CBF

PAGE 120

! 113 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\3-story\3-STOR~2\BFFOUN~1.EC6 Description : Interior Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 9'-0" 4'-6" 2'-0" 9'-0" 4'-6" 2'-0" Z Z X X 14 # 7 Bars 3" X-X Section Looking to +Z 14 # 7 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 9.0 ft Length parallel to Z-Z Axis = 9.0 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 24.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 7 Number of Bars = 14 Bars parallel to Z-Z Axis Reinforcing Bar Size = 7 Number of Bars = 14 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 474.0 281.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = k V-z k M-xx = k-ft = k-ft H = 3-Story CBF General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\3-story\3-STOR~2\BFFOUN~1.EC6 Description : Interior PASS n/a Sliding X-X 0.0 k 0.0 k No Sliding PASS n/a Sliding Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9611 Soil Bearing 9.611 ksf 10.0 ksf 0.0 deg CCW PASS n/a Overturning X-X 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Overturning Z-Z 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9782 Z Flexure (+X) 84.399 k-ft 86.278 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9782 Z Flexure (-X) 84.399 k-ft 86.278 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.9782 X Flexure (+Z) 84.399 k-ft 86.278 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9782 X Flexure (-Z) 84.399 k-ft 86.278 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.8473 1-way Shear (+X) 98.444 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.8473 1-way Shear (-X) 98.444 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.8473 1-way Shear (+Z) 98.444 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.8473 1-way Shear (-Z) 98.444 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.9677 2-way Punching 224.884 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 0.0 deg CCW 10.0 6.142 6.142 6.142 6.142 0.614 0.0 0.0 +D+L+H 0.000 0.0 deg CCW 10.0 9.611 9.611 9.611 9.611 0.961 0.0 0.0 +D+Lr+H 0.000 0.0 deg CCW 10.0 6.142 6.142 6.142 6.142 0.614 0.0 0.0 +D+S+H 0.000 0.0 deg CCW 10.0 6.142 6.142 6.142 6.142 0.614 0.0 0.0 +D+0.750Lr+0.750L+H 0.000 0.0 deg CCW 10.0 8.744 8.744 8.744 8.744 0.874 0.0 0.0 +D+0.750L+0.750S+H 0.000 0.0 deg CCW 10.0 8.744 8.744 8.744 8.744 0.874 0.0 0.0 +D+0.60W+H 0.000 0.0 deg CCW 10.0 6.142 6.142 6.142 6.142 0.614 0.0 0.0 +D+0.70E+H 0.000 0.0 deg CCW 10.0 6.142 6.142 6.142 6.142 0.614 0.0 0.0 +D+0.750Lr+0.750L+0.450W+H 0.000 0.0 deg CCW 10.0 8.744 8.744 8.744 8.744 0.874 0.0 0.0 +D+0.750L+0.750S+0.450W+H 0.000 0.0 deg CCW 10.0 8.744 8.744 8.744 8.744 0.874 0.0 0.0 +D+0.750L+0.750S+0.5250E+H 0.000 0.0 deg CCW 10.0 8.744 8.744 8.744 8.744 0.874 0.0 0.0 +0.60D+0.60W+0.60H 0.000 0.0 deg CCW 10.0 3.685 3.685 3.685 3.685 0.369 0.0 0.0 +0.60D+0.70E+0.60H 0.000 0.0 deg CCW 10.0 3.685 3.685 3.685 3.685 0.369 0.0 0.0 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio Footing Has NO Overturning Force Application Axis Sliding Stability All units k Load Combination... Status Sliding Force Resisting Force Sliding SafetyRatio Footing Has NO Sliding Flexure Axis & Load Combination in^2 in^2 in^2 k-ft As Req'd Footing Flexure Tension @ k-ft Which Actual As Status Mu Side ? Bot or Top ? Gvrn. As Phi*Mn 3-Story CBF

PAGE 121

! 114 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\3-story\3-STOR~2\BFFOUN~1.EC6 Description : B1/B7/C1/C7/D1/D7 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 6'-3" 3'-1-1/2" 2'-0" 6'-3" 3'-1-1/2" 2'-0" Z Z X X 9 # 6 Bars 3" X-X Section Looking to +Z 9 # 6 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 6.250 ft Length parallel to Z-Z Axis = 6.250 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 15.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 6 Number of Bars = 9 Bars parallel to Z-Z Axis Reinforcing Bar Size = 6 Number of Bars = 9 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 220.0 126.0 7.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = 4.0 k 8.0 3.0 V-z k 5.0 19.0 M-xx = k-ft = k-ft H = 3-Story CBF General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\3-story\3-STOR~2\BFFOUN~1.EC6 Description : B1/B7/C1/C7/D1/D7 PASS 15.132 Sliding X-X 7.0 k 105.924 k +D+L+H PASS 2.601 Sliding Z-Z 16.20 k 42.134 k +0.60D+0.60W+0.60H DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9844 Soil Bearing 9.844 ksf 10.0 ksf 61.7 deg CCW PASS 16.256 Overturning X-X 27.0 k-ft 438.90 k-ft +0.60D+0.60W+0.60H PASS 94.575 Overturning Z-Z 11.667 k-ft 1,103.38 k-ft +D+L+H PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9368 Z Flexure (+X) 31.223 k-ft 33.329 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.8929 Z Flexure (-X) 29.759 k-ft 33.329 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9378 X Flexure (+Z) 31.255 k-ft 33.329 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.8929 X Flexure (-Z) 29.759 k-ft 33.329 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9487 1-way Shear (+X) 110.226 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.9018 1-way Shear (-X) 104.775 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.9507 1-way Shear (+Z) 110.458 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.8647 1-way Shear (-Z) 100.464 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.9235 2-way Punching 214.611 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 63.4 deg CCW 10.0 5.652 5.974 5.330 6.297 0.630 0.7046 0.3523 +D+L+H 0.000 61.7 deg CCW 10.0 8.797 9.281 8.233 9.844 0.984 0.7364 0.3965 +D+Lr+H 0.000 63.4 deg CCW 10.0 5.652 5.974 5.330 6.297 0.630 0.7046 0.3523 +D+S+H 0.000 63.4 deg CCW 10.0 5.652 5.974 5.330 6.297 0.630 0.7046 0.3523 +D+0.750Lr+0.750L+H 0.000 62.0 deg CCW 10.0 8.011 8.454 7.507 8.957 0.896 0.7308 0.3887 +D+0.750L+0.750S+H 0.000 62.0 deg CCW 10.0 8.011 8.454 7.507 8.957 0.896 0.7308 0.3887 +D+0.60W+H 0.000 78.3 deg CCW 10.0 5.301 6.541 4.978 6.863 0.686 1.678 0.3459 +D+0.70E+H 0.000 63.4 deg CCW 10.0 5.652 5.974 5.330 6.297 0.630 0.7046 0.3523 +D+0.750Lr+0.750L+0.450W+H 0.000 72.9 deg CCW 10.0 7.747 8.879 7.244 9.382 0.938 1.250 0.3849 +D+0.750L+0.750S+0.450W+H 0.000 72.9 deg CCW 10.0 7.747 8.879 7.244 9.382 0.938 1.250 0.3849 +D+0.750L+0.750S+0.5250E+H 0.000 62.0 deg CCW 10.0 8.011 8.454 7.507 8.957 0.896 0.7308 0.3887 +0.60D+0.60W+0.60H 0.000 81.6 deg CCW 10.0 3.040 4.151 2.846 4.345 0.435 2.307 0.3418 +0.60D+0.70E+0.60H 0.000 63.4 deg CCW 10.0 3.391 3.585 3.198 3.778 0.378 0.7046 0.3523 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio X-X, +D+H 13.333 k-ft 709.63 k-ft 53.222 OK X-X, +D+L+H 21.667 k-ft 1,103.38 k-ft 50.925 OK X-X, +D+Lr+H 13.333 k-ft 709.63 k-ft 53.222 OK X-X, +D+S+H 13.333 k-ft 709.63 k-ft 53.222 OK X-X, +D+0.750Lr+0.750L+H 19.583 k-ft 1,004.94 k-ft 51.316 OK X-X, +D+0.750L+0.750S+H 19.583 k-ft 1,004.94 k-ft 51.316 OK X-X, +D+0.60W+H 32.333 k-ft 722.75 k-ft 22.353 OK X-X, +D+0.70E+H 13.333 k-ft 709.63 k-ft 53.222 OK X-X, +D+0.750Lr+0.750L+0.450W+H 33.833 k-ft 1,014.78 k-ft 29.994 OK X-X, +D+0.750L+0.750S+0.450W+H 33.833 k-ft 1,014.78 k-ft 29.994 OK X-X, +D+0.750L+0.750S+0.5250E+H 19.583 k-ft 1,004.94 k-ft 51.316 OK 3-Story CBF

PAGE 122

! 115 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\il1vs13\desktops$\ecole\Desktop\NEWFOL~1\3-STOR~3.EC6 Description : A2/A5/F2/F5 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 11'-3" 5'-7-1/2" 2'-0" 11'-3" 5'-7-1/2" 2'-0" Z Z X X 14 # 9 Bars 3" X-X Section Looking to +Z 14 # 9 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 11.250 ft Length parallel to Z-Z Axis = 11.250 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 33.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 9 Number of Bars = 14 Bars parallel to Z-Z Axis Reinforcing Bar Size = 9 Number of Bars = 14 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 507.0 648.0 101.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = 9.0 k 14.0 118.0 V-z k M-xx = k-ft = k-ft H = 3-Story Diagrid General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\il1vs13\desktops$\ecole\Desktop\NEWFOL~1\3-STOR~3.EC6 Description : A2/A5/F2/F5 PASS 1.555 Sliding X-X 76.20 k 118.524 k +0.60D+0.60W+0.60H PASS n/a Sliding Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9826 Soil Bearing 9.826 ksf 10.0 ksf 0.0 deg CCW PASS n/a Overturning X-X 0.0 k-ft 0.0 k-ft No Overturning PASS 9.210 Overturning Z-Z 241.30 k-ft 2,222.33 k-ft +0.60D+0.60W+0.60H PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9563 Z Flexure (+X) 157.397 k-ft 164.584 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.9118 Z Flexure (-X) 150.061 k-ft 164.584 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9566 X Flexure (+Z) 157.435 k-ft 164.584 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9118 X Flexure (-Z) 150.061 k-ft 164.584 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.7279 1-way Shear (+X) 84.574 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.6898 1-way Shear (-X) 80.152 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7260 1-way Shear (+Z) 84.349 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7260 1-way Shear (-Z) 84.349 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.9515 2-way Punching 221.117 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 0.0 deg CCW 10.0 4.523 4.287 4.287 4.523 0.452 0.0 0.6135 +D+L+H 0.000 0.0 deg CCW 10.0 9.826 9.223 9.223 9.826 0.983 0.0 0.7250 +D+Lr+H 0.000 0.0 deg CCW 10.0 4.523 4.287 4.287 4.523 0.452 0.0 0.6135 +D+S+H 0.000 0.0 deg CCW 10.0 4.523 4.287 4.287 4.523 0.452 0.0 0.6135 +D+0.750Lr+0.750L+H 0.000 0.0 deg CCW 10.0 8.501 7.989 7.989 8.501 0.850 0.0 0.7101 +D+0.750L+0.750S+H 0.000 0.0 deg CCW 10.0 8.501 7.989 7.989 8.501 0.850 0.0 0.7101 +D+0.60W+H 0.000 0.0 deg CCW 10.0 5.931 3.836 3.836 5.931 0.593 0.0 4.906 +D+0.70E+H 0.000 0.0 deg CCW 10.0 4.523 4.287 4.287 4.523 0.452 0.0 0.6135 +D+0.750Lr+0.750L+0.450W+H 0.000 0.0 deg CCW 10.0 9.556 7.651 7.651 9.556 0.956 0.0 2.534 +D+0.750L+0.750S+0.450W+H 0.000 0.0 deg CCW 10.0 9.556 7.651 7.651 9.556 0.956 0.0 2.534 +D+0.750L+0.750S+0.5250E+H 0.000 0.0 deg CCW 10.0 8.501 7.989 7.989 8.501 0.850 0.0 0.7101 +0.60D+0.60W+0.60H 0.000 0.0 deg CCW 10.0 4.122 2.122 2.122 4.122 0.412 0.0 7.329 +0.60D+0.70E+0.60H 0.000 0.0 deg CCW 10.0 2.714 2.572 2.572 2.714 0.271 0.0 0.6135 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio X-X, +D+H None 0.0 k-ft Infinity OK X-X, +D+L+H None 0.0 k-ft Infinity OK X-X, +D+Lr+H None 0.0 k-ft Infinity OK X-X, +D+S+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+H None 0.0 k-ft Infinity OK X-X, +D+0.60W+H None 0.0 k-ft Infinity OK X-X, +D+0.70E+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+0.450W+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+0.450W+H None 0.0 k-ft Infinity OK 3-Story Diagrid

PAGE 123

! 116 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\il1vs13\desktops$\ecole\Desktop\NEWFOL~1\3-STOR~3.EC6 Description : Interior Footing Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 12'-6" 6'-3" 2'-0" 12'-3" 6'-1-1/2" 2'-0" Z Z X X 17 # 9 Bars 3" X-X Section Looking to +Z 16 # 9 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 12.50 ft Length parallel to Z-Z Axis = 12.250 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 39.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 9 Number of Bars = 17 Bars parallel to Z-Z Axis Reinforcing Bar Size = 9 Number of Bars = 16 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation Bars along Z-Z Axis # Bars required within zone 99.0 % # Bars required on each side of zone 1.0 % Applied Loads 581.0 862.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = k 1.0 V-z k M-xx = k-ft = k-ft H = 3-Story Diagrid General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\il1vs13\desktops$\ecole\Desktop\NEWFOL~1\3-STOR~3.EC6 Description : Interior Footing PASS 454.548 Sliding X-X 1.0 k 454.548 k +D+L+H PASS n/a Sliding Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9906 Soil Bearing 9.906 ksf 10.0 ksf 0.0 deg CCW PASS n/a Overturning X-X 0.0 k-ft 0.0 k-ft No Overturning PASS 2,582.66 Overturning Z-Z 3.667 k-ft 9,469.75 k-ft +D+L+H PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9422 Z Flexure (+X) 207.829 k-ft 220.568 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9405 Z Flexure (-X) 207.440 k-ft 220.568 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9721 X Flexure (+Z) 198.063 k-ft 203.746 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9703 X Flexure (-Z) 197.688 k-ft 203.746 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.6887 1-way Shear (+X) 80.014 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.6872 1-way Shear (-X) 79.844 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.6135 1-way Shear (+Z) 71.278 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.6135 1-way Shear (-Z) 71.278 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.9049 2-way Punching 210.291 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 0.0 deg CCW 10.0 4.266 4.266 4.266 4.266 0.427 0.0 0.0 +D+L+H 0.000 0.0 deg CCW 10.0 9.906 9.884 9.884 9.906 0.991 0.0 0.02904 +D+Lr+H 0.000 0.0 deg CCW 10.0 4.266 4.266 4.266 4.266 0.427 0.0 0.0 +D+S+H 0.000 0.0 deg CCW 10.0 4.266 4.266 4.266 4.266 0.427 0.0 0.0 +D+0.750Lr+0.750L+H 0.000 0.0 deg CCW 10.0 8.496 8.479 8.479 8.496 0.850 0.0 0.02539 +D+0.750L+0.750S+H 0.000 0.0 deg CCW 10.0 8.496 8.479 8.479 8.496 0.850 0.0 0.02539 +D+0.60W+H 0.000 0.0 deg CCW 10.0 4.266 4.266 4.266 4.266 0.427 0.0 0.0 +D+0.70E+H 0.000 0.0 deg CCW 10.0 4.266 4.266 4.266 4.266 0.427 0.0 0.0 +D+0.750Lr+0.750L+0.450W+H 0.000 0.0 deg CCW 10.0 8.496 8.479 8.479 8.496 0.850 0.0 0.02539 +D+0.750L+0.750S+0.450W+H 0.000 0.0 deg CCW 10.0 8.496 8.479 8.479 8.496 0.850 0.0 0.02539 +D+0.750L+0.750S+0.5250E+H 0.000 0.0 deg CCW 10.0 8.496 8.479 8.479 8.496 0.850 0.0 0.02539 +0.60D+0.60W+0.60H 0.000 0.0 deg CCW 10.0 2.559 2.559 2.559 2.559 0.256 0.0 0.0 +0.60D+0.70E+0.60H 0.000 0.0 deg CCW 10.0 2.559 2.559 2.559 2.559 0.256 0.0 0.0 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio X-X, +D+H None 0.0 k-ft Infinity OK X-X, +D+L+H None 0.0 k-ft Infinity OK X-X, +D+Lr+H None 0.0 k-ft Infinity OK X-X, +D+S+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+H None 0.0 k-ft Infinity OK X-X, +D+0.60W+H None 0.0 k-ft Infinity OK X-X, +D+0.70E+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+0.450W+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+0.450W+H None 0.0 k-ft Infinity OK 3-Story Diagrid

PAGE 124

! 117 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\il1vs13\desktops$\ecole\Desktop\NEWFOL~1\3-STOR~3.EC6 Description : A3.5/F3.5 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 10'-3" 5'-1-1/2" 2'-0" 10'-3" 5'-1-1/2" 2'-0" Z Z X X 11 # 9 Bars 3" X-X Section Looking to +Z 11 # 9 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 10.250 ft Length parallel to Z-Z Axis = 10.250 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 30.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 9 Number of Bars = 11 Bars parallel to Z-Z Axis Reinforcing Bar Size = 9 Number of Bars = 11 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 433.0 557.0 3.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = 2.0 k 3.0 122.0 V-z k M-xx = k-ft = k-ft H = 3-Story Diagrid General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\il1vs13\desktops$\ecole\Desktop\NEWFOL~1\3-STOR~3.EC6 Description : A3.5/F3.5 PASS 1.147 Sliding X-X 74.40 k 85.335 k +0.60D+0.60W+0.60H PASS n/a Sliding Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9865 Soil Bearing 9.865 ksf 10.0 ksf 0.0 deg CCW PASS n/a Overturning X-X 0.0 k-ft 0.0 k-ft No Overturning PASS 6.718 Overturning Z-Z 217.0 k-ft 1,457.81 k-ft +0.60D+0.60W+0.60H PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9901 Z Flexure (+X) 126.581 k-ft 127.850 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9779 Z Flexure (-X) 125.027 k-ft 127.850 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9901 X Flexure (+Z) 126.583 k-ft 127.850 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9779 X Flexure (-Z) 125.027 k-ft 127.850 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.7432 1-way Shear (+X) 86.357 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7331 1-way Shear (-X) 85.174 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7427 1-way Shear (+Z) 86.296 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7427 1-way Shear (-Z) 86.296 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.9559 2-way Punching 222.125 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 0.0 deg CCW 10.0 4.516 4.452 4.452 4.516 0.452 0.0 0.1486 +D+L+H 0.000 0.0 deg CCW 10.0 9.865 9.706 9.706 9.865 0.987 0.0 0.1702 +D+Lr+H 0.000 0.0 deg CCW 10.0 4.516 4.452 4.452 4.516 0.452 0.0 0.1486 +D+S+H 0.000 0.0 deg CCW 10.0 4.516 4.452 4.452 4.516 0.452 0.0 0.1486 +D+0.750Lr+0.750L+H 0.000 0.0 deg CCW 10.0 8.528 8.392 8.392 8.528 0.853 0.0 0.1674 +D+0.750L+0.750S+H 0.000 0.0 deg CCW 10.0 8.528 8.392 8.392 8.528 0.853 0.0 0.1674 +D+0.60W+H 0.000 0.0 deg CCW 10.0 5.703 3.299 3.299 5.703 0.570 0.0 5.566 +D+0.70E+H 0.000 0.0 deg CCW 10.0 4.516 4.452 4.452 4.516 0.452 0.0 0.1486 +D+0.750Lr+0.750L+0.450W+H 0.000 0.0 deg CCW 10.0 9.418 7.528 7.528 9.418 0.942 0.0 2.326 +D+0.750L+0.750S+0.450W+H 0.000 0.0 deg CCW 10.0 9.418 7.528 7.528 9.418 0.942 0.0 2.326 +D+0.750L+0.750S+0.5250E+H 0.000 0.0 deg CCW 10.0 8.528 8.392 8.392 8.528 0.853 0.0 0.1674 +0.60D+0.60W+0.60H 0.000 0.0 deg CCW 10.0 3.896 1.519 1.519 3.896 0.390 0.0 9.154 +0.60D+0.70E+0.60H 0.000 0.0 deg CCW 10.0 2.709 2.671 2.671 2.709 0.271 0.0 0.1486 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio X-X, +D+H None 0.0 k-ft Infinity OK X-X, +D+L+H None 0.0 k-ft Infinity OK X-X, +D+Lr+H None 0.0 k-ft Infinity OK X-X, +D+S+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+H None 0.0 k-ft Infinity OK X-X, +D+0.60W+H None 0.0 k-ft Infinity OK X-X, +D+0.70E+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+0.450W+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+0.450W+H None 0.0 k-ft Infinity OK 3-Story Diagrid

PAGE 125

! 118 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\il1vs13\desktops$\ecole\Desktop\NEWFOL~1\3-STOR~3.EC6 Description : B1/B6/E1/E6 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 10'-3" 5'-1-1/2" 2'-0" 10'-3" 5'-1-1/2" 2'-0" Z Z X X 14 # 8 Bars 3" X-X Section Looking to +Z 14 # 8 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 10.250 ft Length parallel to Z-Z Axis = 10.250 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 30.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 8 Number of Bars = 14 Bars parallel to Z-Z Axis Reinforcing Bar Size = 8 Number of Bars = 14 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 440.0 564.0 101.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = k 1.0 V-z k 2.0 55.0 M-xx = k-ft = k-ft H = 3-Story Diagrid General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\il1vs13\desktops$\ecole\Desktop\NEWFOL~1\3-STOR~3.EC6 Description : B1/B6/E1/E6 PASS n/a Sliding X-X 0.0 k 0.0 k No Sliding PASS 3.102 Sliding Z-Z 33.60 k 104.235 k +0.60D+0.60W+0.60H DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9967 Soil Bearing 9.967 ksf 10.0 ksf 0.0 deg CCW PASS 18.170 Overturning X-X 98.0 k-ft 1,780.69 k-ft +0.60D+0.60W+0.60H PASS n/a Overturning Z-Z 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9956 Z Flexure (+X) 127.973 k-ft 128.533 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.9956 Z Flexure (-X) 127.973 k-ft 128.533 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.9956 X Flexure (+Z) 127.971 k-ft 128.533 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.9956 X Flexure (-Z) 127.973 k-ft 128.533 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.7509 1-way Shear (+X) 87.244 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7509 1-way Shear (-X) 87.244 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7512 1-way Shear (+Z) 87.281 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7450 1-way Shear (-Z) 86.558 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.9687 2-way Punching 225.114 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 0.0 deg CCW 10.0 4.535 4.566 4.535 4.566 0.457 0.07321 0.0 +D+L+H 0.000 0.0 deg CCW 10.0 9.871 9.967 9.871 9.967 0.997 0.1008 0.0 +D+Lr+H 0.000 0.0 deg CCW 10.0 4.535 4.566 4.535 4.566 0.457 0.07321 0.0 +D+S+H 0.000 0.0 deg CCW 10.0 4.535 4.566 4.535 4.566 0.457 0.07321 0.0 +D+0.750Lr+0.750L+H 0.000 0.0 deg CCW 10.0 8.537 8.617 8.537 8.617 0.862 0.09711 0.0 +D+0.750L+0.750S+H 0.000 0.0 deg CCW 10.0 8.537 8.617 8.537 8.617 0.862 0.09711 0.0 +D+0.60W+H 0.000 0.0 deg CCW 10.0 4.584 5.671 4.584 5.671 0.567 2.209 0.0 +D+0.70E+H 0.000 0.0 deg CCW 10.0 4.535 4.566 4.535 4.566 0.457 0.07321 0.0 +D+0.750Lr+0.750L+0.450W+H 0.000 0.0 deg CCW 10.0 8.574 9.445 8.574 9.445 0.945 1.008 0.0 +D+0.750L+0.750S+0.450W+H 0.000 0.0 deg CCW 10.0 8.574 9.445 8.574 9.445 0.945 1.008 0.0 +D+0.750L+0.750S+0.5250E+H 0.000 0.0 deg CCW 10.0 8.537 8.617 8.537 8.617 0.862 0.09711 0.0 +0.60D+0.60W+0.60H 0.000 0.0 deg CCW 10.0 2.770 3.844 2.770 3.844 0.384 3.385 0.0 +0.60D+0.70E+0.60H 0.000 0.0 deg CCW 10.0 2.721 2.740 2.721 2.740 0.274 0.07321 0.0 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio X-X, +D+H 2.917 k-ft 2,450.19 k-ft 840.06 OK X-X, +D+L+H 8.750 k-ft 5,340.69 k-ft 610.36 OK X-X, +D+Lr+H 2.917 k-ft 2,450.19 k-ft 840.06 OK X-X, +D+S+H 2.917 k-ft 2,450.19 k-ft 840.06 OK X-X, +D+0.750Lr+0.750L+H 7.292 k-ft 4,618.06 k-ft 633.33 OK X-X, +D+0.750L+0.750S+H 7.292 k-ft 4,618.06 k-ft 633.33 OK X-X, +D+0.60W+H 99.167 k-ft 2,760.76 k-ft 27.840 OK X-X, +D+0.70E+H 2.917 k-ft 2,450.19 k-ft 840.06 OK X-X, +D+0.750Lr+0.750L+0.450W+H 79.479 k-ft 4,850.99 k-ft 61.035 OK X-X, +D+0.750L+0.750S+0.450W+H 79.479 k-ft 4,850.99 k-ft 61.035 OK 3-Story Diagrid

PAGE 126

! 119 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\il1vs13\desktops$\ecole\Desktop\NEWFOL~1\3-STOR~3.EC6 Description : CD1/CD6 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 9'-9" 4'-10-1/2" 2'-0" 9'-6" 4'-9" 2'-0" Z Z X X 9 # 9 Bars 3" X-X Section Looking to +Z 9 # 9 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 9.750 ft Length parallel to Z-Z Axis = 9.50 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 30.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 9 Number of Bars = 9 Bars parallel to Z-Z Axis Reinforcing Bar Size = 9 Number of Bars = 9 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation Bars along Z-Z Axis # Bars required within zone 98.7 % # Bars required on each side of zone 1.3 % Applied Loads 388.0 498.0 16.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = k V-z k 16.0 0.0 M-xx = k-ft = k-ft H = 3-Story Diagrid General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\il1vs13\desktops$\ecole\Desktop\NEWFOL~1\3-STOR~3.EC6 Description : CD1/CD6 PASS n/a Sliding X-X 0.0 k 0.0 k No Sliding PASS 8.205 Sliding Z-Z 9.60 k 78.764 k +0.60D+0.60W+0.60H DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9928 Soil Bearing 9.928 ksf 10.0 ksf 0.0 deg CCW PASS 44.539 Overturning X-X 28.0 k-ft 1,247.09 k-ft +0.60D+0.60W+0.60H PASS n/a Overturning Z-Z 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9956 Z Flexure (+X) 112.626 k-ft 113.125 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.9956 Z Flexure (-X) 112.626 k-ft 113.125 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.9564 X Flexure (+Z) 105.462 k-ft 110.274 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9564 X Flexure (-Z) 105.462 k-ft 110.274 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.6476 1-way Shear (+X) 75.240 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.6476 1-way Shear (-X) 75.240 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.5679 1-way Shear (+Z) 65.980 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.5679 1-way Shear (-Z) 65.980 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.8267 2-way Punching 192.098 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 0.0 deg CCW 10.0 4.551 4.551 4.551 4.551 0.455 0.0 0.0 +D+L+H 0.000 0.0 deg CCW 10.0 9.928 9.928 9.928 9.928 0.993 0.0 0.0 +D+Lr+H 0.000 0.0 deg CCW 10.0 4.551 4.551 4.551 4.551 0.455 0.0 0.0 +D+S+H 0.000 0.0 deg CCW 10.0 4.551 4.551 4.551 4.551 0.455 0.0 0.0 +D+0.750Lr+0.750L+H 0.000 0.0 deg CCW 10.0 8.584 8.584 8.584 8.584 0.858 0.0 0.0 +D+0.750L+0.750S+H 0.000 0.0 deg CCW 10.0 8.584 8.584 8.584 8.584 0.858 0.0 0.0 +D+0.60W+H 0.000 0.0 deg CCW 10.0 4.467 4.843 4.467 4.843 0.484 0.7793 0.0 +D+0.70E+H 0.000 0.0 deg CCW 10.0 4.551 4.551 4.551 4.551 0.455 0.0 0.0 +D+0.750Lr+0.750L+0.450W+H 0.000 0.0 deg CCW 10.0 8.521 8.802 8.521 8.802 0.880 0.3141 0.0 +D+0.750L+0.750S+0.450W+H 0.000 0.0 deg CCW 10.0 8.521 8.802 8.521 8.802 0.880 0.3141 0.0 +D+0.750L+0.750S+0.5250E+H 0.000 0.0 deg CCW 10.0 8.584 8.584 8.584 8.584 0.858 0.0 0.0 +0.60D+0.60W+0.60H 0.000 0.0 deg CCW 10.0 2.647 3.022 2.647 3.022 0.302 1.280 0.0 +0.60D+0.70E+0.60H 0.000 0.0 deg CCW 10.0 2.731 2.731 2.731 2.731 0.273 0.0 0.0 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio X-X, +D+H None 0.0 k-ft Infinity OK X-X, +D+L+H None 0.0 k-ft Infinity OK X-X, +D+Lr+H None 0.0 k-ft Infinity OK X-X, +D+S+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+H None 0.0 k-ft Infinity OK X-X, +D+0.60W+H 28.0 k-ft 2,048.09 k-ft 73.146 OK X-X, +D+0.70E+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+0.450W+H 21.0 k-ft 3,810.81 k-ft 181.467 OK X-X, +D+0.750L+0.750S+0.450W+H 21.0 k-ft 3,810.81 k-ft 181.467 OK 3-Story Diagrid

PAGE 127

APPENDIX D Appendix D 120

PAGE 128

! 121 !"#$%&'(#)*+,*!"#$%&'())%*%+%!#",,%!-"' $ %/%012 .34-5#(67$%8(7#-5%,-5%9"):%&(#$;-5<%.. =%/%0>?@@A%: B,,$7#"C$%!$")3"7%=$";D# 9$)4-6)$%E-F","7(#"-6%8(7#-5 GE98 G&H8 *"(;5"F 9%/ I1J I1>J 012 !$")3"7%9$)4-6)$%&-$,,"7"$6#?%& ) & ) %/ *! KL9K. $ M%/% 210@J & ) %6-#%#-%$N7$$FO P%/%& # D 6 N %/% L21>MQL0IJM 21RJ %/%A%)$7 S%P T /U%)$7 & ) %V%! *0 KWP > L9K. $ MX%/%2122J@ & ) %6-#%'$))%#D(6O & ) %Y%212UU! *! $ %Y%2120 /%2122AZ%[%2120 \ B] %/%0I2%:

PAGE 129

! 122 !"#$%&'()*+, !"#$%&'()* +,%-)*./(0$'1)22 !345$%(6)7&,56,30 23/('3.5)8'(%%&'( 9:* #, ;<=>?@A B,'(4/,$3.5,/1)C.4/$' D 6 <>?AE F(5$4,/1)8'(%%&'()!"#$%&'()*$(GG,4,(3/ D H <@?IJ K$#$0'.#H,4)C.4/$' :<>?AE # <>?A L,36M.'6 # ?E O((M.'6 203$',30)P5/,/&6()P6Q&%/R(3/ S T <>?>>UEJH T/ 6 F U a) /$)@Ea)H(,0H/)H <>?AE_)/H('(G$'()#
PAGE 130

APPENDIX E Appendix E 123

PAGE 131

! 124 9 Story MRF.sdb SAP2000 v17.3.0 9 Story MRF 27 March 2016 Computers and Structures, Inc. Page 1 of 31 9 Story MRF Table: Joint Reactions Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 38 DEAD LinStatic 5.717 3.169 148.254 4.7477 42.7791 1.146E 05 38 LIVE LinStatic 8.296 5.524 203.081 7.7866 63.2612 1.789E 05 38 WIND LinStatic 170.883 11.333 117.957 2.6572 53.4236 9.647E 05 38 DSTL1 Combination 8.003 4.436 207.556 6.6467 59.8907 1.604E 05 38 DSTL2 Combination 20.133 12.641 502.834 18.1558 152.5528 4.237E 05 38 DSTL3 Combination 186.039 2.006 498.943 10.8266 168.0196 1.281E 04 38 DSTL4 Combination 155.728 20.659 263.028 16.1410 61.1725 6.483E 05 38 DSTL5 Combination 92.302 1.864 236.883 4.3686 78.0467 6.199E 05 38 DSTL6 Combination 78.582 9.469 118.926 7.0258 24.6231 3.449E 05 38 DSTL7 Combination 176.028 8.481 251.386 1.6156 91.9247 1.068E 04 38 DSTL8 Combination 165.739 14.184 15.472 6.9301 14.9224 8.616E 05 38 DSTL9 Combination 5.717 3.169 148.254 4.7477 42.7791 1.146E 05 38 DSTL10 Combination 14.012 8.693 351.335 12.5343 106.0403 2.935E 05 39 DEAD LinStatic 6.190 3.083 141.113 8.0673 20.4320 1.036E 05 39 LIVE LinStatic 8.989 5.069 197.853 27.2078 31.3375 1.399E 05 39 WIND LinStatic 171.681 17.586 171.251 4.7996 53.6346 3.623E 05 39 DSTL1 Combination 8.666 4.316 197.558 11.2942 28.6047 1.451E 05 39 DSTL2 Combination 21.810 11.810 485.901 53.2132 74.6584 3.483E 05 39 DSTL3 Combination 155.264 8.818 195.938 32.0889 2.2213 6.266E 05 39 DSTL4 Combination 188.097 26.355 538.440 41.6881 109.4905 9.799E 06 39 DSTL5 Combination 78.413 5.094 83.710 7.2809 2.2989 3.055E 05 39 DSTL6 Combination 93.268 12.492 254.961 12.0805 51.3356 5.677E 06 39 DSTL7 Combination 166.110 14.812 44.250 2.4610 35.2458 4.556E 05 39 DSTL8 Combination 177.251 20.361 298.253 12.0601 72.0234 2.690E 05 39 DSTL9 Combination 6.190 3.083 141.113 8.0673 20.4320 1.036E 05 39 DSTL10 Combination 15.179 8.152 338.966 35.2750 51.7695 2.436E 05 76 DEAD LinStatic 1.751 0.048 277.739 0.2556 10.4737 1.409E 04 76 LIVE LinStatic 2.669 0.415 409.942 2.3647 15.9697 2.333E 04 76 WIND LinStatic 0.245 0.037 0.573 0.5614 2.8292 7.794E 04 76 DSTL1 Combination 2.451 0.067 388.835 0.3578 14.6632 1.973E 04 76 DSTL2 Combination 6.372 0.723 989.195 4.0902 38.1200 5.424E 04 76 DSTL3 Combination 5.015 0.510 743.802 3.2328 31.3673 0.0012 76 DSTL4 Combination 4.525 0.436 742.657 2.1100 25.7090 3.770E 04 76 DSTL5 Combination 2.223 0.076 333.574 0.5874 13.9831 5.588E 04 76 DSTL6 Combination 1.978 0.039 333.001 0.0260 11.1539 2.206E 04 76 DSTL7 Combination 1.820 0.080 250.538 0.7914 12.2555 9.062E 04 76 DSTL8 Combination 1.331 6.195E 03 249.393 0.3313 6.5972 6.525E 04 76 DSTL9 Combination 1.751 0.048 277.739 0.2556 10.4737 1.409E 04 76 DSTL10 Combination 4.420 0.464 687.682 2.6203 26.4434 3.742E 04 77 DEAD LinStatic 1.829 0.078 271.161 0.4611 10.9463 1.394E 04 77 LIVE LinStatic 2.785 0.111 388.904 0.6527 16.6646 1.800E 04 77 WIND LinStatic 0.244 0.057 1.005 0.8006 2.7881 4.990E 04 77 DSTL1 Combination 2.561 0.110 379.625 0.6455 15.3248 1.952E 04 77 DSTL2 Combination 6.652 0.272 947.639 1.5977 39.7990 4.552E 04 77 DSTL3 Combination 4.737 0.148 713.291 0.4055 27.0120 8.462E 04 77 DSTL4 Combination 5.224 0.262 715.302 2.0066 32.5883 1.517E 04 77 DSTL5 Combination 2.074 0.066 324.890 0.1530 11.7415 4.168E 04 77 DSTL6 Combination 2.317 0.122 325.896 0.9536 14.5296 8.222E 05 77 DSTL7 Combination 1.403 0.014 243.039 0.3856 7.0635 6.244E 04 77 DSTL8 Combination 1.890 0.127 245.050 1.2156 12.6398 3.735E 04 9 Story MRF.sdb SAP2000 v17.3.0 9 Story MRF 27 March 2016 Computers and Structures, Inc. Page 2 of 31 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 77 DSTL9 Combination 1.829 0.078 271.161 0.4611 10.9463 1.394E 04 77 DSTL10 Combination 4.615 0.190 660.064 1.1138 27.6109 3.194E 04 114 DEAD LinStatic 1.861 2.237E 03 277.466 0.0011 11.1297 9.202E 05 114 LIVE LinStatic 2.842 3.561E 03 398.310 0.0407 16.9965 1.467E 04 114 WIND LinStatic 0.249 0.069 0.549 0.8867 2.8521 5.681E 04 114 DSTL1 Combination 2.605 3.132E 03 388.452 0.0016 15.5815 1.288E 04 114 DSTL2 Combination 6.780 3.013E 03 970.256 0.0666 40.5500 3.452E 04 114 DSTL3 Combination 5.323 0.068 731.819 0.8446 33.2042 8.253E 04 114 DSTL4 Combination 4.826 0.070 730.720 0.9288 27.5000 3.110E 04 114 DSTL5 Combination 2.357 0.037 333.234 0.4420 14.7816 3.945E 04 114 DSTL6 Combination 2.108 0.032 332.684 0.4447 11.9295 1.736E 04 114 DSTL7 Combination 1.923 0.071 250.269 0.8857 12.8688 6.509E 04 114 DSTL8 Combination 1.426 0.067 249.170 0.8878 7.1646 4.853E 04 114 DSTL9 Combination 1.861 2.237E 03 277.466 0.0011 11.1297 9.202E 05 114 DSTL10 Combination 4.702 1.324E 03 675.776 0.0419 28.1262 2.387E 04 115 DEAD LinStatic 1.852 8.988E 04 277.515 9.716E 04 11.0760 8.412E 05 115 LIVE LinStatic 2.829 3.790E 04 398.605 0.0018 16.9218 1.186E 04 115 WIND LinStatic 0.241 0.083 0.536 1.0209 2.7816 3.246E 04 115 DSTL1 Combination 2.592 1.258E 03 388.521 0.0014 15.5063 1.178E 04 115 DSTL2 Combination 6.748 1.685E 03 970.786 0.0017 40.3660 2.907E 04 115 DSTL3 Combination 4.809 0.085 731.087 1.0203 27.4313 5.442E 04 115 DSTL4 Combination 5.292 0.082 732.159 1.0215 32.9946 1.050E 04 115 DSTL5 Combination 2.101 0.043 332.750 0.5116 11.9003 2.632E 04 115 DSTL6 Combination 2.343 0.041 333.286 0.5093 14.6820 6.137E 05 115 DSTL7 Combination 1.425 0.084 249.228 1.0218 7.1867 4.003E 04 115 DSTL8 Combination 1.908 0.082 250.300 1.0201 12.7500 2.489E 04 115 DSTL9 Combination 1.852 8.988E 04 277.515 9.716E 04 11.0760 8.412E 05 115 DSTL10 Combination 4.680 1.278E 03 676.120 8.067E 04 27.9978 2.027E 04 152 DEAD LinStatic 1.852 8.804E 04 277.515 7.367E 04 11.0759 8.407E 05 152 LIVE LinStatic 2.829 3.514E 04 398.605 0.0021 16.9218 1.186E 04 152 WIND LinStatic 0.248 0.112 0.535 1.3169 2.8503 5.773E 04 152 DSTL1 Combination 2.592 1.233E 03 388.521 0.0010 15.5063 1.177E 04 152 DSTL2 Combination 6.748 1.619E 03 970.786 0.0025 40.3660 2.906E 04 152 DSTL3 Combination 5.299 0.110 732.158 1.3182 33.0632 7.968E 04 152 DSTL4 Combination 4.802 0.113 731.088 1.3157 27.3626 3.578E 04 152 DSTL5 Combination 2.346 0.055 333.285 0.6576 14.7163 3.895E 04 152 DSTL6 Combination 2.098 0.057 332.750 0.6594 11.8660 1.878E 04 152 DSTL7 Combination 1.915 0.111 250.298 1.3163 12.8187 6.530E 04 152 DSTL8 Combination 1.418 0.112 249.228 1.3176 7.1180 5.016E 04 152 DSTL9 Combination 1.852 8.804E 04 277.515 7.367E 04 11.0759 8.407E 05 152 DSTL10 Combination 4.680 1.232E 03 676.120 0.0014 27.9977 2.026E 04 153 DEAD LinStatic 1.861 2.165E 03 277.466 0.0017 11.1297 9.207E 05 153 LIVE LinStatic 2.842 3.668E 03 398.311 0.0416 16.9966 1.468E 04 153 WIND LinStatic 0.242 0.101 0.550 1.2182 2.7850 3.227E 04 153 DSTL1 Combination 2.605 3.032E 03 388.453 0.0024 15.5816 1.289E 04 153 DSTL2 Combination 6.780 3.271E 03 970.257 0.0685 40.5501 3.453E 04 153 DSTL3 Combination 4.833 0.103 730.721 1.2618 27.5672 5.800E 04 153 DSTL4 Combination 5.317 0.100 731.821 1.1747 33.1372 6.546E 05 153 DSTL5 Combination 2.112 0.048 332.685 0.6111 11.9631 2.718E 04 153 DSTL6 Combination 2.354 0.053 333.235 0.6071 14.7481 5.088E 05 153 DSTL7 Combination 1.433 0.100 249.170 1.2198 7.2318 4.056E 04 153 DSTL8 Combination 1.917 0.103 250.270 1.2167 12.8017 2.399E 04 153 DSTL9 Combination 1.861 2.165E 03 277.466 0.0017 11.1297 9.207E 05 153 DSTL10 Combination 4.702 1.503E 03 675.777 0.0433 28.1262 2.389E 04

PAGE 132

! 125 9 Story MRF.sdb SAP2000 v17.3.0 9 Story MRF 27 March 2016 Computers and Structures, Inc. Page 3 of 31 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 190 DEAD LinStatic 1.829 0.078 271.161 0.4618 10.9463 1.395E 04 190 LIVE LinStatic 2.785 0.111 388.903 0.6539 16.6647 1.802E 04 190 WIND LinStatic 0.250 0.144 1.034 1.6268 2.8682 8.640E 04 190 DSTL1 Combination 2.561 0.110 379.625 0.6466 15.3249 1.953E 04 190 DSTL2 Combination 6.652 0.272 947.638 1.6005 39.7992 4.557E 04 190 DSTL3 Combination 5.231 0.349 715.330 2.8349 32.6685 0.0012 190 DSTL4 Combination 4.730 0.062 713.263 0.4187 26.9321 5.164E 04 190 DSTL5 Combination 2.321 0.166 325.910 1.3676 14.5697 5.994E 04 190 DSTL6 Combination 2.070 0.022 324.876 0.2592 11.7015 2.646E 04 190 DSTL7 Combination 1.897 0.214 245.078 2.0424 12.7199 9.896E 04 190 DSTL8 Combination 1.396 0.073 243.011 1.2111 6.9835 7.384E 04 190 DSTL9 Combination 1.829 0.078 271.161 0.4618 10.9463 1.395E 04 190 DSTL10 Combination 4.615 0.190 660.064 1.1157 27.6111 3.197E 04 191 DEAD LinStatic 1.751 0.048 277.740 0.2561 10.4739 1.412E 04 191 LIVE LinStatic 2.669 0.416 409.943 2.3657 15.9698 2.337E 04 191 WIND LinStatic 0.237 0.111 0.566 1.3355 2.7466 5.258E 04 191 DSTL1 Combination 2.451 0.068 388.835 0.3586 14.6634 1.977E 04 191 DSTL2 Combination 6.372 0.723 989.196 4.0926 38.1204 5.434E 04 191 DSTL3 Combination 4.533 0.362 742.664 1.3376 25.7918 9.290E 04 191 DSTL4 Combination 5.007 0.585 743.796 4.0086 31.2851 1.227E 04 191 DSTL5 Combination 1.982 2.172E 03 333.004 0.3604 11.1953 4.324E 04 191 DSTL6 Combination 2.219 0.114 333.571 0.9751 13.9419 9.348E 05 191 DSTL7 Combination 1.339 0.068 249.399 1.1050 6.6798 6.529E 04 191 DSTL8 Combination 1.813 0.155 250.532 1.5661 12.1731 3.988E 04 191 DSTL9 Combination 1.751 0.048 277.740 0.2561 10.4739 1.412E 04 191 DSTL10 Combination 4.420 0.464 687.682 2.6219 26.4437 3.749E 04 228 DEAD LinStatic 6.181 3.083 141.112 8.0669 20.4172 1.035E 05 228 LIVE LinStatic 8.975 5.070 197.852 27.2063 31.3153 1.397E 05 228 WIND LinStatic 171.884 39.351 171.223 16.8041 51.5482 9.154E 05 228 DSTL1 Combination 8.653 4.317 197.557 11.2937 28.5841 1.449E 05 228 DSTL2 Combination 21.778 11.812 485.899 53.2104 74.6052 3.477E 05 228 DSTL3 Combination 188.276 48.122 538.410 53.6907 107.3642 1.179E 04 228 DSTL4 Combination 155.492 30.581 195.965 20.0824 4.2678 6.515E 05 228 DSTL5 Combination 93.359 23.376 254.946 18.0824 50.2748 5.819E 05 228 DSTL6 Combination 78.525 15.975 83.724 1.2782 1.2734 3.335E 05 228 DSTL7 Combination 177.446 42.126 298.224 24.0644 69.9237 1.009E 04 228 DSTL8 Combination 166.321 36.576 44.221 9.5439 33.1727 8.223E 05 228 DSTL9 Combination 6.181 3.083 141.112 8.0669 20.4172 1.035E 05 228 DSTL10 Combination 15.156 8.154 338.965 35.2732 51.7326 2.432E 05 229 DEAD LinStatic 5.707 3.167 148.255 4.7187 42.5946 1.145E 05 229 LIVE LinStatic 8.282 5.523 203.082 7.7535 62.9822 1.788E 05 229 WIND LinStatic 171.023 32.758 118.017 10.6849 57.4497 2.914E 05 229 DSTL1 Combination 7.990 4.434 207.557 6.6062 59.6324 1.603E 05 229 DSTL2 Combination 20.100 12.637 502.837 18.0681 151.8850 4.234E 05 229 DSTL3 Combination 155.892 42.082 262.971 24.1008 56.6459 6.075E 05 229 DSTL4 Combination 186.154 23.434 499.005 2.7311 171.5454 2.478E 06 229 DSTL5 Combination 78.663 20.180 118.898 11.0049 22.3886 2.831E 05 229 DSTL6 Combination 92.360 12.578 236.914 0.3200 79.8384 8.279E 07 229 DSTL7 Combination 165.886 35.608 15.413 14.9317 19.1146 3.944E 05 229 DSTL8 Combination 176.160 29.907 251.446 6.4380 95.7848 1.883E 05 229 DSTL9 Combination 5.707 3.167 148.255 4.7187 42.5946 1.145E 05 229 DSTL10 Combination 13.989 8.690 351.337 12.4722 105.5767 2.933E 05 230 DEAD LinStatic 0.120 0.028 268.869 0.1670 0.7137 2.172E 05 230 LIVE LinStatic 0.175 0.042 388.941 0.2497 1.0375 3.287E 05 9 Story MRF.sdb SAP2000 v17.3.0 9 Story MRF 27 March 2016 Computers and Structures, Inc. Page 4 of 31 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 230 WIND LinStatic 0.548 0.024 0.418 0.3113 5.9273 9.457E 05 230 DSTL1 Combination 0.168 0.039 376.416 0.2338 0.9992 3.040E 05 230 DSTL2 Combination 0.424 0.100 944.949 0.5999 2.5165 7.865E 05 230 DSTL3 Combination 0.229 0.099 711.166 0.7614 4.0333 1.535E 04 230 DSTL4 Combination 0.867 0.051 712.002 0.1388 7.8213 3.564E 05 230 DSTL5 Combination 0.130 0.045 322.434 0.3561 2.1072 7.335E 05 230 DSTL6 Combination 0.418 0.021 322.851 0.0448 3.8201 2.123E 05 230 DSTL7 Combination 0.440 0.049 241.564 0.4616 5.2849 1.141E 04 230 DSTL8 Combination 0.656 1.105E 03 242.400 0.1610 6.5696 7.503E 05 230 DSTL9 Combination 0.120 0.028 268.869 0.1670 0.7137 2.172E 05 230 DSTL10 Combination 0.295 0.069 657.810 0.4167 1.7512 5.459E 05 231 DEAD LinStatic 0.379 0.031 294.358 0.1872 2.1430 2.621E 05 231 LIVE LinStatic 0.547 0.047 425.354 0.2820 3.0848 3.487E 05 231 WIND LinStatic 0.575 0.021 0.764 0.2830 6.4290 1.371E 04 231 DSTL1 Combination 0.531 0.044 412.101 0.2621 3.0003 3.669E 05 231 DSTL2 Combination 1.330 0.114 1033.796 0.6758 7.5074 8.724E 05 231 DSTL3 Combination 1.577 0.064 777.819 0.2236 12.0855 2.034E 04 231 DSTL4 Combination 0.426 0.106 779.348 0.7896 0.7725 7.080E 05 231 DSTL5 Combination 0.743 0.027 352.847 0.0832 5.7861 1.000E 04 231 DSTL6 Combination 0.168 0.048 353.612 0.3662 0.6428 3.711E 05 231 DSTL7 Combination 0.917 7.491E 03 264.158 0.1145 8.3577 1.607E 04 231 DSTL8 Combination 0.234 0.049 265.687 0.4515 4.5002 1.135E 04 231 DSTL9 Combination 0.379 0.031 294.358 0.1872 2.1430 2.621E 05 231 DSTL10 Combination 0.926 0.079 719.712 0.4692 5.2279 6.108E 05 232 DEAD LinStatic 4.192E 03 0.027 281.905 0.1585 0.0293 2.810E 06 232 LIVE LinStatic 7.191E 03 0.041 408.384 0.2402 0.0482 4.573E 06 232 WIND LinStatic 0.535 0.021 0.053 0.2764 5.8082 2.391E 05 232 DSTL1 Combination 5.869E 03 0.038 394.668 0.2219 0.0411 3.935E 06 232 DSTL2 Combination 0.017 0.098 991.701 0.5745 0.1124 1.069E 05 232 DSTL3 Combination 0.523 0.094 746.723 0.7068 5.7247 3.185E 05 232 DSTL4 Combination 0.547 0.053 746.617 0.1540 5.8916 1.596E 05 232 DSTL5 Combination 0.262 0.043 338.313 0.3284 2.8689 1.533E 05 232 DSTL6 Combination 0.273 0.022 338.260 0.0520 2.9393 8.582E 06 232 DSTL7 Combination 0.531 0.045 253.768 0.4191 5.7818 2.644E 05 232 DSTL8 Combination 0.539 3.622E 03 253.662 0.1338 5.8346 2.138E 05 232 DSTL9 Combination 4.192E 03 0.027 281.905 0.1585 0.0293 2.810E 06 232 DSTL10 Combination 0.011 0.068 690.289 0.3987 0.0776 7.383E 06 233 DEAD LinStatic 0.034 0.027 279.869 0.1578 0.2072 4.233E 06 233 LIVE LinStatic 0.049 0.041 405.609 0.2404 0.3022 6.552E 06 233 WIND LinStatic 0.539 0.022 0.039 0.2922 5.8360 2.331E 05 233 DSTL1 Combination 0.047 0.038 391.817 0.2209 0.2901 5.926E 06 233 DSTL2 Combination 0.119 0.098 984.818 0.5740 0.7321 1.556E 05 233 DSTL3 Combination 0.450 0.051 741.491 0.1376 5.2852 3.494E 05 233 DSTL4 Combination 0.629 0.096 741.413 0.7219 6.3869 1.168E 05 233 DSTL5 Combination 0.229 0.021 335.862 0.0432 2.6694 1.674E 05 233 DSTL6 Combination 0.310 0.043 335.823 0.3354 3.1667 6.578E 06 233 DSTL7 Combination 0.509 2.182E 03 251.921 0.1502 5.6495 2.712E 05 233 DSTL8 Combination 0.570 0.046 251.843 0.4341 6.0225 1.950E 05 233 DSTL9 Combination 0.034 0.027 279.869 0.1578 0.2072 4.233E 06 233 DSTL10 Combination 0.083 0.068 685.478 0.3982 0.5094 1.078E 05 234 DEAD LinStatic 0.034 0.027 279.869 0.1579 0.2073 4.243E 06 234 LIVE LinStatic 0.049 0.041 405.609 0.2407 0.3023 6.567E 06 234 WIND LinStatic 0.527 0.021 0.037 0.2807 5.7135 8.549E 06 234 DSTL1 Combination 0.047 0.038 391.817 0.2211 0.2903 5.941E 06

PAGE 133

! 126 9 Story MRF.sdb SAP2000 v17.3.0 9 Story MRF 27 March 2016 Computers and Structures, Inc. Page 5 of 31 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 234 DSTL2 Combination 0.119 0.098 984.818 0.5747 0.7325 1.560E 05 234 DSTL3 Combination 0.617 0.095 741.415 0.7109 6.2646 2.021E 05 234 DSTL4 Combination 0.437 0.053 741.489 0.1496 5.1623 3.110E 06 234 DSTL5 Combination 0.304 0.043 335.824 0.3299 3.1055 9.367E 06 234 DSTL6 Combination 0.223 0.022 335.861 0.0492 2.6079 8.173E 07 234 DSTL7 Combination 0.558 0.045 251.845 0.4228 5.9001 1.237E 05 234 DSTL8 Combination 0.497 3.187E 03 251.919 0.1385 5.5269 4.730E 06 234 DSTL9 Combination 0.034 0.027 279.869 0.1579 0.2073 4.243E 06 234 DSTL10 Combination 0.083 0.068 685.478 0.3987 0.5097 1.081E 05 235 DEAD LinStatic 4.183E 03 0.027 281.905 0.1583 0.0293 2.801E 06 235 LIVE LinStatic 7.178E 03 0.041 408.384 0.2399 0.0481 4.559E 06 235 WIND LinStatic 0.522 0.021 0.051 0.2859 5.6715 4.868E 06 235 DSTL1 Combination 5.856E 03 0.038 394.668 0.2216 0.0410 3.922E 06 235 DSTL2 Combination 0.017 0.098 991.701 0.5739 0.1121 1.066E 05 235 DSTL3 Combination 0.534 0.052 746.619 0.1440 5.7548 1.279E 05 235 DSTL4 Combination 0.509 0.095 746.722 0.7158 5.5883 3.052E 06 235 DSTL5 Combination 0.266 0.022 338.261 0.0470 2.8709 5.796E 06 235 DSTL6 Combination 0.256 0.043 338.312 0.3329 2.8007 9.273E 07 235 DSTL7 Combination 0.525 2.816E 03 253.663 0.1434 5.6979 7.389E 06 235 DSTL8 Combination 0.518 0.046 253.766 0.4284 5.6452 2.347E 06 235 DSTL9 Combination 4.183E 03 0.027 281.905 0.1583 0.0293 2.801E 06 235 DSTL10 Combination 0.011 0.068 690.289 0.3982 0.0774 7.360E 06 236 DEAD LinStatic 0.379 0.031 294.358 0.1874 2.1426 2.613E 05 236 LIVE LinStatic 0.546 0.047 425.354 0.2822 3.0842 3.475E 05 236 WIND LinStatic 0.527 0.030 0.780 0.3832 5.9445 2.190E 04 236 DSTL1 Combination 0.531 0.044 412.101 0.2623 2.9996 3.658E 05 236 DSTL2 Combination 1.330 0.114 1033.796 0.6764 7.5058 8.696E 05 236 DSTL3 Combination 0.474 0.115 779.364 0.8903 0.2893 2.851E 04 236 DSTL4 Combination 1.529 0.055 777.803 0.1239 11.5998 1.529E 04 236 DSTL5 Combination 0.191 0.053 353.620 0.4165 0.4012 1.409E 04 236 DSTL6 Combination 0.719 0.023 352.840 0.0333 5.5434 7.815E 05 236 DSTL7 Combination 0.186 0.058 265.702 0.5519 4.0162 2.425E 04 236 DSTL8 Combination 0.869 2.016E 03 264.142 0.2146 7.8728 1.955E 04 236 DSTL9 Combination 0.379 0.031 294.358 0.1874 2.1426 2.613E 05 236 DSTL10 Combination 0.926 0.079 719.712 0.4696 5.2267 6.088E 05 237 DEAD LinStatic 0.120 0.028 268.869 0.1669 0.7131 2.176E 05 237 LIVE LinStatic 0.175 0.042 388.941 0.2495 1.0365 3.294E 05 237 WIND LinStatic 0.496 0.015 0.450 0.2148 5.4375 1.728E 04 237 DSTL1 Combination 0.168 0.039 376.416 0.2336 0.9983 3.047E 05 237 DSTL2 Combination 0.424 0.100 944.949 0.5993 2.5141 7.883E 05 237 DSTL3 Combination 0.815 0.060 712.034 0.2349 7.3297 2.319E 04 237 DSTL4 Combination 0.178 0.090 711.134 0.6645 3.5453 1.137E 04 237 DSTL5 Combination 0.392 0.026 322.867 0.0928 3.5744 1.125E 04 237 DSTL6 Combination 0.104 0.041 322.418 0.3076 1.8631 6.028E 05 237 DSTL7 Combination 0.605 0.010 242.432 0.0646 6.0792 1.924E 04 237 DSTL8 Combination 0.388 0.040 241.532 0.3650 4.7957 1.532E 04 237 DSTL9 Combination 0.120 0.028 268.869 0.1669 0.7131 2.176E 05 237 DSTL10 Combination 0.295 0.069 657.810 0.4163 1.7496 5.471E 05 1066 DEAD LinStatic 0.022 4.777E 04 545.892 0.0000 0.0000 0.0000 1066 LIVE LinStatic 0.032 1.185E 03 811.607 0.0000 0.0000 0.0000 1066 WIND LinStatic 0.060 1.308E 03 0.015 0.0000 0.0000 0.0000 1066 DSTL1 Combination 0.030 6.688E 04 764.248 0.0000 0.0000 0.0000 1066 DSTL2 Combination 0.077 2.470E 03 1953.642 0.0000 0.0000 0.0000 1066 DSTL3 Combination 0.119 3.066E 03 1466.693 0.0000 0.0000 0.0000 9 Story MRF.sdb SAP2000 v17.3.0 9 Story MRF 27 March 2016 Computers and Structures, Inc. Page 6 of 31 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 1066 DSTL4 Combination 2.405E 03 4.508E 04 1466.662 0.0000 0.0000 0.0000 1066 DSTL5 Combination 0.056 1.227E 03 655.078 0.0000 0.0000 0.0000 1066 DSTL6 Combination 4.327E 03 8.056E 05 655.062 0.0000 0.0000 0.0000 1066 DSTL7 Combination 0.080 1.738E 03 491.318 0.0000 0.0000 0.0000 1066 DSTL8 Combination 0.041 8.777E 04 491.287 0.0000 0.0000 0.0000 1066 DSTL9 Combination 0.022 4.777E 04 545.892 0.0000 0.0000 0.0000 1066 DSTL10 Combination 0.054 1.663E 03 1357.499 0.0000 0.0000 0.0000 1067 DEAD LinStatic 2.263E 03 2.357E 03 542.843 0.0000 0.0000 0.0000 1067 LIVE LinStatic 3.144E 03 3.082E 03 807.349 0.0000 0.0000 0.0000 1067 WIND LinStatic 0.060 2.326E 03 0.011 0.0000 0.0000 0.0000 1067 DSTL1 Combination 3.168E 03 3.300E 03 759.980 0.0000 0.0000 0.0000 1067 DSTL2 Combination 7.746E 03 7.761E 03 1943.170 0.0000 0.0000 0.0000 1067 DSTL3 Combination 0.054 8.237E 03 1458.772 0.0000 0.0000 0.0000 1067 DSTL4 Combination 0.066 3.585E 03 1458.749 0.0000 0.0000 0.0000 1067 DSTL5 Combination 0.027 3.992E 03 651.417 0.0000 0.0000 0.0000 1067 DSTL6 Combination 0.033 1.666E 03 651.406 0.0000 0.0000 0.0000 1067 DSTL7 Combination 0.058 4.448E 03 488.570 0.0000 0.0000 0.0000 1067 DSTL8 Combination 0.062 2.045E 04 488.548 0.0000 0.0000 0.0000 1067 DSTL9 Combination 2.263E 03 2.357E 03 542.843 0.0000 0.0000 0.0000 1067 DSTL10 Combination 5.407E 03 5.440E 03 1350.192 0.0000 0.0000 0.0000 1068 DEAD LinStatic 1.941E 03 3.196E 03 542.949 0.0000 0.0000 0.0000 1068 LIVE LinStatic 3.125E 03 5.043E 03 807.486 0.0000 0.0000 0.0000 1068 WIND LinStatic 0.060 1.507E 03 9.173E 03 0.0000 0.0000 0.0000 1068 DSTL1 Combination 2.718E 03 4.474E 03 760.128 0.0000 0.0000 0.0000 1068 DSTL2 Combination 7.330E 03 0.012 1943.516 0.0000 0.0000 0.0000 1068 DSTL3 Combination 0.065 0.010 1459.015 0.0000 0.0000 0.0000 1068 DSTL4 Combination 0.054 7.371E 03 1459.033 0.0000 0.0000 0.0000 1068 DSTL5 Combination 0.032 4.588E 03 651.534 0.0000 0.0000 0.0000 1068 DSTL6 Combination 0.028 3.081E 03 651.543 0.0000 0.0000 0.0000 1068 DSTL7 Combination 0.062 4.383E 03 488.644 0.0000 0.0000 0.0000 1068 DSTL8 Combination 0.058 1.369E 03 488.663 0.0000 0.0000 0.0000 1068 DSTL9 Combination 1.941E 03 3.196E 03 542.949 0.0000 0.0000 0.0000 1068 DSTL10 Combination 5.067E 03 8.239E 03 1350.434 0.0000 0.0000 0.0000 1069 DEAD LinStatic 0.020 2.147E 03 546.709 0.0000 0.0000 0.0000 1069 LIVE LinStatic 0.031 4.804E 03 813.001 0.0000 0.0000 0.0000 1069 WIND LinStatic 0.062 6.531E 03 0.022 0.0000 0.0000 0.0000 1069 DSTL1 Combination 0.028 3.006E 03 765.392 0.0000 0.0000 0.0000 1069 DSTL2 Combination 0.074 0.010 1956.852 0.0000 0.0000 0.0000 1069 DSTL3 Combination 6.466E 03 8.498E 04 1469.029 0.0000 0.0000 0.0000 1069 DSTL4 Combination 0.117 0.014 1469.073 0.0000 0.0000 0.0000 1069 DSTL5 Combination 6.562E 03 6.892E 04 656.039 0.0000 0.0000 0.0000 1069 DSTL6 Combination 0.055 5.842E 03 656.061 0.0000 0.0000 0.0000 1069 DSTL7 Combination 0.043 4.599E 03 492.016 0.0000 0.0000 0.0000 1069 DSTL8 Combination 0.080 8.463E 03 492.060 0.0000 0.0000 0.0000 1069 DSTL9 Combination 0.020 2.147E 03 546.709 0.0000 0.0000 0.0000 1069 DSTL10 Combination 0.051 6.951E 03 1359.709 0.0000 0.0000 0.0000 1070 DEAD LinStatic 0.032 5.177E 03 550.590 0.0000 0.0000 0.0000 1070 LIVE LinStatic 0.047 7.383E 03 818.863 0.0000 0.0000 0.0000 1070 WIND LinStatic 0.063 1.110E 04 0.050 0.0000 0.0000 0.0000 1070 DSTL1 Combination 0.044 7.248E 03 770.826 0.0000 0.0000 0.0000 1070 DSTL2 Combination 0.113 0.018 1970.890 0.0000 0.0000 0.0000 1070 DSTL3 Combination 0.148 0.013 1479.621 0.0000 0.0000 0.0000 1070 DSTL4 Combination 0.022 0.014 1479.522 0.0000 0.0000 0.0000 1070 DSTL5 Combination 0.069 6.157E 03 660.733 0.0000 0.0000 0.0000

PAGE 134

! 127 9 Story MRF.sdb SAP2000 v17.3.0 9 Story MRF 27 March 2016 Computers and Structures, Inc. Page 7 of 31 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 1070 DSTL6 Combination 6.507E 03 6.268E 03 660.684 0.0000 0.0000 0.0000 1070 DSTL7 Combination 0.091 4.549E 03 495.581 0.0000 0.0000 0.0000 1070 DSTL8 Combination 0.034 4.770E 03 495.482 0.0000 0.0000 0.0000 1070 DSTL9 Combination 0.032 5.177E 03 550.590 0.0000 0.0000 0.0000 1070 DSTL10 Combination 0.079 0.013 1369.454 0.0000 0.0000 0.0000 1071 DEAD LinStatic 2.083E 03 6.835E 03 545.349 0.0000 0.0000 0.0000 1071 LIVE LinStatic 3.047E 03 0.010 811.298 0.0000 0.0000 0.0000 1071 WIND LinStatic 0.062 1.749E 03 4.133E 03 0.0000 0.0000 0.0000 1071 DSTL1 Combination 2.916E 03 9.569E 03 763.489 0.0000 0.0000 0.0000 1071 DSTL2 Combination 7.375E 03 0.025 1952.496 0.0000 0.0000 0.0000 1071 DSTL3 Combination 0.057 0.020 1465.721 0.0000 0.0000 0.0000 1071 DSTL4 Combination 0.068 0.017 1465.713 0.0000 0.0000 0.0000 1071 DSTL5 Combination 0.029 9.077E 03 654.421 0.0000 0.0000 0.0000 1071 DSTL6 Combination 0.034 7.328E 03 654.417 0.0000 0.0000 0.0000 1071 DSTL7 Combination 0.060 7.900E 03 490.818 0.0000 0.0000 0.0000 1071 DSTL8 Combination 0.064 4.403E 03 490.810 0.0000 0.0000 0.0000 1071 DSTL9 Combination 2.083E 03 6.835E 03 545.349 0.0000 0.0000 0.0000 1071 DSTL10 Combination 5.130E 03 0.017 1356.648 0.0000 0.0000 0.0000 1072 DEAD LinStatic 2.351E 03 7.664E 03 545.347 0.0000 0.0000 0.0000 1072 LIVE LinStatic 3.573E 03 0.012 811.290 0.0000 0.0000 0.0000 1072 WIND LinStatic 0.064 1.332E 03 4.005E 03 0.0000 0.0000 0.0000 1072 DSTL1 Combination 3.292E 03 0.011 763.486 0.0000 0.0000 0.0000 1072 DSTL2 Combination 8.539E 03 0.029 1952.480 0.0000 0.0000 0.0000 1072 DSTL3 Combination 0.070 0.023 1465.702 0.0000 0.0000 0.0000 1072 DSTL4 Combination 0.057 0.020 1465.710 0.0000 0.0000 0.0000 1072 DSTL5 Combination 0.035 9.864E 03 654.414 0.0000 0.0000 0.0000 1072 DSTL6 Combination 0.029 8.531E 03 654.418 0.0000 0.0000 0.0000 1072 DSTL7 Combination 0.066 8.230E 03 490.808 0.0000 0.0000 0.0000 1072 DSTL8 Combination 0.062 5.565E 03 490.816 0.0000 0.0000 0.0000 1072 DSTL9 Combination 2.351E 03 7.664E 03 545.347 0.0000 0.0000 0.0000 1072 DSTL10 Combination 5.925E 03 0.020 1356.637 0.0000 0.0000 0.0000 1073 DEAD LinStatic 0.033 7.799E 03 550.746 0.0000 0.0000 0.0000 1073 LIVE LinStatic 0.049 0.013 819.121 0.0000 0.0000 0.0000 1073 WIND LinStatic 0.066 2.727E 03 0.046 0.0000 0.0000 0.0000 1073 DSTL1 Combination 0.046 0.011 771.045 0.0000 0.0000 0.0000 1073 DSTL2 Combination 0.119 0.031 1971.489 0.0000 0.0000 0.0000 1073 DSTL3 Combination 0.023 0.020 1479.971 0.0000 0.0000 0.0000 1073 DSTL4 Combination 0.155 0.025 1480.063 0.0000 0.0000 0.0000 1073 DSTL5 Combination 6.465E 03 7.995E 03 660.872 0.0000 0.0000 0.0000 1073 DSTL6 Combination 0.073 0.011 660.918 0.0000 0.0000 0.0000 1073 DSTL7 Combination 0.037 4.292E 03 495.625 0.0000 0.0000 0.0000 1073 DSTL8 Combination 0.096 9.746E 03 495.718 0.0000 0.0000 0.0000 1073 DSTL9 Combination 0.033 7.799E 03 550.746 0.0000 0.0000 0.0000 1073 DSTL10 Combination 0.082 0.021 1369.867 0.0000 0.0000 0.0000 1074 DEAD LinStatic 0.033 7.764E 03 550.746 0.0000 0.0000 0.0000 1074 LIVE LinStatic 0.049 0.013 819.121 0.0000 0.0000 0.0000 1074 WIND LinStatic 0.063 2.030E 03 0.046 0.0000 0.0000 0.0000 1074 DSTL1 Combination 0.046 0.011 771.045 0.0000 0.0000 0.0000 1074 DSTL2 Combination 0.119 0.031 1971.490 0.0000 0.0000 0.0000 1074 DSTL3 Combination 0.152 0.021 1480.063 0.0000 0.0000 0.0000 1074 DSTL4 Combination 0.027 0.025 1479.971 0.0000 0.0000 0.0000 1074 DSTL5 Combination 0.071 8.302E 03 660.918 0.0000 0.0000 0.0000 1074 DSTL6 Combination 8.371E 03 0.010 660.872 0.0000 0.0000 0.0000 1074 DSTL7 Combination 0.092 4.958E 03 495.718 0.0000 0.0000 0.0000 9 Story MRF.sdb SAP2000 v17.3.0 9 Story MRF 27 March 2016 Computers and Structures, Inc. Page 8 of 31 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 1074 DSTL8 Combination 0.033 9.018E 03 495.626 0.0000 0.0000 0.0000 1074 DSTL9 Combination 0.033 7.764E 03 550.746 0.0000 0.0000 0.0000 1074 DSTL10 Combination 0.082 0.021 1369.868 0.0000 0.0000 0.0000 1075 DEAD LinStatic 2.357E 03 7.621E 03 545.347 0.0000 0.0000 0.0000 1075 LIVE LinStatic 3.580E 03 0.012 811.290 0.0000 0.0000 0.0000 1075 WIND LinStatic 0.062 1.201E 03 3.722E 03 0.0000 0.0000 0.0000 1075 DSTL1 Combination 3.299E 03 0.011 763.486 0.0000 0.0000 0.0000 1075 DSTL2 Combination 8.557E 03 0.029 1952.480 0.0000 0.0000 0.0000 1075 DSTL3 Combination 0.056 0.020 1465.710 0.0000 0.0000 0.0000 1075 DSTL4 Combination 0.069 0.022 1465.703 0.0000 0.0000 0.0000 1075 DSTL5 Combination 0.028 8.544E 03 654.418 0.0000 0.0000 0.0000 1075 DSTL6 Combination 0.034 9.745E 03 654.414 0.0000 0.0000 0.0000 1075 DSTL7 Combination 0.060 5.658E 03 490.816 0.0000 0.0000 0.0000 1075 DSTL8 Combination 0.064 8.059E 03 490.809 0.0000 0.0000 0.0000 1075 DSTL9 Combination 2.357E 03 7.621E 03 545.347 0.0000 0.0000 0.0000 1075 DSTL10 Combination 5.937E 03 0.020 1356.637 0.0000 0.0000 0.0000 1076 DEAD LinStatic 2.079E 03 6.791E 03 545.349 0.0000 0.0000 0.0000 1076 LIVE LinStatic 3.041E 03 0.010 811.298 0.0000 0.0000 0.0000 1076 WIND LinStatic 0.064 1.321E 03 4.423E 03 0.0000 0.0000 0.0000 1076 DSTL1 Combination 2.910E 03 9.508E 03 763.489 0.0000 0.0000 0.0000 1076 DSTL2 Combination 7.360E 03 0.024 1952.496 0.0000 0.0000 0.0000 1076 DSTL3 Combination 0.069 0.017 1465.713 0.0000 0.0000 0.0000 1076 DSTL4 Combination 0.058 0.020 1465.722 0.0000 0.0000 0.0000 1076 DSTL5 Combination 0.034 7.489E 03 654.417 0.0000 0.0000 0.0000 1076 DSTL6 Combination 0.029 8.810E 03 654.421 0.0000 0.0000 0.0000 1076 DSTL7 Combination 0.066 4.791E 03 490.810 0.0000 0.0000 0.0000 1076 DSTL8 Combination 0.062 7.434E 03 490.819 0.0000 0.0000 0.0000 1076 DSTL9 Combination 2.079E 03 6.791E 03 545.349 0.0000 0.0000 0.0000 1076 DSTL10 Combination 5.119E 03 0.017 1356.648 0.0000 0.0000 0.0000 1077 DEAD LinStatic 0.032 5.147E 03 550.590 0.0000 0.0000 0.0000 1077 LIVE LinStatic 0.047 7.338E 03 818.863 0.0000 0.0000 0.0000 1077 WIND LinStatic 0.067 3.785E 03 0.049 0.0000 0.0000 0.0000 1077 DSTL1 Combination 0.044 7.206E 03 770.826 0.0000 0.0000 0.0000 1077 DSTL2 Combination 0.113 0.018 1970.890 0.0000 0.0000 0.0000 1077 DSTL3 Combination 0.019 9.729E 03 1479.522 0.0000 0.0000 0.0000 1077 DSTL4 Combination 0.152 0.017 1479.621 0.0000 0.0000 0.0000 1077 DSTL5 Combination 4.586E 03 4.284E 03 660.684 0.0000 0.0000 0.0000 1077 DSTL6 Combination 0.071 8.069E 03 660.733 0.0000 0.0000 0.0000 1077 DSTL7 Combination 0.038 8.472E 04 495.482 0.0000 0.0000 0.0000 1077 DSTL8 Combination 0.095 8.418E 03 495.581 0.0000 0.0000 0.0000 1077 DSTL9 Combination 0.032 5.147E 03 550.590 0.0000 0.0000 0.0000 1077 DSTL10 Combination 0.079 0.012 1369.454 0.0000 0.0000 0.0000 1078 DEAD LinStatic 0.020 2.100E 03 546.709 0.0000 0.0000 0.0000 1078 LIVE LinStatic 0.031 4.736E 03 813.001 0.0000 0.0000 0.0000 1078 WIND LinStatic 0.060 3.591E 03 0.023 0.0000 0.0000 0.0000 1078 DSTL1 Combination 0.028 2.941E 03 765.392 0.0000 0.0000 0.0000 1078 DSTL2 Combination 0.074 0.010 1956.851 0.0000 0.0000 0.0000 1078 DSTL3 Combination 0.115 3.665E 03 1469.074 0.0000 0.0000 0.0000 1078 DSTL4 Combination 4.842E 03 0.011 1469.028 0.0000 0.0000 0.0000 1078 DSTL5 Combination 0.054 7.250E 04 656.062 0.0000 0.0000 0.0000 1078 DSTL6 Combination 5.748E 03 4.316E 03 656.039 0.0000 0.0000 0.0000 1078 DSTL7 Combination 0.078 1.701E 03 492.061 0.0000 0.0000 0.0000 1078 DSTL8 Combination 0.042 5.482E 03 492.015 0.0000 0.0000 0.0000 1078 DSTL9 Combination 0.020 2.100E 03 546.709 0.0000 0.0000 0.0000

PAGE 135

! 128 9 Story MRF.sdb SAP2000 v17.3.0 9 Story MRF 27 March 2016 Computers and Structures, Inc. Page 9 of 31 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 1078 DSTL10 Combination 0.051 6.836E 03 1359.709 0.0000 0.0000 0.0000 1079 DEAD LinStatic 1.947E 03 3.151E 03 542.949 0.0000 0.0000 0.0000 1079 LIVE LinStatic 3.134E 03 4.976E 03 807.486 0.0000 0.0000 0.0000 1079 WIND LinStatic 0.060 7.140E 04 9.653E 03 0.0000 0.0000 0.0000 1079 DSTL1 Combination 2.726E 03 4.411E 03 760.128 0.0000 0.0000 0.0000 1079 DSTL2 Combination 7.352E 03 0.012 1943.516 0.0000 0.0000 0.0000 1079 DSTL3 Combination 0.054 8.044E 03 1459.034 0.0000 0.0000 0.0000 1079 DSTL4 Combination 0.065 9.472E 03 1459.014 0.0000 0.0000 0.0000 1079 DSTL5 Combination 0.027 3.424E 03 651.543 0.0000 0.0000 0.0000 1079 DSTL6 Combination 0.032 4.138E 03 651.533 0.0000 0.0000 0.0000 1079 DSTL7 Combination 0.058 2.122E 03 488.663 0.0000 0.0000 0.0000 1079 DSTL8 Combination 0.061 3.550E 03 488.644 0.0000 0.0000 0.0000 1079 DSTL9 Combination 1.947E 03 3.151E 03 542.949 0.0000 0.0000 0.0000 1079 DSTL10 Combination 5.082E 03 8.127E 03 1350.434 0.0000 0.0000 0.0000 1080 DEAD LinStatic 2.261E 03 2.314E 03 542.843 0.0000 0.0000 0.0000 1080 LIVE LinStatic 3.141E 03 3.018E 03 807.349 0.0000 0.0000 0.0000 1080 WIND LinStatic 0.060 1.228E 03 0.011 0.0000 0.0000 0.0000 1080 DSTL1 Combination 3.165E 03 3.240E 03 759.980 0.0000 0.0000 0.0000 1080 DSTL2 Combination 7.738E 03 7.605E 03 1943.170 0.0000 0.0000 0.0000 1080 DSTL3 Combination 0.066 4.566E 03 1458.750 0.0000 0.0000 0.0000 1080 DSTL4 Combination 0.054 7.023E 03 1458.771 0.0000 0.0000 0.0000 1080 DSTL5 Combination 0.033 2.163E 03 651.406 0.0000 0.0000 0.0000 1080 DSTL6 Combination 0.027 3.391E 03 651.417 0.0000 0.0000 0.0000 1080 DSTL7 Combination 0.062 8.546E 04 488.548 0.0000 0.0000 0.0000 1080 DSTL8 Combination 0.058 3.311E 03 488.570 0.0000 0.0000 0.0000 1080 DSTL9 Combination 2.261E 03 2.314E 03 542.843 0.0000 0.0000 0.0000 1080 DSTL10 Combination 5.402E 03 5.332E 03 1350.192 0.0000 0.0000 0.0000 1081 DEAD LinStatic 0.022 5.145E 04 545.892 0.0000 0.0000 0.0000 1081 LIVE LinStatic 0.032 1.240E 03 811.607 0.0000 0.0000 0.0000 1081 WIND LinStatic 0.062 7.922E 03 0.012 0.0000 0.0000 0.0000 1081 DSTL1 Combination 0.030 7.202E 04 764.248 0.0000 0.0000 0.0000 1081 DSTL2 Combination 0.077 2.602E 03 1953.642 0.0000 0.0000 0.0000 1081 DSTL3 Combination 4.334E 03 9.780E 03 1466.665 0.0000 0.0000 0.0000 1081 DSTL4 Combination 0.120 6.065E 03 1466.690 0.0000 0.0000 0.0000 1081 DSTL5 Combination 5.291E 03 4.579E 03 655.064 0.0000 0.0000 0.0000 1081 DSTL6 Combination 0.057 3.344E 03 655.076 0.0000 0.0000 0.0000 1081 DSTL7 Combination 0.043 8.385E 03 491.290 0.0000 0.0000 0.0000 1081 DSTL8 Combination 0.082 7.459E 03 491.315 0.0000 0.0000 0.0000 1081 DSTL9 Combination 0.022 5.145E 04 545.892 0.0000 0.0000 0.0000 1081 DSTL10 Combination 0.054 1.755E 03 1357.499 0.0000 0.0000 0.0000 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 2 W14X22 Column No Messages 0.094925 PMM 3 W14X22 Column No Messages 0.058846 PMM 4 W14X22 Column No Messages 0.046328 PMM 5 W14X22 Column No Messages 0.039050 PMM 7 W14X90 Column No Messages 0.911214 PMM 8 W14X74 Column No Messages 0.958610 PMM 9 W14X61 Column No Messages 0.776329 PMM 9 Story MRF.sdb SAP2000 v17.3.0 9 Story MRF 27 March 2016 Computers and Structures, Inc. Page 10 of 31 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 10 W14X38 Column No Messages 0.986347 PMM 12 W14X90 Column No Messages 0.843656 PMM 13 W14X68 Column No Messages 0.989141 PMM 14 W14X61 Column No Messages 0.743036 PMM 15 W14X38 Column No Messages 0.943084 PMM 17 W14X90 Column No Messages 0.847284 PMM 18 W14X68 Column No Messages 0.996785 PMM 19 W14X61 Column No Messages 0.752562 PMM 20 W14X38 Column No Messages 0.956671 PMM 22 W14X90 Column No Messages 0.824090 PMM 23 W14X68 Column No Messages 0.984477 PMM 24 W14X61 Column No Messages 0.778203 PMM 25 W14X43 Column No Messages 0.734565 PMM 27 W14X22 Column No Messages 0.096064 PMM 28 W14X22 Column No Messages 0.073160 PMM 29 W14X22 Column No Messages 0.076627 PMM 30 W14X22 Column No Messages 0.093142 PMM 32 W14X109 Column No Messages 0.987738 PMM 33 W14X90 Column No Messages 0.998648 PMM 34 W14X90 Column No Messages 0.816813 PMM 35 W14X82 Column No Messages 0.941814 PMM 37 W14X159 Column No Messages 0.923120 PMM 38 W14X120 Column No Messages 0.931213 PMM 39 W14X90 Column No Messages 0.839271 PMM 40 W14X61 Column No Messages 0.748022 PMM 42 W14X159 Column No Messages 0.916724 PMM 43 W14X120 Column No Messages 0.922798 PMM 44 W14X90 Column No Messages 0.821680 PMM 45 W14X53 Column No Messages 0.990193 PMM 47 W14X159 Column No Messages 0.916796 PMM 48 W14X120 Column No Messages 0.922980 PMM 49 W14X90 Column No Messages 0.822289 PMM 50 W14X53 Column No Messages 0.990817 PMM 52 W14X159 Column No Messages 0.924765 PMM 53 W14X120 Column No Messages 0.933908 PMM 54 W14X90 Column No Messages 0.842289 PMM 55 W14X61 Column No Messages 0.748043 PMM 57 W14X120 Column No Messages 0.919539 PMM 58 W14X90 Column No Messages 0.996861 PMM 59 W14X90 Column No Messages 0.788363 PMM 60 W14X61 Column No Messages 0.962119 PMM 62 W14X120 Column No Messages 0.913499 PMM 63 W14X99 Column No Messages 0.900538 PMM 64 W14X90 Column No Messages 0.799058 PMM 65 W14X61 Column No Messages 0.974403 PMM 67 W14X159 Column No Messages 0.933510 PMM 68 W14X120 Column No Messages 0.937534 PMM 69 W14X90 Column No Messages 0.843786 PMM 70 W14X61 Column No Messages 0.744435 PMM 72 W14X159 Column No Messages 0.921242 PMM 73 W14X120 Column No Messages 0.927386 PMM 74 W14X90 Column No Messages 0.826018 PMM 75 W14X53 Column No Messages 0.994480 PMM 77 W14X159 Column No Messages 0.921204 PMM

PAGE 136

! 129 9 Story MRF.sdb SAP2000 v17.3.0 9 Story MRF 27 March 2016 Computers and Structures, Inc. Page 11 of 31 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 78 W14X120 Column No Messages 0.927437 PMM 79 W14X90 Column No Messages 0.826102 PMM 80 W14X53 Column No Messages 0.994499 PMM 82 W14X159 Column No Messages 0.934057 PMM 83 W14X120 Column No Messages 0.937788 PMM 84 W14X90 Column No Messages 0.843589 PMM 85 W14X61 Column No Messages 0.744777 PMM 87 W14X120 Column No Messages 0.914446 PMM 88 W14X99 Column No Messages 0.901377 PMM 89 W14X90 Column No Messages 0.800566 PMM 90 W14X61 Column No Messages 0.973226 PMM 92 W14X120 Column No Messages 0.914446 PMM 93 W14X99 Column No Messages 0.901375 PMM 94 W14X90 Column No Messages 0.800564 PMM 95 W14X61 Column No Messages 0.973223 PMM 97 W14X159 Column No Messages 0.934059 PMM 98 W14X120 Column No Messages 0.937788 PMM 99 W14X90 Column No Messages 0.843590 PMM 100 W14X61 Column No Messages 0.744777 PMM 102 W14X159 Column No Messages 0.921205 PMM 103 W14X120 Column No Messages 0.927436 PMM 104 W14X90 Column No Messages 0.826101 PMM 105 W14X53 Column No Messages 0.994499 PMM 107 W14X159 Column No Messages 0.921243 PMM 108 W14X120 Column No Messages 0.927385 PMM 109 W14X90 Column No Messages 0.826018 PMM 110 W14X53 Column No Messages 0.994481 PMM 112 W14X159 Column No Messages 0.933511 PMM 113 W14X120 Column No Messages 0.937533 PMM 114 W14X90 Column No Messages 0.843786 PMM 115 W14X61 Column No Messages 0.744435 PMM 117 W14X120 Column No Messages 0.913502 PMM 118 W14X99 Column No Messages 0.900539 PMM 119 W14X90 Column No Messages 0.799060 PMM 120 W14X61 Column No Messages 0.974405 PMM 122 W14X120 Column No Messages 0.919549 PMM 123 W14X90 Column No Messages 0.996878 PMM 124 W14X90 Column No Messages 0.788382 PMM 125 W14X61 Column No Messages 0.962181 PMM 127 W14X159 Column No Messages 0.924765 PMM 128 W14X120 Column No Messages 0.933911 PMM 129 W14X90 Column No Messages 0.842292 PMM 130 W14X61 Column No Messages 0.748047 PMM 132 W14X159 Column No Messages 0.916796 PMM 133 W14X120 Column No Messages 0.922980 PMM 134 W14X90 Column No Messages 0.822289 PMM 135 W14X53 Column No Messages 0.990817 PMM 137 W14X159 Column No Messages 0.916725 PMM 138 W14X120 Column No Messages 0.922798 PMM 139 W14X90 Column No Messages 0.821681 PMM 140 W14X53 Column No Messages 0.990193 PMM 142 W14X159 Column No Messages 0.923120 PMM 143 W14X120 Column No Messages 0.931214 PMM 144 W14X90 Column No Messages 0.839272 PMM 9 Story MRF.sdb SAP2000 v17.3.0 9 Story MRF 27 March 2016 Computers and Structures, Inc. Page 12 of 31 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 145 W14X61 Column No Messages 0.748021 PMM 147 W14X109 Column No Messages 0.987745 PMM 148 W14X90 Column No Messages 0.998659 PMM 149 W14X90 Column No Messages 0.816825 PMM 150 W14X82 Column No Messages 0.941839 PMM 152 W14X22 Column No Messages 0.098614 PMM 153 W14X22 Column No Messages 0.073132 PMM 154 W14X22 Column No Messages 0.076610 PMM 155 W14X22 Column No Messages 0.093129 PMM 157 W14X90 Column No Messages 0.824084 PMM 158 W14X68 Column No Messages 0.984479 PMM 159 W14X61 Column No Messages 0.778204 PMM 160 W14X43 Column No Messages 0.734567 PMM 162 W14X90 Column No Messages 0.847285 PMM 163 W14X68 Column No Messages 0.996786 PMM 164 W14X61 Column No Messages 0.752563 PMM 165 W14X38 Column No Messages 0.956672 PMM 167 W14X90 Column No Messages 0.843656 PMM 168 W14X68 Column No Messages 0.989142 PMM 169 W14X61 Column No Messages 0.743037 PMM 170 W14X38 Column No Messages 0.943082 PMM 172 W14X90 Column No Messages 0.911214 PMM 173 W14X74 Column No Messages 0.958610 PMM 174 W14X61 Column No Messages 0.776328 PMM 175 W14X38 Column No Messages 0.986346 PMM 177 W14X22 Column No Messages 0.100117 PMM 178 W14X22 Column No Messages 0.058202 PMM 179 W14X22 Column No Messages 0.046328 PMM 180 W14X22 Column No Messages 0.039050 PMM 181 W18X40 Beam No Messages 0.996347 PMM 182 W18X35 Beam No Messages 0.708289 PMM 183 W18X35 Beam No Messages 0.708623 PMM 184 W18X35 Beam No Messages 0.785919 PMM 185 W18X40 Beam No Messages 0.757660 PMM 186 W18X46 Beam No Messages 0.798711 PMM 187 W18X35 Beam No Messages 0.529322 PMM 188 W18X35 Beam No Messages 0.507573 PMM 189 W18X35 Beam No Messages 0.556727 PMM 190 W18X40 Beam No Messages 0.875382 PMM 191 W18X46 Beam No Messages 0.630653 PMM 192 W18X35 Beam No Messages 0.720608 PMM 193 W18X35 Beam No Messages 0.711349 PMM 194 W18X35 Beam No Messages 0.747719 PMM 195 W18X40 Beam No Messages 0.682110 PMM 196 W18X46 Beam No Messages 0.787491 PMM 197 W18X35 Beam No Messages 0.519861 PMM 198 W18X35 Beam No Messages 0.711657 PMM 199 W18X35 Beam No Messages 0.560181 PMM 200 W18X40 Beam No Messages 0.815839 PMM 201 W18X40 Beam No Messages 0.988779 PMM 202 W18X35 Beam No Messages 0.713993 PMM 203 W18X35 Beam No Messages 0.711932 PMM 204 W18X35 Beam No Messages 0.742116 PMM 205 W18X40 Beam No Messages 0.760186 PMM

PAGE 137

! 130 9 Story MRF.sdb SAP2000 v17.3.0 9 Story MRF 27 March 2016 Computers and Structures, Inc. Page 13 of 31 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 206 W18X40 Beam No Messages 0.976890 PMM 207 W18X35 Beam No Messages 0.505322 PMM 208 W18X35 Beam No Messages 0.712476 PMM 209 W18X35 Beam No Messages 0.546103 PMM 210 W18X35 Beam No Messages 0.983016 PMM 211 W18X40 Beam No Messages 0.962164 PMM 212 W18X35 Beam No Messages 0.711621 PMM 213 W18X35 Beam No Messages 0.713020 PMM 214 W18X35 Beam No Messages 0.726086 PMM 215 W18X35 Beam No Messages 0.853572 PMM 216 W18X40 Beam No Messages 0.949313 PMM 217 W18X35 Beam No Messages 0.508727 PMM 218 W18X35 Beam No Messages 0.713531 PMM 219 W18X35 Beam No Messages 0.522630 PMM 220 W18X35 Beam No Messages 0.789199 PMM 221 W18X40 Beam No Messages 0.936620 PMM 222 W18X35 Beam No Messages 0.712499 PMM 223 W18X35 Beam No Messages 0.713501 PMM 224 W18X35 Beam No Messages 0.717301 PMM 225 W18X35 Beam No Messages 0.757485 PMM 231 W18X40 Beam No Messages 0.757612 PMM 232 W18X35 Beam No Messages 0.785941 PMM 233 W18X35 Beam No Messages 0.708611 PMM 234 W18X35 Beam No Messages 0.708274 PMM 235 W18X40 Beam No Messages 0.996302 PMM 236 W18X40 Beam No Messages 0.875369 PMM 237 W18X35 Beam No Messages 0.556746 PMM 238 W18X35 Beam No Messages 0.507571 PMM 239 W18X35 Beam No Messages 0.529351 PMM 240 W18X46 Beam No Messages 0.798703 PMM 241 W18X40 Beam No Messages 0.682091 PMM 242 W18X35 Beam No Messages 0.747729 PMM 243 W18X35 Beam No Messages 0.711346 PMM 244 W18X35 Beam No Messages 0.720625 PMM 245 W18X46 Beam No Messages 0.630643 PMM 246 W18X40 Beam No Messages 0.815828 PMM 247 W18X35 Beam No Messages 0.560197 PMM 248 W18X35 Beam No Messages 0.711654 PMM 249 W18X35 Beam No Messages 0.519884 PMM 250 W18X46 Beam No Messages 0.787484 PMM 251 W18X40 Beam No Messages 0.760175 PMM 252 W18X35 Beam No Messages 0.742125 PMM 253 W18X35 Beam No Messages 0.711930 PMM 254 W18X35 Beam No Messages 0.714008 PMM 255 W18X40 Beam No Messages 0.988772 PMM 256 W18X35 Beam No Messages 0.983004 PMM 257 W18X35 Beam No Messages 0.546118 PMM 258 W18X35 Beam No Messages 0.712474 PMM 259 W18X35 Beam No Messages 0.505324 PMM 260 W18X40 Beam No Messages 0.976884 PMM 261 W18X35 Beam No Messages 0.853562 PMM 262 W18X35 Beam No Messages 0.726094 PMM 263 W18X35 Beam No Messages 0.713018 PMM 264 W18X35 Beam No Messages 0.711622 PMM 9 Story MRF.sdb SAP2000 v17.3.0 9 Story MRF 27 March 2016 Computers and Structures, Inc. Page 14 of 31 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 265 W18X40 Beam No Messages 0.962160 PMM 266 W18X35 Beam No Messages 0.789192 PMM 267 W18X35 Beam No Messages 0.522640 PMM 268 W18X35 Beam No Messages 0.713531 PMM 269 W18X35 Beam No Messages 0.508732 PMM 270 W18X40 Beam No Messages 0.949310 PMM 271 W18X35 Beam No Messages 0.757477 PMM 272 W18X35 Beam No Messages 0.717307 PMM 273 W18X35 Beam No Messages 0.713499 PMM 274 W18X35 Beam No Messages 0.712502 PMM 275 W18X40 Beam No Messages 0.936616 PMM 286 W18X50 Beam No Messages 0.758737 PMM 287 W18X50 Beam No Messages 0.715416 PMM 288 W18X50 Beam No Messages 0.712545 PMM 289 W18X50 Beam No Messages 0.711191 PMM 290 W18X55 Beam No Messages 0.942446 PMM 291 W18X50 Beam No Messages 0.784705 PMM 292 W18X50 Beam No Messages 0.719600 PMM 293 W18X50 Beam No Messages 0.711677 PMM 294 W18X50 Beam No Messages 0.712421 PMM 295 W18X55 Beam No Messages 0.938931 PMM 296 W18X50 Beam No Messages 0.680892 PMM 297 W18X50 Beam No Messages 0.541571 PMM 298 W18X50 Beam No Messages 0.537667 PMM 299 W18X50 Beam No Messages 0.531155 PMM 300 W18X55 Beam No Messages 0.888557 PMM 301 W18X50 Beam No Messages 0.883485 PMM 302 W18X50 Beam No Messages 0.732146 PMM 303 W18X50 Beam No Messages 0.712029 PMM 304 W18X50 Beam No Messages 0.712038 PMM 305 W18X55 Beam No Messages 0.943473 PMM 306 W18X50 Beam No Messages 0.828239 PMM 307 W18X50 Beam No Messages 0.549115 PMM 308 W18X50 Beam No Messages 0.538397 PMM 309 W18X50 Beam No Messages 0.533885 PMM 310 W18X55 Beam No Messages 0.901617 PMM 311 W18X55 Beam No Messages 0.849845 PMM 312 W18X50 Beam No Messages 0.749196 PMM 313 W18X50 Beam No Messages 0.713651 PMM 314 W18X50 Beam No Messages 0.714639 PMM 315 W18X55 Beam No Messages 0.942094 PMM 316 W18X55 Beam No Messages 0.711526 PMM 317 W18X50 Beam No Messages 0.558998 PMM 318 W18X50 Beam No Messages 0.536982 PMM 319 W18X50 Beam No Messages 0.535161 PMM 320 W18X55 Beam No Messages 0.911406 PMM 321 W18X55 Beam No Messages 0.908782 PMM 322 W18X50 Beam No Messages 0.764884 PMM 323 W18X50 Beam No Messages 0.712949 PMM 324 W18X50 Beam No Messages 0.715739 PMM 325 W18X55 Beam No Messages 0.951825 PMM 326 W18X55 Beam No Messages 0.734469 PMM 327 W18X50 Beam No Messages 0.630793 PMM 328 W18X50 Beam No Messages 0.514223 PMM

PAGE 138

! 131 9 Story MRF.sdb SAP2000 v17.3.0 9 Story MRF 27 March 2016 Computers and Structures, Inc. Page 15 of 31 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 329 W18X50 Beam No Messages 0.518838 PMM 330 W18X60 Beam No Messages 0.762179 PMM 336 W18X55 Beam No Messages 0.942446 PMM 337 W18X50 Beam No Messages 0.711188 PMM 338 W18X50 Beam No Messages 0.712544 PMM 339 W18X50 Beam No Messages 0.715410 PMM 340 W18X50 Beam No Messages 0.758738 PMM 341 W18X55 Beam No Messages 0.938928 PMM 342 W18X50 Beam No Messages 0.712421 PMM 343 W18X50 Beam No Messages 0.711676 PMM 344 W18X50 Beam No Messages 0.719601 PMM 345 W18X50 Beam No Messages 0.784731 PMM 346 W18X55 Beam No Messages 0.888559 PMM 347 W18X50 Beam No Messages 0.537760 PMM 348 W18X50 Beam No Messages 0.538339 PMM 349 W18X50 Beam No Messages 0.545553 PMM 350 W18X50 Beam No Messages 0.680852 PMM 351 W18X55 Beam No Messages 0.943469 PMM 352 W18X50 Beam No Messages 0.712037 PMM 353 W18X50 Beam No Messages 0.712030 PMM 354 W18X50 Beam No Messages 0.732147 PMM 355 W18X50 Beam No Messages 0.883499 PMM 356 W18X55 Beam No Messages 0.901619 PMM 357 W18X50 Beam No Messages 0.538186 PMM 358 W18X50 Beam No Messages 0.534921 PMM 359 W18X50 Beam No Messages 0.554080 PMM 360 W18X50 Beam No Messages 0.828215 PMM 361 W18X55 Beam No Messages 0.942091 PMM 362 W18X50 Beam No Messages 0.714639 PMM 363 W18X50 Beam No Messages 0.713651 PMM 364 W18X50 Beam No Messages 0.749197 PMM 365 W18X55 Beam No Messages 0.849852 PMM 366 W18X55 Beam No Messages 0.911407 PMM 367 W18X50 Beam No Messages 0.537291 PMM 368 W18X50 Beam No Messages 0.534233 PMM 369 W18X50 Beam No Messages 0.561774 PMM 370 W18X55 Beam No Messages 0.711514 PMM 371 W18X55 Beam No Messages 0.951823 PMM 372 W18X50 Beam No Messages 0.715740 PMM 373 W18X50 Beam No Messages 0.712949 PMM 374 W18X50 Beam No Messages 0.764885 PMM 375 W18X55 Beam No Messages 0.908787 PMM 376 W18X60 Beam No Messages 0.762181 PMM 377 W18X50 Beam No Messages 0.518838 PMM 378 W18X50 Beam No Messages 0.514224 PMM 379 W18X50 Beam No Messages 0.630790 PMM 380 W18X55 Beam No Messages 0.734459 PMM 381 W24X55 Beam No Messages 0.859541 PMM 382 W24X55 Beam No Messages 0.732301 PMM 383 W24X55 Beam No Messages 0.734129 PMM 384 W24X55 Beam No Messages 0.731983 PMM 385 W24X55 Beam No Messages 0.888772 PMM 386 W24X55 Beam No Messages 0.885442 PMM 387 W24X55 Beam No Messages 0.702244 PMM 9 Story MRF.sdb SAP2000 v17.3.0 9 Story MRF 27 March 2016 Computers and Structures, Inc. Page 16 of 3 1 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 388 W24X55 Beam No Messages 0.707460 PMM 389 W24X55 Beam No Messages 0.701905 PMM 390 W24X55 Beam No Messages 0.886886 PMM 391 W24X55 Beam No Messages 0.886890 PMM 392 W24X55 Beam No Messages 0.701905 PMM 393 W24X55 Beam No Messages 0.707460 PMM 394 W24X55 Beam No Messages 0.702244 PMM 395 W24X55 Beam No Messages 0.885441 PMM 396 W24X55 Beam No Messages 0.888773 PMM 397 W24X55 Beam No Messages 0.731983 PMM 398 W24X55 Beam No Messages 0.734128 PMM 399 W24X55 Beam No Messages 0.732301 PMM 400 W24X55 Beam No Messages 0.859540 PMM 401 W18X35 Beam No Messages 0.859014 PMM 402 W18X35 Beam No Messages 0.858969 PMM 403 W18X35 Beam No Messages 0.858993 PMM 404 W18X35 Beam No Messages 0.858993 PMM 405 W18X35 Beam No Messages 0.858991 PMM 406 W18X35 Beam No Messages 0.858988 PMM 407 W18X35 Beam No Messages 0.858982 PMM 408 W18X35 Beam No Messages 0.858987 PMM 409 W18X35 Beam No Messages 0.858967 PMM 410 W18X35 Beam No Messages 0.859020 PMM 411 W18X35 Beam No Messages 0.791440 PMM 412 W18X35 Beam No Messages 0.791568 PMM 413 W18X35 Beam No Messages 0.791554 PMM 414 W18X35 Beam No Messages 0.791577 PMM 415 W18X35 Beam No Messages 0.791508 PMM 416 W18X35 Beam No Messages 0.791514 PMM 417 W18X35 Beam No Messages 0.791545 PMM 418 W18X35 Beam No Messages 0.791524 PMM 419 W18X35 Beam No Messages 0.791589 PMM 420 W18X35 Beam No Messages 0.791492 PMM 421 W18X35 Beam No Messages 0.859069 PMM 422 W18X35 Beam No Messages 0.791467 PMM 423 W18X35 Beam No Messages 0.791643 PMM 424 W18X35 Beam No Messages 0.791676 PMM 425 W18X35 Beam No Messages 0.791676 PMM 426 W18X35 Beam No Messages 0.791676 PMM 427 W18X35 Beam No Messages 0.791676 PMM 428 W18X35 Beam No Messages 0.791643 PMM 429 W18X35 Beam No Messages 0.791467 PMM 430 W18X35 Beam No Messages 0.859069 PMM 431 W18X35 Beam No Messages 0.791492 PMM 432 W18X35 Beam No Messages 0.791589 PMM 433 W18X35 Beam No Messages 0.791524 PMM 434 W18X35 Beam No Messages 0.791545 PMM 435 W18X35 Beam No Messages 0.791514 PMM 436 W18X35 Beam No Messages 0.791508 PMM 437 W18X35 Beam No Messages 0.791577 PMM 438 W18X35 Beam No Messages 0.791554 PMM 439 W18X35 Beam No Messages 0.791568 PMM 440 W18X35 Beam No Messages 0.791439 PMM 441 W18X35 Beam No Messages 0.859020 PMM

PAGE 139

! 132 9 Story MRF.sdb SAP2000 v17.3.0 9 Story MRF 27 March 2016 Computers and Structures, Inc. Page 17 of 31 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 442 W18X35 Beam No Messages 0.858967 PMM 443 W18X35 Beam No Messages 0.858987 PMM 444 W18X35 Beam No Messages 0.858982 PMM 445 W18X35 Beam No Messages 0.858988 PMM 446 W18X35 Beam No Messages 0.858991 PMM 447 W18X35 Beam No Messages 0.858993 PMM 448 W18X35 Beam No Messages 0.858993 PMM 449 W18X35 Beam No Messages 0.858969 PMM 450 W18X35 Beam No Messages 0.859014 PMM 451 W18X35 Beam No Messages 0.858987 PMM 452 W18X35 Beam No Messages 0.791557 PMM 453 W18X35 Beam No Messages 0.791575 PMM 454 W18X35 Beam No Messages 0.791533 PMM 455 W18X35 Beam No Messages 0.858973 PMM 456 W18X35 Beam No Messages 0.858984 PMM 457 W18X35 Beam No Messages 0.791517 PMM 458 W18X35 Beam No Messages 0.791664 PMM 459 W18X35 Beam No Messages 0.791542 PMM 460 W18X35 Beam No Messages 0.858979 PMM 461 W18X35 Beam No Messages 0.858979 PMM 462 W18X35 Beam No Messages 0.791542 PMM 463 W18X35 Beam No Messages 0.791664 PMM 464 W18X35 Beam No Messages 0.791517 PMM 465 W18X35 Beam No Messages 0.858984 PMM 466 W18X35 Beam No Messages 0.858973 PMM 467 W18X35 Beam No Messages 0.791533 PMM 468 W18X35 Beam No Messages 0.791575 PMM 469 W18X35 Beam No Messages 0.791557 PMM 470 W18X35 Beam No Messages 0.858987 PMM 471 W24X55 Beam No Messages 0.822108 PMM 472 W24X55 Beam No Messages 0.777327 PMM 473 W24X55 Beam No Messages 0.775082 PMM 474 W24X55 Beam No Messages 0.777195 PMM 475 W24X55 Beam No Messages 0.850487 PMM 476 W24X55 Beam No Messages 0.812882 PMM 477 W24X55 Beam No Messages 0.705569 PMM 478 W24X55 Beam No Messages 0.746684 PMM 479 W24X55 Beam No Messages 0.705257 PMM 480 W24X55 Beam No Messages 0.814928 PMM 481 W24X55 Beam No Messages 0.814931 PMM 482 W24X55 Beam No Messages 0.705257 PMM 483 W24X55 Beam No Messages 0.746684 PMM 484 W24X55 Beam No Messages 0.705568 PMM 485 W24X55 Beam No Messages 0.812881 PMM 486 W24X55 Beam No Messages 0.841557 PMM 487 W24X55 Beam No Messages 0.777195 PMM 488 W24X55 Beam No Messages 0.775082 PMM 489 W24X55 Beam No Messages 0.777327 PMM 490 W24X55 Beam No Messages 0.822108 PMM 491 W18X35 Beam No Messages 0.791546 PMM 492 W18X35 Beam No Messages 0.858913 PMM 493 W18X35 Beam No Messages 0.791437 PMM 494 W18X35 Beam No Messages 0.791432 PMM 495 W18X35 Beam No Messages 0.791432 PMM 9 Story MRF.sdb SAP2000 v17.3.0 9 Story MRF 27 March 2016 Computers and Structures, Inc. Page 18 of 31 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 496 W18X35 Beam No Messages 0.791429 PMM 497 W18X35 Beam No Messages 0.791421 PMM 498 W18X35 Beam No Messages 0.791428 PMM 499 W18X35 Beam No Messages 0.858917 PMM 500 W18X35 Beam No Messages 0.791553 PMM 501 W18X35 Beam No Messages 0.859026 PMM 502 W18X35 Beam No Messages 0.859096 PMM 503 W18X35 Beam No Messages 0.859035 PMM 504 W18X35 Beam No Messages 0.859048 PMM 505 W18X35 Beam No Messages 0.859018 PMM 506 W18X35 Beam No Messages 0.859019 PMM 507 W18X35 Beam No Messages 0.859034 PMM 508 W18X35 Beam No Messages 0.859026 PMM 509 W18X35 Beam No Messages 0.859076 PMM 510 W18X35 Beam No Messages 0.859009 PMM 511 W18X35 Beam No Messages 0.791753 PMM 512 W18X35 Beam No Messages 0.859009 PMM 513 W18X35 Beam No Messages 0.859084 PMM 514 W18X35 Beam No Messages 0.859093 PMM 515 W18X35 Beam No Messages 0.859087 PMM 516 W18X35 Beam No Messages 0.859087 PMM 517 W18X35 Beam No Messages 0.859093 PMM 518 W18X35 Beam No Messages 0.859084 PMM 519 W18X35 Beam No Messages 0.859009 PMM 520 W18X35 Beam No Messages 0.791753 PMM 521 W18X35 Beam No Messages 0.859009 PMM 522 W18X35 Beam No Messages 0.859076 PMM 523 W18X35 Beam No Messages 0.859026 PMM 524 W18X35 Beam No Messages 0.859034 PMM 525 W18X35 Beam No Messages 0.859019 PMM 526 W18X35 Beam No Messages 0.859018 PMM 527 W18X35 Beam No Messages 0.859048 PMM 528 W18X35 Beam No Messages 0.859035 PMM 529 W18X35 Beam No Messages 0.859096 PMM 530 W18X35 Beam No Messages 0.859026 PMM 531 W18X35 Beam No Messages 0.791553 PMM 532 W18X35 Beam No Messages 0.858916 PMM 533 W18X35 Beam No Messages 0.791428 PMM 534 W18X35 Beam No Messages 0.791421 PMM 535 W18X35 Beam No Messages 0.791429 PMM 536 W18X35 Beam No Messages 0.791432 PMM 537 W18X35 Beam No Messages 0.791432 PMM 538 W18X35 Beam No Messages 0.791437 PMM 539 W18X35 Beam No Messages 0.858913 PMM 540 W18X35 Beam No Messages 0.791546 PMM 541 W18X35 Beam No Messages 0.791436 PMM 542 W18X35 Beam No Messages 0.859037 PMM 543 W18X35 Beam No Messages 0.859057 PMM 544 W18X35 Beam No Messages 0.859050 PMM 545 W18X35 Beam No Messages 0.791412 PMM 546 W18X35 Beam No Messages 0.791433 PMM 547 W18X35 Beam No Messages 0.859024 PMM 548 W18X35 Beam No Messages 0.859085 PMM 549 W18X35 Beam No Messages 0.859030 PMM

PAGE 140

! 133 9 Story MRF.sdb SAP2000 v17.3.0 9 Story MRF 27 March 2016 Computers and Structures, Inc. Page 19 of 31 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 550 W18X35 Beam No Messages 0.791430 PMM 551 W18X35 Beam No Messages 0.791430 PMM 552 W18X35 Beam No Messages 0.859030 PMM 553 W18X35 Beam No Messages 0.859085 PMM 554 W18X35 Beam No Messages 0.859024 PMM 555 W18X35 Beam No Messages 0.791433 PMM 556 W18X35 Beam No Messages 0.791412 PMM 557 W18X35 Beam No Messages 0.859050 PMM 558 W18X35 Beam No Messages 0.859057 PMM 559 W18X35 Beam No Messages 0.859037 PMM 560 W18X35 Beam No Messages 0.791436 PMM 561 W24X55 Beam No Messages 0.753772 PMM 562 W24X55 Beam No Messages 0.734309 PMM 563 W24X55 Beam No Messages 0.732291 PMM 564 W24X55 Beam No Messages 0.734762 PMM 565 W24X55 Beam No Messages 0.767382 PMM 566 W24X55 Beam No Messages 0.750905 PMM 567 W24X55 Beam No Messages 0.707377 PMM 568 W24X55 Beam No Messages 0.705140 PMM 569 W24X55 Beam No Messages 0.707410 PMM 570 W24X55 Beam No Messages 0.750346 PMM 571 W24X55 Beam No Messages 0.750348 PMM 572 W24X55 Beam No Messages 0.707410 PMM 573 W24X55 Beam No Messages 0.705140 PMM 574 W24X55 Beam No Messages 0.707377 PMM 575 W24X55 Beam No Messages 0.750904 PMM 576 W24X55 Beam No Messages 0.767382 PMM 577 W24X55 Beam No Messages 0.734762 PMM 578 W24X55 Beam No Messages 0.732291 PMM 579 W24X55 Beam No Messages 0.734309 PMM 580 W24X55 Beam No Messages 0.753773 PMM 581 W18X35 Beam No Messages 0.858969 PMM 582 W18X35 Beam No Messages 0.858920 PMM 583 W18X35 Beam No Messages 0.858931 PMM 584 W18X35 Beam No Messages 0.858931 PMM 585 W18X35 Beam No Messages 0.858931 PMM 586 W18X35 Beam No Messages 0.858932 PMM 587 W18X35 Beam No Messages 0.858932 PMM 588 W18X35 Beam No Messages 0.858933 PMM 589 W18X35 Beam No Messages 0.858922 PMM 590 W18X35 Beam No Messages 0.858969 PMM 591 W18X35 Beam No Messages 0.791453 PMM 592 W18X35 Beam No Messages 0.791485 PMM 593 W18X35 Beam No Messages 0.791497 PMM 594 W18X35 Beam No Messages 0.791503 PMM 595 W18X35 Beam No Messages 0.791492 PMM 596 W18X35 Beam No Messages 0.791491 PMM 597 W18X35 Beam No Messages 0.791509 PMM 598 W18X35 Beam No Messages 0.791502 PMM 599 W18X35 Beam No Messages 0.791477 PMM 600 W18X35 Beam No Messages 0.791459 PMM 601 W18X35 Beam No Messages 0.859028 PMM 602 W18X35 Beam No Messages 0.791381 PMM 603 W18X35 Beam No Messages 0.791546 PMM 9 Story MRF.sdb SAP2000 v17.3.0 9 Story MRF 27 March 2016 Computers and Structures, Inc. Page 20 of 31 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 604 W18X35 Beam No Messages 0.791572 PMM 605 W18X35 Beam No Messages 0.791576 PMM 606 W18X35 Beam No Messages 0.791576 PMM 607 W18X35 Beam No Messages 0.791572 PMM 608 W18X35 Beam No Messages 0.791546 PMM 609 W18X35 Beam No Messages 0.791381 PMM 610 W18X35 Beam No Messages 0.859028 PMM 611 W18X35 Beam No Messages 0.791459 PMM 612 W18X35 Beam No Messages 0.791477 PMM 613 W18X35 Beam No Messages 0.791502 PMM 614 W18X35 Beam No Messages 0.791509 PMM 615 W18X35 Beam No Messages 0.791491 PMM 616 W18X35 Beam No Messages 0.791492 PMM 617 W18X35 Beam No Messages 0.791504 PMM 618 W18X35 Beam No Messages 0.791497 PMM 619 W18X35 Beam No Messages 0.791485 PMM 620 W18X35 Beam No Messages 0.791453 PMM 621 W18X35 Beam No Messages 0.858969 PMM 622 W18X35 Beam No Messages 0.858922 PMM 623 W18X35 Beam No Messages 0.858933 PMM 624 W18X35 Beam No Messages 0.858932 PMM 625 W18X35 Beam No Messages 0.858932 PMM 626 W18X35 Beam No Messages 0.858931 PMM 627 W18X35 Beam No Messages 0.858931 PMM 628 W18X35 Beam No Messages 0.858931 PMM 629 W18X35 Beam No Messages 0.858920 PMM 630 W18X35 Beam No Messages 0.858969 PMM 631 W18X35 Beam No Messages 0.858928 PMM 632 W18X35 Beam No Messages 0.791503 PMM 633 W18X35 Beam No Messages 0.791488 PMM 634 W18X35 Beam No Messages 0.791494 PMM 635 W18X35 Beam No Messages 0.858930 PMM 636 W18X35 Beam No Messages 0.858930 PMM 637 W18X35 Beam No Messages 0.791496 PMM 638 W18X35 Beam No Messages 0.791573 PMM 639 W18X35 Beam No Messages 0.791494 PMM 640 W18X35 Beam No Messages 0.858931 PMM 641 W18X35 Beam No Messages 0.858931 PMM 642 W18X35 Beam No Messages 0.791494 PMM 643 W18X35 Beam No Messages 0.791573 PMM 644 W18X35 Beam No Messages 0.791496 PMM 645 W18X35 Beam No Messages 0.858930 PMM 646 W18X35 Beam No Messages 0.858930 PMM 647 W18X35 Beam No Messages 0.791494 PMM 648 W18X35 Beam No Messages 0.791488 PMM 649 W18X35 Beam No Messages 0.791503 PMM 650 W18X35 Beam No Messages 0.858928 PMM 651 W24X55 Beam No Messages 0.796970 PMM 652 W24X55 Beam No Messages 0.776725 PMM 653 W24X55 Beam No Messages 0.775350 PMM 654 W24X55 Beam No Messages 0.777152 PMM 655 W24X55 Beam No Messages 0.808090 PMM 656 W24X55 Beam No Messages 0.750782 PMM 657 W24X55 Beam No Messages 0.747895 PMM

PAGE 141

! 134 9 Story MRF.sdb SAP2000 v17.3.0 9 Story MRF 27 March 2016 Computers and Structures, Inc. Page 21 of 31 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 658 W24X55 Beam No Messages 0.746682 PMM 659 W24X55 Beam No Messages 0.747875 PMM 660 W24X55 Beam No Messages 0.749960 PMM 661 W24X55 Beam No Messages 0.749962 PMM 662 W24X55 Beam No Messages 0.747875 PMM 663 W24X55 Beam No Messages 0.746683 PMM 664 W24X55 Beam No Messages 0.747895 PMM 665 W24X55 Beam No Messages 0.750781 PMM 666 W24X55 Beam No Messages 0.805941 PMM 667 W24X55 Beam No Messages 0.777152 PMM 668 W24X55 Beam No Messages 0.775350 PMM 669 W24X55 Beam No Messages 0.776725 PMM 670 W24X55 Beam No Messages 0.796970 PMM 671 W18X35 Beam No Messages 0.791440 PMM 672 W18X35 Beam No Messages 0.858936 PMM 673 W18X35 Beam No Messages 0.791415 PMM 674 W18X35 Beam No Messages 0.791415 PMM 675 W18X35 Beam No Messages 0.791423 PMM 676 W18X35 Beam No Messages 0.791423 PMM 677 W18X35 Beam No Messages 0.791414 PMM 678 W18X35 Beam No Messages 0.791414 PMM 679 W18X35 Beam No Messages 0.858936 PMM 680 W18X35 Beam No Messages 0.791442 PMM 681 W18X35 Beam No Messages 0.859023 PMM 682 W18X35 Beam No Messages 0.859141 PMM 683 W18X35 Beam No Messages 0.858994 PMM 684 W18X35 Beam No Messages 0.859011 PMM 685 W18X35 Beam No Messages 0.858979 PMM 686 W18X35 Beam No Messages 0.858979 PMM 687 W18X35 Beam No Messages 0.859011 PMM 688 W18X35 Beam No Messages 0.858994 PMM 689 W18X35 Beam No Messages 0.859147 PMM 690 W18X35 Beam No Messages 0.859026 PMM 691 W18X35 Beam No Messages 0.791589 PMM 692 W18X35 Beam No Messages 0.859034 PMM 693 W18X35 Beam No Messages 0.859048 PMM 694 W18X35 Beam No Messages 0.859043 PMM 695 W18X35 Beam No Messages 0.859027 PMM 696 W18X35 Beam No Messages 0.859027 PMM 697 W18X35 Beam No Messages 0.859043 PMM 698 W18X35 Beam No Messages 0.859048 PMM 699 W18X35 Beam No Messages 0.859034 PMM 700 W18X35 Beam No Messages 0.791589 PMM 701 W18X35 Beam No Messages 0.859026 PMM 702 W18X35 Beam No Messages 0.859147 PMM 703 W18X35 Beam No Messages 0.858994 PMM 704 W18X35 Beam No Messages 0.859011 PMM 705 W18X35 Beam No Messages 0.858979 PMM 706 W18X35 Beam No Messages 0.858979 PMM 707 W18X35 Beam No Messages 0.859011 PMM 708 W18X35 Beam No Messages 0.858994 PMM 709 W18X35 Beam No Messages 0.859141 PMM 710 W18X35 Beam No Messages 0.859023 PMM 711 W18X35 Beam No Messages 0.791442 PMM 9 Story MRF.sdb SAP2000 v17.3.0 9 Story MRF 27 March 2016 Computers and Structures, Inc. Page 22 of 31 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 712 W18X35 Beam No Messages 0.858936 PMM 713 W18X35 Beam No Messages 0.791414 PMM 714 W18X35 Beam No Messages 0.791414 PMM 715 W18X35 Beam No Messages 0.791423 PMM 716 W18X35 Beam No Messages 0.791423 PMM 717 W18X35 Beam No Messages 0.791415 PMM 718 W18X35 Beam No Messages 0.791415 PMM 719 W18X35 Beam No Messages 0.858936 PMM 720 W18X35 Beam No Messages 0.791440 PMM 721 W18X35 Beam No Messages 0.791392 PMM 722 W18X35 Beam No Messages 0.859025 PMM 723 W18X35 Beam No Messages 0.859047 PMM 724 W18X35 Beam No Messages 0.859025 PMM 725 W18X35 Beam No Messages 0.791393 PMM 726 W18X35 Beam No Messages 0.791422 PMM 727 W18X35 Beam No Messages 0.858985 PMM 728 W18X35 Beam No Messages 0.859031 PMM 729 W18X35 Beam No Messages 0.858986 PMM 730 W18X35 Beam No Messages 0.791422 PMM 731 W18X35 Beam No Messages 0.791422 PMM 732 W18X35 Beam No Messages 0.858986 PMM 733 W18X35 Beam No Messages 0.859031 PMM 734 W18X35 Beam No Messages 0.858985 PMM 735 W18X35 Beam No Messages 0.791422 PMM 736 W18X35 Beam No Messages 0.791393 PMM 737 W18X35 Beam No Messages 0.859025 PMM 738 W18X35 Beam No Messages 0.859047 PMM 739 W18X35 Beam No Messages 0.859025 PMM 740 W18X35 Beam No Messages 0.791392 PMM 741 W24X55 Beam No Messages 0.797927 PMM 742 W24X55 Beam No Messages 0.732833 PMM 743 W24X55 Beam No Messages 0.732208 PMM 744 W24X55 Beam No Messages 0.733126 PMM 745 W24X55 Beam No Messages 0.807349 PMM 746 W24X55 Beam No Messages 0.748090 PMM 747 W24X55 Beam No Messages 0.747373 PMM 748 W24X55 Beam No Messages 0.746599 PMM 749 W24X55 Beam No Messages 0.747370 PMM 750 W24X55 Beam No Messages 0.747332 PMM 751 W24X55 Beam No Messages 0.747335 PMM 752 W24X55 Beam No Messages 0.747369 PMM 753 W24X55 Beam No Messages 0.746599 PMM 754 W24X55 Beam No Messages 0.747373 PMM 755 W24X55 Beam No Messages 0.748089 PMM 756 W24X55 Beam No Messages 0.804682 PMM 757 W24X55 Beam No Messages 0.733126 PMM 758 W24X55 Beam No Messages 0.732208 PMM 759 W24X55 Beam No Messages 0.732833 PMM 760 W24X55 Beam No Messages 0.797927 PMM 761 W18X35 Beam No Messages 0.858945 PMM 762 W18X35 Beam No Messages 0.858920 PMM 763 W18X35 Beam No Messages 0.858913 PMM 764 W18X35 Beam No Messages 0.858912 PMM 765 W18X35 Beam No Messages 0.858911 PMM

PAGE 142

! 135 9 Story MRF.sdb SAP2000 v17.3.0 9 Story MRF 27 March 2016 Computers and Structures, Inc. Page 23 of 31 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 766 W18X35 Beam No Messages 0.858912 PMM 767 W18X35 Beam No Messages 0.858913 PMM 768 W18X35 Beam No Messages 0.858914 PMM 769 W18X35 Beam No Messages 0.858920 PMM 770 W18X35 Beam No Messages 0.858945 PMM 771 W18X35 Beam No Messages 0.858910 PMM 772 W18X35 Beam No Messages 0.858939 PMM 773 W18X35 Beam No Messages 0.791431 PMM 774 W18X35 Beam No Messages 0.791422 PMM 775 W18X35 Beam No Messages 0.791439 PMM 776 W18X35 Beam No Messages 0.791438 PMM 777 W18X35 Beam No Messages 0.791420 PMM 778 W18X35 Beam No Messages 0.791431 PMM 779 W18X35 Beam No Messages 0.858947 PMM 780 W18X35 Beam No Messages 0.858915 PMM 781 W18X35 Beam No Messages 0.858977 PMM 782 W18X35 Beam No Messages 0.858940 PMM 783 W18X35 Beam No Messages 0.791427 PMM 784 W18X35 Beam No Messages 0.791452 PMM 785 W18X35 Beam No Messages 0.791469 PMM 786 W18X35 Beam No Messages 0.791469 PMM 787 W18X35 Beam No Messages 0.791452 PMM 788 W18X35 Beam No Messages 0.791427 PMM 789 W18X35 Beam No Messages 0.858940 PMM 790 W18X35 Beam No Messages 0.858977 PMM 791 W18X35 Beam No Messages 0.858915 PMM 792 W18X35 Beam No Messages 0.858947 PMM 793 W18X35 Beam No Messages 0.791431 PMM 794 W18X35 Beam No Messages 0.791420 PMM 795 W18X35 Beam No Messages 0.791438 PMM 796 W18X35 Beam No Messages 0.791439 PMM 797 W18X35 Beam No Messages 0.791423 PMM 798 W18X35 Beam No Messages 0.791431 PMM 799 W18X35 Beam No Messages 0.858939 PMM 800 W18X35 Beam No Messages 0.858910 PMM 801 W18X35 Beam No Messages 0.858945 PMM 802 W18X35 Beam No Messages 0.858920 PMM 803 W18X35 Beam No Messages 0.858914 PMM 804 W18X35 Beam No Messages 0.858913 PMM 805 W18X35 Beam No Messages 0.858912 PMM 806 W18X35 Beam No Messages 0.858911 PMM 807 W18X35 Beam No Messages 0.858912 PMM 808 W18X35 Beam No Messages 0.858913 PMM 809 W18X35 Beam No Messages 0.858920 PMM 810 W18X35 Beam No Messages 0.858946 PMM 811 W18X35 Beam No Messages 0.858914 PMM 812 W18X35 Beam No Messages 0.791398 PMM 813 W18X35 Beam No Messages 0.858908 PMM 814 W18X35 Beam No Messages 0.791405 PMM 815 W18X35 Beam No Messages 0.858914 PMM 816 W18X35 Beam No Messages 0.858910 PMM 817 W18X35 Beam No Messages 0.791434 PMM 818 W18X35 Beam No Messages 0.791464 PMM 819 W18X35 Beam No Messages 0.791434 PMM 9 Story MRF.sdb SAP2000 v17.3.0 9 Story MRF 27 March 2016 Computers and Structures, Inc. Page 24 of 31 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 820 W18X35 Beam No Messages 0.858911 PMM 821 W18X35 Beam No Messages 0.858911 PMM 822 W18X35 Beam No Messages 0.791434 PMM 823 W18X35 Beam No Messages 0.791464 PMM 824 W18X35 Beam No Messages 0.791434 PMM 825 W18X35 Beam No Messages 0.858910 PMM 826 W18X35 Beam No Messages 0.858914 PMM 827 W18X35 Beam No Messages 0.791405 PMM 828 W18X35 Beam No Messages 0.858908 PMM 829 W18X35 Beam No Messages 0.791398 PMM 830 W18X35 Beam No Messages 0.858914 PMM 831 W24X55 Beam No Messages 0.797775 PMM 832 W24X55 Beam No Messages 0.775886 PMM 833 W24X55 Beam No Messages 0.775593 PMM 834 W24X55 Beam No Messages 0.776243 PMM 835 W24X55 Beam No Messages 0.807586 PMM 836 W24X55 Beam No Messages 0.749720 PMM 837 W24X55 Beam No Messages 0.746987 PMM 838 W24X55 Beam No Messages 0.746719 PMM 839 W24X55 Beam No Messages 0.746961 PMM 840 W24X55 Beam No Messages 0.748921 PMM 841 W24X55 Beam No Messages 0.748923 PMM 842 W24X55 Beam No Messages 0.746961 PMM 843 W24X55 Beam No Messages 0.746720 PMM 844 W24X55 Beam No Messages 0.746987 PMM 845 W24X55 Beam No Messages 0.749719 PMM 846 W24X55 Beam No Messages 0.804344 PMM 847 W24X55 Beam No Messages 0.776243 PMM 848 W24X55 Beam No Messages 0.775593 PMM 849 W24X55 Beam No Messages 0.775886 PMM 850 W24X55 Beam No Messages 0.797775 PMM 851 W18X35 Beam No Messages 0.858918 PMM 852 W18X35 Beam No Messages 0.858955 PMM 853 W18X35 Beam No Messages 0.791398 PMM 854 W18X35 Beam No Messages 0.791399 PMM 855 W18X35 Beam No Messages 0.791410 PMM 856 W18X35 Beam No Messages 0.791410 PMM 857 W18X35 Beam No Messages 0.791397 PMM 858 W18X35 Beam No Messages 0.791395 PMM 859 W18X35 Beam No Messages 0.858953 PMM 860 W18X35 Beam No Messages 0.858913 PMM 861 W18X35 Beam No Messages 0.859041 PMM 862 W18X35 Beam No Messages 0.859199 PMM 863 W18X35 Beam No Messages 0.858985 PMM 864 W18X35 Beam No Messages 0.859007 PMM 865 W18X35 Beam No Messages 0.858966 PMM 866 W18X35 Beam No Messages 0.858966 PMM 867 W18X35 Beam No Messages 0.859008 PMM 868 W18X35 Beam No Messages 0.858985 PMM 869 W18X35 Beam No Messages 0.859214 PMM 870 W18X35 Beam No Messages 0.859046 PMM 871 W18X35 Beam No Messages 0.791466 PMM 872 W18X35 Beam No Messages 0.859076 PMM 873 W18X35 Beam No Messages 0.859046 PMM

PAGE 143

! 136 9 Story MRF.sdb SAP2000 v17.3.0 9 Story MRF 27 March 2016 Computers and Structures, Inc. Page 25 of 31 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 874 W18X35 Beam No Messages 0.859031 PMM 875 W18X35 Beam No Messages 0.859008 PMM 876 W18X35 Beam No Messages 0.859008 PMM 877 W18X35 Beam No Messages 0.859031 PMM 878 W18X35 Beam No Messages 0.859046 PMM 879 W18X35 Beam No Messages 0.859076 PMM 880 W18X35 Beam No Messages 0.791466 PMM 881 W18X35 Beam No Messages 0.859046 PMM 882 W18X35 Beam No Messages 0.859214 PMM 883 W18X35 Beam No Messages 0.858985 PMM 884 W18X35 Beam No Messages 0.859008 PMM 885 W18X35 Beam No Messages 0.858966 PMM 886 W18X35 Beam No Messages 0.858966 PMM 887 W18X35 Beam No Messages 0.859007 PMM 888 W18X35 Beam No Messages 0.858985 PMM 889 W18X35 Beam No Messages 0.859199 PMM 890 W18X35 Beam No Messages 0.859041 PMM 891 W18X35 Beam No Messages 0.858912 PMM 892 W18X35 Beam No Messages 0.858953 PMM 893 W18X35 Beam No Messages 0.791395 PMM 894 W18X35 Beam No Messages 0.791397 PMM 895 W18X35 Beam No Messages 0.791410 PMM 896 W18X35 Beam No Messages 0.791410 PMM 897 W18X35 Beam No Messages 0.791399 PMM 898 W18X35 Beam No Messages 0.791398 PMM 899 W18X35 Beam No Messages 0.858955 PMM 900 W18X35 Beam No Messages 0.858918 PMM 901 W18X35 Beam No Messages 0.858912 PMM 902 W18X35 Beam No Messages 0.859031 PMM 903 W18X35 Beam No Messages 0.859062 PMM 904 W18X35 Beam No Messages 0.859029 PMM 905 W18X35 Beam No Messages 0.858912 PMM 906 W18X35 Beam No Messages 0.791410 PMM 907 W18X35 Beam No Messages 0.858974 PMM 908 W18X35 Beam No Messages 0.859014 PMM 909 W18X35 Beam No Messages 0.858974 PMM 910 W18X35 Beam No Messages 0.791408 PMM 911 W18X35 Beam No Messages 0.791408 PMM 912 W18X35 Beam No Messages 0.858974 PMM 913 W18X35 Beam No Messages 0.859014 PMM 914 W18X35 Beam No Messages 0.858974 PMM 915 W18X35 Beam No Messages 0.791411 PMM 916 W18X35 Beam No Messages 0.858912 PMM 917 W18X35 Beam No Messages 0.859029 PMM 918 W18X35 Beam No Messages 0.859062 PMM 919 W18X35 Beam No Messages 0.859031 PMM 920 W18X35 Beam No Messages 0.858912 PMM 921 W24X55 Beam No Messages 0.793600 PMM 922 W24X55 Beam No Messages 0.775476 PMM 923 W24X55 Beam No Messages 0.775468 PMM 924 W24X55 Beam No Messages 0.775801 PMM 925 W24X55 Beam No Messages 0.800428 PMM 926 W24X55 Beam No Messages 0.742899 PMM 927 W24X55 Beam No Messages 0.746761 PMM 9 Story MRF.sdb SAP2000 v17.3.0 9 Story MRF 27 March 2016 Computers and Structures, Inc. Page 26 of 31 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 928 W24X55 Beam No Messages 0.746662 PMM 929 W24X55 Beam No Messages 0.746758 PMM 930 W24X55 Beam No Messages 0.741669 PMM 931 W24X55 Beam No Messages 0.741671 PMM 932 W24X55 Beam No Messages 0.746758 PMM 933 W24X55 Beam No Messages 0.746662 PMM 934 W24X55 Beam No Messages 0.746761 PMM 935 W24X55 Beam No Messages 0.742898 PMM 936 W24X55 Beam No Messages 0.798036 PMM 937 W24X55 Beam No Messages 0.775801 PMM 938 W24X55 Beam No Messages 0.775468 PMM 939 W24X55 Beam No Messages 0.775476 PMM 940 W24X55 Beam No Messages 0.793600 PMM 941 W18X35 Beam No Messages 0.858946 PMM 942 W18X35 Beam No Messages 0.858932 PMM 943 W18X35 Beam No Messages 0.858910 PMM 944 W18X35 Beam No Messages 0.858909 PMM 945 W18X35 Beam No Messages 0.791381 PMM 946 W18X35 Beam No Messages 0.858907 PMM 947 W18X35 Beam No Messages 0.858910 PMM 948 W18X35 Beam No Messages 0.858911 PMM 949 W18X35 Beam No Messages 0.858931 PMM 950 W18X35 Beam No Messages 0.858941 PMM 951 W18X35 Beam No Messages 0.858947 PMM 952 W18X35 Beam No Messages 0.859020 PMM 953 W18X35 Beam No Messages 0.858911 PMM 954 W18X35 Beam No Messages 0.858921 PMM 955 W18X35 Beam No Messages 0.791390 PMM 956 W18X35 Beam No Messages 0.791390 PMM 957 W18X35 Beam No Messages 0.858922 PMM 958 W18X35 Beam No Messages 0.858911 PMM 959 W18X35 Beam No Messages 0.859034 PMM 960 W18X35 Beam No Messages 0.858955 PMM 961 W18X35 Beam No Messages 0.858961 PMM 962 W18X35 Beam No Messages 0.858985 PMM 963 W18X35 Beam No Messages 0.858931 PMM 964 W18X35 Beam No Messages 0.858917 PMM 965 W18X35 Beam No Messages 0.791387 PMM 966 W18X35 Beam No Messages 0.791387 PMM 967 W18X35 Beam No Messages 0.858917 PMM 968 W18X35 Beam No Messages 0.858931 PMM 969 W18X35 Beam No Messages 0.858985 PMM 970 W18X35 Beam No Messages 0.858961 PMM 971 W18X35 Beam No Messages 0.858955 PMM 972 W18X35 Beam No Messages 0.859034 PMM 973 W18X35 Beam No Messages 0.858911 PMM 974 W18X35 Beam No Messages 0.858922 PMM 975 W18X35 Beam No Messages 0.791390 PMM 976 W18X35 Beam No Messages 0.791390 PMM 977 W18X35 Beam No Messages 0.858921 PMM 978 W18X35 Beam No Messages 0.858911 PMM 979 W18X35 Beam No Messages 0.859020 PMM 980 W18X35 Beam No Messages 0.858947 PMM 981 W18X35 Beam No Messages 0.858941 PMM

PAGE 144

! 137 9 Story MRF.sdb SAP2000 v17.3.0 9 Story MRF 27 March 2016 Computers and Structures, Inc. Page 27 of 31 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 982 W18X35 Beam No Messages 0.858931 PMM 983 W18X35 Beam No Messages 0.858911 PMM 984 W18X35 Beam No Messages 0.858910 PMM 985 W18X35 Beam No Messages 0.858907 PMM 986 W18X35 Beam No Messages 0.791381 PMM 987 W18X35 Beam No Messages 0.858909 PMM 988 W18X35 Beam No Messages 0.858910 PMM 989 W18X35 Beam No Messages 0.858933 PMM 990 W18X35 Beam No Messages 0.858946 PMM 991 W18X35 Beam No Messages 0.858915 PMM 992 W18X35 Beam No Messages 0.858937 PMM 993 W18X35 Beam No Messages 0.858952 PMM 994 W18X35 Beam No Messages 0.858934 PMM 995 W18X35 Beam No Messages 0.858915 PMM 996 W18X35 Beam No Messages 0.791381 PMM 997 W18X35 Beam No Messages 0.858907 PMM 998 W18X35 Beam No Messages 0.858909 PMM 999 W18X35 Beam No Messages 0.858907 PMM 1000 W18X35 Beam No Messages 0.858908 PMM 1001 W18X35 Beam No Messages 0.858908 PMM 1002 W18X35 Beam No Messages 0.858908 PMM 1003 W18X35 Beam No Messages 0.858909 PMM 1004 W18X35 Beam No Messages 0.791381 PMM 1005 W18X35 Beam No Messages 0.791381 PMM 1006 W18X35 Beam No Messages 0.858915 PMM 1007 W18X35 Beam No Messages 0.858934 PMM 1008 W18X35 Beam No Messages 0.858952 PMM 1009 W18X35 Beam No Messages 0.858937 PMM 1010 W18X35 Beam No Messages 0.858915 PMM 1011 W24X55 Beam No Messages 0.749780 PMM 1012 W24X55 Beam No Messages 0.775621 PMM 1013 W24X55 Beam No Messages 0.775734 PMM 1014 W24X55 Beam No Messages 0.775936 PMM 1015 W24X55 Beam No Messages 0.759587 PMM 1016 W24X55 Beam No Messages 0.741261 PMM 1017 W24X55 Beam No Messages 0.705198 PMM 1018 W24X55 Beam No Messages 0.746680 PMM 1019 W24X55 Beam No Messages 0.705171 PMM 1020 W24X55 Beam No Messages 0.740137 PMM 1021 W24X55 Beam No Messages 0.740139 PMM 1022 W24X55 Beam No Messages 0.705171 PMM 1023 W24X55 Beam No Messages 0.746680 PMM 1024 W24X55 Beam No Messages 0.705198 PMM 1025 W24X55 Beam No Messages 0.741260 PMM 1026 W24X55 Beam No Messages 0.759588 PMM 1027 W24X55 Beam No Messages 0.775936 PMM 1028 W24X55 Beam No Messages 0.775734 PMM 1029 W24X55 Beam No Messages 0.775621 PMM 1030 W24X55 Beam No Messages 0.749780 PMM 1031 W18X35 Beam No Messages 0.858928 PMM 1032 W18X35 Beam No Messages 0.858971 PMM 1033 W18X35 Beam No Messages 0.858909 PMM 1034 W18X35 Beam No Messages 0.858910 PMM 1035 W18X35 Beam No Messages 0.791389 PMM 9 Story MRF.sdb SAP2000 v17.3.0 9 Story MRF 27 March 2016 Computers and Structures, Inc. Page 28 of 31 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 1036 W18X35 Beam No Messages 0.791389 PMM 1037 W18X35 Beam No Messages 0.858909 PMM 1038 W18X35 Beam No Messages 0.858910 PMM 1039 W18X35 Beam No Messages 0.858970 PMM 1040 W18X35 Beam No Messages 0.858925 PMM 1041 W18X35 Beam No Messages 0.859065 PMM 1042 W18X35 Beam No Messages 0.859246 PMM 1043 W18X35 Beam No Messages 0.859003 PMM 1044 W18X35 Beam No Messages 0.859028 PMM 1045 W18X35 Beam No Messages 0.858983 PMM 1046 W18X35 Beam No Messages 0.858983 PMM 1047 W18X35 Beam No Messages 0.859031 PMM 1048 W18X35 Beam No Messages 0.859005 PMM 1049 W18X35 Beam No Messages 0.859263 PMM 1050 W18X35 Beam No Messages 0.859072 PMM 1051 W18X35 Beam No Messages 0.791455 PMM 1052 W18X35 Beam No Messages 0.859108 PMM 1053 W18X35 Beam No Messages 0.859073 PMM 1054 W18X35 Beam No Messages 0.859056 PMM 1055 W18X35 Beam No Messages 0.859030 PMM 1056 W18X35 Beam No Messages 0.859030 PMM 1057 W18X35 Beam No Messages 0.859056 PMM 1058 W18X35 Beam No Messages 0.859073 PMM 1059 W18X35 Beam No Messages 0.859108 PMM 1060 W18X35 Beam No Messages 0.791455 PMM 1061 W18X35 Beam No Messages 0.859072 PMM 1062 W18X35 Beam No Messages 0.859263 PMM 1063 W18X35 Beam No Messages 0.859005 PMM 1064 W18X35 Beam No Messages 0.859031 PMM 1065 W18X35 Beam No Messages 0.858983 PMM 1066 W18X35 Beam No Messages 0.858983 PMM 1067 W18X35 Beam No Messages 0.859028 PMM 1068 W18X35 Beam No Messages 0.859003 PMM 1069 W18X35 Beam No Messages 0.859246 PMM 1070 W18X35 Beam No Messages 0.859065 PMM 1071 W18X35 Beam No Messages 0.858925 PMM 1072 W18X35 Beam No Messages 0.858970 PMM 1073 W18X35 Beam No Messages 0.858910 PMM 1074 W18X35 Beam No Messages 0.858909 PMM 1075 W18X35 Beam No Messages 0.791389 PMM 1076 W18X35 Beam No Messages 0.791389 PMM 1077 W18X35 Beam No Messages 0.858910 PMM 1078 W18X35 Beam No Messages 0.858909 PMM 1079 W18X35 Beam No Messages 0.858971 PMM 1080 W18X35 Beam No Messages 0.858928 PMM 1081 W18X35 Beam No Messages 0.858920 PMM 1082 W18X35 Beam No Messages 0.859056 PMM 1083 W18X35 Beam No Messages 0.859091 PMM 1084 W18X35 Beam No Messages 0.859054 PMM 1085 W18X35 Beam No Messages 0.858920 PMM 1086 W18X35 Beam No Messages 0.791394 PMM 1087 W18X35 Beam No Messages 0.858993 PMM 1088 W18X35 Beam No Messages 0.859037 PMM 1089 W18X35 Beam No Messages 0.858991 PMM

PAGE 145

! 138 9 Story MRF.sdb SAP2000 v17.3.0 9 Story MRF 27 March 2016 Computers and Structures, Inc. Page 29 of 31 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 1090 W18X35 Beam No Messages 0.791393 PMM 1091 W18X35 Beam No Messages 0.791393 PMM 1092 W18X35 Beam No Messages 0.858991 PMM 1093 W18X35 Beam No Messages 0.859037 PMM 1094 W18X35 Beam No Messages 0.858993 PMM 1095 W18X35 Beam No Messages 0.791394 PMM 1096 W18X35 Beam No Messages 0.858920 PMM 1097 W18X35 Beam No Messages 0.859054 PMM 1098 W18X35 Beam No Messages 0.859091 PMM 1099 W18X35 Beam No Messages 0.859056 PMM 1100 W18X35 Beam No Messages 0.858920 PMM 1101 W24X55 Beam No Messages 0.798220 PMM 1102 W24X55 Beam No Messages 0.775351 PMM 1103 W24X55 Beam No Messages 0.776085 PMM 1104 W24X55 Beam No Messages 0.775603 PMM 1105 W24X55 Beam No Messages 0.808188 PMM 1106 W24X55 Beam No Messages 0.780700 PMM 1107 W24X55 Beam No Messages 0.746439 PMM 1108 W24X55 Beam No Messages 0.747194 PMM 1109 W24X55 Beam No Messages 0.746367 PMM 1110 W24X55 Beam No Messages 0.786389 PMM 1111 W24X55 Beam No Messages 0.780470 PMM 1112 W24X55 Beam No Messages 0.746367 PMM 1113 W24X55 Beam No Messages 0.747194 PMM 1114 W24X55 Beam No Messages 0.746439 PMM 1115 W24X55 Beam No Messages 0.780700 PMM 1116 W24X55 Beam No Messages 0.803485 PMM 1117 W24X55 Beam No Messages 0.775603 PMM 1118 W24X55 Beam No Messages 0.776086 PMM 1119 W24X55 Beam No Messages 0.775352 PMM 1120 W24X55 Beam No Messages 0.798220 PMM 1121 W18X35 Beam No Messages 0.858919 PMM 1122 W18X35 Beam No Messages 0.858913 PMM 1123 W18X35 Beam No Messages 0.791505 PMM 1124 W18X35 Beam No Messages 0.791514 PMM 1125 W18X35 Beam No Messages 0.791526 PMM 1126 W18X35 Beam No Messages 0.791524 PMM 1127 W18X35 Beam No Messages 0.791508 PMM 1128 W18X35 Beam No Messages 0.791507 PMM 1129 W18X35 Beam No Messages 0.858914 PMM 1130 W18X35 Beam No Messages 0.858924 PMM 1131 W18X35 Beam No Messages 0.858958 PMM 1132 W18X35 Beam No Messages 0.859164 PMM 1133 W18X35 Beam No Messages 0.791491 PMM 1134 W18X35 Beam No Messages 0.791429 PMM 1135 W18X35 Beam No Messages 0.791540 PMM 1136 W18X35 Beam No Messages 0.791539 PMM 1137 W18X35 Beam No Messages 0.791432 PMM 1138 W18X35 Beam No Messages 0.791497 PMM 1139 W18X35 Beam No Messages 0.859155 PMM 1140 W18X35 Beam No Messages 0.858970 PMM 1141 W18X35 Beam No Messages 0.858938 PMM 1142 W18X35 Beam No Messages 0.859031 PMM 1143 W18X35 Beam No Messages 0.858913 PMM 9 Story MRF.sdb SAP2000 v17.3.0 9 Story MRF 27 March 2016 Computers and Structures, Inc. Page 30 of 31 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 1144 W18X35 Beam No Messages 0.791451 PMM 1145 W18X35 Beam No Messages 0.791535 PMM 1146 W18X35 Beam No Messages 0.791535 PMM 1147 W18X35 Beam No Messages 0.791451 PMM 1148 W18X35 Beam No Messages 0.858913 PMM 1149 W18X35 Beam No Messages 0.859030 PMM 1150 W18X35 Beam No Messages 0.858938 PMM 1151 W18X35 Beam No Messages 0.858970 PMM 1152 W18X35 Beam No Messages 0.859154 PMM 1153 W18X35 Beam No Messages 0.791497 PMM 1154 W18X35 Beam No Messages 0.791432 PMM 1155 W18X35 Beam No Messages 0.791539 PMM 1156 W18X35 Beam No Messages 0.791540 PMM 1157 W18X35 Beam No Messages 0.791429 PMM 1158 W18X35 Beam No Messages 0.791491 PMM 1159 W18X35 Beam No Messages 0.859164 PMM 1160 W18X35 Beam No Messages 0.858959 PMM 1161 W18X35 Beam No Messages 0.858924 PMM 1162 W18X35 Beam No Messages 0.858913 PMM 1163 W18X35 Beam No Messages 0.791507 PMM 1164 W18X35 Beam No Messages 0.791508 PMM 1165 W18X35 Beam No Messages 0.791524 PMM 1166 W18X35 Beam No Messages 0.791526 PMM 1167 W18X35 Beam No Messages 0.791514 PMM 1168 W18X35 Beam No Messages 0.791505 PMM 1169 W18X35 Beam No Messages 0.858913 PMM 1170 W18X35 Beam No Messages 0.858919 PMM 1171 W18X35 Beam No Messages 0.791460 PMM 1172 W18X35 Beam No Messages 0.858929 PMM 1173 W18X35 Beam No Messages 0.858958 PMM 1174 W18X35 Beam No Messages 0.858919 PMM 1175 W18X35 Beam No Messages 0.791456 PMM 1176 W18X35 Beam No Messages 0.791508 PMM 1177 W18X35 Beam No Messages 0.791525 PMM 1178 W18X35 Beam No Messages 0.791515 PMM 1179 W18X35 Beam No Messages 0.791518 PMM 1180 W18X35 Beam No Messages 0.791508 PMM 1181 W18X35 Beam No Messages 0.791508 PMM 1182 W18X35 Beam No Messages 0.791518 PMM 1183 W18X35 Beam No Messages 0.791515 PMM 1184 W18X35 Beam No Messages 0.791525 PMM 1185 W18X35 Beam No Messages 0.791509 PMM 1186 W18X35 Beam No Messages 0.791456 PMM 1187 W18X35 Beam No Messages 0.858919 PMM 1188 W18X35 Beam No Messages 0.858958 PMM 1189 W18X35 Beam No Messages 0.858929 PMM 1190 W18X35 Beam No Messages 0.791460 PMM 16 W14X30 Column No Messages 0.089289 PMM 21 W14X99 Column No Messages 0.932112 PMM 26 W14X99 Column No Messages 0.971233 PMM 1281 W14X99 Column No Messages 0.965980 PMM 1282 W14X109 Column No Messages 0.938194 PMM 1283 W14X30 Column No Messages 0.094433 PMM 1284 W14X30 Column No Messages 0.095916 PMM

PAGE 146

! 139 9 Story MRF.sdb SAP2000 v17.3.0 9 Story MRF 27 March 2016 Computers and Structures, Inc. Page 31 of 31 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 1285 W14X109 Column No Messages 0.938193 PMM 1286 W14X99 Column No Messages 0.965983 PMM 1287 W14X99 Column No Messages 0.971235 PMM 1288 W14X99 Column No Messages 0.932119 PMM 1289 W14X30 Column No Messages 0.097871 PMM 1290 W14X132 Column No Messages 0.925405 PMM 1291 W14X193 Column No Messages 0.941179 PMM 1292 W14X193 Column No Messages 0.936134 PMM 1293 W14X193 Column No Messages 0.936300 PMM 1294 W14X193 Column No Messages 0.942725 PMM 1295 W14X132 Column No Messages 0.947561 PMM 1296 W14X132 Column No Messages 0.939935 PMM 1297 W14X193 Column No Messages 0.950382 PMM 1298 W14X193 Column No Messages 0.940627 PMM 1299 W14X193 Column No Messages 0.940619 PMM 1300 W14X193 Column No Messages 0.950947 PMM 1301 W14X132 Column No Messages 0.940723 PMM 1302 W14X132 Column No Messages 0.940721 PMM 1303 W14X193 Column No Messages 0.950949 PMM 1304 W14X193 Column No Messages 0.940619 PMM 1305 W14X193 Column No Messages 0.940627 PMM 1306 W14X193 Column No Messages 0.950383 PMM 1307 W14X132 Column No Messages 0.939932 PMM 1308 W14X132 Column No Messages 0.947549 PMM 1309 W14X193 Column No Messages 0.942725 PMM 1310 W14X193 Column No Messages 0.936300 PMM 1311 W14X193 Column No Messages 0.936134 PMM 1312 W14X193 Column No Messages 0.941179 PMM 1313 W14X132 Column No Messages 0.925398 PMM

PAGE 147

! 140 9 Story BF.sdb SAP2000 v17.3.0 9 Story CBF 27 March 2016 Computers and Structures, Inc. Page 1 of 34 9 Story CBF Table: Joint Reactions Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 38 DEAD LinStatic 0.847 5.985 231.900 0.0000 0.0000 0.0000 38 LIVE LinStatic 1.310 8.655 335.161 0.0000 0.0000 0.0000 38 WIND LinStatic 161.174 11.001 119.987 0.0000 0.0000 0.0000 38 DSTL1 Combination 1.186 8.379 324.661 0.0000 0.0000 0.0000 38 DSTL2 Combination 3.113 21.029 814.539 0.0000 0.0000 0.0000 38 DSTL3 Combination 158.847 4.835 733.428 0.0000 0.0000 0.0000 38 DSTL4 Combination 163.500 26.838 493.455 0.0000 0.0000 0.0000 38 DSTL5 Combination 79.570 1.681 338.274 0.0000 0.0000 0.0000 38 DSTL6 Combination 81.603 12.683 218.287 0.0000 0.0000 0.0000 38 DSTL7 Combination 160.411 5.615 328.697 0.0000 0.0000 0.0000 38 DSTL8 Combination 161.936 16.388 88.724 0.0000 0.0000 0.0000 38 DSTL9 Combination 0.847 5.985 231.900 0.0000 0.0000 0.0000 38 DSTL10 Combination 2.157 14.640 567.062 0.0000 0.0000 0.0000 39 DEAD LinStatic 8.513 1.618 214.876 0.0000 0.0000 0.0000 39 LIVE LinStatic 12.389 2.331 309.339 0.0000 0.0000 0.0000 39 WIND LinStatic 161.751 17.569 164.703 0.0000 0.0000 0.0000 39 DSTL1 Combination 11.918 2.265 300.826 0.0000 0.0000 0.0000 39 DSTL2 Combination 30.038 5.671 752.794 0.0000 0.0000 0.0000 39 DSTL3 Combination 139.147 13.297 402.487 0.0000 0.0000 0.0000 39 DSTL4 Combination 184.355 21.841 731.894 0.0000 0.0000 0.0000 39 DSTL5 Combination 70.660 6.843 175.499 0.0000 0.0000 0.0000 39 DSTL6 Combination 91.091 10.726 340.202 0.0000 0.0000 0.0000 39 DSTL7 Combination 154.090 16.113 28.685 0.0000 0.0000 0.0000 39 DSTL8 Combination 169.413 19.025 358.091 0.0000 0.0000 0.0000 39 DSTL9 Combination 8.513 1.618 214.876 0.0000 0.0000 0.0000 39 DSTL10 Combination 20.902 3.949 524.215 0.0000 0.0000 0.0000 76 DEAD LinStatic 1.052 0.027 276.556 0.0000 0.0000 0.0000 76 LIVE LinStatic 1.605 0.039 395.126 0.0000 0.0000 0.0000 76 WIND LinStatic 0.026 0.013 0.471 0.0000 0.0000 0.0000 76 DSTL1 Combination 1.473 0.038 387.178 0.0000 0.0000 0.0000 76 DSTL2 Combination 3.830 0.096 964.068 0.0000 0.0000 0.0000 76 DSTL3 Combination 2.893 0.085 726.521 0.0000 0.0000 0.0000 76 DSTL4 Combination 2.841 0.060 727.463 0.0000 0.0000 0.0000 76 DSTL5 Combination 1.275 0.039 331.631 0.0000 0.0000 0.0000 76 DSTL6 Combination 1.249 0.027 332.102 0.0000 0.0000 0.0000 76 DSTL7 Combination 0.973 0.037 248.429 0.0000 0.0000 0.0000 76 DSTL8 Combination 0.920 0.012 249.371 0.0000 0.0000 0.0000 76 DSTL9 Combination 1.052 0.027 276.556 0.0000 0.0000 0.0000 76 DSTL10 Combination 2.657 0.067 671.681 0.0000 0.0000 0.0000 77 DEAD LinStatic 1.024 4.420 225.033 0.0000 0.0000 0.0000 77 LIVE LinStatic 1.561 6.318 319.923 0.0000 0.0000 0.0000 77 WIND LinStatic 0.024 0.151 2.613 0.0000 0.0000 0.0000 77 DSTL1 Combination 1.433 6.188 315.046 0.0000 0.0000 0.0000 77 DSTL2 Combination 3.726 15.412 781.917 0.0000 0.0000 0.0000 77 DSTL3 Combination 2.766 11.470 587.350 0.0000 0.0000 0.0000 77 DSTL4 Combination 2.814 11.772 592.576 0.0000 0.0000 0.0000 77 DSTL5 Combination 1.216 5.228 268.733 0.0000 0.0000 0.0000 77 DSTL6 Combination 1.240 5.379 271.347 0.0000 0.0000 0.0000 77 DSTL7 Combination 0.897 3.827 199.917 0.0000 0.0000 0.0000 77 DSTL8 Combination 0.945 4.129 205.143 0.0000 0.0000 0.0000 9 Story BF.sdb SAP2000 v17.3.0 9 Story CBF 27 March 2016 Computers and Structures, Inc. Page 2 of 34 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 77 DSTL9 Combination 1.024 4.420 225.033 0.0000 0.0000 0.0000 77 DSTL10 Combination 2.585 10.737 544.956 0.0000 0.0000 0.0000 114 DEAD LinStatic 1.013 0.274 283.360 0.0000 0.0000 0.0000 114 LIVE LinStatic 1.547 0.381 403.946 0.0000 0.0000 0.0000 114 WIND LinStatic 0.029 0.976 0.395 0.0000 0.0000 0.0000 114 DSTL1 Combination 1.418 0.384 396.704 0.0000 0.0000 0.0000 114 DSTL2 Combination 3.691 0.938 986.345 0.0000 0.0000 0.0000 114 DSTL3 Combination 2.792 0.267 744.373 0.0000 0.0000 0.0000 114 DSTL4 Combination 2.734 1.685 743.583 0.0000 0.0000 0.0000 114 DSTL5 Combination 1.230 0.159 340.229 0.0000 0.0000 0.0000 114 DSTL6 Combination 1.201 0.817 339.834 0.0000 0.0000 0.0000 114 DSTL7 Combination 0.940 0.730 255.419 0.0000 0.0000 0.0000 114 DSTL8 Combination 0.883 1.223 254.629 0.0000 0.0000 0.0000 114 DSTL9 Combination 1.013 0.274 283.360 0.0000 0.0000 0.0000 114 DSTL10 Combination 2.560 0.655 687.306 0.0000 0.0000 0.0000 115 DEAD LinStatic 1.007 0.016 267.664 0.0000 0.0000 0.0000 115 LIVE LinStatic 1.538 0.024 381.499 0.0000 0.0000 0.0000 115 WIND LinStatic 0.027 1.742E 03 0.669 0.0000 0.0000 0.0000 115 DSTL1 Combination 1.410 0.023 374.729 0.0000 0.0000 0.0000 115 DSTL2 Combination 3.670 0.057 931.595 0.0000 0.0000 0.0000 115 DSTL3 Combination 2.720 0.041 702.027 0.0000 0.0000 0.0000 115 DSTL4 Combination 2.774 0.045 703.365 0.0000 0.0000 0.0000 115 DSTL5 Combination 1.195 0.019 320.862 0.0000 0.0000 0.0000 115 DSTL6 Combination 1.222 0.020 321.531 0.0000 0.0000 0.0000 115 DSTL7 Combination 0.879 0.013 240.228 0.0000 0.0000 0.0000 115 DSTL8 Combination 0.933 0.016 241.567 0.0000 0.0000 0.0000 115 DSTL9 Combination 1.007 0.016 267.664 0.0000 0.0000 0.0000 115 DSTL10 Combination 2.545 0.040 649.163 0.0000 0.0000 0.0000 152 DEAD LinStatic 1.007 0.017 267.664 0.0000 0.0000 0.0000 152 LIVE LinStatic 1.538 0.025 381.499 0.0000 0.0000 0.0000 152 WIND LinStatic 0.029 3.372E 03 1.071 0.0000 0.0000 0.0000 152 DSTL1 Combination 1.410 0.024 374.729 0.0000 0.0000 0.0000 152 DSTL2 Combination 3.669 0.060 931.595 0.0000 0.0000 0.0000 152 DSTL3 Combination 2.775 0.042 703.766 0.0000 0.0000 0.0000 152 DSTL4 Combination 2.718 0.048 701.625 0.0000 0.0000 0.0000 152 DSTL5 Combination 1.223 0.019 321.732 0.0000 0.0000 0.0000 152 DSTL6 Combination 1.194 0.022 320.661 0.0000 0.0000 0.0000 152 DSTL7 Combination 0.935 0.012 241.968 0.0000 0.0000 0.0000 152 DSTL8 Combination 0.877 0.019 239.827 0.0000 0.0000 0.0000 152 DSTL9 Combination 1.007 0.017 267.664 0.0000 0.0000 0.0000 152 DSTL10 Combination 2.545 0.042 649.163 0.0000 0.0000 0.0000 153 DEAD LinStatic 1.013 0.271 283.360 0.0000 0.0000 0.0000 153 LIVE LinStatic 1.547 0.377 403.945 0.0000 0.0000 0.0000 153 WIND LinStatic 0.027 1.198 0.559 0.0000 0.0000 0.0000 153 DSTL1 Combination 1.418 0.380 396.703 0.0000 0.0000 0.0000 153 DSTL2 Combination 3.691 0.929 986.344 0.0000 0.0000 0.0000 153 DSTL3 Combination 2.735 1.901 743.418 0.0000 0.0000 0.0000 153 DSTL4 Combination 2.790 0.496 744.536 0.0000 0.0000 0.0000 153 DSTL5 Combination 1.202 0.925 339.752 0.0000 0.0000 0.0000 153 DSTL6 Combination 1.229 0.273 340.311 0.0000 0.0000 0.0000 153 DSTL7 Combination 0.884 1.443 254.464 0.0000 0.0000 0.0000 153 DSTL8 Combination 0.939 0.954 255.583 0.0000 0.0000 0.0000 153 DSTL9 Combination 1.013 0.271 283.360 0.0000 0.0000 0.0000 153 DSTL10 Combination 2.560 0.648 687.305 0.0000 0.0000 0.0000

PAGE 148

! 141 9 Story BF.sdb SAP2000 v17.3.0 9 Story CBF 27 March 2016 Computers and Structures, Inc. Page 3 of 34 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 190 DEAD LinStatic 1.024 4.417 225.033 0.0000 0.0000 0.0000 190 LIVE LinStatic 1.562 6.313 319.923 0.0000 0.0000 0.0000 190 WIND LinStatic 0.026 1.454 4.331 0.0000 0.0000 0.0000 190 DSTL1 Combination 1.434 6.183 315.046 0.0000 0.0000 0.0000 190 DSTL2 Combination 3.729 15.401 781.915 0.0000 0.0000 0.0000 190 DSTL3 Combination 2.817 13.067 594.293 0.0000 0.0000 0.0000 190 DSTL4 Combination 2.766 10.159 585.630 0.0000 0.0000 0.0000 190 DSTL5 Combination 1.242 6.027 272.205 0.0000 0.0000 0.0000 190 DSTL6 Combination 1.217 4.573 267.874 0.0000 0.0000 0.0000 190 DSTL7 Combination 0.947 5.429 206.861 0.0000 0.0000 0.0000 190 DSTL8 Combination 0.896 2.521 198.198 0.0000 0.0000 0.0000 190 DSTL9 Combination 1.024 4.417 225.033 0.0000 0.0000 0.0000 190 DSTL10 Combination 2.587 10.730 544.955 0.0000 0.0000 0.0000 191 DEAD LinStatic 1.053 0.027 276.557 0.0000 0.0000 0.0000 191 LIVE LinStatic 1.607 0.039 395.127 0.0000 0.0000 0.0000 191 WIND LinStatic 0.025 4.814E 03 0.640 0.0000 0.0000 0.0000 191 DSTL1 Combination 1.474 0.038 387.180 0.0000 0.0000 0.0000 191 DSTL2 Combination 3.834 0.096 964.072 0.0000 0.0000 0.0000 191 DSTL3 Combination 2.846 0.077 727.635 0.0000 0.0000 0.0000 191 DSTL4 Combination 2.895 0.067 726.355 0.0000 0.0000 0.0000 191 DSTL5 Combination 1.251 0.035 332.188 0.0000 0.0000 0.0000 191 DSTL6 Combination 1.276 0.030 331.548 0.0000 0.0000 0.0000 191 DSTL7 Combination 0.923 0.029 249.541 0.0000 0.0000 0.0000 191 DSTL8 Combination 0.972 0.020 248.261 0.0000 0.0000 0.0000 191 DSTL9 Combination 1.053 0.027 276.557 0.0000 0.0000 0.0000 191 DSTL10 Combination 2.660 0.067 671.684 0.0000 0.0000 0.0000 228 DEAD LinStatic 8.595 1.644 214.888 0.0000 0.0000 0.0000 228 LIVE LinStatic 12.513 2.369 309.358 0.0000 0.0000 0.0000 228 WIND LinStatic 162.075 37.649 163.116 0.0000 0.0000 0.0000 228 DSTL1 Combination 12.034 2.301 300.843 0.0000 0.0000 0.0000 228 DSTL2 Combination 30.335 5.762 752.838 0.0000 0.0000 0.0000 228 DSTL3 Combination 184.902 41.990 730.340 0.0000 0.0000 0.0000 228 DSTL4 Combination 139.248 33.307 404.107 0.0000 0.0000 0.0000 228 DSTL5 Combination 91.352 20.796 339.424 0.0000 0.0000 0.0000 228 DSTL6 Combination 70.723 16.852 176.307 0.0000 0.0000 0.0000 228 DSTL7 Combination 169.811 39.128 356.515 0.0000 0.0000 0.0000 228 DSTL8 Combination 154.339 36.169 30.283 0.0000 0.0000 0.0000 228 DSTL9 Combination 8.595 1.644 214.888 0.0000 0.0000 0.0000 228 DSTL10 Combination 21.108 4.012 524.246 0.0000 0.0000 0.0000 229 DEAD LinStatic 0.760 5.982 231.933 0.0000 0.0000 0.0000 229 LIVE LinStatic 1.179 8.651 335.211 0.0000 0.0000 0.0000 229 WIND LinStatic 160.790 31.947 120.108 0.0000 0.0000 0.0000 229 DSTL1 Combination 1.064 8.375 324.706 0.0000 0.0000 0.0000 229 DSTL2 Combination 2.798 21.020 814.657 0.0000 0.0000 0.0000 229 DSTL3 Combination 162.881 47.777 493.422 0.0000 0.0000 0.0000 229 DSTL4 Combination 158.699 16.118 733.638 0.0000 0.0000 0.0000 229 DSTL5 Combination 81.307 23.152 218.266 0.0000 0.0000 0.0000 229 DSTL6 Combination 79.483 8.795 338.374 0.0000 0.0000 0.0000 229 DSTL7 Combination 161.474 37.331 88.632 0.0000 0.0000 0.0000 229 DSTL8 Combination 160.106 26.563 328.848 0.0000 0.0000 0.0000 229 DSTL9 Combination 0.760 5.982 231.933 0.0000 0.0000 0.0000 229 DSTL10 Combination 1.939 14.633 567.144 0.0000 0.0000 0.0000 230 DEAD LinStatic 12.594 0.046 199.626 0.0000 0.0000 0.0000 230 LIVE LinStatic 18.414 0.070 290.285 0.0000 0.0000 0.0000 9 Story BF.sdb SAP2000 v17.3.0 9 Story CBF 27 March 2016 Computers and Structures, Inc. Page 4 of 34 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 230 WIND LinStatic 9.560 3.887E 04 1.993 0.0000 0.0000 0.0000 230 DSTL1 Combination 17.632 0.065 279.477 0.0000 0.0000 0.0000 230 DSTL2 Combination 44.576 0.168 704.007 0.0000 0.0000 0.0000 230 DSTL3 Combination 23.967 0.126 527.843 0.0000 0.0000 0.0000 230 DSTL4 Combination 43.088 0.125 531.829 0.0000 0.0000 0.0000 230 DSTL5 Combination 10.333 0.056 238.555 0.0000 0.0000 0.0000 230 DSTL6 Combination 19.893 0.055 240.548 0.0000 0.0000 0.0000 230 DSTL7 Combination 1.775 0.042 177.671 0.0000 0.0000 0.0000 230 DSTL8 Combination 20.895 0.041 181.656 0.0000 0.0000 0.0000 230 DSTL9 Combination 12.594 0.046 199.626 0.0000 0.0000 0.0000 230 DSTL10 Combination 31.009 0.116 489.911 0.0000 0.0000 0.0000 231 DEAD LinStatic 0.037 0.042 271.665 0.0000 0.0000 0.0000 231 LIVE LinStatic 0.053 0.063 397.030 0.0000 0.0000 0.0000 231 WIND LinStatic 0.031 8.971E 05 8.272 0.0000 0.0000 0.0000 231 DSTL1 Combination 0.051 0.058 380.331 0.0000 0.0000 0.0000 231 DSTL2 Combination 0.129 0.152 961.246 0.0000 0.0000 0.0000 231 DSTL3 Combination 0.066 0.113 714.756 0.0000 0.0000 0.0000 231 DSTL4 Combination 0.128 0.114 731.300 0.0000 0.0000 0.0000 231 DSTL5 Combination 0.029 0.050 321.862 0.0000 0.0000 0.0000 231 DSTL6 Combination 0.059 0.050 330.134 0.0000 0.0000 0.0000 231 DSTL7 Combination 2.208E 03 0.037 236.227 0.0000 0.0000 0.0000 231 DSTL8 Combination 0.064 0.038 252.770 0.0000 0.0000 0.0000 231 DSTL9 Combination 0.037 0.042 271.665 0.0000 0.0000 0.0000 231 DSTL10 Combination 0.090 0.105 668.695 0.0000 0.0000 0.0000 232 DEAD LinStatic 1.971E 03 0.044 251.687 0.0000 0.0000 0.0000 232 LIVE LinStatic 3.161E 03 0.067 366.445 0.0000 0.0000 0.0000 232 WIND LinStatic 0.025 6.964E 05 0.157 0.0000 0.0000 0.0000 232 DSTL1 Combination 2.759E 03 0.062 352.361 0.0000 0.0000 0.0000 232 DSTL2 Combination 7.422E 03 0.160 888.335 0.0000 0.0000 0.0000 232 DSTL3 Combination 0.019 0.120 668.626 0.0000 0.0000 0.0000 232 DSTL4 Combination 0.030 0.120 668.311 0.0000 0.0000 0.0000 232 DSTL5 Combination 9.940E 03 0.053 302.102 0.0000 0.0000 0.0000 232 DSTL6 Combination 0.015 0.053 301.945 0.0000 0.0000 0.0000 232 DSTL7 Combination 0.023 0.040 226.675 0.0000 0.0000 0.0000 232 DSTL8 Combination 0.026 0.040 226.361 0.0000 0.0000 0.0000 232 DSTL9 Combination 1.971E 03 0.044 251.687 0.0000 0.0000 0.0000 232 DSTL10 Combination 5.131E 03 0.111 618.131 0.0000 0.0000 0.0000 233 DEAD LinStatic 2.919 0.043 291.799 0.0000 0.0000 0.0000 233 LIVE LinStatic 4.195 0.066 424.894 0.0000 0.0000 0.0000 233 WIND LinStatic 13.788 9.305E 04 1.068 0.0000 0.0000 0.0000 233 DSTL1 Combination 4.086 0.061 408.519 0.0000 0.0000 0.0000 233 DSTL2 Combination 10.214 0.158 1029.989 0.0000 0.0000 0.0000 233 DSTL3 Combination 6.092 0.117 773.984 0.0000 0.0000 0.0000 233 DSTL4 Combination 21.485 0.119 776.120 0.0000 0.0000 0.0000 233 DSTL5 Combination 3.392 0.052 349.625 0.0000 0.0000 0.0000 233 DSTL6 Combination 10.397 0.053 350.693 0.0000 0.0000 0.0000 233 DSTL7 Combination 11.162 0.038 261.551 0.0000 0.0000 0.0000 233 DSTL8 Combination 16.415 0.040 263.687 0.0000 0.0000 0.0000 233 DSTL9 Combination 2.919 0.043 291.799 0.0000 0.0000 0.0000 233 DSTL10 Combination 7.113 0.109 716.693 0.0000 0.0000 0.0000 234 DEAD LinStatic 2.913 0.043 291.802 0.0000 0.0000 0.0000 234 LIVE LinStatic 4.186 0.065 424.898 0.0000 0.0000 0.0000 234 WIND LinStatic 13.438 6.477E 04 1.334 0.0000 0.0000 0.0000 234 DSTL1 Combination 4.078 0.060 408.523 0.0000 0.0000 0.0000

PAGE 149

! 142 9 Story BF.sdb SAP2000 v17.3.0 9 Story CBF 27 March 2016 Computers and Structures, Inc. Page 5 of 34 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 234 DSTL2 Combination 10.194 0.156 1029.999 0.0000 0.0000 0.0000 234 DSTL3 Combination 21.120 0.118 776.394 0.0000 0.0000 0.0000 234 DSTL4 Combination 5.756 0.117 773.727 0.0000 0.0000 0.0000 234 DSTL5 Combination 10.215 0.052 350.829 0.0000 0.0000 0.0000 234 DSTL6 Combination 3.223 0.051 349.495 0.0000 0.0000 0.0000 234 DSTL7 Combination 16.060 0.039 263.956 0.0000 0.0000 0.0000 234 DSTL8 Combination 10.816 0.038 261.288 0.0000 0.0000 0.0000 234 DSTL9 Combination 2.913 0.043 291.802 0.0000 0.0000 0.0000 234 DSTL10 Combination 7.100 0.109 716.700 0.0000 0.0000 0.0000 235 DEAD LinStatic 2.203E 03 0.045 251.693 0.0000 0.0000 0.0000 235 LIVE LinStatic 3.513E 03 0.068 366.454 0.0000 0.0000 0.0000 235 WIND LinStatic 0.022 1.347E 04 0.377 0.0000 0.0000 0.0000 235 DSTL1 Combination 3.084E 03 0.062 352.370 0.0000 0.0000 0.0000 235 DSTL2 Combination 8.263E 03 0.162 888.357 0.0000 0.0000 0.0000 235 DSTL3 Combination 0.028 0.121 668.108 0.0000 0.0000 0.0000 235 DSTL4 Combination 0.015 0.121 668.862 0.0000 0.0000 0.0000 235 DSTL5 Combination 0.013 0.053 301.843 0.0000 0.0000 0.0000 235 DSTL6 Combination 8.137E 03 0.054 302.220 0.0000 0.0000 0.0000 235 DSTL7 Combination 0.024 0.040 226.146 0.0000 0.0000 0.0000 235 DSTL8 Combination 0.020 0.040 226.901 0.0000 0.0000 0.0000 235 DSTL9 Combination 2.203E 03 0.045 251.693 0.0000 0.0000 0.0000 235 DSTL10 Combination 5.715E 03 0.112 618.146 0.0000 0.0000 0.0000 236 DEAD LinStatic 0.036 0.041 271.661 0.0000 0.0000 0.0000 236 LIVE LinStatic 0.053 0.063 397.024 0.0000 0.0000 0.0000 236 WIND LinStatic 0.022 2.109E 03 8.019 0.0000 0.0000 0.0000 236 DSTL1 Combination 0.051 0.058 380.325 0.0000 0.0000 0.0000 236 DSTL2 Combination 0.128 0.150 961.232 0.0000 0.0000 0.0000 236 DSTL3 Combination 0.118 0.115 731.036 0.0000 0.0000 0.0000 236 DSTL4 Combination 0.074 0.111 714.999 0.0000 0.0000 0.0000 236 DSTL5 Combination 0.054 0.051 330.002 0.0000 0.0000 0.0000 236 DSTL6 Combination 0.032 0.049 321.984 0.0000 0.0000 0.0000 236 DSTL7 Combination 0.054 0.039 252.513 0.0000 0.0000 0.0000 236 DSTL8 Combination 0.011 0.035 236.476 0.0000 0.0000 0.0000 236 DSTL9 Combination 0.036 0.041 271.661 0.0000 0.0000 0.0000 236 DSTL10 Combination 0.089 0.104 668.685 0.0000 0.0000 0.0000 237 DEAD LinStatic 12.606 0.047 199.663 0.0000 0.0000 0.0000 237 LIVE LinStatic 18.431 0.070 290.340 0.0000 0.0000 0.0000 237 WIND LinStatic 8.948 1.831E 03 1.725 0.0000 0.0000 0.0000 237 DSTL1 Combination 17.648 0.065 279.528 0.0000 0.0000 0.0000 237 DSTL2 Combination 44.617 0.168 704.139 0.0000 0.0000 0.0000 237 DSTL3 Combination 42.506 0.128 531.660 0.0000 0.0000 0.0000 237 DSTL4 Combination 24.610 0.124 528.210 0.0000 0.0000 0.0000 237 DSTL5 Combination 19.601 0.057 240.458 0.0000 0.0000 0.0000 237 DSTL6 Combination 10.653 0.055 238.733 0.0000 0.0000 0.0000 237 DSTL7 Combination 20.293 0.044 181.422 0.0000 0.0000 0.0000 237 DSTL8 Combination 2.397 0.040 177.971 0.0000 0.0000 0.0000 237 DSTL9 Combination 12.606 0.047 199.663 0.0000 0.0000 0.0000 237 DSTL10 Combination 31.037 0.117 490.002 0.0000 0.0000 0.0000 1066 DEAD LinStatic 0.022 8.111E 04 547.107 0.0000 0.0000 0.0000 1066 LIVE LinStatic 0.033 7.173E 04 813.459 0.0000 0.0000 0.0000 1066 WIND LinStatic 0.052 2.284E 04 0.071 0.0000 0.0000 0.0000 1066 DSTL1 Combination 0.031 1.136E 03 765.950 0.0000 0.0000 0.0000 1066 DSTL2 Combination 0.080 2.121E 03 1958.063 0.0000 0.0000 0.0000 1066 DSTL3 Combination 0.112 1.462E 03 1469.917 0.0000 0.0000 0.0000 9 Story BF.sdb SAP2000 v17.3.0 9 Story CBF 27 March 2016 Computers and Structures, Inc. Page 6 of 34 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 1066 DSTL4 Combination 7.842E 03 1.919E 03 1470.059 0.0000 0.0000 0.0000 1066 DSTL5 Combination 0.053 8.592E 04 656.493 0.0000 0.0000 0.0000 1066 DSTL6 Combination 4.869E 04 1.088E 03 656.564 0.0000 0.0000 0.0000 1066 DSTL7 Combination 0.072 5.017E 04 492.325 0.0000 0.0000 0.0000 1066 DSTL8 Combination 0.032 9.584E 04 492.467 0.0000 0.0000 0.0000 1066 DSTL9 Combination 0.022 8.111E 04 547.107 0.0000 0.0000 0.0000 1066 DSTL10 Combination 0.055 1.528E 03 1360.566 0.0000 0.0000 0.0000 1067 DEAD LinStatic 0.012 0.011 543.700 0.0000 0.0000 0.0000 1067 LIVE LinStatic 0.018 0.017 808.670 0.0000 0.0000 0.0000 1067 WIND LinStatic 0.053 3.023E 03 3.180E 03 0.0000 0.0000 0.0000 1067 DSTL1 Combination 0.017 0.015 761.180 0.0000 0.0000 0.0000 1067 DSTL2 Combination 0.042 0.040 1946.311 0.0000 0.0000 0.0000 1067 DSTL3 Combination 0.021 0.027 1461.106 0.0000 0.0000 0.0000 1067 DSTL4 Combination 0.084 0.033 1461.113 0.0000 0.0000 0.0000 1067 DSTL5 Combination 0.012 0.012 652.438 0.0000 0.0000 0.0000 1067 DSTL6 Combination 0.041 0.015 652.441 0.0000 0.0000 0.0000 1067 DSTL7 Combination 0.042 6.930E 03 489.327 0.0000 0.0000 0.0000 1067 DSTL8 Combination 0.063 0.013 489.333 0.0000 0.0000 0.0000 1067 DSTL9 Combination 0.012 0.011 543.700 0.0000 0.0000 0.0000 1067 DSTL10 Combination 0.029 0.028 1352.369 0.0000 0.0000 0.0000 1068 DEAD LinStatic 4.340E 04 0.020 543.555 0.0000 0.0000 0.0000 1068 LIVE LinStatic 4.136E 04 0.029 808.453 0.0000 0.0000 0.0000 1068 WIND LinStatic 0.054 1.397E 03 0.013 0.0000 0.0000 0.0000 1068 DSTL1 Combination 6.076E 04 0.028 760.977 0.0000 0.0000 0.0000 1068 DSTL2 Combination 1.183E 03 0.071 1945.791 0.0000 0.0000 0.0000 1068 DSTL3 Combination 0.053 0.054 1460.706 0.0000 0.0000 0.0000 1068 DSTL4 Combination 0.055 0.052 1460.732 0.0000 0.0000 0.0000 1068 DSTL5 Combination 0.026 0.024 652.260 0.0000 0.0000 0.0000 1068 DSTL6 Combination 0.027 0.023 652.273 0.0000 0.0000 0.0000 1068 DSTL7 Combination 0.054 0.019 489.187 0.0000 0.0000 0.0000 1068 DSTL8 Combination 0.054 0.016 489.213 0.0000 0.0000 0.0000 1068 DSTL9 Combination 4.340E 04 0.020 543.555 0.0000 0.0000 0.0000 1068 DSTL10 Combination 8.476E 04 0.049 1352.008 0.0000 0.0000 0.0000 1069 DEAD LinStatic 0.029 0.034 547.294 0.0000 0.0000 0.0000 1069 LIVE LinStatic 0.044 0.049 813.747 0.0000 0.0000 0.0000 1069 WIND LinStatic 0.053 0.013 7.817E 03 0.0000 0.0000 0.0000 1069 DSTL1 Combination 0.041 0.047 766.211 0.0000 0.0000 0.0000 1069 DSTL2 Combination 0.105 0.119 1958.748 0.0000 0.0000 0.0000 1069 DSTL3 Combination 0.026 0.103 1470.492 0.0000 0.0000 0.0000 1069 DSTL4 Combination 0.132 0.077 1470.507 0.0000 0.0000 0.0000 1069 DSTL5 Combination 8.577E 03 0.047 656.749 0.0000 0.0000 0.0000 1069 DSTL6 Combination 0.062 0.034 656.757 0.0000 0.0000 0.0000 1069 DSTL7 Combination 0.027 0.043 492.557 0.0000 0.0000 0.0000 1069 DSTL8 Combination 0.080 0.017 492.572 0.0000 0.0000 0.0000 1069 DSTL9 Combination 0.029 0.034 547.294 0.0000 0.0000 0.0000 1069 DSTL10 Combination 0.073 0.083 1361.041 0.0000 0.0000 0.0000 1070 DEAD LinStatic 0.034 0.012 550.215 0.0000 0.0000 0.0000 1070 LIVE LinStatic 0.051 0.017 818.239 0.0000 0.0000 0.0000 1070 WIND LinStatic 0.052 7.135E 07 0.036 0.0000 0.0000 0.0000 1070 DSTL1 Combination 0.048 0.016 770.301 0.0000 0.0000 0.0000 1070 DSTL2 Combination 0.123 0.042 1969.441 0.0000 0.0000 0.0000 1070 DSTL3 Combination 0.144 0.031 1478.533 0.0000 0.0000 0.0000 1070 DSTL4 Combination 0.041 0.031 1478.461 0.0000 0.0000 0.0000 1070 DSTL5 Combination 0.067 0.014 660.276 0.0000 0.0000 0.0000

PAGE 150

! 143 9 Story BF.sdb SAP2000 v17.3.0 9 Story CBF 27 March 2016 Computers and Structures, Inc. Page 7 of 34 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 1070 DSTL6 Combination 0.015 0.014 660.240 0.0000 0.0000 0.0000 1070 DSTL7 Combination 0.083 0.011 495.230 0.0000 0.0000 0.0000 1070 DSTL8 Combination 0.021 0.011 495.157 0.0000 0.0000 0.0000 1070 DSTL9 Combination 0.034 0.012 550.215 0.0000 0.0000 0.0000 1070 DSTL10 Combination 0.086 0.029 1368.454 0.0000 0.0000 0.0000 1071 DEAD LinStatic 5.697E 03 8.193E 04 544.632 0.0000 0.0000 0.0000 1071 LIVE LinStatic 8.481E 03 1.265E 03 810.205 0.0000 0.0000 0.0000 1071 WIND LinStatic 0.053 1.151E 03 0.011 0.0000 0.0000 0.0000 1071 DSTL1 Combination 7.975E 03 1.147E 03 762.484 0.0000 0.0000 0.0000 1071 DSTL2 Combination 0.020 3.007E 03 1949.887 0.0000 0.0000 0.0000 1071 DSTL3 Combination 0.038 3.399E 03 1463.774 0.0000 0.0000 0.0000 1071 DSTL4 Combination 0.068 1.097E 03 1463.753 0.0000 0.0000 0.0000 1071 DSTL5 Combination 0.020 1.559E 03 653.563 0.0000 0.0000 0.0000 1071 DSTL6 Combination 0.033 4.076E 04 653.553 0.0000 0.0000 0.0000 1071 DSTL7 Combination 0.048 1.888E 03 490.179 0.0000 0.0000 0.0000 1071 DSTL8 Combination 0.058 4.136E 04 490.158 0.0000 0.0000 0.0000 1071 DSTL9 Combination 5.697E 03 8.193E 04 544.632 0.0000 0.0000 0.0000 1071 DSTL10 Combination 0.014 2.084E 03 1354.837 0.0000 0.0000 0.0000 1072 DEAD LinStatic 1.042E 03 9.330E 03 544.645 0.0000 0.0000 0.0000 1072 LIVE LinStatic 1.694E 03 0.013 810.225 0.0000 0.0000 0.0000 1072 WIND LinStatic 0.055 8.714E 04 1.267E 03 0.0000 0.0000 0.0000 1072 DSTL1 Combination 1.459E 03 0.013 762.504 0.0000 0.0000 0.0000 1072 DSTL2 Combination 3.960E 03 0.033 1949.935 0.0000 0.0000 0.0000 1072 DSTL3 Combination 0.058 0.026 1463.799 0.0000 0.0000 0.0000 1072 DSTL4 Combination 0.052 0.024 1463.801 0.0000 0.0000 0.0000 1072 DSTL5 Combination 0.029 0.012 653.574 0.0000 0.0000 0.0000 1072 DSTL6 Combination 0.026 0.011 653.575 0.0000 0.0000 0.0000 1072 DSTL7 Combination 0.056 9.269E 03 490.180 0.0000 0.0000 0.0000 1072 DSTL8 Combination 0.054 7.526E 03 490.182 0.0000 0.0000 0.0000 1072 DSTL9 Combination 1.042E 03 9.330E 03 544.645 0.0000 0.0000 0.0000 1072 DSTL10 Combination 2.735E 03 0.023 1354.871 0.0000 0.0000 0.0000 1073 DEAD LinStatic 0.038 0.019 550.248 0.0000 0.0000 0.0000 1073 LIVE LinStatic 0.057 0.027 818.290 0.0000 0.0000 0.0000 1073 WIND LinStatic 0.056 5.973E 03 0.033 0.0000 0.0000 0.0000 1073 DSTL1 Combination 0.054 0.026 770.347 0.0000 0.0000 0.0000 1073 DSTL2 Combination 0.138 0.065 1969.562 0.0000 0.0000 0.0000 1073 DSTL3 Combination 0.047 0.055 1478.555 0.0000 0.0000 0.0000 1073 DSTL4 Combination 0.159 0.043 1478.620 0.0000 0.0000 0.0000 1073 DSTL5 Combination 0.018 0.025 660.281 0.0000 0.0000 0.0000 1073 DSTL6 Combination 0.074 0.019 660.314 0.0000 0.0000 0.0000 1073 DSTL7 Combination 0.021 0.023 495.190 0.0000 0.0000 0.0000 1073 DSTL8 Combination 0.091 0.011 495.256 0.0000 0.0000 0.0000 1073 DSTL9 Combination 0.038 0.019 550.248 0.0000 0.0000 0.0000 1073 DSTL10 Combination 0.096 0.045 1368.538 0.0000 0.0000 0.0000 1074 DEAD LinStatic 0.038 0.017 550.248 0.0000 0.0000 0.0000 1074 LIVE LinStatic 0.057 0.024 818.291 0.0000 0.0000 0.0000 1074 WIND LinStatic 0.052 7.274E 04 0.036 0.0000 0.0000 0.0000 1074 DSTL1 Combination 0.054 0.024 770.347 0.0000 0.0000 0.0000 1074 DSTL2 Combination 0.138 0.060 1969.563 0.0000 0.0000 0.0000 1074 DSTL3 Combination 0.155 0.046 1478.624 0.0000 0.0000 0.0000 1074 DSTL4 Combination 0.051 0.044 1478.553 0.0000 0.0000 0.0000 1074 DSTL5 Combination 0.072 0.021 660.316 0.0000 0.0000 0.0000 1074 DSTL6 Combination 0.020 0.020 660.280 0.0000 0.0000 0.0000 1074 DSTL7 Combination 0.086 0.016 495.259 0.0000 0.0000 0.0000 9 Story BF.sdb SAP2000 v17.3.0 9 Story CBF 27 March 2016 Computers and Structures, Inc. Page 8 of 34 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 1074 DSTL8 Combination 0.017 0.015 495.188 0.0000 0.0000 0.0000 1074 DSTL9 Combination 0.038 0.017 550.248 0.0000 0.0000 0.0000 1074 DSTL10 Combination 0.096 0.042 1368.539 0.0000 0.0000 0.0000 1075 DEAD LinStatic 1.081E 03 7.204E 03 544.645 0.0000 0.0000 0.0000 1075 LIVE LinStatic 1.744E 03 0.010 810.225 0.0000 0.0000 0.0000 1075 WIND LinStatic 0.053 7.064E 04 1.723E 03 0.0000 0.0000 0.0000 1075 DSTL1 Combination 1.513E 03 0.010 762.504 0.0000 0.0000 0.0000 1075 DSTL2 Combination 4.087E 03 0.025 1949.935 0.0000 0.0000 0.0000 1075 DSTL3 Combination 0.050 0.018 1463.802 0.0000 0.0000 0.0000 1075 DSTL4 Combination 0.056 0.020 1463.798 0.0000 0.0000 0.0000 1075 DSTL5 Combination 0.025 8.291E 03 653.575 0.0000 0.0000 0.0000 1075 DSTL6 Combination 0.028 8.997E 03 653.574 0.0000 0.0000 0.0000 1075 DSTL7 Combination 0.052 5.777E 03 490.183 0.0000 0.0000 0.0000 1075 DSTL8 Combination 0.054 7.190E 03 490.179 0.0000 0.0000 0.0000 1075 DSTL9 Combination 1.081E 03 7.204E 03 544.645 0.0000 0.0000 0.0000 1075 DSTL10 Combination 2.825E 03 0.017 1354.871 0.0000 0.0000 0.0000 1076 DEAD LinStatic 5.609E 03 2.952E 03 544.632 0.0000 0.0000 0.0000 1076 LIVE LinStatic 8.358E 03 4.465E 03 810.205 0.0000 0.0000 0.0000 1076 WIND LinStatic 0.055 1.459E 04 0.013 0.0000 0.0000 0.0000 1076 DSTL1 Combination 7.853E 03 4.132E 03 762.484 0.0000 0.0000 0.0000 1076 DSTL2 Combination 0.020 0.011 1949.887 0.0000 0.0000 0.0000 1076 DSTL3 Combination 0.070 7.861E 03 1463.750 0.0000 0.0000 0.0000 1076 DSTL4 Combination 0.040 8.153E 03 1463.776 0.0000 0.0000 0.0000 1076 DSTL5 Combination 0.034 3.469E 03 653.552 0.0000 0.0000 0.0000 1076 DSTL6 Combination 0.021 3.615E 03 653.564 0.0000 0.0000 0.0000 1076 DSTL7 Combination 0.060 2.511E 03 490.156 0.0000 0.0000 0.0000 1076 DSTL8 Combination 0.050 2.802E 03 490.181 0.0000 0.0000 0.0000 1076 DSTL9 Com bination 5.609E 03 2.952E 03 544.632 0.0000 0.0000 0.0000 1076 DSTL10 Combination 0.014 7.417E 03 1354.837 0.0000 0.0000 0.0000 1077 DEAD LinStatic 0.034 0.013 550.215 0.0000 0.0000 0.0000 1077 LIVE LinStatic 0.051 0.020 818.239 0.0000 0.0000 0.00 00 1077 WIND LinStatic 0.056 3.176E 03 0.018 0.0000 0.0000 0.0000 1077 DSTL1 Combination 0.048 0.019 770.301 0.0000 0.0000 0.0000 1077 DSTL2 Combination 0.124 0.047 1969.441 0.0000 0.0000 0.0000 1077 DSTL3 Combination 0.037 0.032 1478.479 0.0000 0.0000 0.0000 1077 DSTL4 Combination 0.149 0.039 1478.515 0.0000 0.0000 0.0000 1077 DSTL5 Combination 0.013 0.014 660.249 0.0000 0.0000 0.0000 1077 DSTL6 Combination 0.069 0.018 660.267 0.0000 0.0000 0.0000 1077 DSTL7 Combination 0.025 8.825E 03 495.175 0.0000 0.0000 0.0000 1077 DSTL8 Combination 0.087 0.015 495.212 0.0000 0.0000 0.0000 1077 DSTL9 Combination 0.034 0.013 550.215 0.0000 0.0000 0.0000 1077 DSTL10 Combination 0.086 0.033 1368.454 0.0000 0.0000 0.0000 1078 DEAD LinStatic 0.029 0.032 547.292 0.0000 0.0000 0.0000 1078 LIVE LinStatic 0.043 0.047 813.744 0.0000 0.0000 0.0000 1078 WIND LinStatic 0.052 2.739E 04 7.780E 03 0.0000 0.0000 0.0000 1078 DSTL1 Combination 0.041 0.045 766.209 0.0000 0.0000 0.0000 1078 DSTL2 Combination 0.105 0.113 1958.741 0.0000 0.0000 0.0000 1078 DSTL3 Combination 0.130 0.085 1470.502 0.0000 0.0000 0.0000 1078 DSTL4 Combination 0.027 0.085 1470.486 0.0000 0.0000 0.0000 1078 DSTL5 Combination 0.061 0.038 656.754 0.0000 0.0000 0.0000 1078 DSTL6 Combination 9.151E 03 0.038 656.746 0.0000 0.0000 0.0000 1078 DSTL7 Combination 0.078 0.028 492.570 0.0000 0.0000 0.0000 1078 DSTL8 Combination 0.026 0.029 492.555 0.0000 0.0000 0.0000 1078 DSTL9 Combination 0.029 0.032 547.292 0.0000 0.0000 0.0000

PAGE 151

! 144 9 Story BF.sdb SAP2000 v17.3.0 9 Story CBF 27 March 2016 Computers and Structures, Inc. Page 9 of 34 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 1078 DSTL10 Combination 0.073 0.079 1361.036 0.0000 0.0000 0.0000 1079 DEAD LinStatic 5.073E 04 0.018 543.555 0.0000 0.0000 0.0000 1079 LIVE LinStatic 5.298E 04 0.026 808.453 0.0000 0.0000 0.0000 1079 WIND LinStatic 0.054 2.127E 03 9.189E 03 0.0000 0.0000 0.0000 1079 DSTL1 Combination 7.102E 04 0.025 760.977 0.0000 0.0000 0.0000 1079 DSTL2 Combination 1.457E 03 0.063 1945.791 0.0000 0.0000 0.0000 1079 DSTL3 Combination 0.055 0.045 1460.728 0.0000 0.0000 0.0000 1079 DSTL4 Combination 0.053 0.049 1460.710 0.0000 0.0000 0.0000 1079 DSTL5 Combination 0.028 0.020 652.271 0.0000 0.0000 0.0000 1079 DSTL6 Combination 0.026 0.022 652.262 0.0000 0.0000 0.0000 1079 DSTL7 Combination 0.054 0.014 489.209 0.0000 0.0000 0.0000 1079 DSTL8 Combination 0.053 0.018 489.191 0.0000 0.0000 0.0000 1079 DSTL9 Combination 5.073E 04 0.018 543.555 0.0000 0.0000 0.0000 1079 DSTL10 Combination 1.037E 03 0.044 1352.008 0.0000 0.0000 0.0000 1080 DEAD LinStatic 0.012 8.908E 03 543.700 0.0000 0.0000 0.0000 1080 LIVE LinStatic 0.017 0.014 808.670 0.0000 0.0000 0.0000 1080 WIND LinStatic 0.053 1.158E 03 1.931E 03 0.0000 0.0000 0.0000 1080 DSTL1 Combination 0.016 0.012 761.180 0.0000 0.0000 0.0000 1080 DSTL2 Combination 0.042 0.032 1946.311 0.0000 0.0000 0.0000 1080 DSTL3 Combination 0.085 0.025 1461.107 0.0000 0.0000 0.0000 1080 DSTL4 Combination 0.022 0.023 1461.111 0.0000 0.0000 0.0000 1080 DSTL5 Combination 0.041 0.011 652.439 0.0000 0.0000 0.0000 1080 DSTL6 Combination 0.013 0.010 652.441 0.0000 0.0000 0.0000 1080 DSTL7 Combination 0.064 9.175E 03 489.328 0.0000 0.0000 0.0000 1080 DSTL8 Combination 0.043 6.859E 03 489.332 0.0000 0.0000 0.0000 1080 DSTL9 Combination 0.012 8.908E 03 543.700 0.0000 0.0000 0.0000 1080 DSTL10 Combination 0.029 0.022 1352.369 0.0000 0.0000 0.0000 1081 DEAD LinStatic 0.022 2.613E 03 547.106 0.0000 0.0000 0.0000 1081 LIVE LinStatic 0.033 3.415E 03 813.458 0.0000 0.0000 0.0000 1081 WIND LinStatic 0.054 8.717E 03 0.119 0.0000 0.0000 0.0000 1081 DSTL1 Combination 0.031 3.658E 03 765.949 0.0000 0.0000 0.0000 1081 DSTL2 Combination 0.080 8.600E 03 1958.061 0.0000 0.0000 0.0000 1081 DSTL3 Combination 6.071E 03 2.166E 03 1470.105 0.0000 0.0000 0.0000 1081 DSTL4 Combination 0.114 0.015 1469.866 0.0000 0.0000 0.0000 1081 DSTL5 Combination 4.025E 04 1.223E 03 656.587 0.0000 0.0000 0.0000 1081 DSTL6 Combination 0.054 7.494E 03 656.468 0.0000 0.0000 0.0000 1081 DSTL7 Combination 0.034 6.365E 03 492.515 0.0000 0.0000 0.0000 1081 DSTL8 Combination 0.074 0.011 492.276 0.0000 0.0000 0.0000 1081 DSTL9 Combination 0.022 2.613E 03 547.106 0.0000 0.0000 0.0000 1081 DSTL10 Combination 0.056 6.028E 03 1360.564 0.0000 0.0000 0.0000 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 2 W14X22 Column No Messages 0.275436 PMM 3 W14X22 Column No Messages 0.100701 PMM 4 W14X22 Column No Messages 0.066382 PMM 5 W14X22 Column No Messages 0.042705 PMM 7 W14X90 Column No Messages 0.848634 PMM 9 Story BF.sdb SAP2000 v17.3.0 9 Story CBF 27 March 2016 Computers and Structures, Inc. Page 10 of 34 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 8 W14X74 Column No Messages 0.916210 PMM 9 W14X61 Column No Messages 0.768145 PMM 10 W14X38 Column No Messages 0.989951 PMM 12 W14X90 Column No Messages 0.841888 PMM 13 W14X68 Column No Messages 0.990890 PMM 14 W14X61 Column No Messages 0.754959 PMM 15 W14X38 Column No Messages 0.975624 PMM 17 W14X90 Column No Messages 0.807785 PMM 18 W14X68 Column No Messages 0.949452 PMM 19 W14X53 Column No Messages 0.990216 PMM 20 W14X38 Column No Messages 0.932656 PMM 22 W14X61 Column No Messages 0.982170 PMM 23 W14X48 Column No Messages 0.978481 PMM 24 W14X38 Column No Messages 0.971357 PMM 25 W14X30 Column No Messages 0.800392 PMM 27 W14X22 Column No Messages 0.397659 PMM 28 W14X22 Column No Messages 0.274541 PMM 29 W14X22 Column No Messages 0.102067 PMM 30 W14X22 Column No Messages 0.034460 PMM 32 W14X99 Column No Messages 0.957397 PMM 33 W14X90 Column No Messages 0.848474 PMM 34 W14X90 Column No Messages 0.700204 PMM 35 W14X82 Column No Messages 0.932227 PMM 37 W14X159 Column No Messages 0.927088 PMM 38 W14X120 Column No Messages 0.937482 PMM 39 W14X90 Column No Messages 0.854715 PMM 40 W14X61 Column No Messages 0.770477 PMM 42 W14X159 Column No Messages 0.919107 PMM 43 W14X120 Column No Messages 0.925749 PMM 44 W14X90 Column No Messages 0.827289 PMM 45 W14X53 Column No Messages 0.995031 PMM 47 W14X159 Column No Messages 0.918241 PMM 48 W14X120 Column No Messages 0.926042 PMM 49 W14X90 Column No Messages 0.828658 PMM 50 W14X53 Column No Messages 0.999490 PMM 52 W14X159 Column No Messages 0.926325 PMM 53 W14X120 Column No Messages 0.932793 PMM 54 W14X90 Column No Messages 0.840902 PMM 55 W14X61 Column No Messages 0.751002 PMM 57 W14X120 Column No Messages 0.933450 PMM 58 W14X99 Column No Messages 0.915961 PMM 59 W14X90 Column No Messages 0.816118 PMM 60 W14X74 Column No Messages 0.970501 PMM 62 W14X109 Column No Messages 0.985655 PMM 63 W14X90 Column No Messages 0.974651 PMM 64 W14X90 Column No Messages 0.786451 PMM 65 W14X61 Column No Messages 0.963290 PMM 67 W14X159 Column No Messages 0.934183 PMM 68 W14X120 Column No Messages 0.938789 PMM 69 W14X90 Column No Messages 0.847281 PMM 70 W14X61 Column No Messages 0.748082 PMM 72 W14X159 Column No Messages 0.919920 PMM 73 W14X120 Column No Messages 0.926748 PMM 74 W14X90 Column No Messages 0.826207 PMM

PAGE 152

! 145 9 Story BF.sdb SAP2000 v17.3.0 9 Story CBF 27 March 2016 Computers and Structures, Inc. Page 11 of 34 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 75 W14X53 Column No Messages 0.993789 PMM 77 W14X159 Column No Messages 0.920004 PMM 78 W14X120 Column No Messages 0.926854 PMM 79 W14X90 Column No Messages 0.827230 PMM 80 W14X53 Column No Messages 0.996387 PMM 82 W14X159 Column No Messages 0.934150 PMM 83 W14X120 Column No Messages 0.938988 PMM 84 W14X90 Column No Messages 0.841290 PMM 85 W14X61 Column No Messages 0.742612 PMM 87 W14X120 Column No Messages 0.914636 PMM 88 W14X90 Column No Messages 0.990729 PMM 89 W14X90 Column No Messages 0.794820 PMM 90 W14X61 Column No Messages 0.966567 PMM 92 W14X120 Column No Messages 0.914576 PMM 93 W14X90 Column No Messages 0.990814 PMM 94 W14X90 Column No Messages 0.794869 PMM 95 W14X61 Column No Messages 0.966603 PMM 97 W14X159 Column No Messages 0.934016 PMM 98 W14X120 Column No Messages 0.939117 PMM 99 W14X90 Column No Messages 0.841362 PMM 100 W14X61 Column No Messages 0.742632 PMM 102 W14X159 Column No Messages 0.919941 PMM 103 W14X120 Column No Messages 0.926778 PMM 104 W14X90 Column No Messages 0.827336 PMM 105 W14X53 Column No Messages 0.996438 PMM 107 W14X159 Column No Messages 0.919897 PMM 108 W14X120 Column No Messages 0.926597 PMM 109 W14X90 Column No Messages 0.826118 PMM 110 W14X53 Column No Messages 0.993751 PMM 112 W14X159 Column No Messages 0.934300 PMM 113 W14X120 Column No Messages 0.938633 PMM 114 W14X90 Column No Messages 0.847222 PMM 115 W14X61 Column No Messages 0.748060 PMM 117 W14X109 Column No Messages 0.985776 PMM 118 W14X90 Column No Messages 0.974606 PMM 119 W14X90 Column No Messages 0.786427 PMM 120 W14X61 Column No Messages 0.963292 PMM 122 W14X120 Column No Messages 0.933350 PMM 123 W14X99 Column No Messages 0.915894 PMM 124 W14X90 Column No Messages 0.816053 PMM 125 W14X74 Column No Messages 0.970554 PMM 127 W14X159 Column No Messages 0.926279 PMM 128 W14X120 Column No Messages 0.932974 PMM 129 W14X90 Column No Messages 0.841005 PMM 130 W14X61 Column No Messages 0.751046 PMM 132 W14X159 Column No Messages 0.918214 PMM 133 W14X120 Column No Messages 0.926196 PMM 134 W14X90 Column No Messages 0.828750 PMM 135 W14X53 Column No Messages 0.999526 PMM 137 W14X159 Column No Messages 0.919261 PMM 138 W14X120 Column No Messages 0.925615 PMM 139 W14X90 Column No Messages 0.827211 PMM 140 W14X53 Column No Messages 0.994999 PMM 142 W14X159 Column No Messages 0.927189 PMM 9 Story BF.sdb SAP2000 v17.3.0 9 Story CBF 27 March 2016 Computers and Structures, Inc. Page 12 of 34 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 143 W14X120 Column No Messages 0.937407 PMM 144 W14X90 Column No Messages 0.854669 PMM 145 W14X61 Column No Messages 0.770462 PMM 147 W14X99 Column No Messages 0.957372 PMM 148 W14X90 Column No Messages 0.848422 PMM 149 W14X90 Column No Messages 0.700152 PMM 150 W14X82 Column No Messages 0.932361 PMM 152 W14X22 Column No Messages 0.429068 PMM 153 W14X22 Column No Messages 0.269334 PMM 154 W14X22 Column No Messages 0.098315 PMM 155 W14X22 Column No Messages 0.033345 PMM 157 W14X61 Column No Messages 0.982183 PMM 158 W14X48 Column No Messages 0.978392 PMM 159 W14X38 Column No Messages 0.971280 PMM 160 W14X30 Column No Messages 0.800361 PMM 162 W14X90 Column No Messages 0.807972 PMM 163 W14X68 Column No Messages 0.949505 PMM 164 W14X53 Column No Messages 0.990220 PMM 165 W14X38 Column No Messages 0.932635 PMM 167 W14X90 Column No Messages 0.841961 PMM 168 W14X68 Column No Messages 0.991055 PMM 169 W14X61 Column No Messages 0.755041 PMM 170 W14X38 Column No Messages 0.975664 PMM 172 W14X90 Column No Messages 0.848616 PMM 173 W14X74 Column No Messages 0.916480 PMM 174 W14X61 Column No Messages 0.768285 PMM 175 W14X38 Column No Messages 0.990004 PMM 177 W14X22 Column No Messages 0.273218 PMM 178 W14X22 Column No Messages 0.099726 PMM 179 W14X22 Column No Messages 0.066127 PMM 180 W14X22 Column No Messages 0.042572 PMM 181 W18X35 Beam No Messages 0.410547 PMM 182 W18X35 Beam No Messages 0.440034 PMM 183 W18X35 Beam No Messages 0.406678 PMM 184 W18X35 Beam No Messages 0.441861 PMM 185 W18X35 Beam No Messages 0.440133 PMM 186 W18X35 Beam No Messages 0.420677 PMM 187 W18X35 Beam No Messages 0.407549 PMM 188 W18X35 Beam No Messages 0.440053 PMM 189 W18X35 Beam No Messages 0.414655 PMM 190 W18X35 Beam No Messages 0.455314 PMM 191 W18X35 Beam No Messages 0.442397 PMM 192 W18X35 Beam No Messages 0.407659 PMM 193 W18X35 Beam No Messages 0.440139 PMM 194 W18X35 Beam No Messages 0.405784 PMM 195 W18X35 Beam No Messages 0.447579 PMM 196 W18X35 Beam No Messages 0.416226 PMM 197 W18X35 Beam No Messages 0.407253 PMM 198 W18X35 Beam No Messages 0.440072 PMM 199 W18X35 Beam No Messages 0.414032 PMM 200 W18X35 Beam No Messages 0.453261 PMM 201 W18X35 Beam No Messages 0.442751 PMM 202 W18X35 Beam No Messages 0.406734 PMM 203 W18X35 Beam No Messages 0.440436 PMM

PAGE 153

! 146 9 Story BF.sdb SAP2000 v17.3.0 9 Story CBF 27 March 2016 Computers and Structures, Inc. Page 13 of 34 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 204 W18X35 Beam No Messages 0.406196 PMM 205 W18X35 Beam No Messages 0.447303 PMM 206 W18X35 Beam No Messages 0.408346 PMM 207 W18X35 Beam No Messages 0.405903 PMM 208 W18X35 Beam No Messages 0.440371 PMM 209 W18X35 Beam No Messages 0.407843 PMM 210 W18X35 Beam No Messages 0.446586 PMM 211 W18X35 Beam No Messages 0.441196 PMM 212 W18X35 Beam No Messages 0.406116 PMM 213 W18X35 Beam No Messages 0.440213 PMM 214 W18X35 Beam No Messages 0.406775 PMM 215 W18X35 Beam No Messages 0.444320 PMM 216 W18X35 Beam No Messages 0.441619 PMM 217 W18X35 Beam No Messages 0.405326 PMM 218 W18X35 Beam No Messages 0.440213 PMM 219 W18X35 Beam No Messages 0.439947 PMM 220 W18X35 Beam No Messages 0.441299 PMM 221 W18X35 Beam No Messages 0.405486 PMM 222 W18X35 Beam No Messages 0.440268 PMM 223 W18X35 Beam No Messages 0.440040 PMM 224 W18X35 Beam No Messages 0.406182 PMM 225 W18X35 Beam No Messages 0.444421 PMM 231 W18X35 Beam No Messages 0.440134 PMM 232 W18X35 Beam No Messages 0.441862 PMM 233 W18X35 Beam No Messages 0.406678 PMM 234 W18X35 Beam No Messages 0.440033 PMM 235 W18X35 Beam No Messages 0.410548 PMM 236 W18X35 Beam No Messages 0.455314 PMM 237 W18X35 Beam No Messages 0.414663 PMM 238 W18X35 Beam No Messages 0.440054 PMM 239 W18X35 Beam No Messages 0.407540 PMM 240 W18X35 Beam No Messages 0.420668 PMM 241 W18X35 Beam No Messages 0.447581 PMM 242 W18X35 Beam No Messages 0.405771 PMM 243 W18X35 Beam No Messages 0.440139 PMM 244 W18X35 Beam No Messages 0.407677 PMM 245 W18X35 Beam No Messages 0.442388 PMM 246 W18X35 Beam No Messages 0.453262 PMM 247 W18X35 Beam No Messages 0.414055 PMM 248 W18X35 Beam No Messages 0.440074 PMM 249 W18X35 Beam No Messages 0.407228 PMM 250 W18X35 Beam No Messages 0.416200 PMM 251 W18X35 Beam No Messages 0.447304 PMM 252 W18X35 Beam No Messages 0.406169 PMM 253 W18X35 Beam No Messages 0.440435 PMM 254 W18X35 Beam No Messages 0.406771 PMM 255 W18X35 Beam No Messages 0.442736 PMM 256 W18X35 Beam No Messages 0.446592 PMM 257 W18X35 Beam No Messages 0.407887 PMM 258 W18X35 Beam No Messages 0.440375 PMM 259 W18X35 Beam No Messages 0.405854 PMM 260 W18X35 Beam No Messages 0.408302 PMM 261 W18X35 Beam No Messages 0.444318 PMM 262 W18X35 Beam No Messages 0.406727 PMM 9 Story BF.sdb SAP2000 v17.3.0 9 Story CBF 27 March 2016 Computers and Structures, Inc. Page 14 of 34 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 263 W18X35 Beam No Messages 0.440211 PMM 264 W18X35 Beam No Messages 0.406184 PMM 265 W18X35 Beam No Messages 0.441171 PMM 266 W18X35 Beam No Messages 0.441302 PMM 267 W18X35 Beam No Messages 0.439911 PMM 268 W18X35 Beam No Messages 0.440221 PMM 269 W18X35 Beam No Messages 0.405253 PMM 270 W18X35 Beam No Messages 0.441658 PMM 271 W18X35 Beam No Messages 0.444420 PMM 272 W18X35 Beam No Messages 0.406150 PMM 273 W18X35 Beam No Messages 0.440038 PMM 274 W18X35 Beam No Messages 0.440242 PMM 275 W18X35 Beam No Messages 0.405527 PMM 286 W18X35 Beam No Messages 0.721116 PMM 287 W18X35 Beam No Messages 0.702708 PMM 288 W18X35 Beam No Messages 0.703427 PMM 289 W18X35 Beam No Messages 0.703935 PMM 290 W18X35 Beam No Messages 0.719127 PMM 291 W18X35 Beam No Messages 0.698411 PMM 292 W18X35 Beam No Messages 0.702176 PMM 293 W18X35 Beam No Messages 0.701355 PMM 294 W18X35 Beam No Messages 0.701748 PMM 295 W18X35 Beam No Messages 0.700161 PMM 296 W18X35 Beam No Messages 0.718141 PMM 297 W18X35 Beam No Messages 0.704158 PMM 298 W18X35 Beam No Messages 0.702582 PMM 299 W18X35 Beam No Messages 0.703559 PMM 300 W18X35 Beam No Messages 0.716939 PMM 301 W18X35 Beam No Messages 0.706064 PMM 302 W18X35 Beam No Messages 0.648334 PMM 303 W18X35 Beam No Messages 0.645522 PMM 304 W18X35 Beam No Messages 0.646173 PMM 305 W18X35 Beam No Messages 0.661297 PMM 306 W18X35 Beam No Messages 0.716447 PMM 307 W18X35 Beam No Messages 0.705788 PMM 308 W18X35 Beam No Messages 0.702911 PMM 309 W18X35 Beam No Messages 0.704574 PMM 310 W18X35 Beam No Messages 0.713595 PMM 311 W18X35 Beam No Messages 0.712534 PMM 312 W18X35 Beam No Messages 0.651976 PMM 313 W18X35 Beam No Messages 0.647240 PMM 314 W18X35 Beam No Messages 0.648651 PMM 315 W18X35 Beam No Messages 0.672650 PMM 316 W18X35 Beam No Messages 0.713770 PMM 317 W18X35 Beam No Messages 0.707815 PMM 318 W18X35 Beam No Messages 0.702847 PMM 319 W18X35 Beam No Messages 0.705239 PMM 320 W18X35 Beam No Messages 0.709216 PMM 321 W18X35 Beam No Messages 0.725607 PMM 322 W18X35 Beam No Messages 0.655133 PMM 323 W18X35 Beam No Messages 0.649366 PMM 324 W18X35 Beam No Messages 0.651846 PMM 325 W18X35 Beam No Messages 0.682592 PMM 326 W18X35 Beam No Messages 0.675372 PMM

PAGE 154

! 147 9 Story BF.sdb SAP2000 v17.3.0 9 Story CBF 27 March 2016 Computers and Structures, Inc. Page 15 of 34 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 327 W18X35 Beam No Messages 0.648800 PMM 328 W18X35 Beam No Messages 0.650137 PMM 329 W18X35 Beam No Messages 0.653338 PMM 330 W18X35 Beam No Messages 0.684789 PMM 336 W18X35 Beam No Messages 0.719677 PMM 337 W18X35 Beam No Messages 0.703971 PMM 338 W18X35 Beam No Messages 0.703469 PMM 339 W18X35 Beam No Messages 0.702746 PMM 340 W18X35 Beam No Messages 0.723538 PMM 341 W18X35 Beam No Messages 0.699523 PMM 342 W18X35 Beam No Messages 0.701680 PMM 343 W18X35 Beam No Messages 0.701304 PMM 344 W18X35 Beam No Messages 0.702124 PMM 345 W18X35 Beam No Messages 0.646945 PMM 346 W18X35 Beam No Messages 0.717470 PMM 347 W18X35 Beam No Messages 0.703609 PMM 348 W18X35 Beam No Messages 0.702628 PMM 349 W18X35 Beam No Messages 0.704208 PMM 350 W18X35 Beam No Messages 0.718792 PMM 351 W18X35 Beam No Messages 0.661330 PMM 352 W18X35 Beam No Messages 0.646275 PMM 353 W18X35 Beam No Messages 0.645594 PMM 354 W18X35 Beam No Messages 0.648434 PMM 355 W18X35 Beam No Messages 0.705533 PMM 356 W18X35 Beam No Messages 0.713947 PMM 357 W18X35 Beam No Messages 0.704602 PMM 358 W18X35 Beam No Messages 0.702937 PMM 359 W18X35 Beam No Messages 0.705813 PMM 360 W18X35 Beam No Messages 0.716854 PMM 361 W18X35 Beam No Messages 0.672649 PMM 362 W18X35 Beam No Messages 0.648707 PMM 363 W18X35 Beam No Messages 0.647284 PMM 364 W18X35 Beam No Messages 0.652021 PMM 365 W18X35 Beam No Messages 0.712187 PMM 366 W18X35 Beam No Messages 0.709464 PMM 367 W18X35 Beam No Messages 0.705243 PMM 368 W18X35 Beam No Messages 0.702862 PMM 369 W18X35 Beam No Messages 0.707826 PMM 370 W18X35 Beam No Messages 0.714042 PMM 371 W18X35 Beam No Messages 0.682555 PMM 372 W18X35 Beam No Messages 0.651869 PMM 373 W18X35 Beam No Messages 0.649384 PMM 374 W18X35 Beam No Messages 0.655146 PMM 375 W18X35 Beam No Messages 0.725362 PMM 376 W18X35 Beam No Messages 0.684884 PMM 377 W18X35 Beam No Messages 0.653318 PMM 378 W18X35 Beam No Messages 0.650127 PMM 379 W18X35 Beam No Messages 0.648774 PMM 380 W18X35 Beam No Messages 0.675437 PMM 381 W24X55 Beam No Messages 0.841808 PMM 382 W24X55 Beam No Messages 0.698249 PMM 383 W24X55 Beam No Messages 0.698735 PMM 384 W24X55 Beam No Messages 0.696445 PMM 385 W24X55 Beam No Messages 0.848438 PMM 9 Story BF.sdb SAP2000 v17.3.0 9 Story CBF 27 March 2016 Computers and Structures, Inc. Page 16 of 34 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 386 W24X55 Beam No Messages 0.885391 PMM 387 W24X55 Beam No Messages 0.703698 PMM 388 W24X55 Beam No Messages 0.709105 PMM 389 W24X55 Beam No Messages 0.703989 PMM 390 W24X55 Beam No Messages 0.887072 PMM 391 W24X55 Beam No Messages 0.887080 PMM 392 W24X55 Beam No Messages 0.703989 PMM 393 W24X55 Beam No Messages 0.709105 PMM 394 W24X55 Beam No Messages 0.703698 PMM 395 W24X55 Beam No Messages 0.885391 PMM 396 W24X55 Beam No Messages 0.848417 PMM 397 W24X55 Beam No Messages 0.696450 PMM 398 W24X55 Beam No Messages 0.698738 PMM 399 W24X55 Beam No Messages 0.698255 PMM 400 W24X55 Beam No Messages 0.841800 PMM 401 W18X35 Beam No Messages 0.859386 PMM 402 W18X35 Beam No Messages 0.859010 PMM 403 W18X35 Beam No Messages 0.858997 PMM 404 W18X35 Beam No Messages 0.858992 PMM 405 W18X35 Beam No Messages 0.858990 PMM 406 W18X35 Beam No Messages 0.858994 PMM 407 W18X35 Beam No Messages 0.858993 PMM 408 W18X35 Beam No Messages 0.859009 PMM 409 W18X35 Beam No Messages 0.791488 PMM 410 W18X35 Beam No Messages 0.858939 PMM 411 W18X35 Beam No Messages 0.791687 PMM 412 W18X35 Beam No Messages 0.793037 PMM 413 W18X35 Beam No Messages 0.858915 PMM 414 W18X35 Beam No Messages 0.791399 PMM 415 W18X35 Beam No Messages 0.791868 PMM 416 W18X35 Beam No Messages 0.791804 PMM 417 W18X35 Beam No Messages 0.791972 PMM 418 W18X35 Beam No Messages 0.791917 PMM 419 W18X35 Beam No Messages 0.858919 PMM 420 W18X35 Beam No Messages 0.791578 PMM 421 W18X35 Beam No Messages 0.859154 PMM 422 W18X35 Beam No Messages 0.791731 PMM 423 W18X35 Beam No Messages 0.791909 PMM 424 W18X35 Beam No Messages 0.791992 PMM 425 W18X35 Beam No Messages 0.791921 PMM 426 W18X35 Beam No Messages 0.791921 PMM 427 W18X35 Beam No Messages 0.791992 PMM 428 W18X35 Beam No Messages 0.791909 PMM 429 W18X35 Beam No Messages 0.791731 PMM 430 W18X35 Beam No Messages 0.859154 PMM 431 W18X35 Beam No Messages 0.791578 PMM 432 W18X35 Beam No Messages 0.858919 PMM 433 W18X35 Beam No Messages 0.791917 PMM 434 W18X35 Beam No Messages 0.791973 PMM 435 W18X35 Beam No Messages 0.791804 PMM 436 W18X35 Beam No Messages 0.791868 PMM 437 W18X35 Beam No Messages 0.791399 PMM 438 W18X35 Beam No Messages 0.858915 PMM 439 W18X35 Beam No Messages 0.793036 PMM

PAGE 155

! 148 9 Story BF.sdb SAP2000 v17.3.0 9 Sto ry CBF 27 March 2016 Computers and Structures, Inc. Page 17 of 34 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 440 W18X35 Beam No Messages 0.791687 PMM 441 W18X35 Beam No Messages 0.858939 PMM 442 W18X35 Beam No Messages 0.791488 PMM 443 W18X35 Beam No Messages 0.859009 PMM 444 W18X35 Beam No Messages 0.858993 PMM 445 W18X35 Beam No Messages 0.858994 PMM 446 W18X35 Beam No Messages 0.858990 PMM 447 W18X35 Beam No Messages 0.858992 PMM 448 W18X35 Beam No Messages 0.858997 PMM 449 W18X35 Beam No Messages 0.859010 PMM 450 W18X35 Beam No Messages 0.859386 PMM 451 W18X35 Beam No Messages 0.859005 PMM 452 W18X35 Beam No Messages 0.791951 PMM 453 W18X35 Beam No Messages 0.791823 PMM 454 W18X35 Beam No Messages 0.791477 PMM 455 W18X35 Beam No Messages 0.858946 PMM 456 W18X35 Beam No Messages 0.858971 PMM 457 W18X35 Beam No Messages 0.791881 PMM 458 W18X35 Beam No Messages 0.791963 PMM 459 W18X35 Beam No Messages 0.791578 PMM 460 W18X35 Beam No Messages 0.858980 PMM 461 W18X35 Beam No Messages 0.858980 PMM 462 W18X35 Beam No Messages 0.791578 PMM 463 W18X35 Beam No Messages 0.791963 PMM 464 W18X35 Beam No Messages 0.791881 PMM 465 W18X35 Beam No Messages 0.858971 PMM 466 W18X35 Beam No Messages 0.858946 PMM 467 W18X35 Beam No Messages 0.791476 PMM 468 W18X35 Beam No Messages 0.791823 PMM 469 W18X35 Beam No Messages 0.791952 PMM 470 W18X35 Beam No Messages 0.859005 PMM 471 W24X55 Beam No Messages 0.798753 PMM 472 W24X55 Beam No Messages 0.700814 PMM 473 W24X55 Beam No Messages 0.697756 PMM 474 W24X55 Beam No Messages 0.738898 PMM 475 W24X55 Beam No Messages 0.781331 PMM 476 W24X55 Beam No Messages 0.815174 PMM 477 W24X55 Beam No Messages 0.708018 PMM 478 W24X55 Beam No Messages 0.707353 PMM 479 W24X55 Beam No Messages 0.708144 PMM 480 W24X55 Beam No Messages 0.840293 PMM 481 W24X55 Beam No Messages 0.829503 PMM 482 W24X55 Beam No Messages 0.708144 PMM 483 W24X55 Beam No Messages 0.707351 PMM 484 W24X55 Beam No Messages 0.708017 PMM 485 W24X55 Beam No Messages 0.815168 PMM 486 W24X55 Beam No Messages 0.781351 PMM 487 W24X55 Beam No Messages 0.738897 PMM 488 W24X55 Beam No Messages 0.697751 PMM 489 W24X55 Beam No Messages 0.700800 PMM 490 W24X55 Beam No Messages 0.798770 PMM 491 W18X35 Beam No Messages 0.791878 PMM 492 W18X35 Beam No Messages 0.791477 PMM 493 W18X35 Beam No Messages 0.791667 PMM 9 Story BF.sdb SAP2000 v17.3.0 9 Story CBF 27 March 2016 Computers and Structures, Inc. Page 18 of 34 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 494 W18X35 Beam No Messages 0.791391 PMM 495 W18X35 Beam No Messages 0.858938 PMM 496 W18X35 Beam No Messages 0.791427 PMM 497 W18X35 Beam No Messages 0.791618 PMM 498 W18X35 Beam No Messages 0.858946 PMM 499 W18X35 Beam No Messages 0.858907 PMM 500 W18X35 Beam No Messages 0.793093 PMM 501 W18X35 Beam No Messages 0.859049 PMM 502 W18X35 Beam No Messages 0.792632 PMM 503 W18X35 Beam No Messages 0.792527 PMM 504 W18X35 Beam No Messages 0.792539 PMM 505 W18X35 Beam No Messages 0.792425 PMM 506 W18X35 Beam No Messages 0.792421 PMM 507 W18X35 Beam No Messages 0.792599 PMM 508 W18X35 Beam No Messages 0.792455 PMM 509 W18X35 Beam No Messages 0.859885 PMM 510 W18X35 Beam No Messages 0.792260 PMM 511 W18X35 Beam No Messages 0.794459 PMM 512 W18X35 Beam No Messages 0.792487 PMM 513 W18X35 Beam No Messages 0.791979 PMM 514 W18X35 Beam No Messages 0.792364 PMM 515 W18X35 Beam No Messages 0.792639 PMM 516 W18X35 Beam No Messages 0.792639 PMM 517 W18X35 Beam No Messages 0.792364 PMM 518 W18X35 Beam No Messages 0.791979 PMM 519 W18X35 Beam No Messages 0.792487 PMM 520 W18X35 Beam No Messages 0.794458 PMM 521 W18X35 Beam No Messages 0.792258 PMM 522 W18X35 Beam No Messages 0.859885 PMM 523 W18X35 Beam No Messages 0.792454 PMM 524 W18X35 Beam No Messages 0.792597 PMM 525 W18X35 Beam No Messages 0.792421 PMM 526 W18X35 Beam No Messages 0.792425 PMM 527 W18X35 Beam No Messages 0.792538 PMM 528 W18X35 Beam No Messages 0.792526 PMM 529 W18X35 Beam No Messages 0.792633 PMM 530 W18X35 Beam No Messages 0.859049 PMM 531 W18X35 Beam No Messages 0.793095 PMM 532 W18X35 Beam No Messages 0.791382 PMM 533 W18X35 Beam No Messages 0.858945 PMM 534 W18X35 Beam No Messages 0.791619 PMM 535 W18X35 Beam No Messages 0.791429 PMM 536 W18X35 Beam No Messages 0.858938 PMM 537 W18X35 Beam No Messages 0.791392 PMM 538 W18X35 Beam No Messages 0.791668 PMM 539 W18X35 Beam No Messages 0.791478 PMM 540 W18X35 Beam No Messages 0.791880 PMM 541 W18X35 Beam No Messages 0.791457 PMM 542 W18X35 Beam No Messages 0.792779 PMM 543 W18X35 Beam No Messages 0.792221 PMM 544 W18X35 Beam No Messages 0.859035 PMM 545 W18X35 Beam No Messages 0.791697 PMM 546 W18X35 Beam No Messages 0.791465 PMM 547 W18X35 Beam No Messages 0.792293 PMM

PAGE 156

! 149 9 Story BF.sdb SAP2000 v17.3.0 9 Story CBF 27 March 2016 Computers and Structures, Inc. Page 19 of 34 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 548 W18X35 Beam No Messages 0.792586 PMM 549 W18X35 Beam No Messages 0.792545 PMM 550 W18X35 Beam No Messages 0.858909 PMM 551 W18X35 Beam No Messages 0.858910 PMM 552 W18X35 Beam No Messages 0.792545 PMM 553 W18X35 Beam No Messages 0.792586 PMM 554 W18X35 Beam No Messages 0.792293 PMM 555 W18X35 Beam No Messages 0.791466 PMM 556 W18X35 Beam No Messages 0.791696 PMM 557 W18X35 Beam No Messages 0.859035 PMM 558 W18X35 Beam No Messages 0.792221 PMM 559 W18X35 Beam No Messages 0.792777 PMM 560 W18X35 Beam No Messages 0.791457 PMM 561 W24X55 Beam No Messages 0.773066 PMM 562 W24X55 Beam No Messages 0.740802 PMM 563 W24X55 Beam No Messages 0.738252 PMM 564 W24X55 Beam No Messages 0.740160 PMM 565 W24X55 Beam No Messages 0.731638 PMM 566 W24X55 Beam No Messages 0.752172 PMM 567 W24X55 Beam No Messages 0.750833 PMM 568 W24X55 Beam No Messages 0.748640 PMM 569 W24X55 Beam No Messages 0.708994 PMM 570 W24X55 Beam No Messages 0.753094 PMM 571 W24X55 Beam No Messages 0.753103 PMM 572 W24X55 Beam No Messages 0.708996 PMM 573 W24X55 Beam No Messages 0.748639 PMM 574 W24X55 Beam No Messages 0.750832 PMM 575 W24X55 Beam No Messages 0.752175 PMM 576 W24X55 Beam No Messages 0.731595 PMM 577 W24X55 Beam No Messages 0.740159 PMM 578 W24X55 Beam No Messages 0.738246 PMM 579 W24X55 Beam No Messages 0.740800 PMM 580 W24X55 Beam No Messages 0.773048 PMM 581 W18X35 Beam No Messages 0.859133 PMM 582 W18X35 Beam No Messages 0.859170 PMM 583 W18X35 Beam No Messages 0.791497 PMM 584 W18X35 Beam No Messages 0.791475 PMM 585 W18X35 Beam No Messages 0.791545 PMM 586 W18X35 Beam No Messages 0.791546 PMM 587 W18X35 Beam No Messages 0.791490 PMM 588 W18X35 Beam No Messages 0.791433 PMM 589 W18X35 Beam No Messages 0.859062 PMM 590 W18X35 Beam No Messages 0.791827 PMM 591 W18X35 Beam No Messages 0.859620 PMM 592 W18X35 Beam No Messages 0.859995 PMM 593 W18X35 Beam No Messages 0.859489 PMM 594 W18X35 Beam No Messages 0.859603 PMM 595 W18X35 Beam No Messages 0.859206 PMM 596 W18X35 Beam No Messages 0.859231 PMM 597 W18X35 Beam No Messages 0.859381 PMM 598 W18X35 Beam No Messages 0.859281 PMM 599 W18X35 Beam No Messages 0.860653 PMM 600 W18X35 Beam No Messages 0.859599 PMM 601 W18X35 Beam No Messages 0.792091 PMM 9 Story BF.sdb SAP2000 v17.3.0 9 Story CBF 27 March 2016 Computers and Structures, Inc. Page 20 of 34 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 602 W18X35 Beam No Messages 0.859721 PMM 603 W18X35 Beam No Messages 0.859676 PMM 604 W18X35 Beam No Messages 0.859603 PMM 605 W18X35 Beam No Messages 0.859509 PMM 606 W18X35 Beam No Messages 0.859509 PMM 607 W18X35 Beam No Messages 0.859603 PMM 608 W18X35 Beam No Messages 0.859676 PMM 609 W18X35 Beam No Messages 0.859720 PMM 610 W18X35 Beam No Messages 0.792092 PMM 611 W18X35 Beam No Messages 0.859598 PMM 612 W18X35 Beam No Messages 0.860652 PMM 613 W18X35 Beam No Messages 0.859281 PMM 614 W18X35 Beam No Messages 0.859380 PMM 615 W18X35 Beam No Messages 0.859231 PMM 616 W18X35 Beam No Messages 0.859206 PMM 617 W18X35 Beam No Messages 0.859602 PMM 618 W18X35 Beam No Messages 0.859489 PMM 619 W18X35 Beam No Messages 0.859996 PMM 620 W18X35 Beam No Messages 0.859619 PMM 621 W18X35 Beam No Messages 0.791821 PMM 622 W18X35 Beam No Messages 0.859062 PMM 623 W18X35 Beam No Messages 0.791431 PMM 624 W18X35 Beam No Messages 0.791488 PMM 625 W18X35 Beam No Messages 0.791544 PMM 626 W18X35 Beam No Messages 0.791543 PMM 627 W18X35 Beam No Messages 0.791473 PMM 628 W18X35 Beam No Messages 0.791495 PMM 629 W18X35 Beam No Messages 0.859170 PMM 630 W18X35 Beam No Messages 0.859134 PMM 631 W18X35 Beam No Messages 0.858958 PMM 632 W18X35 Beam No Messages 0.859458 PMM 633 W18X35 Beam No Messages 0.859726 PMM 634 W18X35 Beam No Messages 0.859704 PMM 635 W18X35 Beam No Messages 0.791456 PMM 636 W18X35 Beam No Messages 0.791543 PMM 637 W18X35 Beam No Messages 0.859238 PMM 638 W18X35 Beam No Messages 0.859529 PMM 639 W18X35 Beam No Messages 0.859347 PMM 640 W18X35 Beam No Messages 0.791530 PMM 641 W18X35 Beam No Messages 0.791532 PMM 642 W18X35 Beam No Messages 0.859347 PMM 643 W18X35 Beam No Messages 0.859529 PMM 644 W18X35 Beam No Messages 0.859238 PMM 645 W18X35 Beam No Messages 0.791540 PMM 646 W18X35 Beam No Messages 0.791458 PMM 647 W18X35 Beam No Messages 0.859705 PMM 648 W18X35 Beam No Messages 0.859726 PMM 649 W18X35 Beam No Messages 0.859457 PMM 650 W18X35 Beam No Messages 0.858958 PMM 651 W24X55 Beam No Messages 0.772376 PMM 652 W24X55 Beam No Messages 0.698876 PMM 653 W24X55 Beam No Messages 0.697269 PMM 654 W24X55 Beam No Messages 0.738677 PMM 655 W24X55 Beam No Messages 0.735291 PMM

PAGE 157

! 150 9 Story BF.sdb SAP2000 v17.3.0 9 Story CBF 27 March 2016 Computers and Structures, Inc. Page 21 of 34 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 656 W24X55 Beam No Messages 0.752878 PMM 657 W24X55 Beam No Messages 0.708550 PMM 658 W24X55 Beam No Messages 0.707160 PMM 659 W24X55 Beam No Messages 0.708732 PMM 660 W24X55 Beam No Messages 0.790372 PMM 661 W24X55 Beam No Messages 0.787245 PMM 662 W24X55 Beam No Messages 0.708730 PMM 663 W24X55 Beam No Messages 0.707155 PMM 664 W24X55 Beam No Messages 0.708548 PMM 665 W24X55 Beam No Messages 0.752874 PMM 666 W24X55 Beam No Messages 0.735339 PMM 667 W24X55 Beam No Messages 0.738684 PMM 668 W24X55 Beam No Messages 0.697249 PMM 669 W24X55 Beam No Messages 0.698853 PMM 670 W24X55 Beam No Messages 0.772400 PMM 671 W18X35 Beam No Messages 0.791958 PMM 672 W18X35 Beam No Messages 0.791440 PMM 673 W18X35 Beam No Messages 0.791641 PMM 674 W18X35 Beam No Messages 0.791402 PMM 675 W18X35 Beam No Messages 0.858925 PMM 676 W18X35 Beam No Messages 0.791439 PMM 677 W18X35 Beam No Messages 0.791588 PMM 678 W18X35 Beam No Messages 0.858929 PMM 679 W18X35 Beam No Messages 0.858943 PMM 680 W18X35 Beam No Messages 0.792738 PMM 681 W18X35 Beam No Messages 0.859024 PMM 682 W18X35 Beam No Messages 0.791987 PMM 683 W18X35 Beam No Messages 0.792237 PMM 684 W18X35 Beam No Messages 0.792240 PMM 685 W18X35 Beam No Messages 0.792153 PMM 686 W18X35 Beam No Messages 0.792148 PMM 687 W18X35 Beam No Messages 0.792278 PMM 688 W18X35 Beam No Messages 0.792179 PMM 689 W18X35 Beam No Messages 0.859785 PMM 690 W18X35 Beam No Messages 0.792076 PMM 691 W18X35 Beam No Messages 0.794217 PMM 692 W18X35 Beam No Messages 0.792171 PMM 693 W18X35 Beam No Messages 0.791758 PMM 694 W18X35 Beam No Messages 0.792051 PMM 695 W18X35 Beam No Messages 0.792275 PMM 696 W18X35 Beam No Messages 0.792274 PMM 697 W18X35 Beam No Messages 0.792051 PMM 698 W18X35 Beam No Messages 0.791758 PMM 699 W18X35 Beam No Messages 0.792169 PMM 700 W18X35 Beam No Messages 0.794215 PMM 701 W18X35 Beam No Messages 0.792069 PMM 702 W18X35 Beam No Messages 0.859786 PMM 703 W18X35 Beam No Messages 0.792177 PMM 704 W18X35 Beam No Messages 0.792274 PMM 705 W18X35 Beam No Messages 0.792148 PMM 706 W18X35 Beam No Messages 0.792153 PMM 707 W18X35 Beam No Messages 0.792237 PMM 708 W18X35 Beam No Messages 0.792235 PMM 709 W18X35 Beam No Messages 0.791991 PMM 9 Story BF.sdb SAP2000 v17.3.0 9 Story CBF 27 March 2016 Computers and Structures, Inc. Page 22 of 34 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 710 W18X35 Beam No Messages 0.859027 PMM 711 W18X35 Beam No Messages 0.792745 PMM 712 W18X35 Beam No Messages 0.858941 PMM 713 W18X35 Beam No Messages 0.858928 PMM 714 W18X35 Beam No Messages 0.791592 PMM 715 W18X35 Beam No Messages 0.791443 PMM 716 W18X35 Beam No Messages 0.858924 PMM 717 W18X35 Beam No Messages 0.791405 PMM 718 W18X35 Beam No Messages 0.791644 PMM 719 W18X35 Beam No Messages 0.791442 PMM 720 W18X35 Beam No Messages 0.791963 PMM 721 W18X35 Beam No Messages 0.791496 PMM 722 W18X35 Beam No Messages 0.792419 PMM 723 W18X35 Beam No Messages 0.791961 PMM 724 W18X35 Beam No Messages 0.859033 PMM 725 W18X35 Beam No Messages 0.791653 PMM 726 W18X35 Beam No Messages 0.791493 PMM 727 W18X35 Beam No Messages 0.792032 PMM 728 W18X35 Beam No Messages 0.792235 PMM 729 W18X35 Beam No Messages 0.792239 PMM 730 W18X35 Beam No Messages 0.791417 PMM 731 W18X35 Beam No Messages 0.791413 PMM 732 W18X35 Beam No Messages 0.792239 PMM 733 W18X35 Beam No Messages 0.792235 PMM 734 W18X35 Beam No Messages 0.792032 PMM 735 W18X35 Beam No Messages 0.791496 PMM 736 W18X35 Beam No Messages 0.791651 PMM 737 W18X35 Beam No Messages 0.859031 PMM 738 W18X35 Beam No Messages 0.791960 PMM 739 W18X35 Beam No Messages 0.792413 PMM 740 W18X35 Beam No Messages 0.791497 PMM 741 W24X55 Beam No Messages 0.772106 PMM 742 W24X55 Beam No Messages 0.739542 PMM 743 W24X55 Beam No Messages 0.738648 PMM 744 W24X55 Beam No Messages 0.739127 PMM 745 W24X55 Beam No Messages 0.731059 PMM 746 W24X55 Beam No Messages 0.753868 PMM 747 W24X55 Beam No Messages 0.749429 PMM 748 W24X55 Beam No Messages 0.748983 PMM 749 W24X55 Beam No Messages 0.749468 PMM 750 W24X55 Beam No Messages 0.753624 PMM 751 W24X55 Beam No Messages 0.753635 PMM 752 W24X55 Beam No Messages 0.749467 PMM 753 W24X55 Beam No Messages 0.748980 PMM 754 W24X55 Beam No Messages 0.749427 PMM 755 W24X55 Beam No Messages 0.753872 PMM 756 W24X55 Beam No Messages 0.730995 PMM 757 W24X55 Beam No Messages 0.739122 PMM 758 W24X55 Beam No Messages 0.738633 PMM 759 W24X55 Beam No Messages 0.739534 PMM 760 W24X55 Beam No Messages 0.772085 PMM 761 W18X35 Beam No Messages 0.859076 PMM 762 W18X35 Beam No Messages 0.859152 PMM 763 W18X35 Beam No Messages 0.791512 PMM

PAGE 158

! 151 9 Story BF.sdb SAP2000 v17.3.0 9 Story CBF 27 March 2016 Computers and Structures, Inc. Page 23 of 34 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 764 W18X35 Beam No Messages 0.791483 PMM 765 W18X35 Beam No Messages 0.791559 PMM 766 W18X35 Beam No Messages 0.791569 PMM 767 W18X35 Beam No Messages 0.791508 PMM 768 W18X35 Beam No Messages 0.791454 PMM 769 W18X35 Beam No Messages 0.859093 PMM 770 W18X35 Beam No Messages 0.791603 PMM 771 W18X35 Beam No Messages 0.859626 PMM 772 W18X35 Beam No Messages 0.860124 PMM 773 W18X35 Beam No Messages 0.859412 PMM 774 W18X35 Beam No Messages 0.859531 PMM 775 W18X35 Beam No Messages 0.859218 PMM 776 W18X35 Beam No Messages 0.859234 PMM 777 W18X35 Beam No Messages 0.859404 PMM 778 W18X35 Beam No Messages 0.859298 PMM 779 W18X35 Beam No Messages 0.860593 PMM 780 W18X35 Beam No Messages 0.859583 PMM 781 W18X35 Beam No Messages 0.791838 PMM 782 W18X35 Beam No Messages 0.859752 PMM 783 W18X35 Beam No Messages 0.859648 PMM 784 W18X35 Beam No Messages 0.859580 PMM 785 W18X35 Beam No Messages 0.859477 PMM 786 W18X35 Beam No Messages 0.859477 PMM 787 W18X35 Beam No Messages 0.859580 PMM 788 W18X35 Beam No Messages 0.859648 PMM 789 W18X35 Beam No Messages 0.859751 PMM 790 W18X35 Beam No Messages 0.791841 PMM 791 W18X35 Beam No Messages 0.859579 PMM 792 W18X35 Beam No Messages 0.860591 PMM 793 W18X35 Beam No Messages 0.859297 PMM 794 W18X35 Beam No Messages 0.859402 PMM 795 W18X35 Beam No Messages 0.859234 PMM 796 W18X35 Beam No Messages 0.859218 PMM 797 W18X35 Beam No Messages 0.859529 PMM 798 W18X35 Beam No Messages 0.859411 PMM 799 W18X35 Beam No Messages 0.860127 PMM 800 W18X35 Beam No Messages 0.859624 PMM 801 W18X35 Beam No Messages 0.791592 PMM 802 W18X35 Beam No Messages 0.859095 PMM 803 W18X35 Beam No Messages 0.791450 PMM 804 W18X35 Beam No Messages 0.791503 PMM 805 W18X35 Beam No Messages 0.791563 PMM 806 W18X35 Beam No Messages 0.791553 PMM 807 W18X35 Beam No Messages 0.791478 PMM 808 W18X35 Beam No Messages 0.791508 PMM 809 W18X35 Beam No Messages 0.859153 PMM 810 W18X35 Beam No Messages 0.859079 PMM 811 W18X35 Beam No Messages 0.858953 PMM 812 W18X35 Beam No Messages 0.859467 PMM 813 W18X35 Beam No Messages 0.859716 PMM 814 W18X35 Beam No Messages 0.859651 PMM 815 W18X35 Beam No Messages 0.791425 PMM 816 W18X35 Beam No Messages 0.791546 PMM 817 W18X35 Beam No Messages 0.859251 PMM 9 Story BF.sdb SAP2000 v17.3.0 9 Story CBF 27 March 2016 Computers and Structures, Inc. Page 24 of 34 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 818 W18X35 Beam No Messages 0.859503 PMM 819 W18X35 Beam No Messages 0.859306 PMM 820 W18X35 Beam No Messages 0.791540 PMM 821 W18X35 Beam No Messages 0.791545 PMM 822 W18X35 Beam No Messages 0.859307 PMM 823 W18X35 Beam No Messages 0.859503 PMM 824 W18X35 Beam No Messages 0.859251 PMM 825 W18X35 Beam No Messages 0.791542 PMM 826 W18X35 Beam No Messages 0.791428 PMM 827 W18X35 Beam No Messages 0.859653 PMM 828 W18X35 Beam No Messages 0.859715 PMM 829 W18X35 Beam No Messages 0.859463 PMM 830 W18X35 Beam No Messages 0.858953 PMM 831 W24X55 Beam No Messages 0.770079 PMM 832 W24X55 Beam No Messages 0.697203 PMM 833 W24X55 Beam No Messages 0.696650 PMM 834 W24X55 Beam No Messages 0.737946 PMM 835 W24X55 Beam No Messages 0.732416 PMM 836 W24X55 Beam No Messages 0.755322 PMM 837 W24X55 Beam No Messages 0.706934 PMM 838 W24X55 Beam No Messages 0.748405 PMM 839 W24X55 Beam No Messages 0.707176 PMM 840 W24X55 Beam No Messages 0.789586 PMM 841 W24X55 Beam No Messages 0.785219 PMM 842 W24X55 Beam No Messages 0.707173 PMM 843 W24X55 Beam No Messages 0.748410 PMM 844 W24X55 Beam No Messages 0.706930 PMM 845 W24X55 Beam No Messages 0.755314 PMM 846 W24X55 Beam No Messages 0.732495 PMM 847 W24X55 Beam No Messages 0.737963 PMM 848 W24X55 Beam No Messages 0.696610 PMM 849 W24X55 Beam No Messages 0.697163 PMM 850 W24X55 Beam No Messages 0.770109 PMM 851 W18X35 Beam No Messages 0.858952 PMM 852 W18X35 Beam No Messages 0.858989 PMM 853 W18X35 Beam No Messages 0.791437 PMM 854 W18X35 Beam No Messages 0.858916 PMM 855 W18X35 Beam No Messages 0.858922 PMM 856 W18X35 Beam No Messages 0.791392 PMM 857 W18X35 Beam No Messages 0.791447 PMM 858 W18X35 Beam No Messages 0.858939 PMM 859 W18X35 Beam No Messages 0.858992 PMM 860 W18X35 Beam No Messages 0.791812 PMM 861 W18X35 Beam No Messages 0.859181 PMM 862 W18X35 Beam No Messages 0.859160 PMM 863 W18X35 Beam No Messages 0.791772 PMM 864 W18X35 Beam No Messages 0.791675 PMM 865 W18X35 Beam No Messages 0.791777 PMM 866 W18X35 Beam No Messages 0.791786 PMM 867 W18X35 Beam No Messages 0.791661 PMM 868 W18X35 Beam No Messages 0.791696 PMM 869 W18X35 Beam No Messages 0.859681 PMM 870 W18X35 Beam No Messages 0.858962 PMM 871 W18X35 Beam No Messages 0.792109 PMM

PAGE 159

! 152 9 Story BF.sdb SAP2000 v17.3.0 9 Story CBF 27 March 2016 Computers and Structures, Inc. Page 25 of 34 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 872 W18X35 Beam No Messages 0.858997 PMM 873 W18X35 Beam No Messages 0.858936 PMM 874 W18X35 Beam No Messages 0.791587 PMM 875 W18X35 Beam No Messages 0.791826 PMM 876 W18X35 Beam No Messages 0.791825 PMM 877 W18X35 Beam No Messages 0.791587 PMM 878 W18X35 Beam No Messages 0.858936 PMM 879 W18X35 Beam No Messages 0.858999 PMM 880 W18X35 Beam No Messages 0.792105 PMM 881 W18X35 Beam No Messages 0.858967 PMM 882 W18X35 Beam No Messages 0.859684 PMM 883 W18X35 Beam No Messages 0.791692 PMM 884 W18X35 Beam No Messages 0.791653 PMM 885 W18X35 Beam No Messages 0.791787 PMM 886 W18X35 Beam No Messages 0.791777 PMM 887 W18X35 Beam No Messages 0.791669 PMM 888 W18X35 Beam No Messages 0.791769 PMM 889 W18X35 Beam No Messages 0.859158 PMM 890 W18X35 Beam No Messages 0.859186 PMM 891 W18X35 Beam No Messages 0.791826 PMM 892 W18X35 Beam No Messages 0.858989 PMM 893 W18X35 Beam No Messages 0.858936 PMM 894 W18X35 Beam No Messages 0.791454 PMM 895 W18X35 Beam No Messages 0.791400 PMM 896 W18X35 Beam No Messages 0.858919 PMM 897 W18X35 Beam No Messages 0.858914 PMM 898 W18X35 Beam No Messages 0.791443 PMM 899 W18X35 Beam No Messages 0.858988 PMM 900 W18X35 Beam No Messages 0.858948 PMM 901 W18X35 Beam No Messages 0.858920 PMM 902 W18X35 Beam No Messages 0.791573 PMM 903 W18X35 Beam No Messages 0.858958 PMM 904 W18X35 Beam No Messages 0.859095 PMM 905 W18X35 Beam No Messages 0.791416 PMM 906 W18X35 Beam No Messages 0.791425 PMM 907 W18X35 Beam No Messages 0.791679 PMM 908 W18X35 Beam No Messages 0.791767 PMM 909 W18X35 Beam No Messages 0.791804 PMM 910 W18X35 Beam No Messages 0.791399 PMM 911 W18X35 Beam No Messages 0.791393 PMM 912 W18X35 Beam No Messages 0.791804 PMM 913 W18X35 Beam No Messages 0.791766 PMM 914 W18X35 Beam No Messages 0.791678 PMM 915 W18X35 Beam No Messages 0.791431 PMM 916 W18X35 Beam No Messages 0.791412 PMM 917 W18X35 Beam No Messages 0.859091 PMM 918 W18X35 Beam No Messages 0.858959 PMM 919 W18X35 Beam No Messages 0.791561 PMM 920 W18X35 Beam No Messages 0.858919 PMM 921 W24X55 Beam No Messages 0.768229 PMM 922 W24X55 Beam No Messages 0.738477 PMM 923 W24X55 Beam No Messages 0.738477 PMM 924 W24X55 Beam No Messages 0.738332 PMM 925 W24X55 Beam No Messages 0.727872 PMM 9 Story BF.sdb SAP2000 v17.3.0 9 Story CBF 27 March 2016 Computers and Structures, Inc. Page 26 of 34 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 926 W24X55 Beam No Messages 0.747811 PMM 927 W24X55 Beam No Messages 0.748603 PMM 928 W24X55 Beam No Messages 0.748783 PMM 929 W24X55 Beam No Messages 0.748791 PMM 930 W24X55 Beam No Messages 0.744133 PMM 931 W24X55 Beam No Messages 0.744148 PMM 932 W24X55 Beam No Messages 0.748790 PMM 933 W24X55 Beam No Messages 0.748778 PMM 934 W24X55 Beam No Messages 0.748600 PMM 935 W24X55 Beam No Messages 0.747816 PMM 936 W24X55 Beam No Messages 0.727768 PMM 937 W24X55 Beam No Messages 0.738316 PMM 938 W24X55 Beam No Messages 0.738451 PMM 939 W24X55 Beam No Messages 0.738459 PMM 940 W24X55 Beam No Messages 0.768195 PMM 941 W18X35 Beam No Messages 0.858911 PMM 942 W18X35 Beam No Messages 0.859031 PMM 943 W18X35 Beam No Messages 0.791501 PMM 944 W18X35 Beam No Messages 0.791470 PMM 945 W18X35 Beam No Messages 0.791527 PMM 946 W18X35 Beam No Messages 0.791539 PMM 947 W18X35 Beam No Messages 0.791500 PMM 948 W18X35 Beam No Messages 0.791457 PMM 949 W18X35 Beam No Messages 0.859024 PMM 950 W18X35 Beam No Messages 0.791608 PMM 951 W18X35 Beam No Messages 0.859417 PMM 952 W18X35 Beam No Messages 0.859707 PMM 953 W18X35 Beam No Messages 0.859293 PMM 954 W18X35 Beam No Messages 0.859369 PMM 955 W18X35 Beam No Messages 0.859182 PMM 956 W18X35 Beam No Messages 0.859188 PMM 957 W18X35 Beam No Messages 0.859308 PMM 958 W18X35 Beam No Messages 0.859242 PMM 959 W18X35 Beam No Messages 0.859909 PMM 960 W18X35 Beam No Messages 0.859339 PMM 961 W18X35 Beam No Messages 0.791817 PMM 962 W18X35 Beam No Messages 0.859444 PMM 963 W18X35 Beam No Messages 0.859454 PMM 964 W18X35 Beam No Messages 0.859433 PMM 965 W18X35 Beam No Messages 0.859378 PMM 966 W18X35 Beam No Messages 0.859378 PMM 967 W18X35 Beam No Messages 0.859432 PMM 968 W18X35 Beam No Messages 0.859453 PMM 969 W18X35 Beam No Messages 0.859442 PMM 970 W18X35 Beam No Messages 0.791821 PMM 971 W18X35 Beam No Messages 0.859333 PMM 972 W18X35 Beam No Messages 0.859906 PMM 973 W18X35 Beam No Messages 0.859240 PMM 974 W18X35 Beam No Messages 0.859304 PMM 975 W18X35 Beam No Messages 0.859188 PMM 976 W18X35 Beam No Messages 0.859182 PMM 977 W18X35 Beam No Messages 0.859366 PMM 978 W18X35 Beam No Messages 0.859291 PMM 979 W18X35 Beam No Messages 0.859711 PMM

PAGE 160

! 153 9 Story BF.sdb SAP2000 v17.3.0 9 Story CBF 27 March 2016 Computers and Structures, Inc. Page 27 of 34 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 980 W18X35 Beam No Messages 0.859413 PMM 981 W18X35 Beam No Messages 0.791589 PMM 982 W18X35 Beam No Messages 0.859028 PMM 983 W18X35 Beam No Messages 0.791450 PMM 984 W18X35 Beam No Messages 0.791491 PMM 985 W18X35 Beam No Messages 0.791528 PMM 986 W18X35 Beam No Messages 0.791516 PMM 987 W18X35 Beam No Messages 0.791461 PMM 988 W18X35 Beam No Messages 0.791494 PMM 989 W18X35 Beam No Messages 0.859033 PMM 990 W18X35 Beam No Messages 0.858916 PMM 991 W18X35 Beam No Messages 0.858918 PMM 992 W18X35 Beam No Messages 0.859314 PMM 993 W18X35 Beam No Messages 0.859471 PMM 994 W18X35 Beam No Messages 0.859438 PMM 995 W18X35 Beam No Messages 0.791413 PMM 996 W18X35 Beam No Messages 0.791512 PMM 997 W18X35 Beam No Messages 0.859208 PMM 998 W18X35 Beam No Messages 0.859393 PMM 999 W18X35 Beam No Messages 0.859226 PMM 1000 W18X35 Beam No Messages 0.791498 PMM 1001 W18X35 Beam No Messages 0.791506 PMM 1002 W18X35 Beam No Messages 0.859227 PMM 1003 W18X35 Beam No Messages 0.859393 PMM 1004 W18X35 Beam No Messages 0.859207 PMM 1005 W18X35 Beam No Messages 0.791503 PMM 1006 W18X35 Beam No Messages 0.791417 PMM 1007 W18X35 Beam No Messages 0.859442 PMM 1008 W18X35 Beam No Messages 0.859469 PMM 1009 W18X35 Beam No Messages 0.859309 PMM 1010 W18X35 Beam No Messages 0.858920 PMM 1011 W24X55 Beam No Messages 0.728487 PMM 1012 W24X55 Beam No Messages 0.737797 PMM 1013 W24X55 Beam No Messages 0.737445 PMM 1014 W24X55 Beam No Messages 0.737650 PMM 1015 W24X55 Beam No Messages 0.760197 PMM 1016 W24X55 Beam No Messages 0.744849 PMM 1017 W24X55 Beam No Messages 0.748384 PMM 1018 W24X55 Beam No Messages 0.748381 PMM 1019 W24X55 Beam No Messages 0.706864 PMM 1020 W24X55 Beam No Messages 0.741562 PMM 1021 W24X55 Beam No Messages 0.741547 PMM 1022 W24X55 Beam No Messages 0.706860 PMM 1023 W24X55 Beam No Messages 0.748388 PMM 1024 W24X55 Beam No Messages 0.748388 PMM 1025 W24X55 Beam No Messages 0.744839 PMM 1026 W24X55 Beam No Messages 0.757998 PMM 1027 W24X55 Beam No Messages 0.737669 PMM 1028 W24X55 Beam No Messages 0.737479 PMM 1029 W24X55 Beam No Messages 0.737817 PMM 1030 W24X55 Beam No Messages 0.728583 PMM 1031 W18X35 Beam No Messages 0.859009 PMM 1032 W18X35 Beam No Messages 0.859018 PMM 1033 W18X35 Beam No Messages 0.858926 PMM 9 Story BF.sdb SAP2000 v17.3.0 9 Story CBF 27 March 2016 Computers and Structures, Inc. Page 28 of 34 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 1034 W18X35 Beam No Messages 0.858923 PMM 1035 W18X35 Beam No Messages 0.858915 PMM 1036 W18X35 Beam No Messages 0.858918 PMM 1037 W18X35 Beam No Messages 0.858930 PMM 1038 W18X35 Beam No Messages 0.858925 PMM 1039 W18X35 Beam No Messages 0.859002 PMM 1040 W18X35 Beam No Messages 0.858977 PMM 1041 W18X35 Beam No Messages 0.859069 PMM 1042 W18X35 Beam No Messages 0.859351 PMM 1043 W18X35 Beam No Messages 0.859011 PMM 1044 W18X35 Beam No Messages 0.859044 PMM 1045 W18X35 Beam No Messages 0.858978 PMM 1046 W18X35 Beam No Messages 0.858982 PMM 1047 W18X35 Beam No Messages 0.859023 PMM 1048 W18X35 Beam No Messages 0.858987 PMM 1049 W18X35 Beam No Messages 0.859400 PMM 1050 W18X35 Beam No Messages 0.859117 PMM 1051 W18X35 Beam No Messages 0.859003 PMM 1052 W18X35 Beam No Messages 0.859208 PMM 1053 W18X35 Beam No Messages 0.859079 PMM 1054 W18X35 Beam No Messages 0.859053 PMM 1055 W18X35 Beam No Messages 0.859016 PMM 1056 W18X35 Beam No Messages 0.859016 PMM 1057 W18X35 Beam No Messages 0.859053 PMM 1058 W18X35 Beam No Messages 0.859080 PMM 1059 W18X35 Beam No Messages 0.859211 PMM 1060 W18X35 Beam No Messages 0.859005 PMM 1061 W18X35 Beam No Messages 0.859124 PMM 1062 W18X35 Beam No Messages 0.859404 PMM 1063 W18X35 Beam No Messages 0.858989 PMM 1064 W18X35 Beam No Messages 0.859028 PMM 1065 W18X35 Beam No Messages 0.858982 PMM 1066 W18X35 Beam No Messages 0.858978 PMM 1067 W18X35 Beam No Messages 0.859047 PMM 1068 W18X35 Beam No Messages 0.859012 PMM 1069 W18X35 Beam No Messages 0.859345 PMM 1070 W18X35 Beam No Messages 0.859074 PMM 1071 W18X35 Beam No Messages 0.858968 PMM 1072 W18X35 Beam No Messages 0.858998 PMM 1073 W18X35 Beam No Messages 0.858922 PMM 1074 W18X35 Beam No Messages 0.858925 PMM 1075 W18X35 Beam No Messages 0.858913 PMM 1076 W18X35 Beam No Messages 0.858911 PMM 1077 W18X35 Beam No Messages 0.858920 PMM 1078 W18X35 Beam No Messages 0.858923 PMM 1079 W18X35 Beam No Messages 0.859016 PMM 1080 W18X35 Beam No Messages 0.859003 PMM 1081 W18X35 Beam No Messages 0.858934 PMM 1082 W18X35 Beam No Messages 0.859077 PMM 1083 W18X35 Beam No Messages 0.859129 PMM 1084 W18X35 Beam No Messages 0.859067 PMM 1085 W18X35 Beam No Messages 0.858926 PMM 1086 W18X35 Beam No Messages 0.791390 PMM 1087 W18X35 Beam No Messages 0.858985 PMM

PAGE 161

! 154 9 Story BF.sdb SAP2000 v17.3.0 9 Story CBF 27 March 2016 Computers and Structures, Inc. Page 29 of 34 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 1088 W18X35 Beam No Messages 0.859025 PMM 1089 W18X35 Beam No Messages 0.859002 PMM 1090 W18X35 Beam No Messages 0.791397 PMM 1091 W18X35 Beam No Messages 0.791387 PMM 1092 W18X35 Beam No Messages 0.859002 PMM 1093 W18X35 Beam No Messages 0.859025 PMM 1094 W18X35 Beam No Messages 0.858985 PMM 1095 W18X35 Beam No Messages 0.791399 PMM 1096 W18X35 Beam No Messages 0.858928 PMM 1097 W18X35 Beam No Messages 0.859063 PMM 1098 W18X35 Beam No Messages 0.859131 PMM 1099 W18X35 Beam No Messages 0.859084 PMM 1100 W18X35 Beam No Messages 0.858932 PMM 1101 W24X55 Beam No Messages 0.777281 PMM 1102 W24X55 Beam No Messages 0.738008 PMM 1103 W24X55 Beam No Messages 0.738925 PMM 1104 W24X55 Beam No Messages 0.738072 PMM 1105 W24X55 Beam No Messages 0.776911 PMM 1106 W24X55 Beam No Messages 0.785830 PMM 1107 W24X55 Beam No Messages 0.748140 PMM 1108 W24X55 Beam No Messages 0.749274 PMM 1109 W24X55 Beam No Messages 0.748306 PMM 1110 W24X55 Beam No Messages 0.791966 PMM 1111 W24X55 Beam No Messages 0.785390 PMM 1112 W24X55 Beam No Messages 0.748305 PMM 1113 W24X55 Beam No Messages 0.749269 PMM 1114 W24X55 Beam No Messages 0.748139 PMM 1115 W24X55 Beam No Messages 0.785844 PMM 1116 W24X55 Beam No Messages 0.770967 PMM 1117 W24X55 Beam No Messages 0.738062 PMM 1118 W24X55 Beam No Messages 0.738903 PMM 1119 W24X55 Beam No Messages 0.737996 PMM 1120 W24X55 Beam No Messages 0.777223 PMM 1121 W18X35 Beam No Messages 0.858933 PMM 1122 W18X35 Beam No Messages 0.858932 PMM 1123 W18X35 Beam No Messages 0.791657 PMM 1124 W18X35 Beam No Messages 0.791566 PMM 1125 W18X35 Beam No Messages 0.791629 PMM 1126 W18X35 Beam No Messages 0.791665 PMM 1127 W18X35 Beam No Messages 0.791621 PMM 1128 W18X35 Beam No Messages 0.791578 PMM 1129 W18X35 Beam No Messages 0.858958 PMM 1130 W18X35 Beam No Messages 0.791430 PMM 1131 W18X35 Beam No Messages 0.859222 PMM 1132 W18X35 Beam No Messages 0.859406 PMM 1133 W18X35 Beam No Messages 0.859102 PMM 1134 W18X35 Beam No Messages 0.859162 PMM 1135 W18X35 Beam No Messages 0.859147 PMM 1136 W18X35 Beam No Messages 0.859138 PMM 1137 W18X35 Beam No Messages 0.859244 PMM 1138 W18X35 Beam No Messages 0.859193 PMM 1139 W18X35 Beam No Messages 0.859659 PMM 1140 W18X35 Beam No Messages 0.859126 PMM 1141 W18X35 Beam No Messages 0.858950 PMM 9 Story BF.sdb SAP2000 v17.3.0 9 Story CBF 27 March 2016 Computers and Structures, Inc. Page 30 of 34 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 1142 W18X35 Beam No Messages 0.859354 PMM 1143 W18X35 Beam No Messages 0.859257 PMM 1144 W18X35 Beam No Messages 0.859275 PMM 1145 W18X35 Beam No Messages 0.859242 PMM 1146 W18X35 Beam No Messages 0.859242 PMM 1147 W18X35 Beam No Messages 0.859275 PMM 1148 W18X35 Beam No Messages 0.859257 PMM 1149 W18X35 Beam No Messages 0.859352 PMM 1150 W18X35 Beam No Messages 0.858948 PMM 1151 W18X35 Beam No Messages 0.859122 PMM 1152 W18X35 Beam No Messages 0.859656 PMM 1153 W18X35 Beam No Messages 0.859192 PMM 1154 W18X35 Beam No Messages 0.859242 PMM 1155 W18X35 Beam No Messages 0.859138 PMM 1156 W18X35 Beam No Messages 0.859147 PMM 1157 W18X35 Beam No Messages 0.859160 PMM 1158 W18X35 Beam No Messages 0.859100 PMM 1159 W18X35 Beam No Messages 0.859410 PMM 1160 W18X35 Beam No Messages 0.859220 PMM 1161 W18X35 Beam No Messages 0.791416 PMM 1162 W18X35 Beam No Messages 0.858960 PMM 1163 W18X35 Beam No Messages 0.791573 PMM 1164 W18X35 Beam No Messages 0.791615 PMM 1165 W18X35 Beam No Messages 0.791658 PMM 1166 W18X35 Beam No Messages 0.791622 PMM 1167 W18X35 Beam No Messages 0.791560 PMM 1168 W18X35 Beam No Messages 0.791653 PMM 1169 W18X35 Beam No Messages 0.858933 PMM 1170 W18X35 Beam No Messages 0.858936 PMM 1171 W18X35 Beam No Messages 0.791451 PMM 1172 W18X35 Beam No Messages 0.859138 PMM 1173 W18X35 Beam No Messages 0.859309 PMM 1174 W18X35 Beam No Messages 0.859222 PMM 1175 W18X35 Beam No Messages 0.791480 PMM 1176 W18X35 Beam No Messages 0.791578 PMM 1177 W18X35 Beam No Messages 0.859165 PMM 1178 W18X35 Beam No Messages 0.859262 PMM 1179 W18X35 Beam No Messages 0.859096 PMM 1180 W18X35 Beam No Messages 0.791559 PMM 1181 W18X35 Beam No Messages 0.791564 PMM 1182 W18X35 Beam No Messages 0.859096 PMM 1183 W18X35 Beam No Messages 0.859261 PMM 1184 W18X35 Beam No Messages 0.859165 PMM 1185 W18X35 Beam No Messages 0.791572 PMM 1186 W18X35 Beam No Messages 0.791483 PMM 1187 W18X35 Beam No Messages 0.859225 PMM 1188 W18X35 Beam No Messages 0.859308 PMM 1189 W18X35 Beam No Messages 0.859134 PMM 1190 W18X35 Beam No Messages 0.791449 PMM 16 W14X30 Column No Messages 0.295933 PMM 21 W14X90 Column No Messages 0.735543 PMM 26 W14X90 Column No Messages 0.963888 PMM 1281 W14X99 Column No Messages 0.958618 PMM 1282 W14X99 Column No Messages 0.948577 PMM

PAGE 162

! 155 9 Story BF.sdb SAP2000 v17.3.0 9 Story CBF 27 March 2016 Computers and Structures, Inc. Page 31 of 34 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 1283 W14X30 Column No Messages 0.242126 PMM 1284 W14X30 Column No Messages 0.243828 PMM 1285 W14X99 Column No Messages 0.948463 PMM 1286 W14X99 Column No Messages 0.958511 PMM 1287 W14X90 Column No Messages 0.963770 PMM 1288 W14X90 Column No Messages 0.735330 PMM 1289 W14X30 Column No Messages 0.342577 PMM 1290 W14X109 Column No Messages 0.994179 PMM 1291 W14X193 Column No Messages 0.943307 PMM 1292 W14X193 Column No Messages 0.937647 PMM 1293 W14X193 Column No Messages 0.937396 PMM 1294 W14X193 Column No Messages 0.945465 PMM 1295 W14X132 Column No Messages 0.971904 PMM 1296 W14X132 Column No Messages 0.936903 PMM 1297 W14X193 Column No Messages 0.950277 PMM 1298 W14X193 Column No Messages 0.939369 PMM 1299 W14X193 Column No Messages 0.939393 PMM 1300 W14X193 Column No Messages 0.950817 PMM 1301 W14X132 Column No Messages 0.953402 PMM 1302 W14X132 Column No Messages 0.953460 PMM 1303 W14X193 Column No Messages 0.950885 PMM 1304 W14X193 Column No Messages 0.939393 PMM 1305 W14X193 Column No Messages 0.939369 PMM 1306 W14X193 Column No Messages 0.950198 PMM 1307 W14X132 Column No Messages 0.936860 PMM 1308 W14X132 Column No Messages 0.971713 PMM 1309 W14X193 Column No Messages 0.945553 PMM 1310 W14X193 Column No Messages 0.937396 PMM 1311 W14X193 Column No Messages 0.937647 PMM 1312 W14X193 Column No Messages 0.943309 PMM 1313 W14X109 Column No Messages 0.993975 PMM 1314 HSS4X4X1/8 Brace No Messages 0.576439 PMM 1315 HSS10X10X1/4 Brace No Messages 0.992030 PMM 1316 HSS4X4X1/8 Brace No Messages 0.529737 PMM 1317 HSS10X10X1/4 Brace No Messages 0.894459 PMM 1318 HSS4X4X1/8 Brace No Messages 0.424080 PMM 1319 HSS9X9X3/16 Brace No Messages 0.842773 PMM 1320 HSS4X4X1/8 Brace No Messages 0.200102 PMM 1321 HSS7X7X1/8 Brace No Messages 0.763044 PMM 1322 HSS6X6X1/8 Brace No Messages 0.142662 PMM 1323 HSS7X7X1/8 Brace No Messages 0.687060 PMM 1324 HSS5X5X1/8 Brace No Messages 0.662371 PMM 1325 HSS5X5X1/8 Brace No Messages 0.714589 PMM 1326 HSS5X5X1/8 Brace No Messages 0.517058 PMM 1327 HSS6X6X1/8 Brace No Messages 0.642466 PMM 1328 HSS5X5X1/8 Brace No Messages 0.182745 PMM 1329 HSS6X6X1/8 Brace No Messages 0.740060 PMM 1330 HSS4X4X1/8 Brace No Messages 0.128496 PMM 1331 HSS6X6X1/8 Brace No Messages 0.902987 PMM 1332 HSS5X5X1/8 Brace No Messages 0.126493 PMM 1333 HSS5X5X1/8 Brace No Messages 0.120221 PMM 1334 HSS5X5X1/8 Brace No Messages 0.364269 PMM 1335 HSS5X5X1/8 Brace No Messages 0.301182 PMM 1336 HSS5X5X1/8 Brace No Messages 0.652882 PMM 9 Story BF.sdb SAP2000 v17.3.0 9 Story CBF 27 March 2016 Computers and Structures, Inc. Page 32 of 34 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 1337 HSS5X5X1/8 Brace No Messages 0.533711 PMM 1338 HSS5X5X1/8 Brace No Messages 0.732903 PMM 1339 HSS5X5X1/8 Brace No Messages 0.764236 PMM 1340 HSS7X7X1/8 Brace No Messages 0.733870 PMM 1341 HSS7X7X1/8 Brace No Messages 0.701521 PMM 1342 HSS5X5X1/8 Brace No Messages 0.696266 PMM 1343 HSS5X5X1/8 Brace No Messages 0.636796 PMM 1344 HSS5X5X1/8 Brace No Messages 0.765270 PMM 1345 HSS5X5X1/8 Brace No Messages 0.573735 PMM 1346 HSS5X5X1/8 Brace No Messages 0.786926 PMM 1347 HSS5X5X1/8 Brace No Messages 0.396630 PMM 1348 HSS5X5X1/8 Brace No Messages 0.683098 PMM 1349 HSS5X5X1/8 Brace No Messages 0.153668 PMM 1350 HSS4X4X1/8 Brace No Messages 0.576461 PMM 1351 HSS10X10X1/4 Brace No Messages 0.992025 PMM 1352 HSS4X4X1/8 Brace No Messages 0.529775 PMM 1353 HSS10X10X1/4 Brace No Messages 0.894416 PMM 1354 HSS4X4X1/8 Brace No Messages 0.424134 PMM 1355 HSS9X9X3/16 Brace No Messages 0.842670 PMM 1356 HSS4X4X1/8 Brace No Messages 0.200147 PMM 1357 HSS7X7X1/8 Brace No Messages 0.762833 PMM 1358 HSS6X6X1/8 Brace No Messages 0.131313 PMM 1359 HSS7X7X1/8 Brace No Messages 0.687306 PMM 1360 HSS5X5X1/8 Brace No Messages 0.663170 PMM 1361 HSS5X5X1/8 Brace No Messages 0.715523 PMM 1362 HSS5X5X1/8 Brace No Messages 0.517872 PMM 1363 HSS6X6X1/8 Brace No Messages 0.642834 PMM 1364 HSS5X5X1/8 Brace No Messages 0.182999 PMM 1365 HSS6X6X1/8 Brace No Messages 0.740275 PMM 1366 HSS4X4X1/8 Brace No Messages 0.128488 PMM 1367 HSS6X6X1/8 Brace No Messages 0.903056 PMM 1368 HSS5X5X1/8 Brace No Messages 0.126422 PMM 1369 HSS5X5X1/8 Brace No Messages 0.122143 PMM 1370 HSS5X5X1/8 Brace No Messages 0.363773 PMM 1371 HSS5X5X1/8 Brace No Messages 0.300499 PMM 1372 HSS5X5X1/8 Brace No Messages 0.652009 PMM 1373 HSS5X5X1/8 Brace No Messages 0.532570 PMM 1374 HSS5X5X1/8 Brace No Messages 0.731487 PMM 1375 HSS5X5X1/8 Brace No Messages 0.762964 PMM 1376 HSS7X7X1/8 Brace No Messages 0.733624 PMM 1377 HSS7X7X1/8 Brace No Messages 0.701530 PMM 1378 HSS5X5X1/8 Brace No Messages 0.697068 PMM 1379 HSS5X5X1/8 Brace No Messages 0.637537 PMM 1380 HSS5X5X1/8 Brace No Messages 0.765766 PMM 1381 HSS5X5X1/8 Brace No Messages 0.574216 PMM 1382 HSS5X5X1/8 Brace No Messages 0.787273 PMM 1383 HSS5X5X1/8 Brace No Messages 0.396915 PMM 1384 HSS5X5X1/8 Brace No Messages 0.683291 PMM 1385 HSS5X5X1/8 Brace No Messages 0.153706 PMM 1386 HSS4X4X1/8 Brace No Messages 0.732334 PMM 1387 HSS12X12X5/16 Brace No Messages 0.910027 PMM 1388 HSS4X4X1/8 Brace No Messages 0.658185 PMM 1389 HSS10X10X3/8 Brace No Messages 0.946110 PMM 1390 HSS4X4X1/8 Brace No Messages 0.504528 PMM

PAGE 163

! 156 9 Story BF.sdb SAP2000 v17.3.0 9 Story CBF 27 March 2016 Computers and Structures, Inc. Page 33 of 34 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 1391 HSS10X10X1/4 Brace No Messages 0.882564 PMM 1392 HSS4X4X1/8 Brace No Messages 0.312437 PMM 1393 HSS7X7X1/8 Brace No Messages 0.939131 PMM 1394 HSS6X6X1/8 Brace No Messages 0.293624 PMM 1395 HSS8X8X3/16 Brace No Messages 0.827016 PMM 1396 HSS5X5X1/8 Brace No Messages 0.598456 PMM 1397 HSS6X6X1/8 Brace No Messages 0.995368 PMM 1398 HSS5X5X1/8 Brace No Messages 0.484683 PMM 1399 HSS7X7X1/8 Brace No Messages 0.735750 PMM 1400 HSS5X5X1/8 Brace No Messages 0.189039 PMM 1401 HSS8X8X1/8 Brace No Messages 0.776352 PMM 1402 HSS5X5X1/8 Brace No Messages 0.096081 PMM 1403 HSS7X7X1/8 Brace No Messages 0.913219 PMM 1404 HSS5X5X1/8 Brace No Messages 0.164949 PMM 1405 HSS5X5X1/8 Brace No Messages 0.352420 PMM 1406 HSS5X5X1/8 Brace No Messages 0.477272 PMM 1407 HSS5X5X1/8 Brace No Messages 0.620266 PMM 1408 HSS5X5X1/8 Brace No Messages 0.708296 PMM 1409 HSS5X5X1/8 Brace No Messages 0.794988 PMM 1410 HSS5X5X1/8 Brace No Messages 0.862392 PMM 1411 HSS6X6X1/8 Brace No Messages 0.656106 PMM 1412 HSS8X8X3/16 Brace No Messages 0.947557 PMM 1413 HSS9X9X1/8 Brace No Messages 0.956629 PMM 1414 HSS6X6X1/8 Brace No Messages 0.609622 PMM 1415 HSS5X5X1/8 Brace No Messages 0.765541 PMM 1416 HSS6X6X1/8 Brace No Messages 0.640291 PMM 1417 HSS5X5X1/8 Brace No Messages 0.662265 PMM 1418 HSS6X6X1/8 Brace No Messages 0.654806 PMM 1419 HSS5X5X1/8 Brace No Messages 0.450460 PMM 1420 HSS5X5X1/8 Brace No Messages 0.800320 PMM 1421 HSS5X5X1/8 Brace No Messages 0.369791 PMM 1422 HSS4X4X1/8 Brace No Messages 0.732510 PMM 1423 HSS12X12X5/16 Brace No Messages 0.909939 PMM 1424 HSS4X4X1/8 Brace No Messages 0.658541 PMM 1425 HSS10X10X3/8 Brace No Messages 0.945584 PMM 1426 HSS4X4X1/8 Brace No Messages 0.505104 PMM 1427 HSS10X10X1/4 Brace No Messages 0.881117 PMM 1428 HSS4X4X1/8 Brace No Messages 0.313333 PMM 1429 HSS7X7X1/8 Brace No Messages 0.936726 PMM 1430 HSS6X6X1/8 Brace No Messages 0.186372 PMM 1431 HSS8X8X3/16 Brace No Messages 0.827193 PMM 1432 HSS5X5X1/8 Brace No Messages 0.586230 PMM 1433 HSS6X6X1/8 Brace No Messages 0.997161 PMM 1434 HSS5X5X1/8 Brace No Messages 0.469847 PMM 1435 HSS7X7X1/8 Brace No Messages 0.736123 PMM 1436 HSS5X5X1/8 Brace No Messages 0.180854 PMM 1437 HSS8X8X1/8 Brace No Messages 0.776325 PMM 1438 HSS4X4X1/8 Brace No Messages 0.132197 PMM 1439 HSS7X7X1/8 Brace No Messages 0.912932 PMM 1440 HSS5X5X1/8 Brace No Messages 0.159181 PMM 1441 HSS5X5X1/8 Brace No Messages 0.358071 PMM 1442 HSS5X5X1/8 Brace No Messages 0.477376 PMM 1443 HSS5X5X1/8 Brace No Messages 0.620298 PMM 1444 HSS5X5X1/8 Brace No Messages 0.708439 PMM 9 Story BF.sdb SAP2000 v17.3.0 9 Stor y CBF 27 March 2016 Computers and Structures, Inc. Page 34 of 34 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 1445 HSS5X5X1/8 Brace No Messages 0.795066 PMM 1446 HSS5X5X1/8 Brace No Messages 0.862362 PMM 1447 HSS6X6X1/8 Brace No Messages 0.656412 PMM 1448 HSS8X8X3/16 Brace No Messages 0.947403 PMM 1449 HSS9X9X1/8 Brace No Messages 0.956070 PMM 1450 HSS6X6X1/8 Brace No Messages 0.608331 PMM 1451 HSS5X5X1/8 Brace No Messages 0.763472 PMM 1452 HSS6X6X1/8 Brace No Messages 0.638815 PMM 1453 HSS5X5X1/8 Brace No Messages 0.660914 PMM 1454 HSS6X6X1/8 Brace No Messages 0.653986 PMM 1455 HSS5X5X1/8 Brace No Messages 0.449770 PMM 1456 HSS5X5X1/8 Brace No Messages 0.799803 PMM 1457 HSS5X5X1/8 Brace No Messages 0.369649 PMM

PAGE 164

! 157 9 Story Diagrid.sdb SAP2000 v17.3.0 9 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 1 of 29 9 Story Diagrid Table: Joint Reactions Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 32 DEAD LinStatic 5.716E 04 2.221 441.959 0.0000 0.0000 0.0000 32 LIVE LinStatic 1.341E 04 2.890 567.019 0.0000 0.0000 0.0000 32 WIND LinStatic 0.181 17.205 95.888 0.0000 0.0000 0.0000 32 DSTL1 Combination 8.003E 04 3.109 618.742 0.0000 0.0000 0.0000 32 DSTL2 Combination 4.713E 04 7.289 1437.581 0.0000 0.0000 0.0000 32 DSTL3 Combination 0.180 22.760 1193.257 0.0000 0.0000 0.0000 32 DSTL4 Combination 0.181 11.650 1001.481 0.0000 0.0000 0.0000 32 DSTL5 Combination 0.090 11.267 578.294 0.0000 0.0000 0.0000 32 DSTL6 Combination 0.091 5.938 482.406 0.0000 0.0000 0.0000 32 DSTL7 Combination 0.180 19.203 493.651 0.0000 0.0000 0.0000 32 DSTL8 Combination 0.181 15.206 301.875 0.0000 0.0000 0.0000 32 DSTL9 Combination 5.716E 04 2.221 441.959 0.0000 0.0000 0.0000 32 DSTL10 Combination 4.375E 04 5.111 1008.978 0.0000 0.0000 0.0000 46 DEAD LinStatic 6.836E 03 0.027 390.014 0.0000 0.0000 0.0000 46 LIVE LinStatic 8.193E 03 0.029 501.131 0.0000 0.0000 0.0000 46 WIND LinStatic 0.216 17.343 21.828 0.0000 0.0000 0.0000 46 DSTL1 Combination 9.570E 03 0.038 546.019 0.0000 0.0000 0.0000 46 DSTL2 Combination 0.021 0.079 1269.827 0.0000 0.0000 0.0000 46 DSTL3 Combination 0.233 17.404 990.976 0.0000 0.0000 0.0000 46 DSTL4 Combination 0.200 17.281 947.320 0.0000 0.0000 0.0000 46 DSTL5 Combination 0.116 8.704 478.931 0.0000 0.0000 0.0000 46 DSTL6 Combination 0.100 8.639 457.103 0.0000 0.0000 0.0000 46 DSTL7 Combination 0.222 17.367 372.840 0.0000 0.0000 0.0000 46 DSTL8 Combination 0.210 17.318 329.185 0.0000 0.0000 0.0000 46 DSTL9 Combination 6.836E 03 0.027 390.014 0.0000 0.0000 0.0000 46 DSTL10 Combination 0.015 0.056 891.145 0.0000 0.0000 0.0000 58 DEAD LinStatic 4.778E 04 2.194 442.080 0.0000 0.0000 0.0000 58 LIVE LinStatic 2.309E 04 2.862 567.153 0.0000 0.0000 0.0000 58 WIND LinStatic 0.182 49.791 73.645 0.0000 0.0000 0.0000 58 DSTL1 Combination 6.690E 04 3.072 618.912 0.0000 0.0000 0.0000 58 DSTL2 Combination 2.040E 04 7.213 1437.941 0.0000 0.0000 0.0000 58 DSTL3 Combination 0.181 55.286 1171.294 0.0000 0.0000 0.0000 58 DSTL4 Combination 0.182 44.296 1024.005 0.0000 0.0000 0.0000 58 DSTL5 Combination 0.090 27.529 567.318 0.0000 0.0000 0.0000 58 DSTL6 Combination 0.091 22.262 493.674 0.0000 0.0000 0.0000 58 DSTL7 Combination 0.181 51.766 471.516 0.0000 0.0000 0.0000 58 DSTL8 Combination 0.182 47.816 324.227 0.0000 0.0000 0.0000 58 DSTL9 Combination 4.778E 04 2.194 442.080 0.0000 0.0000 0.0000 58 DSTL10 Combination 2.469E 04 5.056 1009.233 0.0000 0.0000 0.0000 89 DEAD LinStatic 5.678E 04 2.255 441.950 0.0000 0.0000 0.0000 89 LIVE LinStatic 1.695E 04 3.225 566.953 0.0000 0.0000 0.0000 89 WIND LinStatic 0.180 55.267 79.180 0.0000 0.0000 0.0000 89 DSTL1 Combination 7.949E 04 3.157 618.730 0.0000 0.0000 0.0000 89 DSTL2 Combination 4.101E 04 7.865 1437.465 0.0000 0.0000 0.0000 89 DSTL3 Combination 0.181 49.337 1018.113 0.0000 0.0000 0.0000 89 DSTL4 Combination 0.180 61.197 1176.472 0.0000 0.0000 0.0000 89 DSTL5 Combination 0.091 24.928 490.750 0.0000 0.0000 0.0000 89 DSTL6 Combination 0.089 30.339 569.930 0.0000 0.0000 0.0000 89 DSTL7 Combination 0.181 53.238 318.575 0.0000 0.0000 0.0000 89 DSTL8 Combination 0.180 57.296 476.935 0.0000 0.0000 0.0000 9 Story Diagrid.sdb SAP2000 v17.3.0 9 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 2 of 29 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 89 DSTL9 Combination 5.678E 04 2.255 441.950 0.0000 0.0000 0.0000 89 DSTL10 Combination 3.983E 04 5.479 1008.903 0.0000 0.0000 0.0000 102 DEAD LinStatic 6.845E 03 0.027 389.969 0.0000 0.0000 0.0000 102 LIVE LinStatic 8.249E 03 0.029 500.727 0.0000 0.0000 0.0000 102 WIND LinStatic 0.209 17.343 25.003 0.0000 0.0000 0.0000 102 DSTL1 Combination 9.583E 03 0.038 545.957 0.0000 0.0000 0.0000 102 DSTL2 Combination 0.021 0.079 1269.127 0.0000 0.0000 0.0000 102 DSTL3 Combination 0.192 17.405 943.687 0.0000 0.0000 0.0000 102 DSTL4 Combination 0.225 17.282 993.693 0.0000 0.0000 0.0000 102 DSTL5 Combination 0.096 8.704 455.462 0.0000 0.0000 0.0000 102 DSTL6 Combination 0.113 8.639 480.464 0.0000 0.0000 0.0000 102 DSTL7 Combination 0.203 17.368 325.970 0.0000 0.0000 0.0000 102 DSTL8 Combination 0.215 17.319 375.975 0.0000 0.0000 0.0000 102 DSTL9 Combination 6.845E 03 0.027 389.969 0.0000 0.0000 0.0000 102 DSTL10 Combination 0.015 0.056 890.696 0.0000 0.0000 0.0000 110 DEAD LinStatic 4.740E 04 2.229 442.071 0.0000 0.0000 0.0000 110 LIVE LinStatic 2.663E 04 3.196 567.088 0.0000 0.0000 0.0000 110 WIND LinStatic 0.179 22.683 101.427 0.0000 0.0000 0.0000 110 DSTL1 Combination 6.636E 04 3.120 618.900 0.0000 0.0000 0.0000 110 DSTL2 Combination 1.427E 04 7.788 1437.827 0.0000 0.0000 0.0000 110 DSTL3 Combination 0.179 16.812 996.147 0.0000 0.0000 0.0000 110 DSTL4 Combination 0.179 28.553 1199.001 0.0000 0.0000 0.0000 110 DSTL5 Combination 0.090 8.667 479.772 0.0000 0.0000 0.0000 110 DSTL6 Combination 0.089 14.016 581.199 0.0000 0.0000 0.0000 110 DSTL7 Combination 0.180 20.677 296.437 0.0000 0.0000 0.0000 110 DSTL8 Combination 0.179 24.688 499.291 0.0000 0.0000 0.0000 110 DSTL9 Combination 4.740E 04 2.229 442.071 0.0000 0.0000 0.0000 110 DSTL10 Combination 2.077E 04 5.425 1009.159 0.0000 0.0000 0.0000 112 DEAD LinStatic 1.445 0.018 494.873 0.0000 0.0000 0.0000 112 LIVE LinStatic 0.853 0.024 636.076 0.0000 0.0000 0.0000 112 WIND LinStatic 106.420 0.059 86.186 0.0000 0.0000 0.0000 112 DSTL1 Combination 2.022 0.025 692.822 0.0000 0.0000 0.0000 112 DSTL2 Combination 0.369 0.060 1611.569 0.0000 0.0000 0.0000 112 DSTL3 Combination 107.300 0.104 1143.738 0.0000 0.0000 0.0000 112 DSTL4 Combination 105.540 0.014 1316.109 0.0000 0.0000 0.0000 112 DSTL5 Combination 54.944 0.051 550.755 0.0000 0.0000 0.0000 112 DSTL6 Combination 51.476 8.287E 03 636.941 0.0000 0.0000 0.0000 112 DSTL7 Combination 107.720 0.075 359.200 0.0000 0.0000 0.0000 112 DSTL8 Combination 105.120 0.043 531.571 0.0000 0.0000 0.0000 112 DSTL9 Combination 1.445 0.018 494.873 0.0000 0.0000 0.0000 112 DSTL10 Combination 0.592 0.042 1130.949 0.0000 0.0000 0.0000 116 DEAD LinStatic 2.030E 03 6.797E 03 430.430 0.0000 0.0000 0.0000 116 LIVE LinStatic 0.017 9.278E 03 558.107 0.0000 0.0000 0.0000 116 WIND LinStatic 119.512 0.044 2.273 0.0000 0.0000 0.0000 116 DSTL1 Combination 2.841E 03 9.516E 03 602.602 0.0000 0.0000 0.0000 116 DSTL2 Combination 0.030 0.023 1409.487 0.0000 0.0000 0.0000 116 DSTL3 Combination 119.492 0.062 1072.350 0.0000 0.0000 0.0000 116 DSTL4 Combination 119.532 0.027 1076.896 0.0000 0.0000 0.0000 116 DSTL5 Combination 59.754 0.030 515.380 0.0000 0.0000 0.0000 116 DSTL6 Combination 59.758 0.014 517.653 0.0000 0.0000 0.0000 116 DSTL7 Combination 119.510 0.051 385.114 0.0000 0.0000 0.0000 116 DSTL8 Combination 119.514 0.038 389.660 0.0000 0.0000 0.0000 116 DSTL9 Combination 2.030E 03 6.797E 03 430.430 0.0000 0.0000 0.0000 116 DSTL10 Combination 0.019 0.016 988.537 0.0000 0.0000 0.0000

PAGE 165

! 158 9 Story Diagrid.sdb SAP2000 v17.3.0 9 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 3 of 29 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 122 DEAD LinStatic 1.443 0.018 494.849 0.0000 0.0000 0.0000 122 LIVE LinStatic 0.871 0.025 635.819 0.0000 0.0000 0.0000 122 WIND LinStatic 116.612 0.067 56.301 0.0000 0.0000 0.0000 122 DSTL1 Combination 2.020 0.025 692.789 0.0000 0.0000 0.0000 122 DSTL2 Combination 0.338 0.062 1611.130 0.0000 0.0000 0.0000 122 DSTL3 Combination 115.752 0.114 1285.940 0.0000 0.0000 0.0000 122 DSTL4 Combination 117.472 0.020 1173.337 0.0000 0.0000 0.0000 122 DSTL5 Combination 56.575 0.055 621.970 0.0000 0.0000 0.0000 122 DSTL6 Combination 60.037 0.012 565.669 0.0000 0.0000 0.0000 122 DSTL7 Combination 115.314 0.083 501.666 0.0000 0.0000 0.0000 122 DSTL8 Combination 117.910 0.051 389.063 0.0000 0.0000 0.0000 122 DSTL9 Combination 1.443 0.018 494.849 0.0000 0.0000 0.0000 122 DSTL10 Combination 0.572 0.043 1130.669 0.0000 0.0000 0.0000 127 DEAD LinStatic 1.414 0.018 494.753 0.0000 0.0000 0.0000 127 LIVE LinStatic 0.882 0.024 635.937 0.0000 0.0000 0.0000 127 WIND LinStatic 120.100 0.067 51.090 0.0000 0.0000 0.0000 127 DSTL1 Combination 1.980 0.025 692.654 0.0000 0.0000 0.0000 127 DSTL2 Combination 0.286 0.060 1611.202 0.0000 0.0000 0.0000 127 DSTL3 Combination 120.915 0.022 1178.550 0.0000 0.0000 0.0000 127 DSTL4 Combination 119.285 0.113 1280.731 0.0000 0.0000 0.0000 127 DSTL5 Combination 61.747 0.012 568.158 0.0000 0.0000 0.0000 127 DSTL6 Combination 58.353 0.055 619.249 0.0000 0.0000 0.0000 127 DSTL7 Combination 121.372 0.051 394.187 0.0000 0.0000 0.0000 127 DSTL8 Combination 118.827 0.083 496.368 0.0000 0.0000 0.0000 127 DSTL9 Combination 1.414 0.018 494.753 0.0000 0.0000 0.0000 127 DSTL10 Combination 0.532 0.042 1130.690 0.0000 0.0000 0.0000 128 DEAD LinStatic 1.959E 03 6.884E 03 430.404 0.0000 0.0000 0.0000 128 LIVE LinStatic 0.017 9.379E 03 558.079 0.0000 0.0000 0.0000 128 WIND LinStatic 119.514 0.044 6.054 0.0000 0.0000 0.0000 128 DSTL1 Combination 2.743E 03 9.638E 03 602.566 0.0000 0.0000 0.0000 128 DSTL2 Combination 0.030 0.023 1409.411 0.0000 0.0000 0.0000 128 DSTL3 Combination 119.494 0.026 1080.618 0.0000 0.0000 0.0000 128 DSTL4 Combination 119.533 0.061 1068.510 0.0000 0.0000 0.0000 128 DSTL5 Combination 59.754 0.014 519.512 0.0000 0.0000 0.0000 128 DSTL6 Combination 59.759 0.030 513.458 0.0000 0.0000 0.0000 128 DSTL7 Combination 119.512 0.037 393.418 0.0000 0.0000 0.0000 128 DSTL8 Combination 119.515 0.050 381.310 0.0000 0.0000 0.0000 128 DSTL9 Combination 1.959E 03 6.884E 03 430.404 0.0000 0.0000 0.0000 128 DSTL10 Combination 0.019 0.016 988.483 0.0000 0.0000 0.0000 133 DEAD LinStatic 1.412 0.018 494.729 0.0000 0.0000 0.0000 133 LIVE LinStatic 0.899 0.025 635.681 0.0000 0.0000 0.0000 133 WIND LinStatic 102.932 0.059 91.402 0.0000 0.0000 0.0000 133 DSTL1 Combination 1.977 0.026 692.620 0.0000 0.0000 0.0000 133 DSTL2 Combination 0.256 0.062 1610.764 0.0000 0.0000 0.0000 133 DSTL3 Combination 102.137 0.012 1320.757 0.0000 0.0000 0.0000 133 DSTL4 Combination 103.727 0.106 1137.953 0.0000 0.0000 0.0000 133 DSTL5 Combination 49.771 7.785E 03 639.376 0.0000 0.0000 0.0000 133 DSTL6 Combination 53.161 0.052 547.974 0.0000 0.0000 0.0000 133 DSTL7 Combination 101.661 0.043 536.658 0.0000 0.0000 0.0000 133 DSTL8 Combination 104.203 0.076 353.854 0.0000 0.0000 0.0000 133 DSTL9 Combination 1.412 0.018 494.729 0.0000 0.0000 0.0000 133 DSTL10 Combination 0.513 0.043 1130.409 0.0000 0.0000 0.0000 1066 DEAD LinStatic 0.114 3.470E 03 574.237 0.0000 0.0000 0.0000 1066 LIVE LinStatic 0.160 5.345E 03 852.151 0.0000 0.0000 0.0000 9 Story Diagrid.sdb SAP2000 v17.3.0 9 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 4 of 29 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 1066 WIND LinStatic 0.391 0.118 0.561 0.0000 0.0000 0.0000 1066 DSTL1 Combination 0.160 4.858E 03 803.932 0.0000 0.0000 0.0000 1066 DSTL2 Combination 0.393 0.013 2052.526 0.0000 0.0000 0.0000 1066 DSTL3 Combination 0.687 0.127 1540.675 0.0000 0.0000 0.0000 1066 DSTL4 Combination 0.094 0.108 1541.797 0.0000 0.0000 0.0000 1066 DSTL5 Combination 0.332 0.063 688.804 0.0000 0.0000 0.0000 1066 DSTL6 Combination 0.059 0.055 689.365 0.0000 0.0000 0.0000 1066 DSTL7 Combination 0.493 0.121 516.252 0.0000 0.0000 0.0000 1066 DSTL8 Combination 0.288 0.115 517.375 0.0000 0.0000 0.0000 1066 DSTL9 Combination 0.114 3.470E 03 574.237 0.0000 0.0000 0.0000 1066 DSTL10 Combination 0.274 8.815E 03 1426.388 0.0000 0.0000 0.0000 1067 DEAD LinStatic 0.201 0.034 543.470 0.0000 0.0000 0.0000 1067 LIVE LinStatic 0.302 0.050 808.091 0.0000 0.0000 0.0000 1067 WIND LinStatic 0.386 0.108 0.024 0.0000 0.0000 0.0000 1067 DSTL1 Combination 0.281 0.047 760.858 0.0000 0.0000 0.0000 1067 DSTL2 Combination 0.724 0.120 1945.109 0.0000 0.0000 0.0000 1067 DSTL3 Combination 0.157 0.199 1460.279 0.0000 0.0000 0.0000 1067 DSTL4 Combination 0.929 0.018 1460.230 0.0000 0.0000 0.0000 1067 DSTL5 Combination 0.048 0.095 652.176 0.0000 0.0000 0.0000 1067 DSTL6 Combination 0.434 0.014 652.151 0.0000 0.0000 0.0000 1067 DSTL7 Combination 0.206 0.139 489.147 0.0000 0.0000 0.0000 1067 DSTL8 Combination 0.567 0.078 489.098 0.0000 0.0000 0.0000 1067 DSTL9 Combination 0.201 0.034 543.470 0.0000 0.0000 0.0000 1067 DSTL10 Combination 0.502 0.084 1351.560 0.0000 0.0000 0.0000 1068 DEAD LinStatic 0.201 0.033 543.478 0.0000 0.0000 0.0000 1068 LIVE LinStatic 0.302 0.050 808.131 0.0000 0.0000 0.0000 1068 WIND LinStatic 0.386 0.102 0.050 0.0000 0.0000 0.0000 1068 DSTL1 Combination 0.281 0.047 760.870 0.0000 0.0000 0.0000 1068 DSTL2 Combination 0.724 0.120 1945.184 0.0000 0.0000 0.0000 1068 DSTL3 Combination 0.929 0.192 1460.255 0.0000 0.0000 0.0000 1068 DSTL4 Combination 0.156 0.012 1460.356 0.0000 0.0000 0.0000 1068 DSTL5 Combination 0.434 0.091 652.149 0.0000 0.0000 0.0000 1068 DSTL6 Combination 0.048 0.011 652.199 0.0000 0.0000 0.0000 1068 DSTL7 Combination 0.567 0.132 489.080 0.0000 0.0000 0.0000 1068 DSTL8 Combination 0.206 0.072 489.181 0.0000 0.0000 0.0000 1068 DSTL9 Combination 0.201 0.033 543.478 0.0000 0.0000 0.0000 1068 DSTL10 Combination 0.502 0.083 1351.610 0.0000 0.0000 0.0000 1069 DEAD LinStatic 0.114 3.695E 03 574.227 0.0000 0.0000 0.0000 1069 LIVE LinStatic 0.160 5.660E 03 852.064 0.0000 0.0000 0.0000 1069 WIND LinStatic 0.390 0.090 0.450 0.0000 0.0000 0.0000 1069 DSTL1 Combination 0.160 5.173E 03 803.918 0.0000 0.0000 0.0000 1069 DSTL2 Combination 0.393 0.013 2052.375 0.0000 0.0000 0.0000 1069 DSTL3 Combination 0.093 0.100 1541.587 0.0000 0.0000 0.0000 1069 DSTL4 Combination 0.687 0.080 1540.687 0.0000 0.0000 0.0000 1069 DSTL5 Combination 0.058 0.049 689.298 0.0000 0.0000 0.0000 1069 DSTL6 Combination 0.332 0.041 688.848 0.0000 0.0000 0.0000 1069 DSTL7 Combination 0.287 0.093 517.254 0.0000 0.0000 0.0000 1069 DSTL8 Combination 0.493 0.087 516.354 0.0000 0.0000 0.0000 1069 DSTL9 Combination 0.114 3.695E 03 574.227 0.0000 0.0000 0.0000 1069 DSTL10 Combination 0.274 9.355E 03 1426.291 0.0000 0.0000 0.0000 1070 DEAD LinStatic 0.438 4.679E 03 581.016 0.0000 0.0000 0.0000 1070 LIVE LinStatic 0.648 7.507E 03 862.707 0.0000 0.0000 0.0000 1070 WIND LinStatic 0.427 0.120 0.311 0.0000 0.0000 0.0000 1070 DSTL1 Combination 0.614 6.551E 03 813.423 0.0000 0.0000 0.0000

PAGE 166

! 159 9 Story Diagrid.sdb SAP2000 v17.3.0 9 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 5 of 29 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 1070 DSTL2 Combination 1.563 0.018 2077.550 0.0000 0.0000 0.0000 1070 DSTL3 Combination 1.602 0.134 1559.615 0.0000 0.0000 0.0000 1070 DSTL4 Combination 0.747 0.107 1560.237 0.0000 0.0000 0.0000 1070 DSTL5 Combination 0.740 0.066 697.064 0.0000 0.0000 0.0000 1070 DSTL6 Combination 0.312 0.055 697.375 0.0000 0.0000 0.0000 1070 DSTL7 Combination 0.822 0.125 522.604 0.0000 0.0000 0.0000 1070 DSTL8 Combination 0.033 0.116 523.225 0.0000 0.0000 0.0000 1070 DSTL9 Combination 0.438 4.679E 03 581.016 0.0000 0.0000 0.0000 1070 DSTL10 Combination 1.087 0.012 1443.723 0.0000 0.0000 0.0000 1071 DEAD LinStatic 2.903E 03 1.180E 03 542.223 0.0000 0.0000 0.0000 1071 LIVE LinStatic 4.833E 03 1.589E 03 807.020 0.0000 0.0000 0.0000 1071 WIND LinStatic 0.408 0.108 0.061 0.0000 0.0000 0.0000 1071 DSTL1 Combination 4.064E 03 1.652E 03 759.112 0.0000 0.0000 0.0000 1071 DSTL2 Combination 0.011 3.959E 03 1941.899 0.0000 0.0000 0.0000 1071 DSTL3 Combination 0.416 0.105 1457.749 0.0000 0.0000 0.0000 1071 DSTL4 Combination 0.400 0.111 1457.626 0.0000 0.0000 0.0000 1071 DSTL5 Combination 0.207 0.052 650.698 0.0000 0.0000 0.0000 1071 DSTL6 Combination 0.200 0.055 650.637 0.0000 0.0000 0.0000 1071 DSTL7 Combination 0.410 0.107 488.062 0.0000 0.0000 0.0000 1071 DSTL8 Combination 0.405 0.109 487.939 0.0000 0.0000 0.0000 1071 DSTL9 Combination 2.903E 03 1.180E 03 542.223 0.0000 0.0000 0.0000 1071 DSTL10 Combination 7.736E 03 2.769E 03 1349.243 0.0000 0.0000 0.0000 1072 DEAD LinStatic 2.892E 03 1.172E 03 541.983 0.0000 0.0000 0.0000 1072 LIVE LinStatic 4.896E 03 1.578E 03 806.911 0.0000 0.0000 0.0000 1072 WIND LinStatic 0.409 0.103 0.040 0.0000 0.0000 0.0000 1072 DSTL1 Combination 4.049E 03 1.641E 03 758.776 0.0000 0.0000 0.0000 1072 DSTL2 Combination 0.011 3.931E 03 1941.437 0.0000 0.0000 0.0000 1072 DSTL3 Combination 0.400 0.100 1457.250 0.0000 0.0000 0.0000 1072 DSTL4 Combination 0.417 0.106 1457.331 0.0000 0.0000 0.0000 1072 DSTL5 Combination 0.201 0.050 650.360 0.0000 0.0000 0.0000 1072 DSTL6 Combination 0.208 0.053 650.400 0.0000 0.0000 0.0000 1072 DSTL7 Combination 0.406 0.102 487.745 0.0000 0.0000 0.0000 1072 DSTL8 Combination 0.411 0.104 487.825 0.0000 0.0000 0.0000 1072 DSTL9 Combination 2.892E 03 1.172E 03 541.983 0.0000 0.0000 0.0000 1072 DSTL10 Combination 7.789E 03 2.750E 03 1348.894 0.0000 0.0000 0.0000 1073 DEAD LinStatic 0.438 4.702E 03 581.016 0.0000 0.0000 0.0000 1073 LIVE LinStatic 0.648 7.532E 03 862.640 0.0000 0.0000 0.0000 1073 WIND LinStatic 0.431 0.112 0.306 0.0000 0.0000 0.0000 1073 DSTL1 Combination 0.614 6.583E 03 813.423 0.0000 0.0000 0.0000 1073 DSTL2 Combination 1.563 0.018 2077.443 0.0000 0.0000 0.0000 1073 DSTL3 Combination 0.743 0.125 1560.165 0.0000 0.0000 0.0000 1073 DSTL4 Combination 1.605 0.099 1559.554 0.0000 0.0000 0.0000 1073 DSTL5 Combination 0.311 0.062 697.372 0.0000 0.0000 0.0000 1073 DSTL6 Combination 0.742 0.050 697.067 0.0000 0.0000 0.0000 1073 DSTL7 Combination 0.036 0.116 523.220 0.0000 0.0000 0.0000 1073 DSTL8 Combination 0.825 0.108 522.609 0.0000 0.0000 0.0000 1073 DSTL9 Combination 0.438 4.702E 03 581.016 0.0000 0.0000 0.0000 1073 DSTL10 Combination 1.086 0.012 1443.656 0.0000 0.0000 0.0000 1074 DEAD LinStatic 0.438 4.890E 03 581.014 0.0000 0.0000 0.0000 1074 LIVE LinStatic 0.648 7.758E 03 862.710 0.0000 0.0000 0.0000 1074 WIND LinStatic 0.428 0.115 0.300 0.0000 0.0000 0.0000 1074 DSTL1 Combination 0.614 6.846E 03 813.420 0.0000 0.0000 0.0000 1074 DSTL2 Combination 1.563 0.018 2077.554 0.0000 0.0000 0.0000 1074 DSTL3 Combination 1.602 0.101 1559.628 0.0000 0.0000 0.0000 9 Story Diagrid.sdb SAP2000 v17.3.0 9 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 6 of 29 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 1074 DSTL4 Combination 0.746 0.129 1560.227 0.0000 0.0000 0.0000 1074 DSTL5 Combination 0.740 0.052 697.068 0.0000 0.0000 0.0000 1074 DSTL6 Combination 0.312 0.063 697.367 0.0000 0.0000 0.0000 1074 DSTL7 Combination 0.823 0.111 522.614 0.0000 0.0000 0.0000 1074 DSTL8 Combination 0.034 0.119 523.213 0.0000 0.0000 0.0000 1074 DSTL9 Combination 0.438 4.890E 03 581.014 0.0000 0.0000 0.0000 1074 DSTL10 Combination 1.086 0.013 1443.725 0.0000 0.0000 0.0000 1075 DEAD LinStatic 2.937E 03 9.607E 04 542.173 0.0000 0.0000 0.0000 1075 LIVE LinStatic 4.895E 03 1.316E 03 806.940 0.0000 0.0000 0.0000 1075 WIND LinStatic 0.408 0.103 0.038 0.0000 0.0000 0.0000 1075 DSTL1 Combination 4.112E 03 1.345E 03 759.042 0.0000 0.0000 0.0000 1075 DSTL2 Combination 0.011 3.259E 03 1941.711 0.0000 0.0000 0.0000 1075 DSTL3 Combination 0.416 0.105 1457.585 0.0000 0.0000 0.0000 1075 DSTL4 Combination 0.399 0.100 1457.510 0.0000 0.0000 0.0000 1075 DSTL5 Combination 0.207 0.052 650.627 0.0000 0.0000 0.0000 1075 DSTL6 Combination 0.200 0.050 650.589 0.0000 0.0000 0.0000 1075 DSTL7 Combination 0.410 0.103 487.993 0.0000 0.0000 0.0000 1075 DSTL8 Combination 0.405 0.102 487.918 0.0000 0.0000 0.0000 1075 DSTL9 Combination 2.937E 03 9.607E 04 542.173 0.0000 0.0000 0.0000 1075 DSTL10 Combination 7.832E 03 2.277E 03 1349.113 0.0000 0.0000 0.0000 1076 DEAD LinStatic 2.938E 03 9.490E 04 542.181 0.0000 0.0000 0.0000 1076 LIVE LinStatic 4.965E 03 1.302E 03 806.985 0.0000 0.0000 0.0000 1076 WIND LinStatic 0.409 0.108 0.061 0.0000 0.0000 0.0000 1076 DSTL1 Combination 4.113E 03 1.329E 03 759.053 0.0000 0.0000 0.0000 1076 DSTL2 Combination 0.011 3.222E 03 1941.793 0.0000 0.0000 0.0000 1076 DSTL3 Combination 0.400 0.110 1457.541 0.0000 0.0000 0.0000 1076 DSTL4 Combination 0.417 0.105 1457.663 0.0000 0.0000 0.0000 1076 DSTL5 Combination 0.201 0.055 650.586 0.0000 0.0000 0.0000 1076 DSTL6 Combination 0.208 0.053 650.647 0.0000 0.0000 0.0000 1076 DSTL7 Combination 0.406 0.109 487.901 0.0000 0.0000 0.0000 1076 DSTL8 Combination 0.412 0.107 488.024 0.0000 0.0000 0.0000 1076 DSTL9 Combination 2.938E 03 9.490E 04 542.181 0.0000 0.0000 0.0000 1076 DSTL10 Combination 7.902E 03 2.251E 03 1349.166 0.0000 0.0000 0.0000 1077 DEAD LinStatic 0.438 4.914E 03 581.009 0.0000 0.0000 0.0000 1077 LIVE LinStatic 0.648 7.783E 03 862.630 0.0000 0.0000 0.0000 1077 WIND LinStatic 0.430 0.123 0.321 0.0000 0.0000 0.0000 1077 DSTL1 Combination 0.614 6.879E 03 813.412 0.0000 0.0000 0.0000 1077 DSTL2 Combination 1.563 0.018 2077.419 0.0000 0.0000 0.0000 1077 DSTL3 Combination 0.744 0.110 1560.162 0.0000 0.0000 0.0000 1077 DSTL4 Combination 1.604 0.137 1559.520 0.0000 0.0000 0.0000 1077 DSTL5 Combination 0.311 0.056 697.371 0.0000 0.0000 0.0000 1077 DSTL6 Combination 0.741 0.068 697.050 0.0000 0.0000 0.0000 1077 DSTL7 Combination 0.036 0.119 523.229 0.0000 0.0000 0.0000 1077 DSTL8 Combination 0.825 0.128 522.587 0.0000 0.0000 0.0000 1077 DSTL9 Combination 0.438 4.914E 03 581.009 0.0000 0.0000 0.0000 1077 DSTL10 Combination 1.086 0.013 1443.639 0.0000 0.0000 0.0000 1078 DEAD LinStatic 0.113 3.525E 03 574.853 0.0000 0.0000 0.0000 1078 LIVE LinStatic 0.159 5.387E 03 852.740 0.0000 0.0000 0.0000 1078 WIND LinStatic 0.388 0.096 0.435 0.0000 0.0000 0.0000 1078 DSTL1 Combination 0.158 4.934E 03 804.794 0.0000 0.0000 0.0000 1078 DSTL2 Combination 0.390 0.013 2054.208 0.0000 0.0000 0.0000 1078 DSTL3 Combination 0.683 0.086 1542.129 0.0000 0.0000 0.0000 1078 DSTL4 Combination 0.094 0.105 1542.998 0.0000 0.0000 0.0000 1078 DSTL5 Combination 0.330 0.044 689.606 0.0000 0.0000 0.0000

PAGE 167

! 160 9 Story Diagrid.sdb SAP2000 v17.3.0 9 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 7 of 29 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 1078 DSTL6 Combination 0.058 0.052 690.041 0.0000 0.0000 0.0000 1078 DSTL7 Combination 0.490 0.092 516.932 0.0000 0.0000 0.0000 1078 DSTL8 Combination 0.287 0.099 517.802 0.0000 0.0000 0.0000 1078 DSTL9 Combination 0.113 3.525E 03 574.853 0.0000 0.0000 0.0000 1078 DSTL10 Combination 0.272 8.911E 03 1427.593 0.0000 0.0000 0.0000 1079 DEAD LinStatic 0.200 0.034 543.359 0.0000 0.0000 0.0000 1079 LIVE LinStatic 0.302 0.050 807.914 0.0000 0.0000 0.0000 1079 WIND LinStatic 0.386 0.102 0.049 0.0000 0.0000 0.0000 1079 DSTL1 Combination 0.281 0.048 760.702 0.0000 0.0000 0.0000 1079 DSTL2 Combination 0.723 0.121 1944.693 0.0000 0.0000 0.0000 1079 DSTL3 Combination 0.156 0.011 1459.994 0.0000 0.0000 0.0000 1079 DSTL4 Combination 0.928 0.192 1459.896 0.0000 0.0000 0.0000 1079 DSTL5 Combination 0.048 0.010 652.055 0.0000 0.0000 0.0000 1079 DSTL6 Combination 0.434 0.091 652.006 0.0000 0.0000 0.0000 1079 DSTL7 Combination 0.205 0.071 489.072 0.0000 0.0000 0.0000 1079 DSTL8 Combination 0.566 0.132 488.974 0.0000 0.0000 0.0000 1079 DSTL9 Combination 0.200 0.034 543.359 0.0000 0.0000 0.0000 1079 DSTL10 Combination 0.502 0.084 1351.273 0.0000 0.0000 0.0000 1080 DEAD LinStatic 0.200 0.034 543.363 0.0000 0.0000 0.0000 1080 LIVE LinStatic 0.302 0.050 807.948 0.0000 0.0000 0.0000 1080 WIND LinStatic 0.386 0.108 0.029 0.0000 0.0000 0.0000 1080 DSTL1 Combination 0.281 0.047 760.708 0.0000 0.0000 0.0000 1080 DSTL2 Combination 0.723 0.120 1944.752 0.0000 0.0000 0.0000 1080 DSTL3 Combination 0.929 0.018 1459.955 0.0000 0.0000 0.0000 1080 DSTL4 Combination 0.156 0.198 1460.012 0.0000 0.0000 0.0000 1080 DSTL5 Combination 0.434 0.014 652.022 0.0000 0.0000 0.0000 1080 DSTL6 Combination 0.047 0.094 652.050 0.0000 0.0000 0.0000 1080 DSTL7 Combination 0.567 0.078 488.998 0.0000 0.0000 0.0000 1080 DSTL8 Combination 0.206 0.138 489.055 0.0000 0.0000 0.0000 1080 DSTL9 Combination 0.200 0.034 543.363 0.0000 0.0000 0.0000 1080 DSTL10 Combination 0.502 0.084 1351.311 0.0000 0.0000 0.0000 1081 DEAD LinStatic 0.113 3.750E 03 574.840 0.0000 0.0000 0.0000 1081 LIVE LinStatic 0.159 5.702E 03 852.648 0.0000 0.0000 0.0000 1081 WIND LinStatic 0.392 0.123 0.579 0.0000 0.0000 0.0000 1081 DSTL1 Combination 0.158 5.250E 03 804.775 0.0000 0.0000 0.0000 1081 DSTL2 Combination 0.390 0.014 2054.044 0.0000 0.0000 0.0000 1081 DSTL3 Combination 0.097 0.113 1543.034 0.0000 0.0000 0.0000 1081 DSTL4 Combination 0.687 0.134 1541.876 0.0000 0.0000 0.0000 1081 DSTL5 Combination 0.060 0.057 690.097 0.0000 0.0000 0.0000 1081 DSTL6 Combination 0.332 0.066 689.518 0.0000 0.0000 0.0000 1081 DSTL7 Combination 0.290 0.120 517.934 0.0000 0.0000 0.0000 1081 DSTL8 Combination 0.494 0.127 516.777 0.0000 0.0000 0.0000 1081 DSTL9 Combination 0.113 3.750E 03 574.840 0.0000 0.0000 0.0000 1081 DSTL10 Combination 0.272 9.452E 03 1427.487 0.0000 0.0000 0.0000 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 37 W14X176 Column No Messages 0.928187 PMM 38 W14X132 Column No Messages 0.994591 PMM 9 Story Diagrid.sdb SAP2000 v17.3.0 9 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 8 of 29 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 39 W14X90 Column No Messages 0.984909 PMM 40 W14X61 Column No Messages 0.838394 PMM 42 W14X159 Column No Messages 0.941444 PMM 43 W14X120 Column No Messages 0.961510 PMM 44 W14X90 Column No Messages 0.836223 PMM 45 W14X61 Column No Messages 0.786669 PMM 47 W14X159 Column No Messages 0.941512 PMM 48 W14X120 Column No Messages 0.961598 PMM 49 W14X90 Column No Messages 0.836277 PMM 50 W14X61 Column No Messages 0.787287 PMM 52 W14X176 Column No Messages 0.928115 PMM 53 W14X132 Column No Messages 0.994515 PMM 54 W14X90 Column No Messages 0.984817 PMM 55 W14X61 Column No Messages 0.838577 PMM 67 W14X176 Column No Messages 0.942472 PMM 68 W14X132 Column No Messages 0.980846 PMM 69 W14X99 Column No Messages 0.958485 PMM 70 W14X61 Column No Messages 0.857551 PMM 72 W14X145 Column No Messages 1.006555 PMM 73 W14X120 Column No Messages 0.927345 PMM 74 W14X90 Column No Messages 0.831721 PMM 75 W14X61 Column No Messages 0.733816 PMM 77 W14X145 Column No Messages 1.006276 PMM 78 W14X120 Column No Messages 0.926988 PMM 79 W14X90 Column No Messages 0.831257 PMM 80 W14X53 Column No Messages 1.004663 PMM 82 W14X176 Column No Messages 0.942420 PMM 83 W14X132 Column No Messages 0.980806 PMM 84 W14X99 Column No Messages 0.958391 PMM 85 W14X61 Column No Messages 0.857593 PMM 97 W14X176 Column No Messages 0.942535 PMM 98 W14X132 Column No Messages 0.983599 PMM 99 W14X99 Column No Messages 0.958006 PMM 100 W14X61 Column No Messages 0.857111 PMM 102 W14X145 Column No Messages 1.006454 PMM 103 W14X120 Column No Messages 0.927325 PMM 104 W14X90 Column No Messages 0.831835 PMM 105 W14X61 Column No Messages 0.733481 PMM 107 W14X145 Column No Messages 1.006491 PMM 108 W14X120 Column No Messages 0.927358 PMM 109 W14X90 Column No Messages 0.831935 PMM 110 W14X61 Column No Messages 0.733133 PMM 112 W14X176 Column No Messages 0.942467 PMM 113 W14X132 Column No Messages 0.983532 PMM 114 W14X99 Column No Messages 0.957877 PMM 115 W14X61 Column No Messages 0.857264 PMM 127 W14X176 Column No Messages 0.929542 PMM 128 W14X145 Column No Messages 0.904994 PMM 129 W14X90 Column No Messages 0.985833 PMM 130 W14X61 Column No Messages 0.838859 PMM 132 W14X159 Column No Messages 0.941192 PMM 133 W14X120 Column No Messages 0.960888 PMM 134 W14X90 Column No Messages 0.837142 PMM 135 W14X61 Column No Messages 0.784662 PMM

PAGE 168

! 161 9 Story Diagrid.sdb SAP2000 v17.3.0 9 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 9 of 29 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 137 W14X159 Column No Messages 0.941251 PMM 138 W14X120 Column No Messages 0.960964 PMM 139 W14X90 Column No Messages 0.837179 PMM 140 W14X61 Column No Messages 0.784588 PMM 142 W14X176 Column No Messages 0.929463 PMM 143 W14X145 Column No Messages 0.904914 PMM 144 W14X90 Column No Messages 0.985726 PMM 145 W14X61 Column No Messages 0.839061 PMM 381 W24X55 Beam No Messages 0.961538 PMM 382 W24X55 Beam No Messages 0.828906 PMM 383 W24X55 Beam No Messages 0.793985 PMM 384 W24X55 Beam No Messages 0.829564 PMM 385 W24X55 Beam No Messages 0.963065 PMM 386 W24X55 Beam No Messages 0.955427 PMM 387 W24X55 Beam No Messages 0.670980 PMM 388 W24X55 Beam No Messages 0.711227 PMM 389 W24X55 Beam No Messages 0.671926 PMM 390 W24X55 Beam No Messages 0.956531 PMM 391 W24X55 Beam No Messages 0.955107 PMM 392 W24X55 Beam No Messages 0.671084 PMM 393 W24X55 Beam No Messages 0.711074 PMM 394 W24X55 Beam No Messages 0.672080 PMM 395 W24X55 Beam No Messages 0.956302 PMM 396 W24X55 Beam No Messages 0.961114 PMM 397 W24X55 Beam No Messages 0.829317 PMM 398 W24X55 Beam No Messages 0.794336 PMM 399 W24X55 Beam No Messages 0.829687 PMM 400 W24X55 Beam No Messages 0.962682 PMM 401 W18X35 Beam No Messages 0.791530 PMM 402 W18X35 Beam No Messages 0.792067 PMM 403 W18X35 Beam No Messages 0.858928 PMM 404 W18X35 Beam No Messages 0.858937 PMM 405 W18X35 Beam No Messages 0.858967 PMM 406 W18X35 Beam No Messages 0.858968 PMM 407 W18X35 Beam No Messages 0.858936 PMM 408 W18X35 Beam No Messages 0.858927 PMM 409 W18X35 Beam No Messages 0.792073 PMM 410 W18X35 Beam No Messages 0.791536 PMM 411 W18X35 Beam No Messages 0.793834 PMM 412 W18X35 Beam No Messages 0.795951 PMM 413 W18X35 Beam No Messages 0.792875 PMM 414 W18X35 Beam No Messages 0.793195 PMM 415 W18X35 Beam No Messages 0.792634 PMM 416 W18X35 Beam No Messages 0.792637 PMM 417 W18X35 Beam No Messages 0.793191 PMM 418 W18X35 Beam No Messages 0.792873 PMM 419 W18X35 Beam No Messages 0.795928 PMM 420 W18X35 Beam No Messages 0.793822 PMM 421 W18X35 Beam No Messages 0.791514 PMM 422 W18X35 Beam No Messages 0.794116 PMM 423 W18X35 Beam No Messages 0.793829 PMM 424 W18X35 Beam No Messages 0.793638 PMM 425 W18X35 Beam No Messages 0.793310 PMM 426 W18X35 Beam No Messages 0.793308 PMM 9 Story Diagrid.sdb SAP2000 v17.3.0 9 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 10 of 29 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 427 W18X35 Beam No Messages 0.793640 PMM 428 W18X35 Beam No Messages 0.793835 PMM 429 W18X35 Beam No Messages 0.794133 PMM 430 W18X35 Beam No Messages 0.791534 PMM 431 W18X35 Beam No Messages 0.793833 PMM 432 W18X35 Beam No Messages 0.795946 PMM 433 W18X35 Beam No Messages 0.792876 PMM 434 W18X35 Beam No Messages 0.793196 PMM 435 W18X35 Beam No Messages 0.792634 PMM 436 W18X35 Beam No Messages 0.792636 PMM 437 W18X35 Beam No Messages 0.793191 PMM 438 W18X35 Beam No Messages 0.792873 PMM 439 W18X35 Beam No Messages 0.795921 PMM 440 W18X35 Beam No Messages 0.793820 PMM 441 W18X35 Beam No Messages 0.791526 PMM 442 W18X35 Beam No Messages 0.792066 PMM 443 W18X35 Beam No Messages 0.858928 PMM 444 W18X35 Beam No Messages 0.858937 PMM 445 W18X35 Beam No Messages 0.858967 PMM 446 W18X35 Beam No Messages 0.858968 PMM 447 W18X35 Beam No Messages 0.858937 PMM 448 W18X35 Beam No Messages 0.858928 PMM 449 W18X35 Beam No Messages 0.792072 PMM 450 W18X35 Beam No Messages 0.791533 PMM 451 W18X35 Beam No Messages 0.791579 PMM 452 W18X35 Beam No Messages 0.793478 PMM 453 W18X35 Beam No Messages 0.794070 PMM 454 W18X35 Beam No Messages 0.793477 PMM 455 W18X35 Beam No Messages 0.791578 PMM 456 W18X35 Beam No Messages 0.858952 PMM 457 W18X35 Beam No Messages 0.792716 PMM 458 W18X35 Beam No Messages 0.793404 PMM 459 W18X35 Beam No Messages 0.792716 PMM 460 W18X35 Beam No Messages 0.858952 PMM 461 W18X35 Beam No Messages 0.858951 PMM 462 W18X35 Beam No Messages 0.792715 PMM 463 W18X35 Beam No Messages 0.793408 PMM 464 W18X35 Beam No Messages 0.792713 PMM 465 W18X35 Beam No Messages 0.858950 PMM 466 W18X35 Beam No Messages 0.791583 PMM 467 W18X35 Beam No Messages 0.793485 PMM 468 W18X35 Beam No Messages 0.794080 PMM 469 W18X35 Beam No Messages 0.793485 PMM 470 W18X35 Beam No Messages 0.791582 PMM 471 W24X55 Beam No Messages 0.987599 PMM 472 W24X55 Beam No Messages 0.770842 PMM 473 W24X55 Beam No Messages 0.776139 PMM 474 W24X55 Beam No Messages 0.770700 PMM 475 W24X55 Beam No Messages 0.987573 PMM 476 W24X55 Beam No Messages 0.987266 PMM 477 W24X55 Beam No Messages 0.735340 PMM 478 W24X55 Beam No Messages 0.747031 PMM 479 W24X55 Beam No Messages 0.734752 PMM 480 W24X55 Beam No Messages 0.987344 PMM

PAGE 169

! 162 9 Story Diagrid.sdb SAP2000 v17.3.0 9 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 11 of 29 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 481 W24X55 Beam No Messages 0.986993 PMM 482 W24X55 Beam No Messages 0.735155 PMM 483 W24X55 Beam No Messages 0.746599 PMM 484 W24X55 Beam No Messages 0.735077 PMM 485 W24X55 Beam No Messages 0.987088 PMM 486 W24X55 Beam No Messages 0.987430 PMM 487 W24X55 Beam No Messages 0.770340 PMM 488 W24X55 Beam No Messages 0.776385 PMM 489 W24X55 Beam No Messages 0.770180 PMM 490 W24X55 Beam No Messages 0.987415 PMM 491 W18X35 Beam No Messages 0.793557 PMM 492 W18X35 Beam No Messages 0.858987 PMM 493 W18X35 Beam No Messages 0.791474 PMM 494 W18X35 Beam No Messages 0.858916 PMM 495 W18X35 Beam No Messages 0.791439 PMM 496 W18X35 Beam No Messages 0.791440 PMM 497 W18X35 Beam No Messages 0.858916 PMM 498 W18X35 Beam No Messages 0.791475 PMM 499 W18X35 Beam No Messages 0.858986 PMM 500 W18X35 Beam No Messages 0.793561 PMM 501 W18X35 Beam No Messages 0.859177 PMM 502 W18X35 Beam No Messages 0.859494 PMM 503 W18X35 Beam No Messages 0.858995 PMM 504 W18X35 Beam No Messages 0.859173 PMM 505 W18X35 Beam No Messages 0.859323 PMM 506 W18X35 Beam No Messages 0.859323 PMM 507 W18X35 Beam No Messages 0.859174 PMM 508 W18X35 Beam No Messages 0.858996 PMM 509 W18X35 Beam No Messages 0.859499 PMM 510 W18X35 Beam No Messages 0.859179 PMM 511 W18X35 Beam No Messages 0.792341 PMM 512 W18X35 Beam No Messages 0.859048 PMM 513 W18X35 Beam No Messages 0.859202 PMM 514 W18X35 Beam No Messages 0.859381 PMM 515 W18X35 Beam No Messages 0.859226 PMM 516 W18X35 Beam No Messages 0.859226 PMM 517 W18X35 Beam No Messages 0.859380 PMM 518 W18X35 Beam No Messages 0.859200 PMM 519 W18X35 Beam No Messages 0.859045 PMM 520 W18X35 Beam No Messages 0.792345 PMM 521 W18X35 Beam No Messages 0.859177 PMM 522 W18X35 Beam No Messages 0.859494 PMM 523 W18X35 Beam No Messages 0.858995 PMM 524 W18X35 Beam No Messages 0.859173 PMM 525 W18X35 Beam No Messages 0.859323 PMM 526 W18X35 Beam No Messages 0.859323 PMM 527 W18X35 Beam No Messages 0.859174 PMM 528 W18X35 Beam No Messages 0.858996 PMM 529 W18X35 Beam No Messages 0.859498 PMM 530 W18X35 Beam No Messages 0.859179 PMM 531 W18X35 Beam No Messages 0.793557 PMM 532 W18X35 Beam No Messages 0.858987 PMM 533 W18X35 Beam No Messages 0.791474 PMM 534 W18X35 Beam No Messages 0.858916 PMM 9 Story Diagrid.sdb SAP2000 v17.3.0 9 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 12 of 29 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 535 W18X35 Beam No Messages 0.791439 PMM 536 W18X35 Beam No Messages 0.791440 PMM 537 W18X35 Beam No Messages 0.858916 PMM 538 W18X35 Beam No Messages 0.791475 PMM 539 W18X35 Beam No Messages 0.858986 PMM 540 W18X35 Beam No Messages 0.793560 PMM 541 W18X35 Beam No Messages 0.858966 PMM 542 W18X35 Beam No Messages 0.859249 PMM 543 W18X35 Beam No Messages 0.859105 PMM 544 W18X35 Beam No Messages 0.859249 PMM 545 W18X35 Beam No Messages 0.858966 PMM 546 W18X35 Beam No Messages 0.791429 PMM 547 W18X35 Beam No Messages 0.859153 PMM 548 W18X35 Beam No Messages 0.859297 PMM 549 W18X35 Beam No Messages 0.859153 PMM 550 W18X35 Beam No Messages 0.791429 PMM 551 W18X35 Beam No Messages 0.791430 PMM 552 W18X35 Beam No Messages 0.859152 PMM 553 W18X35 Beam No Messages 0.859297 PMM 554 W18X35 Beam No Messages 0.859152 PMM 555 W18X35 Beam No Messages 0.791429 PMM 556 W18X35 Beam No Messages 0.858965 PMM 557 W18X35 Beam No Messages 0.859248 PMM 558 W18X35 Beam No Messages 0.859103 PMM 559 W18X35 Beam No Messages 0.859248 PMM 560 W18X35 Beam No Messages 0.858965 PMM 561 W24X55 Beam No Messages 0.990849 PMM 562 W24X55 Beam No Messages 0.775998 PMM 563 W24X55 Beam No Messages 0.729470 PMM 564 W24X55 Beam No Messages 0.775987 PMM 565 W24X55 Beam No Messages 0.990868 PMM 566 W24X55 Beam No Messages 0.958092 PMM 567 W24X55 Beam No Messages 0.737136 PMM 568 W24X55 Beam No Messages 0.748888 PMM 569 W24X55 Beam No Messages 0.737106 PMM 570 W24X55 Beam No Messages 0.958030 PMM 571 W24X55 Beam No Messages 0.957873 PMM 572 W24X55 Beam No Messages 0.736905 PMM 573 W24X55 Beam No Messages 0.748946 PMM 574 W24X55 Beam No Messages 0.736896 PMM 575 W24X55 Beam No Messages 0.957808 PMM 576 W24X55 Beam No Messages 0.990632 PMM 577 W24X55 Beam No Messages 0.775873 PMM 578 W24X55 Beam No Messages 0.729679 PMM 579 W24X55 Beam No Messages 0.775880 PMM 580 W24X55 Beam No Messages 0.990648 PMM 581 W18X35 Beam No Messages 0.791985 PMM 582 W18X35 Beam No Messages 0.859203 PMM 583 W18X35 Beam No Messages 0.858910 PMM 584 W18X35 Beam No Messages 0.791402 PMM 585 W18X35 Beam No Messages 0.791415 PMM 586 W18X35 Beam No Messages 0.791417 PMM 587 W18X35 Beam No Messages 0.791403 PMM 588 W18X35 Beam No Messages 0.858911 PMM

PAGE 170

! 163 9 Story Diagrid.sdb SAP2000 v17.3.0 9 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 13 of 29 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 589 W18X35 Beam No Messages 0.859204 PMM 590 W18X35 Beam No Messages 0.791984 PMM 591 W18X35 Beam No Messages 0.859445 PMM 592 W18X35 Beam No Messages 0.860500 PMM 593 W18X35 Beam No Messages 0.858953 PMM 594 W18X35 Beam No Messages 0.859137 PMM 595 W18X35 Beam No Messages 0.859151 PMM 596 W18X35 Beam No Messages 0.859152 PMM 597 W18X35 Beam No Messages 0.859137 PMM 598 W18X35 Beam No Messages 0.858952 PMM 599 W18X35 Beam No Messages 0.860499 PMM 600 W18X35 Beam No Messages 0.859444 PMM 601 W18X35 Beam No Messages 0.791885 PMM 602 W18X35 Beam No Messages 0.859682 PMM 603 W18X35 Beam No Messages 0.859362 PMM 604 W18X35 Beam No Messages 0.859318 PMM 605 W18X35 Beam No Messages 0.859049 PMM 606 W18X35 Beam No Messages 0.859049 PMM 607 W18X35 Beam No Messages 0.859318 PMM 608 W18X35 Beam No Messages 0.859363 PMM 609 W18X35 Beam No Messages 0.859683 PMM 610 W18X35 Beam No Messages 0.791885 PMM 611 W18X35 Beam No Messages 0.859445 PMM 612 W18X35 Beam No Messages 0.860500 PMM 613 W18X35 Beam No Messages 0.858953 PMM 614 W18X35 Beam No Messages 0.859137 PMM 615 W18X35 Beam No Messages 0.859151 PMM 616 W18X35 Beam No Messages 0.859152 PMM 617 W18X35 Beam No Messages 0.859137 PMM 618 W18X35 Beam No Messages 0.858952 PMM 619 W18X35 Beam No Messages 0.860499 PMM 620 W18X35 Beam No Messages 0.859444 PMM 621 W18X35 Beam No Messages 0.791985 PMM 622 W18X35 Beam No Messages 0.859203 PMM 623 W18X35 Beam No Messages 0.858910 PMM 624 W18X35 Beam No Messages 0.791401 PMM 625 W18X35 Beam No Messages 0.791415 PMM 626 W18X35 Beam No Messages 0.791416 PMM 627 W18X35 Beam No Messages 0.791402 PMM 628 W18X35 Beam No Messages 0.858911 PMM 629 W18X35 Beam No Messages 0.859204 PMM 630 W18X35 Beam No Messages 0.791984 PMM 631 W18X35 Beam No Messages 0.858926 PMM 632 W18X35 Beam No Messages 0.859459 PMM 633 W18X35 Beam No Messages 0.859371 PMM 634 W18X35 Beam No Messages 0.859459 PMM 635 W18X35 Beam No Messages 0.858927 PMM 636 W18X35 Beam No Messages 0.791516 PMM 637 W18X35 Beam No Messages 0.859032 PMM 638 W18X35 Beam No Messages 0.859168 PMM 639 W18X35 Beam No Messages 0.859032 PMM 640 W18X35 Beam No Messages 0.791515 PMM 641 W18X35 Beam No Messages 0.791514 PMM 642 W18X35 Beam No Messages 0.859032 PMM 9 Story Diagrid.sdb SAP2000 v17.3.0 9 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 14 of 29 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 643 W18X35 Beam No Messages 0.859168 PMM 644 W18X35 Beam No Messages 0.859032 PMM 645 W18X35 Beam No Messages 0.791514 PMM 646 W18X35 Beam No Messages 0.858927 PMM 647 W18X35 Beam No Messages 0.859460 PMM 648 W18X35 Beam No Messages 0.859371 PMM 649 W18X35 Beam No Messages 0.859460 PMM 650 W18X35 Beam No Messages 0.858927 PMM 651 W24X55 Beam No Messages 0.955963 PMM 652 W24X55 Beam No Messages 0.794589 PMM 653 W24X55 Beam No Messages 0.849102 PMM 654 W24X55 Beam No Messages 0.794582 PMM 655 W24X55 Beam No Messages 0.956012 PMM 656 W24X55 Beam No Messages 0.920913 PMM 657 W24X55 Beam No Messages 0.719202 PMM 658 W24X55 Beam No Messages 0.747178 PMM 659 W24X55 Beam No Messages 0.719200 PMM 660 W24X55 Beam No Messages 0.920899 PMM 661 W24X55 Beam No Messages 0.920658 PMM 662 W24X55 Beam No Messages 0.718970 PMM 663 W24X55 Beam No Messages 0.747254 PMM 664 W24X55 Beam No Messages 0.718959 PMM 665 W24X55 Beam No Messages 0.920644 PMM 666 W24X55 Beam No Messages 0.955855 PMM 667 W24X55 Beam No Messages 0.794493 PMM 668 W24X55 Beam No Messages 0.849320 PMM 669 W24X55 Beam No Messages 0.794488 PMM 670 W24X55 Beam No Messages 0.955904 PMM 671 W18X35 Beam No Messages 0.860336 PMM 672 W18X35 Beam No Messages 0.859103 PMM 673 W18X35 Beam No Messages 0.859170 PMM 674 W18X35 Beam No Messages 0.859054 PMM 675 W18X35 Beam No Messages 0.858920 PMM 676 W18X35 Beam No Messages 0.858922 PMM 677 W18X35 Beam No Messages 0.859057 PMM 678 W18X35 Beam No Messages 0.859169 PMM 679 W18X35 Beam No Messages 0.859102 PMM 680 W18X35 Beam No Messages 0.860341 PMM 681 W18X35 Beam No Messages 0.860055 PMM 682 W18X35 Beam No Messages 0.791917 PMM 683 W18X35 Beam No Messages 0.859896 PMM 684 W18X35 Beam No Messages 0.860053 PMM 685 W18X35 Beam No Messages 0.859671 PMM 686 W18X35 Beam No Messages 0.859669 PMM 687 W18X35 Beam No Messages 0.860048 PMM 688 W18X35 Beam No Messages 0.859897 PMM 689 W18X35 Beam No Messages 0.791928 PMM 690 W18X35 Beam No Messages 0.860047 PMM 691 W18X35 Beam No Messages 0.863527 PMM 692 W18X35 Beam No Messages 0.860422 PMM 693 W18X35 Beam No Messages 0.859737 PMM 694 W18X35 Beam No Messages 0.859792 PMM 695 W18X35 Beam No Messages 0.859848 PMM 696 W18X35 Beam No Messages 0.859850 PMM

PAGE 171

! 164 9 Story Diagrid.sdb SAP2000 v17.3.0 9 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 15 of 29 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 697 W18X35 Beam No Messages 0.859796 PMM 698 W18X35 Beam No Messages 0.859737 PMM 699 W18X35 Beam No Messages 0.860428 PMM 700 W18X35 Beam No Messages 0.863547 PMM 701 W18X35 Beam No Messages 0.860056 PMM 702 W18X35 Beam No Messages 0.791919 PMM 703 W18X35 Beam No Messages 0.859896 PMM 704 W18X35 Beam No Messages 0.860053 PMM 705 W18X35 Beam No Messages 0.859671 PMM 706 W18X35 Beam No Messages 0.859669 PMM 707 W18X35 Beam No Messages 0.860048 PMM 708 W18X35 Beam No Messages 0.859897 PMM 709 W18X35 Beam No Messages 0.791929 PMM 710 W18X35 Beam No Messages 0.860048 PMM 711 W18X35 Beam No Messages 0.860335 PMM 712 W18X35 Beam No Messages 0.859103 PMM 713 W18X35 Beam No Messages 0.859170 PMM 714 W18X35 Beam No Messages 0.859054 PMM 715 W18X35 Beam No Messages 0.858920 PMM 716 W18X35 Beam No Messages 0.858922 PMM 717 W18X35 Beam No Messages 0.859057 PMM 718 W18X35 Beam No Messages 0.859169 PMM 719 W18X35 Beam No Messages 0.859102 PMM 720 W18X35 Beam No Messages 0.860341 PMM 721 W18X35 Beam No Messages 0.859255 PMM 722 W18X35 Beam No Messages 0.859934 PMM 723 W18X35 Beam No Messages 0.860004 PMM 724 W18X35 Beam No Messages 0.859935 PMM 725 W18X35 Beam No Messages 0.859255 PMM 726 W18X35 Beam No Messages 0.858995 PMM 727 W18X35 Beam No Messages 0.859717 PMM 728 W18X35 Beam No Messages 0.859868 PMM 729 W18X35 Beam No Messages 0.859717 PMM 730 W18X35 Beam No Messages 0.858995 PMM 731 W18X35 Beam No Messages 0.858993 PMM 732 W18X35 Beam No Messages 0.859720 PMM 733 W18X35 Beam No Messages 0.859867 PMM 734 W18X35 Beam No Messages 0.859720 PMM 735 W18X35 Beam No Messages 0.858993 PMM 736 W18X35 Beam No Messages 0.859261 PMM 737 W18X35 Beam No Messages 0.859936 PMM 738 W18X35 Beam No Messages 0.860010 PMM 739 W18X35 Beam No Messages 0.859936 PMM 740 W18X35 Beam No Messages 0.859261 PMM 741 W24X55 Beam No Messages 0.989632 PMM 742 W24X55 Beam No Messages 0.772987 PMM 743 W24X55 Beam No Messages 0.773363 PMM 744 W24X55 Beam No Messages 0.772990 PMM 745 W24X55 Beam No Messages 0.989663 PMM 746 W24X55 Beam No Messages 0.953366 PMM 747 W24X55 Beam No Messages 0.738511 PMM 748 W24X55 Beam No Messages 0.747693 PMM 749 W24X55 Beam No Messages 0.738508 PMM 750 W24X55 Beam No Messages 0.953316 PMM 9 Story Diagrid.sdb SAP2000 v17.3.0 9 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 16 of 29 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 751 W24X55 Beam No Messages 0.953096 PMM 752 W24X55 Beam No Messages 0.738438 PMM 753 W24X55 Beam No Messages 0.747732 PMM 754 W24X55 Beam No Messages 0.738430 PMM 755 W24X55 Beam No Messages 0.953046 PMM 756 W24X55 Beam No Messages 0.989035 PMM 757 W24X55 Beam No Messages 0.773160 PMM 758 W24X55 Beam No Messages 0.773499 PMM 759 W24X55 Beam No Messages 0.773166 PMM 760 W24X55 Beam No Messages 0.989065 PMM 761 W18X35 Beam No Messages 0.859533 PMM 762 W18X35 Beam No Messages 0.859151 PMM 763 W18X35 Beam No Messages 0.858909 PMM 764 W18X35 Beam No Messages 0.858920 PMM 765 W18X35 Beam No Messages 0.791483 PMM 766 W18X35 Beam No Messages 0.791485 PMM 767 W18X35 Beam No Messages 0.858920 PMM 768 W18X35 Beam No Messages 0.858910 PMM 769 W18X35 Beam No Messages 0.859151 PMM 770 W18X35 Beam No Messages 0.859534 PMM 771 W18X35 Beam No Messages 0.859636 PMM 772 W18X35 Beam No Messages 0.860429 PMM 773 W18X35 Beam No Messages 0.859294 PMM 774 W18X35 Beam No Messages 0.859358 PMM 775 W18X35 Beam No Messages 0.858910 PMM 776 W18X35 Beam No Messages 0.858911 PMM 777 W18X35 Beam No Messages 0.859358 PMM 778 W18X35 Beam No Messages 0.859293 PMM 779 W18X35 Beam No Messages 0.860428 PMM 780 W18X35 Beam No Messages 0.859635 PMM 781 W18X35 Beam No Messages 0.859361 PMM 782 W18X35 Beam No Messages 0.859910 PMM 783 W18X35 Beam No Messages 0.859455 PMM 784 W18X35 Beam No Messages 0.859262 PMM 785 W18X35 Beam No Messages 0.859245 PMM 786 W18X35 Beam No Messages 0.859244 PMM 787 W18X35 Beam No Messages 0.859261 PMM 788 W18X35 Beam No Messages 0.859456 PMM 789 W18X35 Beam No Messages 0.859911 PMM 790 W18X35 Beam No Messages 0.859362 PMM 791 W18X35 Beam No Messages 0.859636 PMM 792 W18X35 Beam No Messages 0.860431 PMM 793 W18X35 Beam No Messages 0.859292 PMM 794 W18X35 Beam No Messages 0.859355 PMM 795 W18X35 Beam No Messages 0.858908 PMM 796 W18X35 Beam No Messages 0.858909 PMM 797 W18X35 Beam No Messages 0.859356 PMM 798 W18X35 Beam No Messages 0.859291 PMM 799 W18X35 Beam No Messages 0.860430 PMM 800 W18X35 Beam No Messages 0.859636 PMM 801 W18X35 Beam No Messages 0.859535 PMM 802 W18X35 Beam No Messages 0.859151 PMM 803 W18X35 Beam No Messages 0.858908 PMM 804 W18X35 Beam No Messages 0.858919 PMM

PAGE 172

! 165 9 Story Diagrid.sdb SAP2000 v17.3.0 9 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 17 of 29 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 805 W18X35 Beam No Messages 0.791487 PMM 806 W18X35 Beam No Messages 0.791489 PMM 807 W18X35 Beam No Messages 0.858918 PMM 808 W18X35 Beam No Messages 0.858909 PMM 809 W18X35 Beam No Messages 0.859151 PMM 810 W18X35 Beam No Messages 0.859536 PMM 811 W18X35 Beam No Messages 0.859022 PMM 812 W18X35 Beam No Messages 0.859325 PMM 813 W18X35 Beam No Messages 0.859786 PMM 814 W18X35 Beam No Messages 0.859322 PMM 815 W18X35 Beam No Messages 0.859024 PMM 816 W18X35 Beam No Messages 0.791403 PMM 817 W18X35 Beam No Messages 0.859117 PMM 818 W18X35 Beam No Messages 0.859194 PMM 819 W18X35 Beam No Messages 0.859115 PMM 820 W18X35 Beam No Messages 0.791407 PMM 821 W18X35 Beam No Messages 0.791400 PMM 822 W18X35 Beam No Messages 0.859116 PMM 823 W18X35 Beam No Messages 0.859195 PMM 824 W18X35 Beam No Messages 0.859114 PMM 825 W18X35 Beam No Messages 0.791405 PMM 826 W18X35 Beam No Messages 0.859022 PMM 827 W18X35 Beam No Messages 0.859325 PMM 828 W18X35 Beam No Messages 0.859786 PMM 829 W18X35 Beam No Messages 0.859323 PMM 830 W18X35 Beam No Messages 0.859023 PMM 831 W24X62 Beam No Messages 0.884827 PMM 832 W24X55 Beam No Messages 0.785892 PMM 833 W24X55 Beam No Messages 0.746615 PMM 834 W24X55 Beam No Messages 0.785907 PMM 835 W24X62 Beam No Messages 0.884767 PMM 836 W24X55 Beam No Messages 0.974776 PMM 837 W24X55 Beam No Messages 0.707500 PMM 838 W24X55 Beam No Messages 0.703899 PMM 839 W24X55 Beam No Messages 0.707496 PMM 840 W24X55 Beam No Messages 0.974823 PMM 841 W24X55 Beam No Messages 0.974413 PMM 842 W24X55 Beam No Messages 0.707280 PMM 843 W24X55 Beam No Messages 0.703930 PMM 844 W24X55 Beam No Messages 0.707278 PMM 845 W24X55 Beam No Messages 0.974465 PMM 846 W24X55 Beam No Messages 0.974160 PMM 847 W24X55 Beam No Messages 0.784891 PMM 848 W24X55 Beam No Messages 0.746687 PMM 849 W24X55 Beam No Messages 0.784907 PMM 850 W24X55 Beam No Messages 0.974093 PMM 851 W18X35 Beam No Messages 0.859478 PMM 852 W18X35 Beam No Messages 0.792535 PMM 853 W18X35 Beam No Messages 0.858920 PMM 854 W18X35 Beam No Messages 0.791433 PMM 855 W18X35 Beam No Messages 0.858949 PMM 856 W18X35 Beam No Messages 0.858948 PMM 857 W18X35 Beam No Messages 0.791434 PMM 858 W18X35 Beam No Messages 0.858920 PMM 9 Story Diagrid.sdb SAP2000 v17.3.0 9 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 18 of 29 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 859 W18X35 Beam No Messages 0.792537 PMM 860 W18X35 Beam No Messages 0.859477 PMM 861 W18X35 Beam No Messages 0.794184 PMM 862 W18X35 Beam No Messages 0.798098 PMM 863 W18X35 Beam No Messages 0.792358 PMM 864 W18X35 Beam No Messages 0.793212 PMM 865 W18X35 Beam No Messages 0.792904 PMM 866 W18X35 Beam No Messages 0.792903 PMM 867 W18X35 Beam No Messages 0.793211 PMM 868 W18X35 Beam No Messages 0.792358 PMM 869 W18X35 Beam No Messages 0.798090 PMM 870 W18X35 Beam No Messages 0.794181 PMM 871 W18X35 Beam No Messages 0.859024 PMM 872 W18X35 Beam No Messages 0.794750 PMM 873 W18X35 Beam No Messages 0.793786 PMM 874 W18X35 Beam No Messages 0.793858 PMM 875 W18X35 Beam No Messages 0.792997 PMM 876 W18X35 Beam No Messages 0.792997 PMM 877 W18X35 Beam No Messages 0.793860 PMM 878 W18X35 Beam No Messages 0.793788 PMM 879 W18X35 Beam No Messages 0.794755 PMM 880 W18X35 Beam No Messages 0.859022 PMM 881 W18X35 Beam No Messages 0.794182 PMM 882 W18X35 Beam No Messages 0.798093 PMM 883 W18X35 Beam No Messages 0.792362 PMM 884 W18X35 Beam No Messages 0.793214 PMM 885 W18X35 Beam No Messages 0.792909 PMM 886 W18X35 Beam No Messages 0.792908 PMM 887 W18X35 Beam No Messages 0.793213 PMM 888 W18X35 Beam No Messages 0.792362 PMM 889 W18X35 Beam No Messages 0.798086 PMM 890 W18X35 Beam No Messages 0.794179 PMM 891 W18X35 Beam No Messages 0.859478 PMM 892 W18X35 Beam No Messages 0.792532 PMM 893 W18X35 Beam No Messages 0.858918 PMM 894 W18X35 Beam No Messages 0.791438 PMM 895 W18X35 Beam No Messages 0.858947 PMM 896 W18X35 Beam No Messages 0.858946 PMM 897 W18X35 Beam No Messages 0.791439 PMM 898 W18X35 Beam No Messages 0.858918 PMM 899 W18X35 Beam No Messages 0.792534 PMM 900 W18X35 Beam No Messages 0.859477 PMM 901 W18X35 Beam No Messages 0.791824 PMM 902 W18X35 Beam No Messages 0.793879 PMM 903 W18X35 Beam No Messages 0.794074 PMM 904 W18X35 Beam No Messages 0.793873 PMM 905 W18X35 Beam No Messages 0.791832 PMM 906 W18X35 Beam No Messages 0.858939 PMM 907 W18X35 Beam No Messages 0.792581 PMM 908 W18X35 Beam No Messages 0.793293 PMM 909 W18X35 Beam No Messages 0.792585 PMM 910 W18X35 Beam No Messages 0.858937 PMM 911 W18X35 Beam No Messages 0.858939 PMM 912 W18X35 Beam No Messages 0.792581 PMM

PAGE 173

! 166 9 Story Diagrid.sdb SAP2000 v17.3.0 9 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 19 of 29 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 913 W18X35 Beam No Messages 0.793294 PMM 914 W18X35 Beam No Messages 0.792585 PMM 915 W18X35 Beam No Messages 0.858937 PMM 916 W18X35 Beam No Messages 0.791825 PMM 917 W18X35 Beam No Messages 0.793881 PMM 918 W18X35 Beam No Messages 0.794077 PMM 919 W18X35 Beam No Messages 0.793875 PMM 920 W18X35 Beam No Messages 0.791833 PMM 921 W24X55 Beam No Messages 0.950443 PMM 922 W24X55 Beam No Messages 0.858635 PMM 923 W24X55 Beam No Messages 0.827120 PMM 924 W24X55 Beam No Messages 0.858500 PMM 925 W24X55 Beam No Messages 0.950392 PMM 926 W24X55 Beam No Messages 0.926050 PMM 927 W24X55 Beam No Messages 0.731858 PMM 928 W24X55 Beam No Messages 0.746753 PMM 929 W24X55 Beam No Messages 0.731883 PMM 930 W24X55 Beam No Messages 0.926088 PMM 931 W24X55 Beam No Messages 0.925954 PMM 932 W24X55 Beam No Messages 0.731978 PMM 933 W24X55 Beam No Messages 0.746724 PMM 934 W24X55 Beam No Messages 0.732000 PMM 935 W24X55 Beam No Messages 0.925993 PMM 936 W24X55 Beam No Messages 0.950240 PMM 937 W24X55 Beam No Messages 0.858755 PMM 938 W24X55 Beam No Messages 0.827068 PMM 939 W24X55 Beam No Messages 0.858622 PMM 940 W24X55 Beam No Messages 0.950189 PMM 941 W18X35 Beam No Messages 0.860468 PMM 942 W18X35 Beam No Messages 0.860466 PMM 943 W18X35 Beam No Messages 0.858924 PMM 944 W18X35 Beam No Messages 0.791530 PMM 945 W18X35 Beam No Messages 0.791984 PMM 946 W18X35 Beam No Messages 0.791981 PMM 947 W18X35 Beam No Messages 0.791527 PMM 948 W18X35 Beam No Messages 0.858926 PMM 949 W18X35 Beam No Messages 0.860468 PMM 950 W18X35 Beam No Messages 0.860469 PMM 951 W18X35 Beam No Messages 0.863820 PMM 952 W18X35 Beam No Messages 0.868273 PMM 953 W18X35 Beam No Messages 0.861181 PMM 954 W18X35 Beam No Messages 0.861882 PMM 955 W18X35 Beam No Messages 0.860674 PMM 956 W18X35 Beam No Messages 0.860673 PMM 957 W18X35 Beam No Messages 0.861881 PMM 958 W18X35 Beam No Messages 0.861181 PMM 959 W18X35 Beam No Messages 0.868266 PMM 960 W18X35 Beam No Messages 0.863818 PMM 961 W18X35 Beam No Messages 0.861158 PMM 962 W18X35 Beam No Messages 0.864823 PMM 963 W18X35 Beam No Messages 0.863119 PMM 964 W18X35 Beam No Messages 0.862476 PMM 965 W18X35 Beam No Messages 0.861671 PMM 966 W18X35 Beam No Messages 0.861673 PMM 9 Story Diagrid.sdb SAP2000 v17.3.0 9 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 20 of 29 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 967 W18X35 Beam No Messages 0.862477 PMM 968 W18X35 Beam No Messages 0.863121 PMM 969 W18X35 Beam No Messages 0.864828 PMM 970 W18X35 Beam No Messages 0.861166 PMM 971 W18X35 Beam No Messages 0.863818 PMM 972 W18X35 Beam No Messages 0.868264 PMM 973 W18X35 Beam No Messages 0.861186 PMM 974 W18X35 Beam No Messages 0.861885 PMM 975 W18X35 Beam No Messages 0.860679 PMM 976 W18X35 Beam No Messages 0.860678 PMM 977 W18X35 Beam No Messages 0.861885 PMM 978 W18X35 Beam No Messages 0.861186 PMM 979 W18X35 Beam No Messages 0.868258 PMM 980 W18X35 Beam No Messages 0.863815 PMM 981 W18X35 Beam No Messages 0.860463 PMM 982 W18X35 Beam No Messages 0.860464 PMM 983 W18X35 Beam No Messages 0.858929 PMM 984 W18X35 Beam No Messages 0.791518 PMM 985 W18X35 Beam No Messages 0.791973 PMM 986 W18X35 Beam No Messages 0.791969 PMM 987 W18X35 Beam No Messages 0.791516 PMM 988 W18X35 Beam No Messages 0.858930 PMM 989 W18X35 Beam No Messages 0.860466 PMM 990 W18X35 Beam No Messages 0.860464 PMM 991 W18X35 Beam No Messages 0.859424 PMM 992 W18X35 Beam No Messages 0.862741 PMM 993 W18X35 Beam No Messages 0.863978 PMM 994 W18X35 Beam No Messages 0.862740 PMM 995 W18X35 Beam No Messages 0.859427 PMM 996 W18X35 Beam No Messages 0.791958 PMM 997 W18X35 Beam No Messages 0.860917 PMM 998 W18X35 Beam No Messages 0.861849 PMM 999 W18X35 Beam No Messages 0.860922 PMM 1000 W18X35 Beam No Messages 0.791946 PMM 1001 W18X35 Beam No Messages 0.791960 PMM 1002 W18X35 Beam No Messages 0.860919 PMM 1003 W18X35 Beam No Messages 0.861849 PMM 1004 W18X35 Beam No Messages 0.860923 PMM 1005 W18X35 Beam No Messages 0.791948 PMM 1006 W18X35 Beam No Messages 0.859425 PMM 1007 W18X35 Beam No Messages 0.862743 PMM 1008 W18X35 Beam No Messages 0.863980 PMM 1009 W18X35 Beam No Messages 0.862742 PMM 1010 W18X35 Beam No Messages 0.859428 PMM 1011 W24X55 Beam No Messages 0.973413 PMM 1012 W24X55 Beam No Messages 0.784753 PMM 1013 W24X55 Beam No Messages 0.795809 PMM 1014 W24X55 Beam No Messages 0.784792 PMM 1015 W24X55 Beam No Messages 0.973346 PMM 1016 W24X55 Beam No Messages 0.961265 PMM 1017 W24X55 Beam No Messages 0.742717 PMM 1018 W24X55 Beam No Messages 0.743540 PMM 1019 W24X55 Beam No Messages 0.742711 PMM 1020 W24X55 Beam No Messages 0.961334 PMM

PAGE 174

! 167 9 Story Diagrid.sdb SAP2000 v17.3.0 9 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 21 of 29 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 1021 W24X55 Beam No Messages 0.961303 PMM 1022 W24X55 Beam No Messages 0.742698 PMM 1023 W24X55 Beam No Messages 0.743544 PMM 1024 W24X55 Beam No Messages 0.742690 PMM 1025 W24X55 Beam No Messages 0.961372 PMM 1026 W24X55 Beam No Messages 0.973460 PMM 1027 W24X55 Beam No Messages 0.784674 PMM 1028 W24X55 Beam No Messages 0.795822 PMM 1029 W24X55 Beam No Messages 0.784713 PMM 1030 W24X55 Beam No Messages 0.973393 PMM 1031 W18X35 Beam No Messages 0.792474 PMM 1032 W18X35 Beam No Messages 0.859218 PMM 1033 W18X35 Beam No Messages 0.791421 PMM 1034 W18X35 Beam No Messages 0.858943 PMM 1035 W18X35 Beam No Messages 0.791439 PMM 1036 W18X35 Beam No Messages 0.791439 PMM 1037 W18X35 Beam No Messages 0.858943 PMM 1038 W18X35 Beam No Messages 0.791421 PMM 1039 W18X35 Beam No Messages 0.859218 PMM 1040 W18X35 Beam No Messages 0.792474 PMM 1041 W18X35 Beam No Messages 0.859818 PMM 1042 W18X35 Beam No Messages 0.860838 PMM 1043 W18X35 Beam No Messages 0.859248 PMM 1044 W18X35 Beam No Messages 0.859525 PMM 1045 W18X35 Beam No Messages 0.859439 PMM 1046 W18X35 Beam No Messages 0.859438 PMM 1047 W18X35 Beam No Messages 0.859525 PMM 1048 W18X35 Beam No Messages 0.859248 PMM 1049 W18X35 Beam No Messages 0.860838 PMM 1050 W18X35 Beam No Messages 0.859818 PMM 1051 W18X35 Beam No Messages 0.791409 PMM 1052 W18X35 Beam No Messages 0.859924 PMM 1053 W18X35 Beam No Messages 0.859718 PMM 1054 W18X35 Beam No Messages 0.859765 PMM 1055 W18X35 Beam No Messages 0.859495 PMM 1056 W18X35 Beam No Messages 0.859495 PMM 1057 W18X35 Beam No Messages 0.859765 PMM 1058 W18X35 Beam No Messages 0.859718 PMM 1059 W18X35 Beam No Messages 0.859923 PMM 1060 W18X35 Beam No Messages 0.791409 PMM 1061 W18X35 Beam No Messages 0.859818 PMM 1062 W18X35 Beam No Messages 0.860838 PMM 1063 W18X35 Beam No Messages 0.859248 PMM 1064 W18X35 Beam No Messages 0.859524 PMM 1065 W18X35 Beam No Messages 0.859438 PMM 1066 W18X35 Beam No Messages 0.859438 PMM 1067 W18X35 Beam No Messages 0.859524 PMM 1068 W18X35 Beam No Messages 0.859248 PMM 1069 W18X35 Beam No Messages 0.860838 PMM 1070 W18X35 Beam No Messages 0.859818 PMM 1071 W18X35 Beam No Messages 0.792473 PMM 1072 W18X35 Beam No Messages 0.859218 PMM 1073 W18X35 Beam No Messages 0.791423 PMM 1074 W18X35 Beam No Messages 0.858942 PMM 9 Story Diagrid.sdb SAP2000 v17.3.0 9 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 22 of 29 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 1075 W18X35 Beam No Messages 0.791441 PMM 1076 W18X35 Beam No Messages 0.791441 PMM 1077 W18X35 Beam No Messages 0.858942 PMM 1078 W18X35 Beam No Messages 0.791423 PMM 1079 W18X35 Beam No Messages 0.859218 PMM 1080 W18X35 Beam No Messages 0.792473 PMM 1081 W18X35 Beam No Messages 0.859001 PMM 1082 W18X35 Beam No Messages 0.859739 PMM 1083 W18X35 Beam No Messages 0.859806 PMM 1084 W18X35 Beam No Messages 0.859739 PMM 1085 W18X35 Beam No Messages 0.859000 PMM 1086 W18X35 Beam No Messages 0.791538 PMM 1087 W18X35 Beam No Messages 0.859368 PMM 1088 W18X35 Beam No Messages 0.859574 PMM 1089 W18X35 Beam No Messages 0.859367 PMM 1090 W18X35 Beam No Messages 0.791540 PMM 1091 W18X35 Beam No Messages 0.791538 PMM 1092 W18X35 Beam No Messages 0.859368 PMM 1093 W18X35 Beam No Messages 0.859573 PMM 1094 W18X35 Beam No Messages 0.859367 PMM 1095 W18X35 Beam No Messages 0.791540 PMM 1096 W18X35 Beam No Messages 0.859001 PMM 1097 W18X35 Beam No Messages 0.859739 PMM 1098 W18X35 Beam No Messages 0.859806 PMM 1099 W18X35 Beam No Messages 0.859739 PMM 1100 W18X35 Beam No Messages 0.859000 PMM 1101 W24X55 Beam No Messages 0.991559 PMM 1102 W24X55 Beam No Messages 0.772508 PMM 1103 W24X55 Beam No Messages 0.700839 PMM 1104 W24X55 Beam No Messages 0.772526 PMM 1105 W24X55 Beam No Messages 0.991607 PMM 1106 W24X55 Beam No Messages 0.946041 PMM 1107 W24X55 Beam No Messages 0.696952 PMM 1108 W24X55 Beam No Messages 0.707468 PMM 1109 W24X55 Beam No Messages 0.696947 PMM 1110 W24X55 Beam No Messages 0.945990 PMM 1111 W24X55 Beam No Messages 0.946036 PMM 1112 W24X55 Beam No Messages 0.696955 PMM 1113 W24X55 Beam No Messages 0.707466 PMM 1114 W24X55 Beam No Messages 0.696950 PMM 1115 W24X55 Beam No Messages 0.945985 PMM 1116 W24X55 Beam No Messages 0.991542 PMM 1117 W24X55 Beam No Messages 0.772526 PMM 1118 W24X55 Beam No Messages 0.700835 PMM 1119 W24X55 Beam No Messages 0.772545 PMM 1120 W24X55 Beam No Messages 0.991590 PMM 1121 W18X35 Beam No Messages 0.792581 PMM 1122 W18X35 Beam No Messages 0.791483 PMM 1123 W18X35 Beam No Messages 0.858921 PMM 1124 W18X35 Beam No Messages 0.858922 PMM 1125 W18X35 Beam No Messages 0.858934 PMM 1126 W18X35 Beam No Messages 0.858934 PMM 1127 W18X35 Beam No Messages 0.858922 PMM 1128 W18X35 Beam No Messages 0.858920 PMM

PAGE 175

! 168 9 Story Diagrid.sdb SAP2000 v17.3.0 9 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 25 of 29 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 1509 W14X99 Brace No Messages 0.948284 PMM 1510 W14X145 Brace No Messages 0.873663 PMM 1511 W14X283 Brace No Messages 0.925265 PMM 1512 W14X283 Brace No Messages 0.952652 PMM 1513 W14X109 Brace No Messages 0.974803 PMM 1514 W14X90 Brace No Messages 0.328302 PMM 1515 W14X311 Brace No Messages 0.938711 PMM 1516 W14X145 Brace No Messages 0.890168 PMM 1517 W14X90 Brace No Messages 0.349910 PMM 1518 W14X311 Brace No Messages 0.938889 PMM 1519 W14X145 Brace No Messages 0.974608 PMM 1520 W14X109 Brace No Messages 0.961347 PMM 1521 W14X109 Brace No Messages 0.999891 PMM 1522 W14X193 Brace No Messages 0.978751 PMM 1523 W14X283 Brace No Messages 0.917797 PMM 1524 W14X283 Brace No Messages 0.917866 PMM 1525 W14X193 Brace No Messages 0.978629 PMM 1526 W14X109 Brace No Messages 1.000138 PMM 1527 W14X109 Brace No Messages 0.961406 PMM 1528 W14X145 Brace No Messages 0.974471 PMM 1529 W14X311 Brace No Messages 0.938666 PMM 1530 W14X311 Brace No Messages 0.938424 PMM 1531 W14X145 Brace No Messages 0.890073 PMM 1532 W14X90 Brace No Messages 0.349970 PMM 1533 W14X311 Brace No Messages 0.938413 PMM 1534 W14X145 Brace No Messages 0.890475 PMM 1535 W14X90 Brace No Messages 0.349846 PMM 1536 W14X311 Brace No Messages 0.938761 PMM 1537 W14X145 Brace No Messages 0.974326 PMM 1538 W14X109 Brace No Messages 0.961368 PMM 1539 W14X109 Brace No Messages 0.999771 PMM 1540 W14X193 Brace No Messages 0.978691 PMM 1541 W14X283 Brace No Messages 0.917748 PMM 1542 W14X283 Brace No Messages 0.917817 PMM 1543 W14X193 Brace No Messages 0.978567 PMM 1544 W14X109 Bra ce No Messages 1.000044 PMM 1545 W14X109 Brace No Messages 0.961424 PMM 1546 W14X145 Brace No Messages 0.974191 PMM 1547 W14X311 Brace No Messages 0.938536 PMM 1548 W14X311 Brace No Messages 0.938125 PMM 1549 W14X145 Brace No Messages 0.890379 PMM 1550 W14X90 Brace No Messages 0.349906 PMM 1603 W18X35 Beam No Messages 0.230427 PMM 1604 W18X50 Beam No Messages 0.779062 PMM 1605 W18X46 Beam No Messages 0.997294 PMM 1606 W18X35 Beam No Messages 0.205178 PMM 1607 W18X46 Beam No Messages 0.997211 PMM 1608 W18X50 Beam No Messages 0.779058 PMM 1609 W18X35 Beam No Messages 0.230426 PMM 1610 W18X35 Beam No Messages 0.326754 PMM 1611 W18X86 Beam No Messages 0.925705 PMM 1612 W18X35 Beam No Messages 0.122620 PMM 1613 W18X46 Beam No Messages 0.897094 PMM 1614 W18X35 Beam No Messages 0.122624 PMM 9 Story Diagrid.sdb SAP2000 v17.3.0 9 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 26 of 29 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 1615 W18X86 Beam No Messages 0.925662 PMM 1616 W18X35 Beam No Messages 0.326770 PMM 1617 W18X143 Beam No Messages 0.880501 PMM 1618 W30X90 Beam No Messages 0.963287 PMM 1619 W18X143 Beam No Messages 0.880643 PMM 1620 W18X35 Beam No Messages 0.347421 PMM 1621 W18X76 Beam No Messages 0.968966 PMM 1622 W18X35 Beam No Messages 0.145258 PMM 1623 W18X35 Beam No Messages 0.785333 PMM 1624 W18X35 Beam No Messages 0.145317 PMM 1625 W18X76 Beam No Messages 0.977308 PMM 1626 W18X35 Beam No Messages 0.350385 PMM 1627 W18X35 Beam No Messages 0.209377 PMM 1628 W18X35 Beam No Messages 0.920995 PMM 1629 W24X55 Beam No Messages 0.911981 PMM 1630 W18X35 Beam No Messages 0.149439 PMM 1631 W24X55 Beam No Messages 0.912144 PMM 1632 W18X35 Beam No Messages 0.926499 PMM 1633 W18X35 Beam No Messages 0.212464 PMM 1634 W18X35 Beam No Messages 0.341823 PMM 1635 W30X99 Beam No Messages 0.930580 PMM 1636 W30X99 Beam No Messages 0.941461 PMM 1637 W18X35 Beam No Messages 0.338462 PMM 1638 W18X35 Beam No Messages 0.151333 PMM 1639 W18X35 Beam No Messages 0.977292 PMM 1640 W24X55 Beam No Messages 0.926119 PMM 1641 W18X35 Beam No Messages 0.148853 PMM 1642 W24X55 Beam No Messages 0.926156 PMM 1643 W18X35 Beam No Messages 0.977743 PMM 1644 W18X35 Beam No Messages 0.151367 PMM 1645 W18X35 Beam No Messages 0.453089 PMM 1646 W18X76 Beam No Messages 0.961714 PMM 1647 W18X35 Beam No Messages 0.150164 PMM 1648 W18X35 Beam No Messages 0.875843 PMM 1649 W18X35 Beam No Messages 0.150168 PMM 1650 W18X76 Beam No Messages 0.962235 PMM 1651 W18X35 Beam No Messages 0.453252 PMM 1652 W30X99 Beam No Messages 0.962243 PMM 1653 W30X90 Beam No Messages 0.992767 PMM 1654 W30X99 Beam No Messages 0.962662 PMM 1707 W18X35 Beam No Messages 0.230396 PMM 1708 W18X50 Beam No Messages 0.778873 PMM 1709 W18X46 Beam No Messages 0.997337 PMM 1710 W18X35 Beam No Messages 0.205178 PMM 1711 W18X46 Beam No Messages 0.997254 PMM 1712 W18X50 Beam No Messages 0.778869 PMM 1713 W18X35 Beam No Messages 0.230395 PMM 1714 W18X35 Beam No Messages 0.326723 PMM 1715 W18X86 Beam No Messages 0.925652 PMM 1716 W18X35 Beam No Messages 0.122619 PMM 1717 W18X46 Beam No Messages 0.896305 PMM 1718 W18X35 Beam No Messages 0.122624 PMM 1719 W18X86 Beam No Messages 0.925610 PMM 1720 W18X35 Beam No Messages 0.326739 PMM

PAGE 176

! 169 9 Story Diagrid.sdb SAP2000 v17.3.0 9 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 27 of 29 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 1721 W18X143 Beam No Messages 0.880450 PMM 1722 W30X90 Beam No Messages 0.963095 PMM 1723 W18X143 Beam No Messages 0.880592 PMM 1724 W18X35 Beam No Messages 0.347258 PMM 1725 W18X76 Beam No Messages 0.968931 PMM 1726 W18X35 Beam No Messages 0.145253 PMM 1727 W18X35 Beam No Messages 0.784470 PMM 1728 W18X35 Beam No Messages 0.145312 PMM 1729 W18X76 Beam No Messages 0.977263 PMM 1730 W18X35 Beam No Messages 0.350217 PMM 1731 W18X35 Beam No Messages 0.209459 PMM 1732 W18X35 Beam No Messages 0.920648 PMM 1733 W24X55 Beam No Messages 0.911973 PMM 1734 W18X35 Beam No Messages 0.149437 PMM 1735 W24X55 Beam No Messages 0.912137 PMM 1736 W18X35 Beam No Messages 0.926151 PMM 1737 W18X35 Beam No Messages 0.212545 PMM 1738 W18X35 Beam No Messages 0.341957 PMM 1739 W30X99 Beam No Messages 0.930571 PMM 1740 W30X99 Beam No Messages 0.941501 PMM 1741 W18X35 Beam No Messages 0.338595 PMM 1742 W18X35 Beam No Messages 0.151268 PMM 1743 W18X35 Beam No Messages 0.977315 PMM 1744 W24X55 Beam No Messages 0.925894 PMM 1745 W18X35 Beam No Messages 0.148855 PMM 1746 W24X55 Beam No Messages 0.925933 PMM 1747 W18X35 Beam No Messages 0.977762 PMM 1748 W18X35 Beam No Messages 0.151305 PMM 1749 W18X35 Beam No Messages 0.453079 PMM 1750 W18X76 Beam No Messages 0.961699 PMM 1751 W18X35 Beam No Messages 0.150168 PMM 1752 W18X35 Beam No Messages 0.874858 PMM 1753 W18X35 Beam No Messages 0.150174 PMM 1754 W18X76 Beam No Messages 0.962212 PMM 1755 W18X35 Beam No Messages 0.453242 PMM 1756 W30X99 Beam No Messages 0.919531 PMM 1757 W30X90 Beam No Messages 0.959319 PMM 1758 W30X99 Beam No Messages 0.919924 PMM 1759 W18X35 Beam No Messages 0.540250 PMM 1760 W18X50 Beam No Messages 0.684195 PMM 1761 W18X46 Beam No Messages 0.963234 PMM 1762 W18X35 Beam No Messages 0.632768 PMM 1763 W18X46 Beam No Messages 0.934842 PMM 1764 W18X50 Beam No Messages 0.684195 PMM 1765 W18X35 Beam No Messages 0.540255 PMM 1766 W18X35 Beam No Messages 0.285850 PMM 1767 W18X76 Beam No Messages 0.976771 PMM 1769 W18X35 Beam No Messages 0.211999 PMM 1770 W24X55 Beam No Messages 0.911383 PMM 1771 W18X35 Beam No Messages 0.212004 PMM 1772 W18X76 Beam No Messages 0.976769 PMM 1773 W18X35 Beam No Messages 0.285823 PMM 1774 W18X143 Beam No Messages 0.922987 PMM 1775 W30X90 Beam No Messages 0.919032 PMM 9 Story Diagrid.sdb SAP2000 v17.3.0 9 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 28 of 29 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 1776 W18X143 Beam No Messages 0.922961 PMM 1777 W18X35 Beam No Messages 0.244259 PMM 1778 W18X76 Beam No Messages 0.843124 PMM 1779 W18X35 Beam No Messages 0.131092 PMM 1780 W18X46 Beam No Messages 0.873588 PMM 1781 W18X35 Beam No Messages 0.131091 PMM 1782 W18X76 Beam No Messages 0.843091 PMM 1783 W18X35 Beam No Messages 0.244243 PMM 1784 W18X35 Beam No Messages 0.575069 PMM 1785 W18X35 Beam No Messages 0.694800 PMM 1786 W24X55 Beam No Messages 0.927292 PMM 1787 W18X35 Beam No Messages 0.573543 PMM 1788 W24X55 Beam No Messages 0.906744 PMM 1789 W18X35 Beam No Messages 0.695394 PMM 1790 W18X35 Beam No Messages 0.571780 PMM 1791 W18X35 Beam No Messages 0.730652 PMM 1792 W30X99 Beam No Messages 0.963784 PMM 1793 W30X99 Beam No Messages 0.954468 PMM 1794 W18X35 Beam No Messages 0.729203 PMM 1795 W18X35 Beam No Messages 0.566890 PMM 1796 W18X35 Beam No Messages 0.666167 PMM 1797 W24X55 Beam No Messages 0.866527 PMM 1798 W18X35 Beam No Messages 0.566682 PMM 1799 W24X55 Beam No Messages 0.861888 PMM 1800 W18X35 Beam No Messages 0.667202 PMM 1801 W18X35 Beam No Messages 0.567224 PMM 1802 W18X35 Beam No Messages 0.388018 PMM 1803 W18X76 Beam No Messages 0.825027 PMM 1804 W18X35 Beam No Messages 0.141514 PMM 1805 W18X46 Beam No Messages 0.931414 PMM 1806 W18X35 Beam No Messages 0.141501 PMM 1807 W18X76 Beam No Messages 0.825030 PMM 1808 W18X35 Beam No Messages 0.388024 PMM 1809 W30X90 Beam No Messages 0.907828 PMM 1810 W30X90 Beam No Messages 0.840382 PMM 1811 W30X90 Beam No Messages 0.907706 PMM 1812 W18X35 Beam No Messages 0.540190 PMM 1813 W18X50 Beam No Messages 0.684184 PMM 1814 W18X46 Beam No Messages 0.963241 PMM 1815 W18X35 Beam No Messages 0.632760 PMM 1816 W18X46 Beam No Messages 0.934844 PMM 1817 W18X50 Beam No Messages 0.684185 PMM 1818 W18X35 Beam No Messages 0.540195 PMM 1819 W18X35 Beam No Messages 0.285797 PMM 1820 W18X76 Beam No Messages 0.976775 PMM 1821 W18X35 Beam No Messages 0.211993 PMM 1822 W24X55 Beam No Messages 0.911382 PMM 1823 W18X35 Beam No Messages 0.211997 PMM 1824 W18X76 Beam No Messages 0.976773 PMM 1825 W18X35 Beam No Messages 0.285771 PMM 1826 W18X143 Beam No Messages 0.923021 PMM 1827 W30X90 Beam No Messages 0.919017 PMM 1828 W18X143 Beam No Messages 0.922995 PMM 1829 W18X35 Beam No Messages 0.244702 PMM

PAGE 177

! 170 9 Story Diagrid.sdb SAP2000 v17.3.0 9 Story Diagrid 27 March 2016 Computers and Structures, Inc. Page 29 of 29 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 1830 W18X76 Beam No Messages 0.845073 PMM 1831 W18X35 Beam No Messages 0.130828 PMM 1832 W18X46 Beam No Messages 0.873864 PMM 1833 W18X35 Beam No Messages 0.130827 PMM 1834 W18X76 Beam No Messages 0.845040 PMM 1835 W18X35 Beam No Messages 0.244687 PMM 1836 W18X35 Beam No Messages 0.575032 PMM 1837 W18X35 Beam No Messages 0.694899 PMM 1838 W24X55 Beam No Messages 0.927152 PMM 1839 W18X35 Beam No Messages 0.573539 PMM 1840 W24X55 Beam No Messages 0.906683 PMM 1841 W18X35 Beam No Messages 0.696112 PMM 1842 W18X35 Beam No Messages 0.571695 PMM 1843 W18X35 Beam No Messages 0.729919 PMM 1844 W30X99 Beam No Messages 0.963666 PMM 1845 W30X99 Beam No Messages 0.954393 PMM 1846 W18X35 Beam No Messages 0.728517 PMM 1847 W18X35 Beam No Messages 0.566924 PMM 1848 W18X35 Beam No Messages 0.666505 PMM 1849 W24X55 Beam No Messages 0.866139 PMM 1850 W18X35 Beam No Messages 0.566721 PMM 1851 W24X55 Beam No Messages 0.861763 PMM 1852 W18X35 Beam No Messages 0.667545 PMM 1853 W18X35 Beam No Messages 0.567263 PMM 1854 W18X35 Beam No Messages 0.387900 PMM 1855 W18X76 Beam No Messages 0.824859 PMM 1856 W18X35 Beam No Messages 0.141611 PMM 1857 W18X46 Beam No Messages 0.931719 PMM 1858 W18X35 Beam No Messages 0.141580 PMM 1859 W18X76 Beam No Messages 0.824864 PMM 1860 W18X35 Beam No Messages 0.387909 PMM 1861 W30X90 Beam No Messages 0.907742 PMM 1862 W30X90 Beam No Messages 0.840495 PMM 1863 W30X90 Beam No Messages 0.907621 PMM

PAGE 178

APPENDIX F Appendix F 171

PAGE 179

! 172 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.12.31 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9-story\9-STOR~1\MRFFOU~1.EC6 Description : A2/F5 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 8'-3" 4'-1-1/2" 2'-0" 8'-3" 4'-1-1/2" 2'-0" Z Z X X 9 # 8 Bars 3" X-X Section Looking to +Z 9 # 8 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 8.250 ft Length parallel to Z-Z Axis = 8.250 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 24.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 8 Number of Bars = 9 Bars parallel to Z-Z Axis Reinforcing Bar Size = 8 Number of Bars = 9 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 267.0 385.0 0.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = k 1.0 V-z k 5.0 M-xx = 1.0 k-ft = 1.0 k-ft H = 9-Story MRF General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.12.31 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9-story\9-STOR~1\MRFFOU~1.EC6 Description : A2/F5 PASS 86.021 Sliding X-X 0.60 k 51.613 k +0.60D+0.60W+0.60H PASS n/a Sliding Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9890 Soil Bearing 9.890 ksf 10.0 ksf 0.0 deg CCW PASS n/a Overturning X-X 0.0 k-ft 0.0 k-ft No Overturning PASS 140.530 Overturning Z-Z 5.050 k-ft 709.68 k-ft +0.60D+0.60W+0.60H PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9219 Z Flexure (+X) 73.574 k-ft 79.803 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9190 Z Flexure (-X) 73.341 k-ft 79.803 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.9219 X Flexure (+Z) 73.572 k-ft 79.803 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9190 X Flexure (-Z) 73.341 k-ft 79.803 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.7078 1-way Shear (+X) 82.243 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7053 1-way Shear (-X) 81.953 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7077 1-way Shear (+Z) 82.226 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7077 1-way Shear (-Z) 82.226 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.8550 2-way Punching 198.677 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 0.0 deg CCW 10.0 4.223 4.202 4.202 4.223 0.422 0.0 0.04185 +D+L+H 0.000 0.0 deg CCW 10.0 9.890 9.848 9.848 9.890 0.989 0.0 0.03573 +D+Lr+H 0.000 0.0 deg CCW 10.0 4.223 4.202 4.202 4.223 0.422 0.0 0.04185 +D+S+H 0.000 0.0 deg CCW 10.0 4.223 4.202 4.202 4.223 0.422 0.0 0.04185 +D+0.750Lr+0.750L+H 0.000 0.0 deg CCW 10.0 8.474 8.437 8.437 8.474 0.847 0.0 0.03649 +D+0.750L+0.750S+H 0.000 0.0 deg CCW 10.0 8.474 8.437 8.437 8.474 0.847 0.0 0.03649 +D+0.60W+H 0.000 0.0 deg CCW 10.0 4.270 4.156 4.156 4.270 0.427 0.0 0.2281 +D+0.70E+H 0.000 0.0 deg CCW 10.0 4.223 4.202 4.202 4.223 0.422 0.0 0.04185 +D+0.750Lr+0.750L+0.450W+H 0.000 0.0 deg CCW 10.0 8.509 8.402 8.402 8.509 0.851 0.0 0.1061 +D+0.750L+0.750S+0.450W+H 0.000 0.0 deg CCW 10.0 8.509 8.402 8.402 8.509 0.851 0.0 0.1061 +D+0.750L+0.750S+0.5250E+H 0.000 0.0 deg CCW 10.0 8.474 8.437 8.437 8.474 0.847 0.0 0.03649 +0.60D+0.60W+0.60H 0.000 0.0 deg CCW 10.0 2.581 2.475 2.475 2.581 0.258 0.0 0.3522 +0.60D+0.70E+0.60H 0.000 0.0 deg CCW 10.0 2.534 2.521 2.521 2.534 0.253 0.0 0.04185 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio X-X, +D+H None 0.0 k-ft Infinity OK X-X, +D+L+H None 0.0 k-ft Infinity OK X-X, +D+Lr+H None 0.0 k-ft Infinity OK X-X, +D+S+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+H None 0.0 k-ft Infinity OK X-X, +D+0.60W+H None 0.0 k-ft Infinity OK X-X, +D+0.70E+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+0.450W+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+0.450W+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+0.5250E+H None 0.0 k-ft Infinity OK 9-Story MRF

PAGE 180

! 173 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.12.31 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9-story\9-STOR~1\MRFFOU~1.EC6 Description : B6/E1 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 8'-9" 4'-4-1/2" 2'-0" 8'-9" 4'-4-1/2" 2'-0" Z Z X X 8 # 9 Bars 3" X-X Section Looking to +Z 8 # 9 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 8.750 ft Length parallel to Z-Z Axis = 8.750 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 24.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 9 Number of Bars = 8 Bars parallel to Z-Z Axis Reinforcing Bar Size = 9 Number of Bars = 8 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 269.0 385.0 1.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = 2.0 k 0.0 3.0 V-z k 0.0 3.0 M-xx = 11.0 k-ft = 16.0 0.0 k-ft 1.0 1.0 H = 9-Story MRF General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.12.31 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9-story\9-STOR~1\MRFFOU~1.EC6 Description : B6/E1 PASS 40.572 Sliding X-X 5.0 k 202.861 k +D+L+H PASS n/a Sliding Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9185 Soil Bearing 9.185 ksf 10.0 ksf 1.5 deg CCW PASS 1,278.39 Overturning X-X 0.60 k-ft 767.03 k-ft +0.60D+0.60W+0.60H PASS 67.879 Overturning Z-Z 11.30 k-ft 767.03 k-ft +0.60D+0.60W+0.60H PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9335 Z Flexure (+X) 78.937 k-ft 84.556 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.8798 Z Flexure (-X) 74.395 k-ft 84.556 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.9332 X Flexure (+Z) 78.909 k-ft 84.556 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.8798 X Flexure (-Z) 74.395 k-ft 84.556 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.7616 1-way Shear (+X) 88.485 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7135 1-way Shear (-X) 82.903 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7592 1-way Shear (+Z) 88.208 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7578 1-way Shear (-Z) 88.050 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.8927 2-way Punching 207.448 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 0.0 deg CCW 10.0 3.943 3.664 3.664 3.943 0.394 0.0 0.6525 +D+L+H 0.000 1.5 deg CCW 10.0 9.167 8.497 8.479 9.185 0.919 0.01775 0.6936 +D+Lr+H 0.000 0.0 deg CCW 10.0 3.943 3.664 3.664 3.943 0.394 0.0 0.6525 +D+S+H 0.000 0.0 deg CCW 10.0 3.943 3.664 3.664 3.943 0.394 0.0 0.6525 +D+0.750Lr+0.750L+H 0.000 1.3 deg CCW 10.0 7.861 7.288 7.275 7.875 0.788 0.01552 0.6884 +D+0.750L+0.750S+H 0.000 1.3 deg CCW 10.0 7.861 7.288 7.275 7.875 0.788 0.01552 0.6884 +D+0.60W+H 0.000 1.9 deg CCW 10.0 3.961 3.661 3.651 3.972 0.397 0.02467 0.7251 +D+0.70E+H 0.000 0.0 deg CCW 10.0 3.943 3.664 3.664 3.943 0.394 0.0 0.6525 +D+0.750Lr+0.750L+0.450W+H 0.000 2.0 deg CCW 10.0 7.875 7.286 7.265 7.896 0.790 0.02481 0.7158 +D+0.750L+0.750S+0.450W+H 0.000 2.0 deg CCW 10.0 7.875 7.286 7.265 7.896 0.790 0.02481 0.7158 +D+0.750L+0.750S+0.5250E+H 0.000 1.3 deg CCW 10.0 7.861 7.288 7.275 7.875 0.788 0.01552 0.6884 +0.60D+0.60W+0.60H 0.000 3.0 deg CCW 10.0 2.384 2.196 2.185 2.395 0.240 0.04107 0.7734 +0.60D+0.70E+0.60H 0.000 0.0 deg CCW 10.0 2.366 2.198 2.198 2.366 0.237 0.0 0.6525 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio X-X, +D+H None 0.0 k-ft Infinity OK X-X, +D+L+H 1.0 k-ft 2,958.39 k-ft 2,958.39 OK X-X, +D+Lr+H None 0.0 k-ft Infinity OK X-X, +D+S+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+H 0.750 k-ft 2,537.30 k-ft 3,383.06 OK X-X, +D+0.750L+0.750S+H 0.750 k-ft 2,537.30 k-ft 3,383.06 OK X-X, +D+0.60W+H 0.60 k-ft 1,276.64 k-ft 2,127.73 OK X-X, +D+0.70E+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+0.450W+H 1.20 k-ft 2,539.26 k-ft 2,116.05 OK X-X, +D+0.750L+0.750S+0.450W+H 1.20 k-ft 2,539.26 k-ft 2,116.05 OK X-X, +D+0.750L+0.750S+0.5250E+H 0.750 k-ft 2,537.30 k-ft 3,383.06 OK 9-Story MRF

PAGE 181

! 174 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.12.31 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9-story\9-STOR~1\MRFFOU~1.EC6 Description : A3/4A/3F/F4 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 8'-6" 4'-3" 2'-0" 8'-6" 4'-3" 2'-0" Z Z X X 13 # 7 Bars 3" X-X Section Looking to +Z 13 # 7 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 8.50 ft Length parallel to Z-Z Axis = 8.50 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 24.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 7 Number of Bars = 13 Bars parallel to Z-Z Axis Reinforcing Bar Size = 7 Number of Bars = 13 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 283.0 410.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = k 1.0 V-z k 6.0 M-xx = k-ft = k-ft H = 9-Story MRF General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.12.31 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9-story\9-STOR~1\MRFFOU~1.EC6 Description : A3/4A/3F/F4 PASS 91.186 Sliding X-X 0.60 k 54.711 k +0.60D+0.60W+0.60H PASS n/a Sliding Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9882 Soil Bearing 9.882 ksf 10.0 ksf 0.0 deg CCW PASS n/a Overturning X-X 0.0 k-ft 0.0 k-ft No Overturning PASS 153.481 Overturning Z-Z 5.050 k-ft 775.08 k-ft +0.60D+0.60W+0.60H PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9379 Z Flexure (+X) 79.587 k-ft 84.860 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9379 Z Flexure (-X) 79.587 k-ft 84.860 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9379 X Flexure (+Z) 79.587 k-ft 84.860 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9379 X Flexure (-Z) 79.587 k-ft 84.860 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.8020 1-way Shear (+X) 93.190 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.8020 1-way Shear (-X) 93.190 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.8020 1-way Shear (+Z) 93.190 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.8020 1-way Shear (-Z) 93.190 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.9438 2-way Punching 219.331 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 0.0 deg CCW 10.0 4.207 4.207 4.207 4.207 0.421 0.0 0.0 +D+L+H 0.000 0.0 deg CCW 10.0 9.882 9.882 9.882 9.882 0.988 0.0 0.0 +D+Lr+H 0.000 0.0 deg CCW 10.0 4.207 4.207 4.207 4.207 0.421 0.0 0.0 +D+S+H 0.000 0.0 deg CCW 10.0 4.207 4.207 4.207 4.207 0.421 0.0 0.0 +D+0.750Lr+0.750L+H 0.000 0.0 deg CCW 10.0 8.463 8.463 8.463 8.463 0.846 0.0 0.0 +D+0.750L+0.750S+H 0.000 0.0 deg CCW 10.0 8.463 8.463 8.463 8.463 0.846 0.0 0.0 +D+0.60W+H 0.000 0.0 deg CCW 10.0 4.255 4.158 4.158 4.255 0.426 0.0 0.1994 +D+0.70E+H 0.000 0.0 deg CCW 10.0 4.207 4.207 4.207 4.207 0.421 0.0 0.0 +D+0.750Lr+0.750L+0.450W+H 0.000 0.0 deg CCW 10.0 8.499 8.427 8.427 8.499 0.850 0.0 0.07433 +D+0.750L+0.750S+0.450W+H 0.000 0.0 deg CCW 10.0 8.499 8.427 8.427 8.499 0.850 0.0 0.07433 +D+0.750L+0.750S+0.5250E+H 0.000 0.0 deg CCW 10.0 8.463 8.463 8.463 8.463 0.846 0.0 0.0 +0.60D+0.60W+0.60H 0.000 0.0 deg CCW 10.0 2.573 2.476 2.476 2.573 0.257 0.0 0.3323 +0.60D+0.70E+0.60H 0.000 0.0 deg CCW 10.0 2.524 2.524 2.524 2.524 0.252 0.0 0.0 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio X-X, +D+H None 0.0 k-ft Infinity OK X-X, +D+L+H None 0.0 k-ft Infinity OK X-X, +D+Lr+H None 0.0 k-ft Infinity OK X-X, +D+S+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+H None 0.0 k-ft Infinity OK X-X, +D+0.60W+H None 0.0 k-ft Infinity OK X-X, +D+0.70E+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+0.450W+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+0.450W+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+0.5250E+H None 0.0 k-ft Infinity OK 9-Story MRF

PAGE 182

! 175 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.12.31 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9-story\9-STOR~1\MRFFOU~1.EC6 Description : C6/D6/C1/D1 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 8'-9" 4'-4-1/2" 2'-0" 8'-6" 4'-3" 2'-0" Z Z X X 10 # 8 Bars 3" X-X Section Looking to +Z 10 # 8 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 8.750 ft Length parallel to Z-Z Axis = 8.50 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 24.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 8 Number of Bars = 10 Bars parallel to Z-Z Axis Reinforcing Bar Size = 8 Number of Bars = 10 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation Bars along Z-Z Axis # Bars required within zone 98.6 % # Bars required on each side of zone 1.4 % Applied Loads 279.0 399.0 1.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = 2.0 k 3.0 V-z k 0.0 3.0 M-xx = 22.0 k-ft = 17.0 0.0 k-ft 1.0 H = 9-Story MRF General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.12.31 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9-story\9-STOR~1\MRFFOU~1.EC6 Description : C6/D6/C1/D1 PASS 41.974 Sliding X-X 5.0 k 209.871 k +D+L+H PASS n/a Sliding Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9869 Soil Bearing 9.869 ksf 10.0 ksf 0.0 deg CCW PASS 1,281.67 Overturning X-X 0.60 k-ft 769.0 k-ft +0.60D+0.60W+0.60H PASS 44.224 Overturning Z-Z 17.90 k-ft 791.62 k-ft +0.60D+0.60W+0.60H PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9841 Z Flexure (+X) 84.556 k-ft 85.924 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9153 Z Flexure (-X) 78.650 k-ft 85.924 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9384 X Flexure (+Z) 78.377 k-ft 83.522 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.8731 X Flexure (-Z) 72.926 k-ft 83.522 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.8163 1-way Shear (+X) 94.842 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7538 1-way Shear (-X) 87.582 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7899 1-way Shear (+Z) 91.772 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7899 1-way Shear (-Z) 91.772 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.9238 2-way Punching 214.676 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 0.0 deg CCW 10.0 4.285 3.798 3.798 4.285 0.429 0.0 1.071 +D+L+H 0.000 0.0 deg CCW 10.0 9.869 8.943 8.943 9.869 0.987 0.0 0.8763 +D+Lr+H 0.000 0.0 deg CCW 10.0 4.285 3.798 3.798 4.285 0.429 0.0 1.071 +D+S+H 0.000 0.0 deg CCW 10.0 4.285 3.798 3.798 4.285 0.429 0.0 1.071 +D+0.750Lr+0.750L+H 0.000 0.0 deg CCW 10.0 8.473 7.657 7.657 8.473 0.847 0.0 0.9007 +D+0.750L+0.750S+H 0.000 0.0 deg CCW 10.0 8.473 7.657 7.657 8.473 0.847 0.0 0.9007 +D+0.60W+H 0.000 1.2 deg CCW 10.0 4.303 3.795 3.784 4.315 0.432 0.02391 1.141 +D+0.70E+H 0.000 0.0 deg CCW 10.0 4.285 3.798 3.798 4.285 0.429 0.0 1.071 +D+0.750Lr+0.750L+0.450W+H 0.000 0.6 deg CCW 10.0 8.487 7.655 7.646 8.495 0.850 0.008996 0.9270 +D+0.750L+0.750S+0.450W+H 0.000 0.6 deg CCW 10.0 8.487 7.655 7.646 8.495 0.850 0.008996 0.9270 +D+0.750L+0.750S+0.5250E+H 0.000 0.0 deg CCW 10.0 8.473 7.657 7.657 8.473 0.847 0.0 0.9007 +0.60D+0.60W+0.60H 0.000 1.9 deg CCW 10.0 2.590 2.276 2.265 2.601 0.260 0.03979 1.187 +0.60D+0.70E+0.60H 0.000 0.0 deg CCW 10.0 2.571 2.279 2.279 2.571 0.257 0.0 1.071 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio X-X, +D+H None 0.0 k-ft Infinity OK X-X, +D+L+H None 0.0 k-ft Infinity OK X-X, +D+Lr+H None 0.0 k-ft Infinity OK X-X, +D+S+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+H None 0.0 k-ft Infinity OK X-X, +D+0.60W+H 0.60 k-ft 1,279.97 k-ft 2,133.28 OK X-X, +D+0.70E+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+0.450W+H 0.450 k-ft 2,551.14 k-ft 5,669.21 OK X-X, +D+0.750L+0.750S+0.450W+H 0.450 k-ft 2,551.14 k-ft 5,669.21 OK X-X, +D+0.750L+0.750S+0.5250E+H None 0.0 k-ft Infinity OK 9-Story MRF

PAGE 183

! 176 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.12.31 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9-story\9-STOR~1\MRFFOU~1.EC6 Description : E6/B1 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 8'-9" 4'-4-1/2" 2'-0" 8'-9" 4'-4-1/2" 2'-0" Z Z X X 8 # 9 Bars 3" X-X Section Looking to +Z 8 # 9 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 8.750 ft Length parallel to Z-Z Axis = 8.750 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 24.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 9 Number of Bars = 8.0 Bars parallel to Z-Z Axis Reinforcing Bar Size = 9 Number of Bars = 8.0 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 277.0 409.0 1.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = 2.0 k 3.0 V-z k 0.0 3.0 M-xx = 11.0 k-ft = 16.0 0.0 k-ft 2.0 1.0 H = 9-Story MRF General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.12.31 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9-story\9-STOR~1\MRFFOU~1.EC6 Description : E6/B1 PASS 42.492 Sliding X-X 5.0 k 212.461 k +D+L+H PASS n/a Sliding Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9612 Soil Bearing 9.612 ksf 10.0 ksf 2.9 deg CCW PASS 1,313.39 Overturning X-X 0.60 k-ft 788.03 k-ft +0.60D+0.60W+0.60H PASS 69.737 Overturning Z-Z 11.30 k-ft 788.03 k-ft +0.60D+0.60W+0.60H PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9793 Z Flexure (+X) 82.809 k-ft 84.556 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.9256 Z Flexure (-X) 78.268 k-ft 84.556 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9790 X Flexure (+Z) 82.782 k-ft 84.556 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9256 X Flexure (-Z) 78.268 k-ft 84.556 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.7988 1-way Shear (+X) 92.814 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7508 1-way Shear (-X) 87.231 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7965 1-way Shear (+Z) 92.545 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7938 1-way Shear (-Z) 92.227 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.9371 2-way Punching 217.762 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 0.0 deg CCW 10.0 4.047 3.769 3.769 4.047 0.405 0.0 0.6350 +D+L+H 0.000 2.9 deg CCW 10.0 9.577 8.923 8.888 9.612 0.961 0.03389 0.6622 +D+Lr+H 0.000 0.0 deg CCW 10.0 4.047 3.769 3.769 4.047 0.405 0.0 0.6350 +D+S+H 0.000 0.0 deg CCW 10.0 4.047 3.769 3.769 4.047 0.405 0.0 0.6350 +D+0.750Lr+0.750L+H 0.000 2.6 deg CCW 10.0 8.194 7.635 7.608 8.221 0.822 0.02971 0.6589 +D+0.750L+0.750S+H 0.000 2.6 deg CCW 10.0 8.194 7.635 7.608 8.221 0.822 0.02971 0.6589 +D+0.60W+H 0.000 1.9 deg CCW 10.0 4.066 3.766 3.755 4.076 0.408 0.02402 0.7058 +D+0.70E+H 0.000 0.0 deg CCW 10.0 4.047 3.769 3.769 4.047 0.405 0.0 0.6350 +D+0.750Lr+0.750L+0.450W+H 0.000 3.2 deg CCW 10.0 8.208 7.633 7.598 8.242 0.824 0.03859 0.6851 +D+0.750L+0.750S+0.450W+H 0.000 3.2 deg CCW 10.0 8.208 7.633 7.598 8.242 0.824 0.03859 0.6851 +D+0.750L+0.750S+0.5250E+H 0.000 2.6 deg CCW 10.0 8.194 7.635 7.608 8.221 0.822 0.02971 0.6589 +0.60D+0.60W+0.60H 0.000 3.0 deg CCW 10.0 2.447 2.258 2.248 2.457 0.246 0.03997 0.7528 +0.60D+0.70E+0.60H 0.000 0.0 deg CCW 10.0 2.428 2.261 2.261 2.428 0.243 0.0 0.6350 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio X-X, +D+H None 0.0 k-ft Infinity OK X-X, +D+L+H 2.0 k-ft 3,098.39 k-ft 1,549.19 OK X-X, +D+Lr+H None 0.0 k-ft Infinity OK X-X, +D+S+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+H 1.50 k-ft 2,651.05 k-ft 1,767.36 OK X-X, +D+0.750L+0.750S+H 1.50 k-ft 2,651.05 k-ft 1,767.36 OK X-X, +D+0.60W+H 0.60 k-ft 1,311.64 k-ft 2,186.06 OK X-X, +D+0.70E+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+0.450W+H 1.950 k-ft 2,653.01 k-ft 1,360.52 OK X-X, +D+0.750L+0.750S+0.450W+H 1.950 k-ft 2,653.01 k-ft 1,360.52 OK X-X, +D+0.750L+0.750S+0.5250E+H 1.50 k-ft 2,651.05 k-ft 1,767.36 OK 9-Story MRF

PAGE 184

! 177 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.12.31 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9-story\9-STOR~1\MRFFOU~1.EC6 Description : A1/F6 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 25'-6" 12'-9" 2'-0" 25'-3" 12'-7-1/2" 2'-0" Z Z X X 13 # 11 Bars 3" X-X Section Looking to +Z 13 # 11 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 25.50 ft Length parallel to Z-Z Axis = 25.250 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 36.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 11 Number of Bars = 13 Bars parallel to Z-Z Axis Reinforcing Bar Size = 11 Number of Bars = 13 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation Bars along Z-Z Axis # Bars required within zone 99.5 % # Bars required on each side of zone 0.5 % Applied Loads 144.0 201.0 171.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = 6.0 k 6.0 9.0 172.0 V-z k 5.0 39.0 54.0 M-xx = 20.0 k-ft = 30.0 9.0 k-ft 29.0 17.0 H = 9-Story MRF General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.12.31 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9-story\9-STOR~1\MRFFOU~1.EC6 Description : A1/F6 PASS 1.003 Sliding X-X 106.80 k 107.115 k +0.60D+0.60W+0.60H PASS 3.967 Sliding Z-Z 27.0 k 107.115 k +0.60D+0.60W+0.60H DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.1195 Soil Bearing 1.195 ksf 10.0 ksf 19.4 deg CCW PASS 41.797 Overturning X-X 107.850 k-ft 4,507.77 k-ft +0.60D+0.60W+0.60H PASS 11.122 Overturning Z-Z 409.30 k-ft 4,552.41 k-ft +0.60D+0.60W+0.60H PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9064 Z Flexure (+X) 106.820 k-ft 117.848 k-ft +1.20D+0.50L+0.50S+W+1.60H PASS 0.8012 Z Flexure (-X) 94.418 k-ft 117.848 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9006 X Flexure (+Z) 105.104 k-ft 116.706 k-ft +1.20D+0.50Lr+0.50L+W+1.60H PASS 0.7919 X Flexure (-Z) 92.416 k-ft 116.706 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.2979 1-way Shear (+X) 34.611 psi 116.190 psi +1.20D+0.50Lr+0.50L+W+1.60H PASS 0.2658 1-way Shear (-X) 30.886 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.2981 1-way Shear (+Z) 34.641 psi 116.190 psi +1.20D+0.50Lr+0.50L+W+1.60H PASS 0.2776 1-way Shear (-Z) 32.258 psi 116.190 psi +1.20D+0.50Lr+0.50L+W+1.60H PASS 0.4560 2-way Punching 105.965 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 36.1 deg CCW 10.0 0.6625 0.6548 0.6334 0.6839 0.068 0.8347 1.146 +D+L+H 0.000 36.7 deg CCW 10.0 0.9798 0.9619 0.9070 1.035 0.104 1.451 1.944 +D+Lr+H 0.000 36.1 deg CCW 10.0 0.6625 0.6548 0.6334 0.6839 0.068 0.8347 1.146 +D+S+H 0.000 36.1 deg CCW 10.0 0.6625 0.6548 0.6334 0.6839 0.068 0.8347 1.146 +D+0.750Lr+0.750L+H 0.000 36.7 deg CCW 10.0 0.9005 0.8851 0.8386 0.9470 0.095 1.337 1.797 +D+0.750L+0.750S+H 0.000 36.7 deg CCW 10.0 0.9005 0.8851 0.8386 0.9470 0.095 1.337 1.797 +D+0.60W+H 0.000 15.7 deg CCW 10.0 0.9275 0.7085 0.6217 1.014 0.101 2.726 9.695 +D+0.70E+H 0.000 36.1 deg CCW 10.0 0.6625 0.6548 0.6334 0.6839 0.068 0.8347 1.146 +D+0.750Lr+0.750L+0.450W+H 0.000 19.4 deg CCW 10.0 1.099 0.9254 0.8298 1.195 0.120 2.424 6.901 +D+0.750L+0.750S+0.450W+H 0.000 19.4 deg CCW 10.0 1.099 0.9254 0.8298 1.195 0.120 2.424 6.901 +D+0.750L+0.750S+0.5250E+H 0.000 36.7 deg CCW 10.0 0.9005 0.8851 0.8386 0.9470 0.095 1.337 1.797 +0.60D+0.60W+0.60H 0.000 14.8 deg CCW 10.0 0.6625 0.4466 0.3683 0.7408 0.074 3.625 13.756 +0.60D+0.70E+0.60H 0.000 36.1 deg CCW 10.0 0.3975 0.3929 0.380 0.4103 0.041 0.8347 1.146 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio X-X, +D+H 29.50 k-ft 5,354.08 k-ft 181.494 OK X-X, +D+L+H 75.583 k-ft 7,891.71 k-ft 104.411 OK X-X, +D+Lr+H 29.50 k-ft 5,354.08 k-ft 181.494 OK X-X, +D+S+H 29.50 k-ft 5,354.08 k-ft 181.494 OK X-X, +D+0.750Lr+0.750L+H 64.063 k-ft 7,257.30 k-ft 113.285 OK X-X, +D+0.750L+0.750S+H 64.063 k-ft 7,257.30 k-ft 113.285 OK X-X, +D+0.60W+H 119.650 k-ft 6,649.41 k-ft 55.574 OK X-X, +D+0.70E+H 29.50 k-ft 5,354.08 k-ft 181.494 OK X-X, +D+0.750Lr+0.750L+0.450W+H 131.675 k-ft 8,228.79 k-ft 62.493 OK X-X, +D+0.750L+0.750S+0.450W+H 131.675 k-ft 8,228.79 k-ft 62.493 OK X-X, +D+0.750L+0.750S+0.5250E+H 64.063 k-ft 7,257.30 k-ft 113.285 OK 9-Story MRF

PAGE 185

! 178 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9-story\9-STOR~1\MRFFOU~1.EC6 Description : A6/F1 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 6'-0" 3'-0" 2'-0" 9'-0" 4'-6" 2'-0" Z Z X X 8 # 7 Bars 3" X-X Section Looking to +Z 10 # 7 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 6.0 ft Length parallel to Z-Z Axis = 9.0 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 24.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 7 Number of Bars = 8 Bars parallel to Z-Z Axis Reinforcing Bar Size = 7 Number of Bars = 10 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation Bars along X-X Axis # Bars required within zone 80.0 % # Bars required on each side of zone 20.0 % Applied Loads 244.0 122.0 56.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = 12.0 k 7.0 9.0 15.0 V-z k 4.0 63.0 8.0 M-xx = 7.0 k-ft = 4.0 12.0 k-ft 9.0 37.0 H = 9-Story MRF General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9-story\9-STOR~1\MRFFOU~1.EC6 Description : A6/F1 PASS 3.507 Sliding X-X 16.20 k 56.819 k +0.60D+0.60W+0.60H PASS 1.353 Sliding Z-Z 42.0 k 56.819 k +0.60D+0.60W+0.60H DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9894 Soil Bearing 9.894 ksf 10.0 ksf 59.6 deg CCW PASS 6.511 Overturning X-X 130.90 k-ft 852.28 k-ft +0.60D+0.60W+0.60H PASS 11.80 Overturning Z-Z 48.150 k-ft 568.19 k-ft +0.60D+0.60W+0.60H PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.4926 Z Flexure (+X) 24.519 k-ft 49.773 k-ft +1.20D+0.50L+0.50S+W+1.60H PASS 0.3752 Z Flexure (-X) 18.676 k-ft 49.773 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.8091 X Flexure (+Z) 74.676 k-ft 92.294 k-ft +1.20D+0.50Lr+0.50L+W+1.60H PASS 0.6237 X Flexure (-Z) 57.560 k-ft 92.294 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.1291 1-way Shear (+X) 15.002 psi 116.190 psi +1.20D+0.50Lr+0.50L+W+1.60H PASS 0.09273 1-way Shear (-X) 10.774 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7609 1-way Shear (+Z) 88.407 psi 116.190 psi +1.20D+0.50Lr+0.50L+W+1.60H PASS 0.6488 1-way Shear (-Z) 75.379 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.4186 2-way Punching 97.277 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 38.8 deg CCW 10.0 5.113 4.504 3.802 5.815 0.582 1.336 1.664 +D+L+H 0.000 37.6 deg CCW 10.0 7.615 6.521 5.366 8.770 0.877 1.496 1.942 +D+Lr+H 0.000 38.8 deg CCW 10.0 5.113 4.504 3.802 5.815 0.582 1.336 1.664 +D+S+H 0.000 38.8 deg CCW 10.0 5.113 4.504 3.802 5.815 0.582 1.336 1.664 +D+0.750Lr+0.750L+H 0.000 37.8 deg CCW 10.0 6.989 6.017 4.975 8.031 0.803 1.467 1.890 +D+0.750L+0.750S+H 0.000 37.8 deg CCW 10.0 6.989 6.017 4.975 8.031 0.803 1.467 1.890 +D+0.60W+H 0.000 66.3 deg CCW 10.0 4.840 6.021 2.562 8.299 0.830 5.830 2.560 +D+0.70E+H 0.000 38.8 deg CCW 10.0 5.113 4.504 3.802 5.815 0.582 1.336 1.664 +D+0.750Lr+0.750L+0.450W+H 0.000 59.6 deg CCW 10.0 6.785 7.155 4.045 9.894 0.989 4.084 2.399 +D+0.750L+0.750S+0.450W+H 0.000 59.6 deg CCW 10.0 6.785 7.155 4.045 9.894 0.989 4.084 2.399 +D+0.750L+0.750S+0.5250E+H 0.000 37.8 deg CCW 10.0 6.989 6.017 4.975 8.031 0.803 1.467 1.890 +0.60D+0.60W+0.60H 0.000 69.8 deg CCW 10.0 2.795 4.220 1.041 5.973 0.597 8.294 3.051 +0.60D+0.70E+0.60H 0.000 38.8 deg CCW 10.0 3.068 2.702 2.281 3.489 0.349 1.336 1.664 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio X-X, +D+H 28.917 k-ft 1,168.47 k-ft 40.408 OK X-X, +D+L+H 47.583 k-ft 1,717.47 k-ft 36.094 OK X-X, +D+Lr+H 28.917 k-ft 1,168.47 k-ft 40.408 OK X-X, +D+S+H 28.917 k-ft 1,168.47 k-ft 40.408 OK X-X, +D+0.750Lr+0.750L+H 42.917 k-ft 1,580.22 k-ft 36.821 OK X-X, +D+0.750L+0.750S+H 42.917 k-ft 1,580.22 k-ft 36.821 OK X-X, +D+0.60W+H 142.467 k-ft 1,319.67 k-ft 9.263 OK X-X, +D+0.70E+H 28.917 k-ft 1,168.47 k-ft 40.408 OK X-X, +D+0.750Lr+0.750L+0.450W+H 128.079 k-ft 1,693.62 k-ft 13.223 OK X-X, +D+0.750L+0.750S+0.450W+H 128.079 k-ft 1,693.62 k-ft 13.223 OK X-X, +D+0.750L+0.750S+0.5250E+H 42.917 k-ft 1,580.22 k-ft 36.821 OK 9-Story MRF

PAGE 186

! 179 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.12.31 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9-story\9-STOR~1\MRFFOU~1.EC6 Description : Interior Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 12'-0" 6'-0" 2'-0" 12'-0" 6'-0" 2'-0" Z Z X X 16 # 9 Bars 3" X-X Section Looking to +Z 16 # 9 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 12.0 ft Length parallel to Z-Z Axis = 12.0 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 36.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 9 Number of Bars = 16 Bars parallel to Z-Z Axis Reinforcing Bar Size = 9 Number of Bars = 16 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 551.0 819.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = k V-z k M-xx = k-ft = k-ft H = 9-Story MRF General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.12.31 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9-story\9-STOR~1\MRFFOU~1.EC6 Description : Interior PASS n/a Sliding X-X 0.0 k 0.0 k No Sliding PASS n/a Sliding Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9949 Soil Bearing 9.949 ksf 10.0 ksf 0.0 deg CCW PASS n/a Overturning X-X 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Overturning Z-Z 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9765 Z Flexure (+X) 189.516 k-ft 194.078 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.9765 Z Flexure (-X) 189.516 k-ft 194.078 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9765 X Flexure (+Z) 189.516 k-ft 194.078 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.9765 X Flexure (-Z) 189.516 k-ft 194.078 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.7249 1-way Shear (+X) 84.229 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7249 1-way Shear (-X) 84.229 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7249 1-way Shear (+Z) 84.229 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7249 1-way Shear (-Z) 84.229 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.9833 2-way Punching 228.507 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 0.0 deg CCW 10.0 4.261 4.261 4.261 4.261 0.426 0.0 0.0 +D+L+H 0.000 0.0 deg CCW 10.0 9.949 9.949 9.949 9.949 0.995 0.0 0.0 +D+Lr+H 0.000 0.0 deg CCW 10.0 4.261 4.261 4.261 4.261 0.426 0.0 0.0 +D+S+H 0.000 0.0 deg CCW 10.0 4.261 4.261 4.261 4.261 0.426 0.0 0.0 +D+0.750Lr+0.750L+H 0.000 0.0 deg CCW 10.0 8.527 8.527 8.527 8.527 0.853 0.0 0.0 +D+0.750L+0.750S+H 0.000 0.0 deg CCW 10.0 8.527 8.527 8.527 8.527 0.853 0.0 0.0 +D+0.60W+H 0.000 0.0 deg CCW 10.0 4.261 4.261 4.261 4.261 0.426 0.0 0.0 +D+0.70E+H 0.000 0.0 deg CCW 10.0 4.261 4.261 4.261 4.261 0.426 0.0 0.0 +D+0.750Lr+0.750L+0.450W+H 0.000 0.0 deg CCW 10.0 8.527 8.527 8.527 8.527 0.853 0.0 0.0 +D+0.750L+0.750S+0.450W+H 0.000 0.0 deg CCW 10.0 8.527 8.527 8.527 8.527 0.853 0.0 0.0 +D+0.750L+0.750S+0.5250E+H 0.000 0.0 deg CCW 10.0 8.527 8.527 8.527 8.527 0.853 0.0 0.0 +0.60D+0.60W+0.60H 0.000 0.0 deg CCW 10.0 2.557 2.557 2.557 2.557 0.256 0.0 0.0 +0.60D+0.70E+0.60H 0.000 0.0 deg CCW 10.0 2.557 2.557 2.557 2.557 0.256 0.0 0.0 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio Footing Has NO Overturning Force Application Axis Sliding Stability All units k Load Combination... Status Sliding Force Resisting Force Sliding SafetyRatio Footing Has NO Sliding Flexure Axis & Load Combination in^2 in^2 in^2 k-ft As Req'd Footing Flexure Tension @ k-ft Which Actual As Status Mu Side ? Bot or Top ? Gvrn. As Phi*Mn 9-Story MRF

PAGE 187

! 180 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.12.31 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9-story\9-STOR~1\MRFFOU~1.EC6 Description : A5/F2 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 8'-9" 4'-4-1/2" 2'-0" 8'-9" 4'-4-1/2" 2'-0" Z Z X X 14 # 7 Bars 3" X-X Section Looking to +Z 14 # 7 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 8.750 ft Length parallel to Z-Z Axis = 8.750 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 24.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 7 Number of Bars = 14 Bars parallel to Z-Z Axis Reinforcing Bar Size = 7 Number of Bars = 14 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 295.0 425.0 1.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = 0.0 k 1.0 1.0 V-z k 6.0 M-xx = 2.0 k-ft = 3.0 k-ft H = 9-Story MRF General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.12.31 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9-story\9-STOR~1\MRFFOU~1.EC6 Description : A5/F2 PASS 95.461 Sliding X-X 0.60 k 57.277 k +0.60D+0.60W+0.60H PASS n/a Sliding Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9759 Soil Bearing 9.759 ksf 10.0 ksf 0.0 deg CCW PASS n/a Overturning X-X 0.0 k-ft 0.0 k-ft No Overturning PASS 133.645 Overturning Z-Z 6.250 k-ft 835.28 k-ft +0.60D+0.60W+0.60H PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9539 Z Flexure (+X) 84.603 k-ft 88.687 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.9439 Z Flexure (-X) 83.708 k-ft 88.687 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9539 X Flexure (+Z) 84.597 k-ft 88.687 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9439 X Flexure (-Z) 83.708 k-ft 88.687 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.8143 1-way Shear (+X) 94.615 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.8049 1-way Shear (-X) 93.516 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.8138 1-way Shear (+Z) 94.559 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.8138 1-way Shear (-Z) 94.559 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.9807 2-way Punching 227.904 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 0.0 deg CCW 10.0 4.161 4.125 4.125 4.161 0.416 0.0 0.07566 +D+L+H 0.000 0.0 deg CCW 10.0 9.759 9.629 9.629 9.759 0.976 0.0 0.1199 +D+Lr+H 0.000 0.0 deg CCW 10.0 4.161 4.125 4.125 4.161 0.416 0.0 0.07566 +D+S+H 0.000 0.0 deg CCW 10.0 4.161 4.125 4.125 4.161 0.416 0.0 0.07566 +D+0.750Lr+0.750L+H 0.000 0.0 deg CCW 10.0 8.360 8.253 8.253 8.360 0.836 0.0 0.1144 +D+0.750L+0.750S+H 0.000 0.0 deg CCW 10.0 8.360 8.253 8.253 8.360 0.836 0.0 0.1144 +D+0.60W+H 0.000 0.0 deg CCW 10.0 4.213 4.089 4.089 4.213 0.421 0.0 0.2662 +D+0.70E+H 0.000 0.0 deg CCW 10.0 4.161 4.125 4.125 4.161 0.416 0.0 0.07566 +D+0.750Lr+0.750L+0.450W+H 0.000 0.0 deg CCW 10.0 8.399 8.225 8.225 8.399 0.840 0.0 0.1857 +D+0.750L+0.750S+0.450W+H 0.000 0.0 deg CCW 10.0 8.399 8.225 8.225 8.399 0.840 0.0 0.1857 +D+0.750L+0.750S+0.5250E+H 0.000 0.0 deg CCW 10.0 8.360 8.253 8.253 8.360 0.836 0.0 0.1144 +0.60D+0.60W+0.60H 0.000 0.0 deg CCW 10.0 2.549 2.439 2.439 2.549 0.255 0.0 0.3928 +0.60D+0.70E+0.60H 0.000 0.0 deg CCW 10.0 2.496 2.475 2.475 2.496 0.250 0.0 0.07566 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio X-X, +D+H None 0.0 k-ft Infinity OK X-X, +D+L+H None 0.0 k-ft Infinity OK X-X, +D+Lr+H None 0.0 k-ft Infinity OK X-X, +D+S+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+H None 0.0 k-ft Infinity OK X-X, +D+0.60W+H None 0.0 k-ft Infinity OK X-X, +D+0.70E+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+0.450W+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+0.450W+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+0.5250E+H None 0.0 k-ft Infinity OK 9-Story MRF

PAGE 188

! 181 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9bf.ec6 Description : A2/F5 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 7'-9" 3'-10-1/2" 2'-0" 7'-6" 3'-9" 2'-0" Z Z X X 10 # 7 Bars 3" X-X Section Looking to +Z 9 # 7 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 7.750 ft Length parallel to Z-Z Axis = 7.50 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 21.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 7 Number of Bars = 10 Bars parallel to Z-Z Axis Reinforcing Bar Size = 7 Number of Bars = 9 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation Bars along Z-Z Axis # Bars required within zone 98.4 % # Bars required on each side of zone 1.6 % Applied Loads 196.0 282.0 3.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = 18.0 k 26.0 12.0 V-z k M-xx = k-ft = k-ft H = 9-Story CBF General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9bf.ec6 Description : A2/F5 PASS 2.107 Sliding X-X 18.0 k 37.935 k +0.60D+0.60W+0.60H PASS n/a Sliding Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9726 Soil Bearing 9.726 ksf 10.0 ksf 0.0 deg CCW PASS n/a Overturning X-X 0.0 k-ft 0.0 k-ft No Overturning PASS 12.564 Overturning Z-Z 39.0 k-ft 489.992 k-ft +0.60D+0.60W+0.60H PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9378 Z Flexure (+X) 59.443 k-ft 63.388 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.7469 Z Flexure (-X) 47.344 k-ft 63.388 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9799 X Flexure (+Z) 54.253 k-ft 55.368 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.7821 X Flexure (-Z) 43.302 k-ft 55.368 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.8215 1-way Shear (+X) 95.445 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.6416 1-way Shear (-X) 74.543 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7146 1-way Shear (+Z) 83.031 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7146 1-way Shear (-Z) 83.031 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7838 2-way Punching 182.130 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 0.0 deg CCW 10.0 4.137 3.115 3.115 4.137 0.414 0.0 2.221 +D+L+H 0.000 0.0 deg CCW 10.0 9.726 7.229 7.229 9.726 0.973 0.0 2.322 +D+Lr+H 0.000 0.0 deg CCW 10.0 4.137 3.115 3.115 4.137 0.414 0.0 2.221 +D+S+H 0.000 0.0 deg CCW 10.0 4.137 3.115 3.115 4.137 0.414 0.0 2.221 +D+0.750Lr+0.750L+H 0.000 0.0 deg CCW 10.0 8.329 6.20 6.20 8.329 0.833 0.0 2.309 +D+0.750L+0.750S+H 0.000 0.0 deg CCW 10.0 8.329 6.20 6.20 8.329 0.833 0.0 2.309 +D+0.60W+H 0.000 0.0 deg CCW 10.0 4.341 2.911 2.911 4.341 0.434 0.0 3.109 +D+0.70E+H 0.000 0.0 deg CCW 10.0 4.173 3.151 3.151 4.173 0.417 0.0 2.199 +D+0.750Lr+0.750L+0.450W+H 0.000 0.0 deg CCW 10.0 8.482 6.047 6.047 8.482 0.848 0.0 2.642 +D+0.750L+0.750S+0.450W+H 0.000 0.0 deg CCW 10.0 8.482 6.047 6.047 8.482 0.848 0.0 2.642 +D+0.750L+0.750S+0.5250E+H 0.000 0.0 deg CCW 10.0 8.356 6.227 6.227 8.356 0.836 0.0 2.30 +0.60D+0.60W+0.60H 0.000 0.0 deg CCW 10.0 2.686 1.665 1.665 2.686 0.269 0.0 3.701 +0.60D+0.70E+0.60H 0.000 0.0 deg CCW 10.0 2.518 1.905 1.905 2.518 0.252 0.0 2.184 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio X-X, +D+H None 0.0 k-ft Infinity OK X-X, +D+L+H None 0.0 k-ft Infinity OK X-X, +D+Lr+H None 0.0 k-ft Infinity OK X-X, +D+S+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+H None 0.0 k-ft Infinity OK X-X, +D+0.60W+H None 0.0 k-ft Infinity OK X-X, +D+0.70E+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+0.450W+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+0.450W+H None 0.0 k-ft Infinity OK 9-Story CBF

PAGE 189

! 182 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9bf.ec6 Description : B6/E1 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 7'-6" 3'-9" 2'-0" 7'-6" 3'-9" 2'-0" Z Z X X 9 # 7 Bars 3" X-X Section Looking to +Z 9 # 7 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 7.50 ft Length parallel to Z-Z Axis = 7.50 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 21.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 7 Number of Bars = 9 Bars parallel to Z-Z Axis Reinforcing Bar Size = 7 Number of Bars = 9 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 215.0 304.0 5.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = 1.0 k 4.0 4.0 V-z k 6.0 1.0 M-xx = k-ft = k-ft H = 9-Story CBF General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9bf.ec6 Description : B6/E1 PASS 31.996 Sliding X-X 5.0 k 159.982 k +D+L+H PASS 14.056 Sliding Z-Z 3.0 k 42.169 k +0.60D+0.60W+0.60H DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9935 Soil Bearing 9.935 ksf 10.0 ksf 63.4 deg CCW PASS 81.095 Overturning X-X 6.50 k-ft 527.12 k-ft +0.60D+0.60W+0.60H PASS 184.595 Overturning Z-Z 10.833 k-ft 1,999.78 k-ft +D+L+H PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9904 Z Flexure (+X) 56.630 k-ft 57.176 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9655 Z Flexure (-X) 55.203 k-ft 57.176 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9908 X Flexure (+Z) 56.649 k-ft 57.176 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9655 X Flexure (-Z) 55.203 k-ft 57.176 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.7469 1-way Shear (+X) 86.783 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7262 1-way Shear (-X) 84.374 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7480 1-way Shear (+Z) 86.912 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7087 1-way Shear (-Z) 82.347 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.8477 2-way Punching 196.986 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 76.0 deg CCW 10.0 3.985 4.167 3.924 4.227 0.423 0.4536 0.1134 +D+L+H 0.000 63.4 deg CCW 10.0 9.329 9.632 9.026 9.935 0.994 0.4876 0.2438 +D+Lr+H 0.000 76.0 deg CCW 10.0 3.985 4.167 3.924 4.227 0.423 0.4536 0.1134 +D+S+H 0.000 76.0 deg CCW 10.0 3.985 4.167 3.924 4.227 0.423 0.4536 0.1134 +D+0.750Lr+0.750L+H 0.000 64.8 deg CCW 10.0 7.993 8.266 7.751 8.508 0.851 0.4833 0.2274 +D+0.750L+0.750S+H 0.000 64.8 deg CCW 10.0 7.993 8.266 7.751 8.508 0.851 0.4833 0.2274 +D+0.60W+H 0.000 77.7 deg CCW 10.0 4.020 4.238 3.960 4.299 0.430 0.5149 0.1119 +D+0.70E+H 0.000 76.0 deg CCW 10.0 3.985 4.167 3.924 4.227 0.423 0.4536 0.1134 +D+0.750Lr+0.750L+0.450W+H 0.000 65.9 deg CCW 10.0 8.019 8.319 7.777 8.562 0.856 0.5064 0.2263 +D+0.750L+0.750S+0.450W+H 0.000 65.9 deg CCW 10.0 8.019 8.319 7.777 8.562 0.856 0.5064 0.2263 +D+0.750L+0.750S+0.5250E+H 0.000 64.8 deg CCW 10.0 7.993 8.266 7.751 8.508 0.851 0.4833 0.2274 +0.60D+0.60W+0.60H 0.000 78.7 deg CCW 10.0 2.426 2.572 2.390 2.608 0.261 0.5549 0.1110 +0.60D+0.70E+0.60H 0.000 76.0 deg CCW 10.0 2.391 2.50 2.355 2.536 0.254 0.4536 0.1134 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio X-X, +D+H 8.667 k-ft 859.78 k-ft 99.205 OK X-X, +D+L+H 21.667 k-ft 1,999.78 k-ft 92.297 OK X-X, +D+Lr+H 8.667 k-ft 859.78 k-ft 99.205 OK X-X, +D+S+H 8.667 k-ft 859.78 k-ft 99.205 OK X-X, +D+0.750Lr+0.750L+H 18.417 k-ft 1,714.78 k-ft 93.110 OK X-X, +D+0.750L+0.750S+H 18.417 k-ft 1,714.78 k-ft 93.110 OK X-X, +D+0.60W+H 9.967 k-ft 871.03 k-ft 87.394 OK X-X, +D+0.70E+H 8.667 k-ft 859.78 k-ft 99.205 OK X-X, +D+0.750Lr+0.750L+0.450W+H 19.392 k-ft 1,723.21 k-ft 88.864 OK X-X, +D+0.750L+0.750S+0.450W+H 19.392 k-ft 1,723.21 k-ft 88.864 OK 9-Story CBF

PAGE 190

! 183 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9bf.ec6 Description : A3/F4 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 8'-0" 4'-0" 2'-0" 7'-9" 3'-10-1/2" 2'-0" Z Z X X 12 # 7 Bars 3" X-X Section Looking to +Z 11 # 7 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 8.0 ft Length parallel to Z-Z Axis = 7.750 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 21.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 7 Number of Bars = 12 Bars parallel to Z-Z Axis Reinforcing Bar Size = 7 Number of Bars = 11 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation Bars along Z-Z Axis # Bars required within zone 98.4 % # Bars required on each side of zone 1.6 % Applied Loads 243.0 352.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = k V-z k M-xx = k-ft = k-ft H = 9-Story CBF General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9bf.ec6 Description : A3/F4 PASS n/a Sliding X-X 0.0 k 0.0 k No Sliding PASS n/a Sliding Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9851 Soil Bearing 9.851 ksf 10.0 ksf 0.0 deg CCW PASS n/a Overturning X-X 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Overturning Z-Z 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9217 Z Flexure (+X) 67.606 k-ft 73.348 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.9217 Z Flexure (-X) 67.606 k-ft 73.348 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9508 X Flexure (+Z) 62.112 k-ft 65.324 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9508 X Flexure (-Z) 62.112 k-ft 65.324 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.8784 1-way Shear (+X) 102.063 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.8784 1-way Shear (-X) 102.063 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.8510 1-way Shear (+Z) 98.873 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.8510 1-way Shear (-Z) 98.873 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.9919 2-way Punching 230.490 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 0.0 deg CCW 10.0 4.173 4.173 4.173 4.173 0.417 0.0 0.0 +D+L+H 0.000 0.0 deg CCW 10.0 9.851 9.851 9.851 9.851 0.985 0.0 0.0 +D+Lr+H 0.000 0.0 deg CCW 10.0 4.173 4.173 4.173 4.173 0.417 0.0 0.0 +D+S+H 0.000 0.0 deg CCW 10.0 4.173 4.173 4.173 4.173 0.417 0.0 0.0 +D+0.750Lr+0.750L+H 0.000 0.0 deg CCW 10.0 8.431 8.431 8.431 8.431 0.843 0.0 0.0 +D+0.750L+0.750S+H 0.000 0.0 deg CCW 10.0 8.431 8.431 8.431 8.431 0.843 0.0 0.0 +D+0.60W+H 0.000 0.0 deg CCW 10.0 4.173 4.173 4.173 4.173 0.417 0.0 0.0 +D+0.70E+H 0.000 0.0 deg CCW 10.0 4.173 4.173 4.173 4.173 0.417 0.0 0.0 +D+0.750Lr+0.750L+0.450W+H 0.000 0.0 deg CCW 10.0 8.431 8.431 8.431 8.431 0.843 0.0 0.0 +D+0.750L+0.750S+0.450W+H 0.000 0.0 deg CCW 10.0 8.431 8.431 8.431 8.431 0.843 0.0 0.0 +D+0.750L+0.750S+0.5250E+H 0.000 0.0 deg CCW 10.0 8.431 8.431 8.431 8.431 0.843 0.0 0.0 +0.60D+0.60W+0.60H 0.000 0.0 deg CCW 10.0 2.504 2.504 2.504 2.504 0.250 0.0 0.0 +0.60D+0.70E+0.60H 0.000 0.0 deg CCW 10.0 2.504 2.504 2.504 2.504 0.250 0.0 0.0 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio Footing Has NO Overturning Force Application Axis Sliding Stability All units k Load Combination... Status Sliding Force Resisting Force Sliding SafetyRatio Footing Has NO Sliding 9-Story CBF

PAGE 191

! 184 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9bf.ec6 Description : C6/D1 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 8'-3" 4'-1-1/2" 2'-0" 8'-3" 4'-1-1/2" 2'-0" Z Z X X 11 # 7 Bars 3" X-X Section Looking to +Z 11 # 7 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 8.250 ft Length parallel to Z-Z Axis = 8.250 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 24.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 7 Number of Bars = 11 Bars parallel to Z-Z Axis Reinforcing Bar Size = 7 Number of Bars = 11 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 266.0 378.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = k V-z k M-xx = k-ft = k-ft H = 9-Story CBF General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9bf.ec6 Description : C6/D1 PASS n/a Sliding X-X 0.0 k 0.0 k No Sliding PASS n/a Sliding Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9752 Soil Bearing 9.752 ksf 10.0 ksf 0.0 deg CCW PASS n/a Overturning X-X 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Overturning Z-Z 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9774 Z Flexure (+X) 72.509 k-ft 74.188 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9774 Z Flexure (-X) 72.509 k-ft 74.188 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9774 X Flexure (+Z) 72.509 k-ft 74.188 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9774 X Flexure (-Z) 72.509 k-ft 74.188 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.6975 1-way Shear (+X) 81.038 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.6975 1-way Shear (-X) 81.038 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.6975 1-way Shear (+Z) 81.038 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.6975 1-way Shear (-Z) 81.038 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.8439 2-way Punching 196.111 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 0.0 deg CCW 10.0 4.198 4.198 4.198 4.198 0.420 0.0 0.0 +D+L+H 0.000 0.0 deg CCW 10.0 9.752 9.752 9.752 9.752 0.975 0.0 0.0 +D+Lr+H 0.000 0.0 deg CCW 10.0 4.198 4.198 4.198 4.198 0.420 0.0 0.0 +D+S+H 0.000 0.0 deg CCW 10.0 4.198 4.198 4.198 4.198 0.420 0.0 0.0 +D+0.750Lr+0.750L+H 0.000 0.0 deg CCW 10.0 8.363 8.363 8.363 8.363 0.836 0.0 0.0 +D+0.750L+0.750S+H 0.000 0.0 deg CCW 10.0 8.363 8.363 8.363 8.363 0.836 0.0 0.0 +D+0.60W+H 0.000 0.0 deg CCW 10.0 4.198 4.198 4.198 4.198 0.420 0.0 0.0 +D+0.70E+H 0.000 0.0 deg CCW 10.0 4.198 4.198 4.198 4.198 0.420 0.0 0.0 +D+0.750Lr+0.750L+0.450W+H 0.000 0.0 deg CCW 10.0 8.363 8.363 8.363 8.363 0.836 0.0 0.0 +D+0.750L+0.750S+0.450W+H 0.000 0.0 deg CCW 10.0 8.363 8.363 8.363 8.363 0.836 0.0 0.0 +D+0.750L+0.750S+0.5250E+H 0.000 0.0 deg CCW 10.0 8.363 8.363 8.363 8.363 0.836 0.0 0.0 +0.60D+0.60W+0.60H 0.000 0.0 deg CCW 10.0 2.519 2.519 2.519 2.519 0.252 0.0 0.0 +0.60D+0.70E+0.60H 0.000 0.0 deg CCW 10.0 2.519 2.519 2.519 2.519 0.252 0.0 0.0 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio Footing Has NO Overturning Force Application Axis Sliding Stability All units k Load Combination... Status Sliding Force Resisting Force Sliding SafetyRatio Footing Has NO Sliding 9-Story CBF

PAGE 192

! 185 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9bf.ec6 Description : E6/B1 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 8'-6" 4'-3" 2'-0" 8'-3" 4'-1-1/2" 2'-0" Z Z X X 12 # 7 Bars 3" X-X Section Looking to +Z 12 # 7 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 8.50 ft Length parallel to Z-Z Axis = 8.250 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 24.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 7 Number of Bars = 12 Bars parallel to Z-Z Axis Reinforcing Bar Size = 7 Number of Bars = 12 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation Bars along Z-Z Axis # Bars required within zone 98.5 % # Bars required on each side of zone 1.5 % Applied Loads 276.0 395.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = k V-z k M-xx = k-ft = k-ft H = 9-Story CBF General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9bf.ec6 Description : E6/B1 PASS n/a Sliding X-X 0.0 k 0.0 k No Sliding PASS n/a Sliding Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9859 Soil Bearing 9.859 ksf 10.0 ksf 0.0 deg CCW PASS n/a Overturning X-X 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Overturning Z-Z 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9820 Z Flexure (+X) 79.336 k-ft 80.793 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9820 Z Flexure (-X) 79.336 k-ft 80.793 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9347 X Flexure (+Z) 73.341 k-ft 78.464 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9347 X Flexure (-Z) 73.341 k-ft 78.464 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.7995 1-way Shear (+X) 92.896 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7995 1-way Shear (-X) 92.896 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7055 1-way Shear (+Z) 81.967 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7055 1-way Shear (-Z) 81.967 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.8970 2-way Punching 208.436 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 0.0 deg CCW 10.0 4.226 4.226 4.226 4.226 0.423 0.0 0.0 +D+L+H 0.000 0.0 deg CCW 10.0 9.859 9.859 9.859 9.859 0.986 0.0 0.0 +D+Lr+H 0.000 0.0 deg CCW 10.0 4.226 4.226 4.226 4.226 0.423 0.0 0.0 +D+S+H 0.000 0.0 deg CCW 10.0 4.226 4.226 4.226 4.226 0.423 0.0 0.0 +D+0.750Lr+0.750L+H 0.000 0.0 deg CCW 10.0 8.450 8.450 8.450 8.450 0.845 0.0 0.0 +D+0.750L+0.750S+H 0.000 0.0 deg CCW 10.0 8.450 8.450 8.450 8.450 0.845 0.0 0.0 +D+0.60W+H 0.000 0.0 deg CCW 10.0 4.226 4.226 4.226 4.226 0.423 0.0 0.0 +D+0.70E+H 0.000 0.0 deg CCW 10.0 4.226 4.226 4.226 4.226 0.423 0.0 0.0 +D+0.750Lr+0.750L+0.450W+H 0.000 0.0 deg CCW 10.0 8.450 8.450 8.450 8.450 0.845 0.0 0.0 +D+0.750L+0.750S+0.450W+H 0.000 0.0 deg CCW 10.0 8.450 8.450 8.450 8.450 0.845 0.0 0.0 +D+0.750L+0.750S+0.5250E+H 0.000 0.0 deg CCW 10.0 8.450 8.450 8.450 8.450 0.845 0.0 0.0 +0.60D+0.60W+0.60H 0.000 0.0 deg CCW 10.0 2.536 2.536 2.536 2.536 0.254 0.0 0.0 +0.60D+0.70E+0.60H 0.000 0.0 deg CCW 10.0 2.536 2.536 2.536 2.536 0.254 0.0 0.0 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio Footing Has NO Overturning Force Application Axis Sliding Stability All units k Load Combination... Status Sliding Force Resisting Force Sliding SafetyRatio Footing Has NO Sliding 9-Story CBF

PAGE 193

! 186 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9bf.ec6 Description : A1/F6 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 20'-0" 10'-0" 2'-0" 20'-0" 10'-0" 2'-0" Z Z X X 21 # 8 Bars 3" X-X Section Looking to +Z 21 # 8 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 20.0 ft Length parallel to Z-Z Axis = 20.0 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 36.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 8 Number of Bars = 21 Bars parallel to Z-Z Axis Reinforcing Bar Size = 8 Number of Bars = 21 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 246.0 354.0 120.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = 1.0 k 7.0 2.0 157.0 V-z k 10.0 32.0 M-xx = k-ft = k-ft H = 9-Story CBF General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9bf.ec6 Description : A1/F6 PASS 1.025 Sliding X-X 94.80 k 97.20 k +0.60D+0.60W+0.60H PASS 4.154 Sliding Z-Z 23.40 k 97.20 k +0.60D+0.60W+0.60H DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.2106 Soil Bearing 2.106 ksf 10.0 ksf 21.6 deg CCW PASS 40.525 Overturning X-X 79.950 k-ft 3,240.0 k-ft +0.60D+0.60W+0.60H PASS 10.003 Overturning Z-Z 323.90 k-ft 3,240.0 k-ft +0.60D+0.60W+0.60H PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9693 Z Flexure (+X) 117.925 k-ft 121.663 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.9637 Z Flexure (-X) 117.243 k-ft 121.663 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9687 X Flexure (+Z) 117.851 k-ft 121.663 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9637 X Flexure (-Z) 117.243 k-ft 121.663 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.4008 1-way Shear (+X) 46.565 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.3985 1-way Shear (-X) 46.302 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.4004 1-way Shear (+Z) 46.521 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.3878 1-way Shear (-Z) 45.063 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.5789 2-way Punching 134.519 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 81.9 deg CCW 10.0 1.035 1.065 1.030 1.070 0.107 0.6833 0.09762 +D+L+H 0.000 80.0 deg CCW 10.0 1.90 1.970 1.885 1.985 0.199 0.9005 0.1589 +D+Lr+H 0.000 81.9 deg CCW 10.0 1.035 1.065 1.030 1.070 0.107 0.6833 0.09762 +D+S+H 0.000 81.9 deg CCW 10.0 1.035 1.065 1.030 1.070 0.107 0.6833 0.09762 +D+0.750Lr+0.750L+H 0.000 80.2 deg CCW 10.0 1.684 1.744 1.671 1.757 0.176 0.8673 0.1495 +D+0.750L+0.750S+H 0.000 80.2 deg CCW 10.0 1.684 1.744 1.671 1.757 0.176 0.8673 0.1495 +D+0.60W+H 0.000 15.4 deg CCW 10.0 1.404 1.056 0.9241 1.536 0.154 2.183 7.933 +D+0.70E+H 0.000 81.9 deg CCW 10.0 1.035 1.065 1.030 1.070 0.107 0.6833 0.09762 +D+0.750Lr+0.750L+0.450W+H 0.000 21.6 deg CCW 10.0 1.960 1.737 1.592 2.106 0.211 1.602 4.056 +D+0.750L+0.750S+0.450W+H 0.000 21.6 deg CCW 10.0 1.960 1.737 1.592 2.106 0.211 1.602 4.056 +D+0.750L+0.750S+0.5250E+H 0.000 80.2 deg CCW 10.0 1.684 1.744 1.671 1.757 0.176 0.8673 0.1495 +0.60D+0.60W+0.60H 0.000 13.9 deg CCW 10.0 0.9899 0.6301 0.5122 1.108 0.111 2.961 11.996 +0.60D+0.70E+0.60H 0.000 81.9 deg CCW 10.0 0.6209 0.6391 0.6179 0.6421 0.064 0.6833 0.09762 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio X-X, +D+H 23.917 k-ft 4,200.0 k-ft 175.610 OK X-X, +D+L+H 58.083 k-ft 7,740.0 k-ft 133.257 OK X-X, +D+Lr+H 23.917 k-ft 4,200.0 k-ft 175.610 OK X-X, +D+S+H 23.917 k-ft 4,200.0 k-ft 175.610 OK X-X, +D+0.750Lr+0.750L+H 49.542 k-ft 6,855.0 k-ft 138.368 OK X-X, +D+0.750L+0.750S+H 49.542 k-ft 6,855.0 k-ft 138.368 OK X-X, +D+0.60W+H 89.517 k-ft 4,920.0 k-ft 54.962 OK X-X, +D+0.70E+H 23.917 k-ft 4,200.0 k-ft 175.610 OK X-X, +D+0.750Lr+0.750L+0.450W+H 98.742 k-ft 7,395.0 k-ft 74.892 OK X-X, +D+0.750L+0.750S+0.450W+H 98.742 k-ft 7,395.0 k-ft 74.892 OK 9-Story CBF

PAGE 194

! 187 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9bf.ec6 Description : A6/F1 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 20'-0" 10'-0" 2'-0" 20'-0" 10'-0" 2'-0" Z Z X X 20 # 8 Bars 3" X-X Section Looking to +Z 20 # 8 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 20.0 ft Length parallel to Z-Z Axis = 20.0 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 36.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 8 Number of Bars = 20 Bars parallel to Z-Z Axis Reinforcing Bar Size = 8 Number of Bars = 20 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 229.0 328.0 163.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = 9.0 k 1.0 14.0 158.0 V-z k 2.0 38.0 M-xx = k-ft = k-ft H = 9-Story CBF General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9bf.ec6 Description : A6/F1 PASS 1.017 Sliding X-X 100.20 k 101.880 k +0.60D+0.60W+0.60H PASS 4.354 Sliding Z-Z 23.40 k 101.880 k +0.60D+0.60W+0.60H DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.2084 Soil Bearing 2.084 ksf 10.0 ksf 12.2 deg CCW PASS 42.477 Overturning X-X 79.950 k-ft 3,396.0 k-ft +0.60D+0.60W+0.60H PASS 9.920 Overturning Z-Z 342.350 k-ft 3,396.0 k-ft +0.60D+0.60W+0.60H PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9646 Z Flexure (+X) 111.836 k-ft 115.938 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9203 Z Flexure (-X) 106.692 k-ft 115.938 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9655 X Flexure (+Z) 111.943 k-ft 115.938 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9203 X Flexure (-Z) 106.692 k-ft 115.938 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.3799 1-way Shear (+X) 44.140 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.3628 1-way Shear (-X) 42.156 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.3804 1-way Shear (+Z) 44.203 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.3782 1-way Shear (-Z) 43.940 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.5453 2-way Punching 126.728 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 6.3 deg CCW 10.0 1.028 0.9873 0.9823 1.033 0.103 0.1017 0.9156 +D+L+H 0.000 7.4 deg CCW 10.0 1.878 1.777 1.762 1.893 0.189 0.1683 1.290 +D+Lr+H 0.000 6.3 deg CCW 10.0 1.028 0.9873 0.9823 1.033 0.103 0.1017 0.9156 +D+S+H 0.000 6.3 deg CCW 10.0 1.028 0.9873 0.9823 1.033 0.103 0.1017 0.9156 +D+0.750Lr+0.750L+H 0.000 7.3 deg CCW 10.0 1.665 1.580 1.567 1.678 0.168 0.1579 1.232 +D+0.750L+0.750S+H 0.000 7.3 deg CCW 10.0 1.665 1.580 1.567 1.678 0.168 0.1579 1.232 +D+0.60W+H 0.000 12.9 deg CCW 10.0 1.454 1.050 0.9305 1.574 0.157 1.948 8.498 +D+0.70E+H 0.000 6.3 deg CCW 10.0 1.028 0.9873 0.9823 1.033 0.103 0.1017 0.9156 +D+0.750Lr+0.750L+0.450W+H 0.000 12.2 deg CCW 10.0 1.985 1.627 1.528 2.084 0.208 1.112 5.142 +D+0.750L+0.750S+0.450W+H 0.000 12.2 deg CCW 10.0 1.985 1.627 1.528 2.084 0.208 1.112 5.142 +D+0.750L+0.750S+0.5250E+H 0.000 7.3 deg CCW 10.0 1.665 1.580 1.567 1.678 0.168 0.1579 1.232 +0.60D+0.60W+0.60H 0.000 13.1 deg CCW 10.0 1.043 0.6555 0.5376 1.160 0.116 2.825 12.097 +0.60D+0.70E+0.60H 0.000 6.3 deg CCW 10.0 0.6166 0.5924 0.5894 0.6196 0.062 0.1017 0.9156 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio X-X, +D+H 3.417 k-ft 4,030.0 k-ft 1,179.51 OK X-X, +D+L+H 10.250 k-ft 7,310.0 k-ft 713.17 OK X-X, +D+Lr+H 3.417 k-ft 4,030.0 k-ft 1,179.51 OK X-X, +D+S+H 3.417 k-ft 4,030.0 k-ft 1,179.51 OK X-X, +D+0.750Lr+0.750L+H 8.542 k-ft 6,490.0 k-ft 759.80 OK X-X, +D+0.750L+0.750S+H 8.542 k-ft 6,490.0 k-ft 759.80 OK X-X, +D+0.60W+H 81.317 k-ft 5,008.0 k-ft 61.586 OK X-X, +D+0.70E+H 3.417 k-ft 4,030.0 k-ft 1,179.51 OK X-X, +D+0.750Lr+0.750L+0.450W+H 66.967 k-ft 7,223.50 k-ft 107.867 OK X-X, +D+0.750L+0.750S+0.450W+H 66.967 k-ft 7,223.50 k-ft 107.867 OK 9-Story CBF

PAGE 195

! 188 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9bf.ec6 Description : D6/C1 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 8'-6" 4'-3" 2'-0" 8'-6" 4'-3" 2'-0" Z Z X X 10 # 8 Bars 3" X-X Section Looking to +Z 10 # 8 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 8.50 ft Length parallel to Z-Z Axis = 8.50 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 24.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 8 Number of Bars = 10 Bars parallel to Z-Z Axis Reinforcing Bar Size = 8 Number of Bars = 10 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 284.0 405.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = k V-z k M-xx = k-ft = k-ft H = 9-Story CBF General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9bf.ec6 Description : D6/C1 PASS n/a Sliding X-X 0.0 k 0.0 k No Sliding PASS n/a Sliding Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9826 Soil Bearing 9.826 ksf 10.0 ksf 0.0 deg CCW PASS n/a Overturning X-X 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Overturning Z-Z 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9201 Z Flexure (+X) 79.057 k-ft 85.924 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9201 Z Flexure (-X) 79.057 k-ft 85.924 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9201 X Flexure (+Z) 79.057 k-ft 85.924 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9201 X Flexure (-Z) 79.057 k-ft 85.924 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.7967 1-way Shear (+X) 92.569 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7967 1-way Shear (-X) 92.569 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7967 1-way Shear (+Z) 92.569 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7967 1-way Shear (-Z) 92.569 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.9376 2-way Punching 217.870 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 0.0 deg CCW 10.0 4.221 4.221 4.221 4.221 0.422 0.0 0.0 +D+L+H 0.000 0.0 deg CCW 10.0 9.826 9.826 9.826 9.826 0.983 0.0 0.0 +D+Lr+H 0.000 0.0 deg CCW 10.0 4.221 4.221 4.221 4.221 0.422 0.0 0.0 +D+S+H 0.000 0.0 deg CCW 10.0 4.221 4.221 4.221 4.221 0.422 0.0 0.0 +D+0.750Lr+0.750L+H 0.000 0.0 deg CCW 10.0 8.425 8.425 8.425 8.425 0.843 0.0 0.0 +D+0.750L+0.750S+H 0.000 0.0 deg CCW 10.0 8.425 8.425 8.425 8.425 0.843 0.0 0.0 +D+0.60W+H 0.000 0.0 deg CCW 10.0 4.221 4.221 4.221 4.221 0.422 0.0 0.0 +D+0.70E+H 0.000 0.0 deg CCW 10.0 4.221 4.221 4.221 4.221 0.422 0.0 0.0 +D+0.750Lr+0.750L+0.450W+H 0.000 0.0 deg CCW 10.0 8.425 8.425 8.425 8.425 0.843 0.0 0.0 +D+0.750L+0.750S+0.450W+H 0.000 0.0 deg CCW 10.0 8.425 8.425 8.425 8.425 0.843 0.0 0.0 +D+0.750L+0.750S+0.5250E+H 0.000 0.0 deg CCW 10.0 8.425 8.425 8.425 8.425 0.843 0.0 0.0 +0.60D+0.60W+0.60H 0.000 0.0 deg CCW 10.0 2.532 2.532 2.532 2.532 0.253 0.0 0.0 +0.60D+0.70E+0.60H 0.000 0.0 deg CCW 10.0 2.532 2.532 2.532 2.532 0.253 0.0 0.0 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio Footing Has NO Overturning Force Application Axis Sliding Stability All units k Load Combination... Status Sliding Force Resisting Force Sliding SafetyRatio Footing Has NO Sliding 9-Story CBF

PAGE 196

! 189 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9bf.ec6 Description : Interior Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 12'-0" 6'-0" 2'-0" 12'-0" 6'-0" 2'-0" Z Z X X 16 # 9 Bars 3" X-X Section Looking to +Z 16 # 9 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 12.0 ft Length parallel to Z-Z Axis = 12.0 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 36.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 9 Number of Bars = 16 Bars parallel to Z-Z Axis Reinforcing Bar Size = 9 Number of Bars = 16 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 550.0 818.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = k V-z k M-xx = k-ft = k-ft H = 9-Story CBF General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9bf.ec6 Description : Interior PASS n/a Sliding X-X 0.0 k 0.0 k No Sliding PASS n/a Sliding Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9935 Soil Bearing 9.935 ksf 10.0 ksf 0.0 deg CCW PASS n/a Overturning X-X 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Overturning Z-Z 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9752 Z Flexure (+X) 189.256 k-ft 194.078 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9752 Z Flexure (-X) 189.256 k-ft 194.078 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.9752 X Flexure (+Z) 189.256 k-ft 194.078 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9752 X Flexure (-Z) 189.256 k-ft 194.078 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.7239 1-way Shear (+X) 84.114 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7239 1-way Shear (-X) 84.114 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7239 1-way Shear (+Z) 84.114 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7239 1-way Shear (-Z) 84.114 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.9820 2-way Punching 228.194 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 0.0 deg CCW 10.0 4.254 4.254 4.254 4.254 0.425 0.0 0.0 +D+L+H 0.000 0.0 deg CCW 10.0 9.935 9.935 9.935 9.935 0.994 0.0 0.0 +D+Lr+H 0.000 0.0 deg CCW 10.0 4.254 4.254 4.254 4.254 0.425 0.0 0.0 +D+S+H 0.000 0.0 deg CCW 10.0 4.254 4.254 4.254 4.254 0.425 0.0 0.0 +D+0.750Lr+0.750L+H 0.000 0.0 deg CCW 10.0 8.515 8.515 8.515 8.515 0.852 0.0 0.0 +D+0.750L+0.750S+H 0.000 0.0 deg CCW 10.0 8.515 8.515 8.515 8.515 0.852 0.0 0.0 +D+0.60W+H 0.000 0.0 deg CCW 10.0 4.254 4.254 4.254 4.254 0.425 0.0 0.0 +D+0.70E+H 0.000 0.0 deg CCW 10.0 4.254 4.254 4.254 4.254 0.425 0.0 0.0 +D+0.750Lr+0.750L+0.450W+H 0.000 0.0 deg CCW 10.0 8.515 8.515 8.515 8.515 0.852 0.0 0.0 +D+0.750L+0.750S+0.450W+H 0.000 0.0 deg CCW 10.0 8.515 8.515 8.515 8.515 0.852 0.0 0.0 +D+0.750L+0.750S+0.5250E+H 0.000 0.0 deg CCW 10.0 8.515 8.515 8.515 8.515 0.852 0.0 0.0 +0.60D+0.60W+0.60H 0.000 0.0 deg CCW 10.0 2.553 2.553 2.553 2.553 0.255 0.0 0.0 +0.60D+0.70E+0.60H 0.000 0.0 deg CCW 10.0 2.553 2.553 2.553 2.553 0.255 0.0 0.0 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio Footing Has NO Overturning Force Application Axis Sliding Stability All units k Load Combination... Status Sliding Force Resisting Force Sliding SafetyRatio Footing Has NO Sliding 9-Story CBF

PAGE 197

! 190 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9bf.ec6 Description : A4/F3 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 9'-0" 4'-6" 2'-0" 8'-9" 4'-4-1/2" 2'-0" Z Z X X 11 # 8 Bars 3" X-X Section Looking to +Z 11 # 8 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 9.0 ft Length parallel to Z-Z Axis = 8.750 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 24.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 8 Number of Bars = 11 Bars parallel to Z-Z Axis Reinforcing Bar Size = 8 Number of Bars = 11 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation Bars along Z-Z Axis # Bars required within zone 98.6 % # Bars required on each side of zone 1.4 % Applied Loads 299.0 434.0 2.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = 5.0 k 7.0 19.0 V-z k M-xx = k-ft = k-ft H = 9-Story CBF General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9bf.ec6 Description : A4/F3 PASS 4.048 Sliding X-X 14.40 k 58.291 k +0.60D+0.60W+0.60H PASS n/a Sliding Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9839 Soil Bearing 9.839 ksf 10.0 ksf 0.0 deg CCW PASS n/a Overturning X-X 0.0 k-ft 0.0 k-ft No Overturning PASS 25.125 Overturning Z-Z 34.80 k-ft 874.36 k-ft +0.60D+0.60W+0.60H PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9963 Z Flexure (+X) 91.334 k-ft 91.676 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9591 Z Flexure (-X) 87.930 k-ft 91.676 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.9522 X Flexure (+Z) 84.925 k-ft 89.188 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9168 X Flexure (-Z) 81.770 k-ft 89.188 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9183 1-way Shear (+X) 106.693 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.8813 1-way Shear (-X) 102.403 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.8170 1-way Shear (+Z) 94.926 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.8170 1-way Shear (-Z) 94.926 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.9992 2-way Punching 232.193 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 0.0 deg CCW 10.0 4.187 3.986 3.986 4.187 0.419 0.0 0.4505 +D+L+H 0.000 0.0 deg CCW 10.0 9.839 9.357 9.357 9.839 0.984 0.0 0.4604 +D+Lr+H 0.000 0.0 deg CCW 10.0 4.187 3.986 3.986 4.187 0.419 0.0 0.4505 +D+S+H 0.000 0.0 deg CCW 10.0 4.187 3.986 3.986 4.187 0.419 0.0 0.4505 +D+0.750Lr+0.750L+H 0.000 0.0 deg CCW 10.0 8.426 8.014 8.014 8.426 0.843 0.0 0.4592 +D+0.750L+0.750S+H 0.000 0.0 deg CCW 10.0 8.426 8.014 8.014 8.426 0.843 0.0 0.4592 +D+0.60W+H 0.000 0.0 deg CCW 10.0 4.432 3.772 3.772 4.432 0.443 0.0 1.472 +D+0.70E+H 0.000 0.0 deg CCW 10.0 4.187 3.986 3.986 4.187 0.419 0.0 0.4505 +D+0.750Lr+0.750L+0.450W+H 0.000 0.0 deg CCW 10.0 8.610 7.853 7.853 8.610 0.861 0.0 0.8411 +D+0.750L+0.750S+0.450W+H 0.000 0.0 deg CCW 10.0 8.610 7.853 7.853 8.610 0.861 0.0 0.8411 +D+0.750L+0.750S+0.5250E+H 0.000 0.0 deg CCW 10.0 8.426 8.014 8.014 8.426 0.843 0.0 0.4592 +0.60D+0.60W+0.60H 0.000 0.0 deg CCW 10.0 2.757 2.178 2.178 2.757 0.276 0.0 2.149 +0.60D+0.70E+0.60H 0.000 0.0 deg CCW 10.0 2.512 2.392 2.392 2.512 0.251 0.0 0.4505 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio X-X, +D+H None 0.0 k-ft Infinity OK X-X, +D+L+H None 0.0 k-ft Infinity OK X-X, +D+Lr+H None 0.0 k-ft Infinity OK X-X, +D+S+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+H None 0.0 k-ft Infinity OK X-X, +D+0.60W+H None 0.0 k-ft Infinity OK X-X, +D+0.70E+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+0.450W+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+0.450W+H None 0.0 k-ft Infinity OK 9-Story CBF

PAGE 198

! 191 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9bf.ec6 Description : A5/F2 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 8'-6" 4'-3" 2'-0" 8'-3" 4'-1-1/2" 2'-0" Z Z X X 9 # 8 Bars 3" X-X Section Looking to +Z 9 # 8 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 8.50 ft Length parallel to Z-Z Axis = 8.250 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 24.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 8 Number of Bars = 9.0 Bars parallel to Z-Z Axis Reinforcing Bar Size = 8 Number of Bars = 9 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation Bars along Z-Z Axis # Bars required within zone 98.5 % # Bars required on each side of zone 1.5 % Applied Loads 269.0 393.0 10.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = k V-z k M-xx = k-ft = k-ft H = 9-Story CBF General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\Il1VS13\Desktops$\ecole\Desktop\NEWFOL~1\9bf.ec6 Description : A5/F2 PASS n/a Sliding X-X 0.0 k 0.0 k No Sliding PASS n/a Sliding Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9730 Soil Bearing 9.730 ksf 10.0 ksf 0.0 deg CCW PASS n/a Overturning X-X 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Overturning Z-Z 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9825 Z Flexure (+X) 78.405 k-ft 79.803 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9825 Z Flexure (-X) 78.405 k-ft 79.803 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.9352 X Flexure (+Z) 72.479 k-ft 77.503 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9352 X Flexure (-Z) 72.479 k-ft 77.503 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.7901 1-way Shear (+X) 91.805 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7901 1-way Shear (-X) 91.805 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.6972 1-way Shear (+Z) 81.005 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.6972 1-way Shear (-Z) 81.005 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.8864 2-way Punching 205.988 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 0.0 deg CCW 10.0 4.126 4.126 4.126 4.126 0.413 0.0 0.0 +D+L+H 0.000 0.0 deg CCW 10.0 9.730 9.730 9.730 9.730 0.973 0.0 0.0 +D+Lr+H 0.000 0.0 deg CCW 10.0 4.126 4.126 4.126 4.126 0.413 0.0 0.0 +D+S+H 0.000 0.0 deg CCW 10.0 4.126 4.126 4.126 4.126 0.413 0.0 0.0 +D+0.750Lr+0.750L+H 0.000 0.0 deg CCW 10.0 8.329 8.329 8.329 8.329 0.833 0.0 0.0 +D+0.750L+0.750S+H 0.000 0.0 deg CCW 10.0 8.329 8.329 8.329 8.329 0.833 0.0 0.0 +D+0.60W+H 0.000 0.0 deg CCW 10.0 4.212 4.212 4.212 4.212 0.421 0.0 0.0 +D+0.70E+H 0.000 0.0 deg CCW 10.0 4.126 4.126 4.126 4.126 0.413 0.0 0.0 +D+0.750Lr+0.750L+0.450W+H 0.000 0.0 deg CCW 10.0 8.393 8.393 8.393 8.393 0.839 0.0 0.0 +D+0.750L+0.750S+0.450W+H 0.000 0.0 deg CCW 10.0 8.393 8.393 8.393 8.393 0.839 0.0 0.0 +D+0.750L+0.750S+0.5250E+H 0.000 0.0 deg CCW 10.0 8.329 8.329 8.329 8.329 0.833 0.0 0.0 +0.60D+0.60W+0.60H 0.000 0.0 deg CCW 10.0 2.561 2.561 2.561 2.561 0.256 0.0 0.0 +0.60D+0.70E+0.60H 0.000 0.0 deg CCW 10.0 2.476 2.476 2.476 2.476 0.248 0.0 0.0 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio Footing Has NO Overturning Force Application Axis Sliding Stability All units k Load Combination... Status Sliding Force Resisting Force Sliding SafetyRatio Footing Has NO Sliding 9-Story CBF

PAGE 199

! 192 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\il1vs13\desktops$\ecole\Desktop\NEWFOL~1\3-STOR~3.EC6 Description : A2/A5/F2/F5 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 11'-3" 5'-7-1/2" 2'-0" 11'-3" 5'-7-1/2" 2'-0" Z Z X X 14 # 9 Bars 3" X-X Section Looking to +Z 14 # 9 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 11.250 ft Length parallel to Z-Z Axis = 11.250 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 33.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 9 Number of Bars = 14 Bars parallel to Z-Z Axis Reinforcing Bar Size = 9 Number of Bars = 14 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 507.0 648.0 101.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = 9.0 k 14.0 118.0 V-z k M-xx = k-ft = k-ft H = 9-Story Diagrid General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\il1vs13\desktops$\ecole\Desktop\NEWFOL~1\3-STOR~3.EC6 Description : A2/A5/F2/F5 PASS 1.555 Sliding X-X 76.20 k 118.524 k +0.60D+0.60W+0.60H PASS n/a Sliding Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9826 Soil Bearing 9.826 ksf 10.0 ksf 0.0 deg CCW PASS n/a Overturning X-X 0.0 k-ft 0.0 k-ft No Overturning PASS 9.210 Overturning Z-Z 241.30 k-ft 2,222.33 k-ft +0.60D+0.60W+0.60H PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9563 Z Flexure (+X) 157.397 k-ft 164.584 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.9118 Z Flexure (-X) 150.061 k-ft 164.584 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9566 X Flexure (+Z) 157.435 k-ft 164.584 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9118 X Flexure (-Z) 150.061 k-ft 164.584 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.7279 1-way Shear (+X) 84.574 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.6898 1-way Shear (-X) 80.152 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7260 1-way Shear (+Z) 84.349 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7260 1-way Shear (-Z) 84.349 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.9515 2-way Punching 221.117 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 0.0 deg CCW 10.0 4.523 4.287 4.287 4.523 0.452 0.0 0.6135 +D+L+H 0.000 0.0 deg CCW 10.0 9.826 9.223 9.223 9.826 0.983 0.0 0.7250 +D+Lr+H 0.000 0.0 deg CCW 10.0 4.523 4.287 4.287 4.523 0.452 0.0 0.6135 +D+S+H 0.000 0.0 deg CCW 10.0 4.523 4.287 4.287 4.523 0.452 0.0 0.6135 +D+0.750Lr+0.750L+H 0.000 0.0 deg CCW 10.0 8.501 7.989 7.989 8.501 0.850 0.0 0.7101 +D+0.750L+0.750S+H 0.000 0.0 deg CCW 10.0 8.501 7.989 7.989 8.501 0.850 0.0 0.7101 +D+0.60W+H 0.000 0.0 deg CCW 10.0 5.931 3.836 3.836 5.931 0.593 0.0 4.906 +D+0.70E+H 0.000 0.0 deg CCW 10.0 4.523 4.287 4.287 4.523 0.452 0.0 0.6135 +D+0.750Lr+0.750L+0.450W+H 0.000 0.0 deg CCW 10.0 9.556 7.651 7.651 9.556 0.956 0.0 2.534 +D+0.750L+0.750S+0.450W+H 0.000 0.0 deg CCW 10.0 9.556 7.651 7.651 9.556 0.956 0.0 2.534 +D+0.750L+0.750S+0.5250E+H 0.000 0.0 deg CCW 10.0 8.501 7.989 7.989 8.501 0.850 0.0 0.7101 +0.60D+0.60W+0.60H 0.000 0.0 deg CCW 10.0 4.122 2.122 2.122 4.122 0.412 0.0 7.329 +0.60D+0.70E+0.60H 0.000 0.0 deg CCW 10.0 2.714 2.572 2.572 2.714 0.271 0.0 0.6135 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio X-X, +D+H None 0.0 k-ft Infinity OK X-X, +D+L+H None 0.0 k-ft Infinity OK X-X, +D+Lr+H None 0.0 k-ft Infinity OK X-X, +D+S+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+H None 0.0 k-ft Infinity OK X-X, +D+0.60W+H None 0.0 k-ft Infinity OK X-X, +D+0.70E+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+0.450W+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+0.450W+H None 0.0 k-ft Infinity OK 9-Story Diagrid

PAGE 200

! 193 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\il1vs13\desktops$\ecole\Desktop\NEWFOL~1\3-STOR~3.EC6 Description : Interior Footing Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 12'-6" 6'-3" 2'-0" 12'-3" 6'-1-1/2" 2'-0" Z Z X X 17 # 9 Bars 3" X-X Section Looking to +Z 16 # 9 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 12.50 ft Length parallel to Z-Z Axis = 12.250 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 39.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 9 Number of Bars = 17 Bars parallel to Z-Z Axis Reinforcing Bar Size = 9 Number of Bars = 16 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation Bars along Z-Z Axis # Bars required within zone 99.0 % # Bars required on each side of zone 1.0 % Applied Loads 581.0 862.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = k 1.0 V-z k M-xx = k-ft = k-ft H = 9-Story Diagrid General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\il1vs13\desktops$\ecole\Desktop\NEWFOL~1\3-STOR~3.EC6 Description : Interior Footing PASS 454.548 Sliding X-X 1.0 k 454.548 k +D+L+H PASS n/a Sliding Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9906 Soil Bearing 9.906 ksf 10.0 ksf 0.0 deg CCW PASS n/a Overturning X-X 0.0 k-ft 0.0 k-ft No Overturning PASS 2,582.66 Overturning Z-Z 3.667 k-ft 9,469.75 k-ft +D+L+H PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9422 Z Flexure (+X) 207.829 k-ft 220.568 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9405 Z Flexure (-X) 207.440 k-ft 220.568 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9721 X Flexure (+Z) 198.063 k-ft 203.746 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9703 X Flexure (-Z) 197.688 k-ft 203.746 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.6887 1-way Shear (+X) 80.014 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.6872 1-way Shear (-X) 79.844 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.6135 1-way Shear (+Z) 71.278 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.6135 1-way Shear (-Z) 71.278 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.9049 2-way Punching 210.291 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 0.0 deg CCW 10.0 4.266 4.266 4.266 4.266 0.427 0.0 0.0 +D+L+H 0.000 0.0 deg CCW 10.0 9.906 9.884 9.884 9.906 0.991 0.0 0.02904 +D+Lr+H 0.000 0.0 deg CCW 10.0 4.266 4.266 4.266 4.266 0.427 0.0 0.0 +D+S+H 0.000 0.0 deg CCW 10.0 4.266 4.266 4.266 4.266 0.427 0.0 0.0 +D+0.750Lr+0.750L+H 0.000 0.0 deg CCW 10.0 8.496 8.479 8.479 8.496 0.850 0.0 0.02539 +D+0.750L+0.750S+H 0.000 0.0 deg CCW 10.0 8.496 8.479 8.479 8.496 0.850 0.0 0.02539 +D+0.60W+H 0.000 0.0 deg CCW 10.0 4.266 4.266 4.266 4.266 0.427 0.0 0.0 +D+0.70E+H 0.000 0.0 deg CCW 10.0 4.266 4.266 4.266 4.266 0.427 0.0 0.0 +D+0.750Lr+0.750L+0.450W+H 0.000 0.0 deg CCW 10.0 8.496 8.479 8.479 8.496 0.850 0.0 0.02539 +D+0.750L+0.750S+0.450W+H 0.000 0.0 deg CCW 10.0 8.496 8.479 8.479 8.496 0.850 0.0 0.02539 +D+0.750L+0.750S+0.5250E+H 0.000 0.0 deg CCW 10.0 8.496 8.479 8.479 8.496 0.850 0.0 0.02539 +0.60D+0.60W+0.60H 0.000 0.0 deg CCW 10.0 2.559 2.559 2.559 2.559 0.256 0.0 0.0 +0.60D+0.70E+0.60H 0.000 0.0 deg CCW 10.0 2.559 2.559 2.559 2.559 0.256 0.0 0.0 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio X-X, +D+H None 0.0 k-ft Infinity OK X-X, +D+L+H None 0.0 k-ft Infinity OK X-X, +D+Lr+H None 0.0 k-ft Infinity OK X-X, +D+S+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+H None 0.0 k-ft Infinity OK X-X, +D+0.60W+H None 0.0 k-ft Infinity OK X-X, +D+0.70E+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+0.450W+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+0.450W+H None 0.0 k-ft Infinity OK 9-Story Diagrid

PAGE 201

! 194 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\il1vs13\desktops$\ecole\Desktop\NEWFOL~1\3-STOR~3.EC6 Description : A3.5/F3.5 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 10'-3" 5'-1-1/2" 2'-0" 10'-3" 5'-1-1/2" 2'-0" Z Z X X 11 # 9 Bars 3" X-X Section Looking to +Z 11 # 9 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 10.250 ft Length parallel to Z-Z Axis = 10.250 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 30.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 9 Number of Bars = 11 Bars parallel to Z-Z Axis Reinforcing Bar Size = 9 Number of Bars = 11 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 433.0 557.0 3.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = 2.0 k 3.0 122.0 V-z k M-xx = k-ft = k-ft H = 9-Story Diagrid General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\il1vs13\desktops$\ecole\Desktop\NEWFOL~1\3-STOR~3.EC6 Description : A3.5/F3.5 PASS 1.147 Sliding X-X 74.40 k 85.335 k +0.60D+0.60W+0.60H PASS n/a Sliding Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9865 Soil Bearing 9.865 ksf 10.0 ksf 0.0 deg CCW PASS n/a Overturning X-X 0.0 k-ft 0.0 k-ft No Overturning PASS 6.718 Overturning Z-Z 217.0 k-ft 1,457.81 k-ft +0.60D+0.60W+0.60H PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9901 Z Flexure (+X) 126.581 k-ft 127.850 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9779 Z Flexure (-X) 125.027 k-ft 127.850 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9901 X Flexure (+Z) 126.583 k-ft 127.850 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9779 X Flexure (-Z) 125.027 k-ft 127.850 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.7432 1-way Shear (+X) 86.357 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7331 1-way Shear (-X) 85.174 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7427 1-way Shear (+Z) 86.296 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7427 1-way Shear (-Z) 86.296 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.9559 2-way Punching 222.125 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 0.0 deg CCW 10.0 4.516 4.452 4.452 4.516 0.452 0.0 0.1486 +D+L+H 0.000 0.0 deg CCW 10.0 9.865 9.706 9.706 9.865 0.987 0.0 0.1702 +D+Lr+H 0.000 0.0 deg CCW 10.0 4.516 4.452 4.452 4.516 0.452 0.0 0.1486 +D+S+H 0.000 0.0 deg CCW 10.0 4.516 4.452 4.452 4.516 0.452 0.0 0.1486 +D+0.750Lr+0.750L+H 0.000 0.0 deg CCW 10.0 8.528 8.392 8.392 8.528 0.853 0.0 0.1674 +D+0.750L+0.750S+H 0.000 0.0 deg CCW 10.0 8.528 8.392 8.392 8.528 0.853 0.0 0.1674 +D+0.60W+H 0.000 0.0 deg CCW 10.0 5.703 3.299 3.299 5.703 0.570 0.0 5.566 +D+0.70E+H 0.000 0.0 deg CCW 10.0 4.516 4.452 4.452 4.516 0.452 0.0 0.1486 +D+0.750Lr+0.750L+0.450W+H 0.000 0.0 deg CCW 10.0 9.418 7.528 7.528 9.418 0.942 0.0 2.326 +D+0.750L+0.750S+0.450W+H 0.000 0.0 deg CCW 10.0 9.418 7.528 7.528 9.418 0.942 0.0 2.326 +D+0.750L+0.750S+0.5250E+H 0.000 0.0 deg CCW 10.0 8.528 8.392 8.392 8.528 0.853 0.0 0.1674 +0.60D+0.60W+0.60H 0.000 0.0 deg CCW 10.0 3.896 1.519 1.519 3.896 0.390 0.0 9.154 +0.60D+0.70E+0.60H 0.000 0.0 deg CCW 10.0 2.709 2.671 2.671 2.709 0.271 0.0 0.1486 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio X-X, +D+H None 0.0 k-ft Infinity OK X-X, +D+L+H None 0.0 k-ft Infinity OK X-X, +D+Lr+H None 0.0 k-ft Infinity OK X-X, +D+S+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+H None 0.0 k-ft Infinity OK X-X, +D+0.60W+H None 0.0 k-ft Infinity OK X-X, +D+0.70E+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+0.450W+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+0.450W+H None 0.0 k-ft Infinity OK 9-Story Diagrid

PAGE 202

! 195 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\il1vs13\desktops$\ecole\Desktop\NEWFOL~1\3-STOR~3.EC6 Description : B1/B6/E1/E6 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 10'-3" 5'-1-1/2" 2'-0" 10'-3" 5'-1-1/2" 2'-0" Z Z X X 14 # 8 Bars 3" X-X Section Looking to +Z 14 # 8 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 10.250 ft Length parallel to Z-Z Axis = 10.250 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 30.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 8 Number of Bars = 14 Bars parallel to Z-Z Axis Reinforcing Bar Size = 8 Number of Bars = 14 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 440.0 564.0 101.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = k 1.0 V-z k 2.0 55.0 M-xx = k-ft = k-ft H = 9-Story Diagrid General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\il1vs13\desktops$\ecole\Desktop\NEWFOL~1\3-STOR~3.EC6 Description : B1/B6/E1/E6 PASS n/a Sliding X-X 0.0 k 0.0 k No Sliding PASS 3.102 Sliding Z-Z 33.60 k 104.235 k +0.60D+0.60W+0.60H DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9967 Soil Bearing 9.967 ksf 10.0 ksf 0.0 deg CCW PASS 18.170 Overturning X-X 98.0 k-ft 1,780.69 k-ft +0.60D+0.60W+0.60H PASS n/a Overturning Z-Z 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9956 Z Flexure (+X) 127.973 k-ft 128.533 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.9956 Z Flexure (-X) 127.973 k-ft 128.533 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.9956 X Flexure (+Z) 127.971 k-ft 128.533 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.9956 X Flexure (-Z) 127.973 k-ft 128.533 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.7509 1-way Shear (+X) 87.244 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7509 1-way Shear (-X) 87.244 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7512 1-way Shear (+Z) 87.281 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.7450 1-way Shear (-Z) 86.558 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.9687 2-way Punching 225.114 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 0.0 deg CCW 10.0 4.535 4.566 4.535 4.566 0.457 0.07321 0.0 +D+L+H 0.000 0.0 deg CCW 10.0 9.871 9.967 9.871 9.967 0.997 0.1008 0.0 +D+Lr+H 0.000 0.0 deg CCW 10.0 4.535 4.566 4.535 4.566 0.457 0.07321 0.0 +D+S+H 0.000 0.0 deg CCW 10.0 4.535 4.566 4.535 4.566 0.457 0.07321 0.0 +D+0.750Lr+0.750L+H 0.000 0.0 deg CCW 10.0 8.537 8.617 8.537 8.617 0.862 0.09711 0.0 +D+0.750L+0.750S+H 0.000 0.0 deg CCW 10.0 8.537 8.617 8.537 8.617 0.862 0.09711 0.0 +D+0.60W+H 0.000 0.0 deg CCW 10.0 4.584 5.671 4.584 5.671 0.567 2.209 0.0 +D+0.70E+H 0.000 0.0 deg CCW 10.0 4.535 4.566 4.535 4.566 0.457 0.07321 0.0 +D+0.750Lr+0.750L+0.450W+H 0.000 0.0 deg CCW 10.0 8.574 9.445 8.574 9.445 0.945 1.008 0.0 +D+0.750L+0.750S+0.450W+H 0.000 0.0 deg CCW 10.0 8.574 9.445 8.574 9.445 0.945 1.008 0.0 +D+0.750L+0.750S+0.5250E+H 0.000 0.0 deg CCW 10.0 8.537 8.617 8.537 8.617 0.862 0.09711 0.0 +0.60D+0.60W+0.60H 0.000 0.0 deg CCW 10.0 2.770 3.844 2.770 3.844 0.384 3.385 0.0 +0.60D+0.70E+0.60H 0.000 0.0 deg CCW 10.0 2.721 2.740 2.721 2.740 0.274 0.07321 0.0 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio X-X, +D+H 2.917 k-ft 2,450.19 k-ft 840.06 OK X-X, +D+L+H 8.750 k-ft 5,340.69 k-ft 610.36 OK X-X, +D+Lr+H 2.917 k-ft 2,450.19 k-ft 840.06 OK X-X, +D+S+H 2.917 k-ft 2,450.19 k-ft 840.06 OK X-X, +D+0.750Lr+0.750L+H 7.292 k-ft 4,618.06 k-ft 633.33 OK X-X, +D+0.750L+0.750S+H 7.292 k-ft 4,618.06 k-ft 633.33 OK X-X, +D+0.60W+H 99.167 k-ft 2,760.76 k-ft 27.840 OK X-X, +D+0.70E+H 2.917 k-ft 2,450.19 k-ft 840.06 OK X-X, +D+0.750Lr+0.750L+0.450W+H 79.479 k-ft 4,850.99 k-ft 61.035 OK X-X, +D+0.750L+0.750S+0.450W+H 79.479 k-ft 4,850.99 k-ft 61.035 OK 9-Story Diagrid

PAGE 203

! 196 General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\il1vs13\desktops$\ecole\Desktop\NEWFOL~1\3-STOR~3.EC6 Description : CD1/CD6 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2012 General Information Material Properties Soil Design Values 10.0 Analysis Settings 250.0 ksi Yes ksf Allowable Soil Bearing = = 6.0 60.0 3,122.0 145.0 = 0.30 Flexure = 0.90 Shear = Values 0.00180 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing plan dimension : Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability, mom & shear No : Allowable pressure increase per foot of depth = ksf when maximum length or width is greater than = ft : = Add Ftg Wt for Soil Pressure Yes Yes Use ftg wt for stability, moments & shears : when footing base is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth 0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Footing base depth below soil surface ft = Allowable pressure increase per foot of depth ksf = = = Concrete Density = Min Allow % Temp Reinf. ksi f'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Edge Dist. = 3" 9'-9" 4'-10-1/2" 2'-0" 9'-6" 4'-9" 2'-0" Z Z X X 9 # 9 Bars 3" X-X Section Looking to +Z 9 # 9 Bars 3" Z-Z Section Looking to +X # Dimensions Width parallel to X-X Axis 9.750 ft Length parallel to Z-Z Axis = 9.50 ft = Pedestal dimensions... px : parallel to X-X Axis 24.0 in pz : parallel to Z-Z Axis 24.0 in Height = = 5.0 in Footing Thickness = 30.0 in = Rebar Centerline to Edge of Concrete... = in at Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 9 Number of Bars = 9 Bars parallel to Z-Z Axis Reinforcing Bar Size = 9 Number of Bars = 9 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation Bars along Z-Z Axis # Bars required within zone 98.7 % # Bars required on each side of zone 1.3 % Applied Loads 388.0 498.0 16.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = = k V-z k 16.0 0.0 M-xx = k-ft = k-ft H = 9-Story Diagrid General Footing ENERCALC, INC. 1983-2015, Build:6.15.7.30, Ver:6.15.7.30 Licensee : thornton tomasetti inc. Lic. # : KW-06000037 File = \\il1vs13\desktops$\ecole\Desktop\NEWFOL~1\3-STOR~3.EC6 Description : CD1/CD6 PASS n/a Sliding X-X 0.0 k 0.0 k No Sliding PASS 8.205 Sliding Z-Z 9.60 k 78.764 k +0.60D+0.60W+0.60H DESIGN SUMMARY Design OK Governing Load Combination Min. Ratio Item Applied Capacity PASS 0.9928 Soil Bearing 9.928 ksf 10.0 ksf 0.0 deg CCW PASS 44.539 Overturning X-X 28.0 k-ft 1,247.09 k-ft +0.60D+0.60W+0.60H PASS n/a Overturning Z-Z 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9956 Z Flexure (+X) 112.626 k-ft 113.125 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.9956 Z Flexure (-X) 112.626 k-ft 113.125 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.9564 X Flexure (+Z) 105.462 k-ft 110.274 k-ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.9564 X Flexure (-Z) 105.462 k-ft 110.274 k-ft +1.20D+1.60L+0.50S+1.60H PASS 0.6476 1-way Shear (+X) 75.240 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.6476 1-way Shear (-X) 75.240 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.5679 1-way Shear (+Z) 65.980 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.5679 1-way Shear (-Z) 65.980 psi 116.190 psi +1.20D+0.50Lr+1.60L+1.60H PASS 0.8267 2-way Punching 192.098 psi 232.379 psi +1.20D+0.50Lr+1.60L+1.60H Detailed Results Rotation Axis & Zecc Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable Bottom Left Top Left Top Right Bottom Right Ratio Load Combination... +D+H 0.000 0.0 deg CCW 10.0 4.551 4.551 4.551 4.551 0.455 0.0 0.0 +D+L+H 0.000 0.0 deg CCW 10.0 9.928 9.928 9.928 9.928 0.993 0.0 0.0 +D+Lr+H 0.000 0.0 deg CCW 10.0 4.551 4.551 4.551 4.551 0.455 0.0 0.0 +D+S+H 0.000 0.0 deg CCW 10.0 4.551 4.551 4.551 4.551 0.455 0.0 0.0 +D+0.750Lr+0.750L+H 0.000 0.0 deg CCW 10.0 8.584 8.584 8.584 8.584 0.858 0.0 0.0 +D+0.750L+0.750S+H 0.000 0.0 deg CCW 10.0 8.584 8.584 8.584 8.584 0.858 0.0 0.0 +D+0.60W+H 0.000 0.0 deg CCW 10.0 4.467 4.843 4.467 4.843 0.484 0.7793 0.0 +D+0.70E+H 0.000 0.0 deg CCW 10.0 4.551 4.551 4.551 4.551 0.455 0.0 0.0 +D+0.750Lr+0.750L+0.450W+H 0.000 0.0 deg CCW 10.0 8.521 8.802 8.521 8.802 0.880 0.3141 0.0 +D+0.750L+0.750S+0.450W+H 0.000 0.0 deg CCW 10.0 8.521 8.802 8.521 8.802 0.880 0.3141 0.0 +D+0.750L+0.750S+0.5250E+H 0.000 0.0 deg CCW 10.0 8.584 8.584 8.584 8.584 0.858 0.0 0.0 +0.60D+0.60W+0.60H 0.000 0.0 deg CCW 10.0 2.647 3.022 2.647 3.022 0.302 1.280 0.0 +0.60D+0.70E+0.60H 0.000 0.0 deg CCW 10.0 2.731 2.731 2.731 2.731 0.273 0.0 0.0 Rotation Axis & Overturning Stability Load Combination... Status Overturning Moment Resisting Moment Stability Ratio X-X, +D+H None 0.0 k-ft Infinity OK X-X, +D+L+H None 0.0 k-ft Infinity OK X-X, +D+Lr+H None 0.0 k-ft Infinity OK X-X, +D+S+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+H None 0.0 k-ft Infinity OK X-X, +D+0.60W+H 28.0 k-ft 2,048.09 k-ft 73.146 OK X-X, +D+0.70E+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+0.450W+H 21.0 k-ft 3,810.81 k-ft 181.467 OK X-X, +D+0.750L+0.750S+0.450W+H 21.0 k-ft 3,810.81 k-ft 181.467 OK 9-Story Diagrid

PAGE 204

APPENDIX G Appendix G 197

PAGE 205

! 198 !"#$%&'()$*+,-+. !"#$%&'())%*%+%!#",,%!-"' $ %/%012 .34-5#(67$%8(7#-5%,-5%9"):%&(#$;-5<%.. =%/%0>?@@A%: B,,$7#"C$%!$")3"7%=$";D# 9$)4-6)$%E-F","7(#"-6%8(7#-5 GE98 G&H8 *"(;5"F 9%/ I1J I1>J 012 !$")3"7%9$)4-6)$%&-$,,"7"$6#?%& ) & ) %/ *! KL9K. $ M%/% 210@J & ) %6-#%#-%$N7$$FO P%/%& # D 6 N %/% L21>MQL>A@M 21RJ %/%0S%)$7 T%P U /S%)$7 & ) %V%! *0 KWP > L9K. $ MX%/%21220@ & ) %6-#%'$))%#D(6O & ) %Y%212SS! *! $ %Y%2120 /%2122AZ%[%2120 \ B] %/%>A@%:

PAGE 206

! 199 !"#$%&'()*+,!"#$%&'()* +,%-)*./(0$'1)22 !345$%(6)7&,56,30 23/('3.5)8'(%%&'( 9:* #, ;<=>?@A B,'(4/,$3.5,/1)C.4/$' D 6 <>?AE F(5$4,/1)8'(%%&'()!"#$%&'()*$(GG,4,(3/ D H <@?EI J$#$0'.#H,4)C.4/$' :<>?AE # <>?A K,36L.'6 # ?E N((L.'6 203$',30)O5/,/&6()O6P&%/Q(3/ R S <>?>>TEUH S/ 6 F T ) /$)@Eb)H(,0H/)H <>?AEY)/H('(G$'()#Z-?)) O4/&.5)a.%()%H(.')a(/L((3)U>Z-).36)@Y@WZ-?

PAGE 207

APPENDIX H Appendix H 200

PAGE 208

! 201 20 Story MRF.sdb SAP2000 v17.3.0 20 Story MRF 27 March 2016 Computers and Structures, Inc. Page 1 of 33 20 Story MRF Table: Joint Reactions Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 50 DEAD LinStatic 18.689 15.061 665.320 10.7991 42.1175 8.272E 05 50 LIVE LinStatic 17.884 14.771 629.359 15.5180 42.0855 8.041E 05 50 WIND LinStatic 258.292 327.559 269.082 221.9947 157.6374 2.156E 04 50 DSTL1 Combination 26.164 21.086 931.448 15.1188 58.9645 1.158E 04 50 DSTL2 Combination 51.041 41.707 1805.359 37.7877 117.8778 2.279E 04 50 DSTL3 Combination 217.982 360.404 1696.825 250.4716 65.0109 3.597E 05 50 DSTL4 Combination 298.602 294.714 1158.661 193.5178 250.2639 3.953E 04 50 DSTL5 Combination 106.720 181.853 932.925 123.9563 28.2777 8.556E 06 50 DSTL6 Combination 151.572 145.706 663.843 98.0384 129.3597 2.071E 04 50 DSTL7 Combination 241.472 341.114 867.869 231.7139 119.7317 1.412E 04 50 DSTL8 Combination 275.112 314.004 329.706 212.2755 195.5432 2.901E 04 50 DSTL9 Combination 18.689 15.061 665.320 10.7991 42.1175 8.272E 05 50 DSTL10 Combination 36.573 29.833 1294.679 26.3171 84.2030 1.631E 04 52 DEAD LinStatic 0.286 0.151 503.404 0.9479 1.8755 7.013E 05 52 LIVE LinStatic 0.282 0.151 493.603 0.9453 1.8398 7.053E 05 52 WIND LinStatic 1.426 0.664 16.978 9.5077 16.8670 6.066E 04 52 DSTL1 Combination 0.401 0.211 704.766 1.3270 2.6257 9.818E 05 52 DSTL2 Combination 0.794 0.423 1393.850 2.6500 5.1942 1.970E 04 52 DSTL3 Combination 0.801 0.996 1114.666 11.5905 12.7767 4.519E 04 52 DSTL4 Combination 2.052 0.332 1080.710 7.4249 20.9574 7.613E 04 52 DSTL5 Combination 0.370 0.513 612.574 5.8913 6.1829 2.191E 04 52 DSTL6 Combination 1.057 0.151 595.596 3.6164 10.6841 3.875E 04 52 DSTL7 Combination 1.169 0.800 470.042 10.3608 15.1791 5.435E 04 52 DSTL8 Combination 1.684 0.528 436.086 8.6546 18.5550 6.697E 04 52 DSTL9 Combination 0.286 0.151 503.404 0.9479 1.8755 7.013E 05 52 DSTL10 Combination 0.568 0.302 997.007 1.8932 3.7152 1.407E 04 54 DEAD LinStatic 0.052 0.023 850.000 0.1425 0.4797 1.223E 04 54 LIVE LinStatic 0.051 0.023 833.170 0.1417 0.4606 1.164E 04 54 WIND LinStatic 2.327 1.165 4.127 16.6063 29.4072 2.263E 04 54 DSTL1 Combination 0.073 0.032 1190.001 0.1995 0.6716 1.712E 04 54 DSTL2 Combination 0.144 0.065 2353.072 0.3977 1.3126 3.329E 04 54 DSTL3 Combination 2.213 1.216 1857.297 16.9190 28.3709 4.894E 04 54 DSTL4 Combination 2.440 1.114 1849.043 16.2936 30.4434 3.678E 05 54 DSTL5 Combination 1.100 0.610 1022.064 8.4742 14.1279 2.599E 04 54 DSTL6 Combination 1.226 0.555 1017.937 8.1321 15.2793 3.357E 05 54 DSTL7 Combination 2.279 1.186 769.127 16.7346 28.9754 3.364E 04 54 DSTL8 Combination 2.374 1.144 760.873 16.4780 29.8389 1.163E 04 54 DSTL9 Combination 0.052 0.023 850.000 0.1425 0.4797 1.223E 04 54 DSTL10 Combination 0.103 0.046 1683.170 0.2842 0.9403 2.386E 04 56 DEAD LinStatic 1.535E 03 0.140 779.270 0.8239 0.0145 6.434E 07 56 LIVE LinStatic 1.540E 03 0.140 764.236 0.8263 0.0145 6.582E 07 56 WIND LinStatic 2.238 1.060 2.262 15.0323 27.6405 6.972E 04 56 DSTL1 Combination 2.149E 03 0.196 1090.978 1.1534 0.0203 9.007E 07 56 DSTL2 Combination 4.306E 03 0.392 2157.902 2.3107 0.0406 1.825E 06 56 DSTL3 Combination 2.242 1.368 1701.622 16.8473 27.6724 6.986E 04 56 DSTL4 Combination 2.235 0.752 1697.099 13.2174 27.6086 6.957E 04 56 DSTL5 Combination 1.121 0.698 936.255 8.5048 13.8376 3.493E 04 56 DSTL6 Combination 1.117 0.362 933.993 6.5275 13.8029 3.478E 04 56 DSTL7 Combination 2.240 1.186 703.605 15.7738 27.6535 6.977E 04 56 DSTL8 Combination 2.237 0.934 699.082 14.2909 27.6274 6.966E 04 20 Story MRF.sdb SAP2000 v17.3.0 20 Story MRF 27 March 2016 Computers and Structures, Inc. Page 2 of 33 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 56 DSTL9 Combination 1.535E 03 0.140 779.270 0.8239 0.0145 6.434E 07 56 DSTL10 Combination 3.075E 03 0.280 1543.507 1.6502 0.0290 1.302E 06 58 DEAD LinStatic 0.057 0.024 849.477 0.1464 0.5192 1.283E 04 58 LIVE LinStatic 0.055 0.024 832.579 0.1456 0.5000 1.224E 04 58 WIND LinStatic 2.568 1.179 15.344 16.7365 32.0412 0.0017 58 DSTL1 Combination 0.079 0.033 1189.268 0.2050 0.7269 1.796E 04 58 DSTL2 Combination 0.156 0.066 2351.498 0.4087 1.4230 3.498E 04 58 DSTL3 Combination 2.691 1.231 1867.295 17.0579 33.1642 0.0020 58 DSTL4 Combination 2.445 1.127 1836.607 16.4152 30.9182 0.0014 58 DSTL5 Combination 1.352 0.618 1027.044 8.5440 16.6436 0.0010 58 DSTL6 Combination 1.216 0.561 1011.700 8.1925 15.3975 7.027E 04 58 DSTL7 Combination 2.619 1.200 779.873 16.8683 32.5085 0.0018 58 DSTL8 Combination 2.517 1.157 749.185 16.6047 31.5739 0.0016 58 DSTL9 Combination 0.057 0.024 849.477 0.1464 0.5192 1.283E 04 58 DSTL10 Combination 0.112 0.047 1682.056 0.2921 1.0192 2.507E 04 60 DEAD LinStatic 0.291 0.151 503.598 0.9514 1.9127 6.553E 05 60 LIVE LinStatic 0.286 0.151 493.813 0.9489 1.8756 6.595E 05 60 WIND LinStatic 1.579 0.703 71.280 9.9043 19.2266 3.691E 04 60 DSTL1 Combi nation 0.407 0.212 705.037 1.3319 2.6778 9.174E 05 60 DSTL2 Combination 0.807 0.424 1394.419 2.6599 5.2962 1.842E 04 60 DSTL3 Combination 2.214 1.036 1169.411 11.9949 23.3974 2.245E 04 60 DSTL4 Combination 0.944 0.370 1026.851 7.8137 15.0557 5.136E 04 60 DSTL5 Combination 1.138 0.533 639.958 6.0938 11.9085 1.059E 04 60 DSTL6 Combination 0.441 0.170 568.678 3.8105 7.3180 2.632E 04 60 DSTL7 Combination 1.841 0.839 524.518 10.7606 20.9480 3.101E 04 60 DSTL8 Combination 1.318 0.567 381.958 9.0481 17.5051 4.280E 04 60 DSTL9 Combination 0.291 0.151 503.598 0.9514 1.9127 6.553E 05 60 DSTL10 Combination 0.577 0.303 997.411 1.9003 3.7883 1.315E 04 62 DEAD LinStatic 20.118 16.257 679.078 7.9921 38.0156 4.338E 04 62 LIVE LinStatic 19.307 15.962 641.575 12.7238 38.0673 4.220E 04 62 WIND LinStatic 312.629 366.150 1543.500 236.7273 184.9194 3.561E 04 62 DSTL1 Combination 28.166 22.759 950.710 11.1889 53.2218 6.074E 04 62 DSTL2 Combination 55.033 45.047 1841.414 29.9485 106.5264 0.0012 62 DSTL3 Combination 356.078 401.620 2999.969 259.0415 268.6054 0.0013 62 DSTL4 Combination 269.180 330.680 87.031 214.4130 101.2334 5.866E 04 62 DSTL5 Combination 180.457 202.583 1586.644 127.9541 138.0784 6.986E 04 62 DSTL6 Combination 132.172 163.567 43.144 108.7731 46.8410 3.426E 04 62 DSTL7 Combination 330.736 380.781 2154.670 243.9201 219.1334 7.465E 04 62 DSTL8 Combination 294.522 351.519 932.330 229.5344 150.7054 3.439E 05 62 DSTL9 Combination 20.118 16.257 679.078 7.9921 38.0156 4.338E 04 62 DSTL10 Combination 39.425 32.219 1320.653 20.7158 76.0829 8.559E 04 246 DEAD LinStatic 20.153 16.263 680.410 8.1111 39.3454 4.340E 04 246 LIVE LinStatic 19.337 15.967 642.741 12.8270 39.3103 4.222E 04 246 WIND LinStatic 311.543 367.421 1543.332 237.4010 183.6698 3.897E 04 246 DSTL1 Combination 28.214 22.768 952.574 11.3556 55.0836 6.075E 04 246 DSTL2 Combination 55.124 45.063 1844.878 30.2565 110.1111 0.0012 246 DSTL3 Combination 268.022 331.938 84.098 214.8407 97.1449 5.532E 04 246 DSTL4 Combination 355.064 402.904 3002.565 259.9614 270.1946 0.0013 246 DSTL5 Combination 131.588 164.195 44.826 108.9671 44.6203 3.259E 04 246 DSTL6 Combination 179.955 203.226 1588.158 128.4339 139.0494 7.156E 04 246 DSTL7 Combination 293.405 352.784 930.962 230.1010 148.2589 8.867E 07 246 DSTL8 Combination 329.681 382.058 2155.701 244.7011 219.0807 7.802E 04 246 DSTL9 Combination 20.153 16.263 680.410 8.1111 39.3454 4.340E 04 246 DSTL10 Combination 39.491 32.230 1323.151 20.9381 78.6558 8.561E 04

PAGE 209

! 202 20 Story MRF.sdb SAP2000 v17.3.0 20 Story MRF 27 March 2016 Computers and Structures, Inc. Page 3 of 33 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 248 DEAD LinStatic 0.293 0.151 503.107 0.9523 1.9249 6.532E 05 248 LIVE LinStatic 0.289 0.151 493.244 0.9497 1.8887 6.576E 05 248 WIND LinStatic 1.569 0.704 71.539 9.9145 19.1393 3.397E 04 248 DSTL1 Combination 0.410 0.212 704.350 1.3332 2.6949 9.145E 05 248 DSTL2 Combination 0.813 0.424 1392.919 2.6622 5.3319 1.836E 04 248 DSTL3 Combination 0.929 0.371 1025.433 7.8221 14.9407 4.839E 04 248 DSTL4 Combination 2.209 1.037 1168.512 12.0069 23.3379 1.956E 04 248 DSTL5 Combination 0.433 0.170 567.959 3.8146 7.2597 2.483E 04 248 DSTL6 Combination 1.136 0.534 639.498 6.1000 11.8796 9.148E 05 248 DSTL7 Combination 1.305 0.568 381.257 9.0575 17.4069 3.985E 04 248 DSTL8 Combination 1.832 0.840 524.336 10.7715 20.8717 2.809E 04 248 DSTL9 Combination 0.293 0.151 503.107 0.9523 1.9249 6.532E 05 248 DSTL10 Combination 0.581 0.303 996.351 1.9019 3.8136 1.311E 04 250 DEAD LinStatic 0.055 0.024 849.634 0.1492 0.5085 1.297E 04 250 LIVE LinStatic 0.053 0.024 832.774 0.1481 0.4893 1.237E 04 250 WIND LinStatic 2.561 1.178 15.292 16.7318 31.9858 0.0017 250 DSTL1 Combination 0.077 0.033 1189.488 0.2089 0.7119 1.816E 04 250 DSTL2 Combination 0.151 0.067 2352.000 0.4161 1.3931 3.536E 04 250 DSTL3 Combination 2.442 1.126 1837.043 16.4046 30.8863 0.0014 250 DSTL4 Combination 2.681 1.231 1867.628 17.0590 33.0853 0.0020 250 DSTL5 Combination 1.215 0.561 1011.915 8.1868 15.3827 6.912E 04 250 DSTL6 Combination 1.347 0.618 1027.207 8.5450 16.6031 0.0010 250 DSTL7 Combination 2.512 1.157 749.379 16.5975 31.5282 0.0016 250 DSTL8 Combination 2.611 1.200 779.963 16.8661 32.4435 0.0018 250 DSTL9 Combination 0.055 0.024 849.634 0.1492 0.5085 1.297E 04 250 DSTL10 Combination 0.108 0.048 1682.409 0.2974 0.9978 2.535E 04 252 DEAD LinStatic 4.173E 04 0.140 779.206 0.8267 0.0061 1.116E 06 252 LIVE LinStatic 4.237E 04 0.140 764.168 0.8288 0.0061 1.075E 06 252 WIND LinStatic 2.239 1.059 2.269 15.0252 27.6440 6.979E 04 252 DSTL1 Combination 5.842E 04 0.196 1090.888 1.1573 0.0085 1.562E 06 252 DSTL2 Combination 1.179E 03 0.393 2157.715 2.3181 0.0171 3.060E 06 252 DSTL3 Combination 2.238 0.750 1696.946 13.2044 27.6306 6.955E 04 252 DSTL4 Combination 2.240 1.367 1701.484 16.8460 27.6574 7.003E 04 252 DSTL5 Combination 1.119 0.361 933.913 6.5206 13.8147 3.476E 04 252 DSTL6 Combination 1.120 0.698 936.181 8.5046 13.8293 3.503E 04 252 DSTL7 Combination 2.238 0.933 699.016 14.2812 27.6385 6.969E 04 252 DSTL8 Combination 2.239 1.185 703.554 15.7692 27.6494 6.989E 04 252 DSTL9 Combination 4.173E 04 0.140 779.206 0.8267 0.0061 1.116E 06 252 DSTL10 Combination 8.410E 04 0.281 1543.374 1.6555 0.0122 2.191E 06 254 DEAD LinStatic 0.055 0.023 849.553 0.1455 0.4956 1.234E 04 254 LIVE LinStatic 0.053 0.023 832.654 0.1444 0.4761 1.175E 04 254 WIND LinStatic 2.334 1.164 4.229 16.6022 29.4712 2.044E 04 254 DSTL1 Combination 0.076 0.033 1189.374 0.2037 0.6939 1.728E 04 254 DSTL2 Combination 0.150 0.065 2351.710 0.4056 1.3565 3.361E 04 254 DSTL3 Combination 2.452 1.113 1847.888 16.2832 30.5421 6.122E 05 254 DSTL4 Combination 2.216 1.216 1856.347 16.9212 28.4004 4.700E 04 254 DSTL5 Combination 1.233 0.554 1017.349 8.1265 15.3304 4.593E 05 254 DSTL6 Combination 1.101 0.610 1021.578 8.4757 14.1408 2.503E 04 254 DSTL7 Combination 2.383 1.143 760.368 16.4713 29.9173 9.330E 05 254 DSTL8 Combination 2.285 1.185 768.827 16.7332 29.0251 3.155E 04 254 DSTL9 Combination 0.055 0.023 849.553 0.1455 0.4956 1.234E 04 254 DSTL10 Combination 0.107 0.047 1682.207 0.2899 0.9717 2.409E 04 256 DEAD LinStatic 0.284 0.151 503.941 0.9487 1.8682 6.905E 05 256 LIVE LinStatic 0.280 0.151 494.150 0.9462 1.8310 6.952E 05 20 Story MRF.sdb SAP2000 v17.3.0 20 Story MRF 27 March 2016 Computers and Structures, Inc. Page 4 of 33 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 256 WIND LinStatic 1.436 0.665 16.722 9.5189 16.9484 5.765E 04 256 DSTL1 Combination 0.398 0.211 705.517 1.3282 2.6155 9.666E 05 256 DSTL2 Combination 0.789 0.423 1395.369 2.6524 5.1714 1.941E 04 256 DSTL3 Combination 2.057 0.333 1082.157 7.4343 21.0212 7.289E 04 256 DSTL4 Combination 0.814 0.997 1115.600 11.6036 12.8756 4.241E 04 256 DSTL5 Combination 1.059 0.151 596.368 3.6210 10.7160 3.711E 04 256 DSTL6 Combination 0.377 0.514 613.090 5.8979 6.2323 2.054E 04 256 DSTL7 Combination 1.692 0.529 436.825 8.6651 18.6298 6.386E 04 256 DSTL8 Combination 1.180 0.801 470.268 10.3728 15.2670 5.144E 04 256 DSTL9 Combination 0.284 0.151 503.941 0.9487 1.8682 6.905E 05 256 DSTL10 Combination 0.564 0.302 998.091 1.8949 3.6992 1.386E 04 258 DEAD LinStatic 18.714 15.052 666.065 10.9423 40.7634 8.256E 05 258 LIVE LinStatic 17.906 14.765 630.054 15.6481 40.8138 8.027E 05 258 WIND LinStatic 259.385 328.821 269.152 222.7394 157.8462 2.095E 04 258 DSTL1 Combination 26.199 21.073 932.491 15.3192 57.0688 1.156E 04 258 DSTL2 Combination 51.105 41.686 1807.365 38.1677 114.2182 2.275E 04 258 DSTL3 Combination 299.747 295.993 1160.180 193.9605 247.5761 3.888E 04 258 DSTL4 Combination 219.023 361.648 1698.485 251.5182 68.1163 3.015E 05 258 DSTL5 Combination 152.149 146.348 664.702 98.2389 127.8392 2.038E 04 258 DSTL6 Combination 107.236 182.473 933.854 124.5004 30.0070 5.676E 06 258 DSTL7 Combination 276.227 315.274 330.307 212.8913 194.5333 2.838E 04 258 DSTL8 Combination 242.543 342.368 868.611 232.5874 121.1591 1.352E 04 258 DSTL9 Combination 18.714 15.052 666.065 10.9423 40.7634 8.256E 05 258 DSTL10 Combination 36.619 29.817 1296.119 26.5904 81.5772 1.628E 04 422 DEAD LinStatic 5.965E 03 0.076 136.447 0.4710 0.1170 9.169E 05 422 LIVE LinStatic 5.743E 03 0.071 179.245 0.4426 0.1124 8.575E 05 422 WIND LinStatic 0.073 0.298 4.358 2.7319 2.5180 2.898E 04 422 DSTL1 Combination 8.351E 03 0.106 191.026 0.6594 0.1638 1.284E 04 422 DSTL2 Combination 0.016 0.204 450.528 1.2734 0.3202 2.472E 04 422 DSTL3 Combination 0.060 0.460 347.339 3.7397 2.2652 4.855E 04 422 DSTL4 Combination 0.086 0.137 338.624 1.7241 2.7708 9.398E 05 422 DSTL5 Combination 0.029 0.240 165.915 1.9312 1.1186 2.549E 04 422 DSTL6 Combination 0.044 0.058 161.558 0.8008 1.3994 3.485E 05 422 DSTL7 Combination 0.068 0.366 127.160 3.1558 2.4127 3.723E 04 422 DSTL8 Combination 0.078 0.230 118.444 2.3080 2.6233 2.072E 04 422 DSTL9 Combination 5.965E 03 0.076 136.447 0.4710 0.1170 9.169E 05 422 DSTL10 Combination 0.012 0.147 315.692 0.9136 0.2294 1.774E 04 424 DEAD LinStatic 3.833 0.062 1166.562 0.2708 22.4147 0.0222 424 LIVE LinStatic 3.846 3.810E 03 1086.427 0.0735 22.4820 0.0215 424 WIND LinStatic 2.942 2.117 3.402 25.7727 41.5507 0.0176 424 DSTL1 Combination 5.366 0.087 1633.186 0.3791 31.3805 0.0311 424 DSTL2 Combination 10.752 0.081 3138.158 0.2074 62.8688 0.0610 424 DSTL3 Combination 5.503 2.195 2489.703 26.0242 7.8289 0.0305 424 DSTL4 Combination 11.387 2.039 2482.899 25.5213 90.9303 0.0657 424 DSTL5 Combination 3.128 1.133 1401.575 13.2113 6.1222 0.0178 424 DSTL6 Combination 6.071 0.984 1398.173 12.5614 47.6730 0.0354 424 DSTL7 Combination 0.507 2.173 1053.307 26.0164 21.3775 0.0024 424 DSTL8 Combination 6.392 2.061 1046.504 25.5291 61.7239 0.0376 424 DSTL9 Combination 3.833 0.062 1166.562 0.2708 22.4147 0.0222 424 DSTL10 Combination 7.678 0.066 2252.989 0.1973 44.8966 0.0437 428 DEAD LinStatic 3.835 0.063 1157.831 0.2761 22.4341 0.0224 428 LIVE LinStatic 3.848 4.248E 03 1079.448 0.0719 22.5007 0.0218 428 WIND LinStatic 2.951 2.089 12.976 25.5515 41.6355 0.0263 428 DSTL1 Combination 5.369 0.088 1620.963 0.3866 31.4077 0.0314

PAGE 210

! 203 20 Story MRF.sdb SAP2000 v17.3.0 20 Story MRF 27 March 2016 Computers and Structures, Inc. Page 5 of 33 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 428 DSTL2 Combination 10.758 0.082 3116.513 0.2163 62.9220 0.0617 428 DSTL3 Combination 5.499 2.009 2455.868 25.2921 7.7861 0.0224 428 DSTL4 Combination 11.401 2.169 2481.821 25.8109 91.0570 0.0749 428 DSTL5 Combination 3.126 0.969 1382.909 12.4444 6.1031 0.0138 428 DSTL6 Combination 6.077 1.120 1395.885 13.1071 47.7386 0.0401 428 DSTL7 Combination 0.500 2.033 1029.071 25.3030 21.4448 0.0061 428 DSTL8 Combination 6.403 2.146 1055.024 25.8000 61.8261 0.0464 428 DSTL9 Combination 3.835 0.063 1157.831 0.2761 22.4341 0.0224 428 DSTL10 Combination 7.683 0.067 2237.278 0.2042 44.9348 0.0442 430 DEAD LinStatic 6.053E 03 0.076 137.245 0.4746 0.1186 9.569E 05 430 LIVE LinStatic 5.831E 03 0.072 180.159 0.4469 0.1141 8.973E 05 430 WIND LinStatic 0.079 0.276 32.333 2.6723 2.6228 2.132E 04 430 DSTL1 Combination 8.475E 03 0.107 192.143 0.6644 0.1661 1.340E 04 430 DSTL2 Combination 0.017 0.206 452.948 1.2846 0.3249 2.584E 04 430 DSTL3 Combination 0.066 0.113 312.519 1.6559 2.3663 8.639E 06 430 DSTL4 Combination 0.092 0.439 377.186 3.6888 2.8792 4.178E 04 430 DSTL5 Combination 0.032 0.047 148.527 0.7667 1.1690 8.228E 06 430 DSTL6 Combination 0.047 0.230 180.861 1.9056 1.4537 2.214E 04 430 DSTL7 Combination 0.073 0.208 91.187 2.2452 2.5160 1.271E 04 430 DSTL8 Combination 0.084 0.345 155.854 3.0995 2.7295 2.993E 04 430 DSTL9 Combination 6.053E 03 0.076 137.245 0.4746 0.1186 9.569E 05 430 DSTL10 Combination 0.012 0.148 317.403 0.9215 0.2327 1.854E 04 535 DEAD LinStatic 6.033E 03 0.077 136.344 0.4784 0.1185 9.552E 05 535 LIVE LinStatic 5.812E 03 0.072 179.139 0.4500 0.1140 8.958E 05 535 WIND LinStatic 0.079 0.275 32.374 2.6637 2.6232 2.223E 04 535 DSTL1 Combination 8.446E 03 0.107 190.881 0.6698 0.1659 1.337E 04 535 DSTL2 Combination 0.017 0.208 450.235 1.2941 0.3247 2.580E 04 535 DSTL3 Combination 0.092 0.440 375.125 3.6878 2.8795 4.266E 04 535 DSTL4 Combination 0.066 0.111 310.378 1.6396 2.3670 1.814E 05 535 DSTL5 Combination 0.047 0.230 179.799 1.9060 1.4538 2.258E 04 535 DSTL6 Combination 0.032 0.046 147.426 0.7577 1.1694 3.447E 06 535 DSTL7 Combination 0.084 0.344 155.083 3.0943 2.7299 3.083E 04 535 DSTL8 Combination 0.073 0.206 90.336 2.2331 2.5166 1.364E 04 535 DSTL9 Combination 6.033E 03 0.077 136.344 0.4784 0.1185 9.552E 05 535 DSTL10 Combination 0.012 0.149 315.483 0.9284 0.2325 1.851E 04 537 DEAD LinStatic 3.837 0.064 1166.589 0.2772 22.4473 0.0224 537 LIVE LinStatic 3.850 5.361E 03 1086.455 0.0669 22.5145 0.0217 537 WIND LinStatic 2.943 2.090 12.929 25.5549 41.5675 0.0253 537 DSTL1 Combination 5.372 0.089 1633.225 0.3881 31.4262 0.0314 537 DSTL2 Combination 10.764 0.085 3138.235 0.2256 62.9600 0.0617 537 DSTL3 Combination 11.398 2.172 2499.291 25.8206 91.0188 0.0740 537 DSTL4 Combination 5.511 2.009 2473.434 25.2892 7.8838 0.0233 537 DSTL5 Combination 6.076 1.121 1406.372 13.1101 47.7205 0.0396 537 DSTL6 Combination 3.133 0.969 1393.443 12.4448 6.1530 0.0143 537 DSTL7 Combination 6.397 2.148 1062.859 25.8044 61.7701 0.0455 537 DSTL8 Combination 0.510 2.033 1037.002 25.3054 21.3650 0.0051 537 DSTL9 Combination 3.837 0.064 1166.589 0.2772 22.4473 0.0224 537 DSTL10 Combination 7.687 0.069 2253.045 0.2103 44.9618 0.0442 540 DEAD LinStatic 3.835 0.066 1157.843 0.2952 22.4316 0.0222 540 LIVE LinStatic 3.848 7.020E 03 1079.461 0.0528 22.4982 0.0215 540 WIND LinStatic 2.936 2.119 3.491 25.7889 41.4879 0.0167 540 DSTL1 Combination 5.369 0.092 1620.981 0.4133 31.4043 0.0310 540 DSTL2 Combination 10.760 0.090 3116.550 0.2698 62.9151 0.0610 540 DSTL3 Combination 11.386 2.033 2465.382 25.4874 90.9041 0.0648 20 Story MRF.sdb SAP2000 v17.3.0 20 Story MRF 27 March 2016 Computers and Structures, Inc. Page 6 of 33 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 540 DSTL4 Combination 5.515 2.205 2472.364 26.0903 7.9283 0.0314 540 DSTL5 Combination 6.070 0.981 1387.666 12.5402 47.6619 0.0350 540 DSTL6 Combination 3.135 1.139 1391.157 13.2487 6.1740 0.0183 540 DSTL7 Combination 6.387 2.060 1038.568 25.5232 61.6764 0.0367 540 DSTL8 Combination 0.516 2.178 1045.550 26.0545 21.2994 0.0033 540 DSTL9 Combination 3.835 0.066 1157.843 0.2952 22.4316 0.0222 540 DSTL10 Combination 7.684 0.073 2237.305 0.2424 44.9299 0.0437 542 DEAD LinStatic 5.951E 03 0.075 137.344 0.4667 0.1170 9.226E 05 542 LIVE LinStatic 5.729E 03 0.070 180.257 0.4391 0.1125 8.628E 05 542 WIND LinStatic 0.073 0.299 4.291 2.7404 2.5186 2.803E 04 542 DSTL1 Combination 8.332E 03 0.105 192.281 0.6533 0.1639 1.292E 04 542 DSTL2 Combination 0.016 0.202 453.223 1.2626 0.3205 2.488E 04 542 DSTL3 Combination 0.086 0.139 340.778 1.7412 2.7716 8.334E 05 542 DSTL4 Combination 0.060 0.459 349.360 3.7395 2.2657 4.773E 04 542 DSTL5 Combination 0.044 0.060 162.667 0.8102 1.3998 2.945E 05 542 DSTL6 Combination 0.029 0.239 166.958 1.9302 1.1189 2.509E 04 542 DSTL7 Combination 0.078 0.232 119.318 2.3203 2.6240 1.973E 04 542 DSTL8 Combination 0.068 0.367 127.900 3.1604 2.4133 3.634E 04 542 DSTL9 Combination 5.951E 03 0.075 137.344 0.4667 0.1170 9.226E 05 542 DSTL10 Combination 0.012 0.145 317.601 0.9058 0.2296 1.785E 04 648 DEAD LinStatic 0.058 9.795E 04 2475.496 0.0000 0.0000 0.0000 648 LIVE LinStatic 0.059 1.068E 03 2392.702 0.0000 0.0000 0.0000 648 WIND LinStatic 0.115 0.118 2.039 0.0000 0.0000 0.0000 648 DSTL1 Combination 0.081 1.371E 03 3465.694 0.0000 0.0000 0.0000 648 DSTL2 Combination 0.164 2.884E 03 6798.918 0.0000 0.0000 0.0000 648 DSTL3 Combination 0.244 0.120 5365.336 0.0000 0.0000 0.0000 648 DSTL4 Combination 0.014 0.116 5361.258 0.0000 0.0000 0.0000 648 DSTL5 Combination 0.127 0.060 2971.615 0.0000 0.0000 0.0000 648 DSTL6 Combination 0.012 0.058 2969.575 0.0000 0.0000 0.0000 648 DSTL7 Combination 0.167 0.119 2229.985 0.0000 0.0000 0.0000 648 DSTL8 Combination 0.063 0.117 2225.907 0.0000 0.0000 0.0000 648 DSTL9 Combination 0.058 9.795E 04 2475.496 0.0000 0.0000 0.0000 648 DSTL10 Combination 0.117 2.047E 03 4868.198 0.0000 0.0000 0.0000 650 DEAD LinStatic 0.061 2.182E 04 2475.437 0.0000 0.0000 0.0000 650 LIVE LinStatic 0.062 3.106E 04 2392.639 0.0000 0.0000 0.0000 650 WIND LinStatic 0.071 0.112 2.882 0.0000 0.0000 0.0000 650 DSTL1 Combination 0.086 3.055E 04 3465.612 0.0000 0.0000 0.0000 650 DSTL2 Combination 0.173 7.587E 04 6798.747 0.0000 0.0000 0.0000 650 DSTL3 Combination 0.064 0.113 5366.046 0.0000 0.0000 0.0000 650 DSTL4 Combination 0.207 0.112 5360.281 0.0000 0.0000 0.0000 650 DSTL5 Combination 0.038 0.056 2971.965 0.0000 0.0000 0.0000 650 DSTL6 Combination 0.109 0.056 2969.083 0.0000 0.0000 0.0000 650 DSTL7 Combination 0.016 0.112 2230.775 0.0000 0.0000 0.0000 650 DSTL8 Combination 0.126 0.112 2225.011 0.0000 0.0000 0.0000 650 DSTL9 Combination 0.061 2.182E 04 2475.437 0.0000 0.0000 0.0000 650 DSTL10 Combination 0.123 5.288E 04 4868.076 0.0000 0.0000 0.0000 666 DEAD LinStatic 0.059 2.295E 04 2475.769 0.0000 0.0000 0.0000 666 LIVE LinStatic 0.060 3.271E 04 2392.984 0.0000 0.0000 0.0000 666 WIND LinStatic 0.069 0.113 2.892 0.0000 0.0000 0.0000 666 DSTL1 Combination 0.083 3.213E 04 3466.077 0.0000 0.0000 0.0000 666 DSTL2 Combination 0.168 7.987E 04 6799.698 0.0000 0.0000 0.0000 666 DSTL3 Combination 0.201 0.112 5361.015 0.0000 0.0000 0.0000 666 DSTL4 Combination 0.062 0.113 5366.800 0.0000 0.0000 0.0000 666 DSTL5 Combination 0.106 0.056 2969.477 0.0000 0.0000 0.0000

PAGE 211

! 204 20 Story MRF.sdb SAP2000 v17.3.0 20 Story MRF 27 March 2016 Computers and Structures, Inc. Page 7 of 33 Table: Joint Reactions Joint OutputCase CaseType F1 F2 F3 M1 M2 M3 Kip Kip Kip Kip ft Kip ft Kip ft 666 DSTL6 Combination 0.037 0.057 2972.369 0.0000 0.0000 0.0000 666 DSTL7 Combination 0.123 0.113 2225.300 0.0000 0.0000 0.0000 666 DSTL8 Combination 0.016 0.113 2231.085 0.0000 0.0000 0.0000 666 DSTL9 Combination 0.059 2.295E 04 2475.769 0.0000 0.0000 0.0000 666 DSTL10 Combination 0.120 5.566E 04 4868.754 0.0000 0.0000 0.0000 668 DEAD LinStatic 0.061 9.750E 04 2475.750 0.0000 0.0000 0.0000 668 LIVE LinStatic 0.061 1.064E 03 2392.962 0.0000 0.0000 0.0000 668 WIND LinStatic 0.117 0.118 2.037 0.0000 0.0000 0.0000 668 DSTL1 Combination 0.085 1.365E 03 3466.050 0.0000 0.0000 0.0000 668 DSTL2 Combination 0.171 2.872E 03 6799.640 0.0000 0.0000 0.0000 668 DSTL3 Combination 0.017 0.116 5361.825 0.0000 0.0000 0.0000 668 DSTL4 Combination 0.251 0.121 5365.899 0.0000 0.0000 0.0000 668 DSTL5 Combination 0.014 0.058 2969.881 0.0000 0.0000 0.0000 668 DSTL6 Combination 0.131 0.060 2971.918 0.0000 0.0000 0.0000 668 DSTL7 Combination 0.062 0.117 2226.138 0.0000 0.0000 0.0000 668 DSTL8 Combination 0.171 0.119 2230.211 0.0000 0.0000 0.0000 668 DSTL9 Combination 0.061 9.750E 04 2475.750 0.0000 0.0000 0.0000 668 DSTL10 Combination 0.122 2.039E 03 4868.712 0.0000 0.0000 0.0000 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 1 W14X30 Column No Messages 0.768687 PMM 2 W14X26 Column No Messages 0.792922 PMM 3 W14X22 Column No Messages 0.770343 PMM 4 W14X22 Column No Messages 0.637433 PMM 5 W14X22 Column No Messages 0.520665 PMM 6 W14X22 Column No Messages 0.423671 PMM 7 W14X22 Column No Messages 0.275129 PMM 8 W14X22 Column No Messages 0.119835 PMM 9 W14X145 Column No Messages 0.914654 PMM 10 W14X120 Column No Messages 0.955905 PMM 11 W14X99 Column No Messages 0.955713 PMM 12 W14X90 Column No Messages 0.854022 PMM 13 W14X82 Column No Messages 0.963254 PMM 14 W14X68 Column No Messages 0.973798 PMM 15 W14X61 Column No Messages 0.948203 PMM 16 W14X68 Column No Messages 0.915744 PMM 17 W14X233 Column No Messages 0.936503 PMM 18 W14X193 Column No Messages 0.972982 PMM 19 W14X159 Column No Messages 0.994898 PMM 20 W14X132 Column No Messages 0.982772 PMM 21 W14X109 Column No Messages 0.917851 PMM 22 W14X90 Column No Messages 0.796557 PMM 23 W14X61 Column No Messages 0.821300 PMM 24 W14X43 Column No Messages 0.747485 PMM 25 W14X211 Column No Messages 0.953451 PMM 26 W14X176 Column No Messages 0.990435 PMM 27 W14X159 Column No Messages 0.928856 PMM 28 W14X132 Column No Messages 0.927041 PMM 20 Story MRF.sdb SAP2000 v17.3.0 20 Story MRF 27 March 2016 Computers and Structures, Inc. Page 8 of 33 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 29 W14X99 Column No Messages 0.958916 PMM 30 W14X82 Column No Messages 0.971194 PMM 31 W14X61 Column No Messages 0.774709 PMM 32 W14X43 Column No Messages 0.708682 PMM 33 W14X233 Column No Messages 0.935949 PMM 34 W14X193 Column No Messages 0.972176 PMM 35 W14X159 Column No Messages 0.994186 PMM 36 W14X132 Column No Messages 0.982588 PMM 37 W14X109 Column No Messages 0.916961 PMM 38 W14X90 Column No Messages 0.795330 PMM 39 W14X61 Column No Messages 0.823654 PMM 40 W14X43 Column No Messages 0.749779 PMM 41 W14X145 Column No Messages 0.915148 PMM 42 W14X120 Column No Messages 0.957201 PMM 43 W14X99 Column No Messages 0.950426 PMM 44 W14X90 Column No Messages 0.845328 PMM 45 W14X82 Column No Messages 0.961842 PMM 46 W14X68 Column No Messages 0.972216 PMM 47 W14X61 Column No Messages 0.983301 PMM 48 W14X68 Column No Messages 0.912324 PMM 49 W14X61 Column No Messages 0.623716 PMM 50 W14X34 Column No Messages 0.963198 PMM 51 W14X30 Column No Messages 0.652727 PMM 52 W14X26 Column No Messages 0.896284 PMM 53 W14X22 Column No Messages 0.702103 PMM 54 W14X22 Column No Messages 0.435738 PMM 55 W14X22 Column No Messages 0.279104 PMM 56 W14X22 Column No Messages 0.119125 PMM 57 W18X35 Beam No Messages 0.801558 PMM 58 W18X35 Beam No Messages 0.560775 PMM 59 W18X35 Beam No Messages 0.681075 PMM 60 W18X35 Beam No Messages 0.559672 PMM 61 W18X35 Beam No Messages 0.679715 PMM 62 W18X35 Beam No Messages 0.656716 PMM 63 W18X35 Beam No Messages 0.914382 PMM 64 W18X35 Beam No Messages 0.561373 PMM 65 W18X35 Beam No Messages 0.679588 PMM 66 W18X35 Beam No Messages 0.559334 PMM 67 W18X35 Beam No Messages 0.676585 PMM 68 W18X35 Beam No Messages 0.742530 PMM 69 W18X40 Beam No Messages 0.829148 PMM 70 W18X35 Beam No Messages 0.563022 PMM 71 W18X35 Beam No Messages 0.678406 PMM 72 W18X35 Beam No Messages 0.559439 PMM 73 W18X35 Beam No Messages 0.677090 PMM 74 W18X35 Beam No Messages 0.849018 PMM 75 W18X40 Beam No Messages 0.904868 PMM 76 W18X35 Beam No Messages 0.563048 PMM 77 W18X35 Beam No Messages 0.677159 PMM 78 W18X35 Beam No Messages 0.559581 PMM 79 W18X35 Beam No Messages 0.674736 PMM 80 W18X40 Beam No Messages 0.765980 PMM 81 W18X46 Beam No Messages 0.838467 PMM 82 W18X35 Beam No Messages 0.566858 PMM

PAGE 212

! 205 20 Story MRF.sdb SAP2000 v17.3.0 20 Story MRF 27 March 2016 Computers and Structures, Inc. Page 9 of 33 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 83 W18X35 Beam No Messages 0.681368 PMM 84 W18X35 Beam No Messages 0.559083 PMM 85 W18X35 Beam No Messages 0.668892 PMM 86 W18X40 Beam No Messages 0.843946 PMM 87 W18X46 Beam No Messages 0.905107 PMM 88 W18X35 Beam No Messages 0.572298 PMM 89 W18X35 Beam No Messages 0.689424 PMM 90 W18X35 Beam No Messages 0.557941 PMM 91 W18X35 Beam No Messages 0.683696 PMM 92 W18X40 Beam No Messages 0.915506 PMM 93 W18X50 Beam No Messages 0.683052 PMM 94 W18X35 Beam No Messages 0.586808 PMM 95 W18X35 Beam No Messages 0.696742 PMM 96 W18X35 Beam No Messages 0.557329 PMM 97 W18X35 Beam No Messages 0.691291 PMM 98 W18X46 Beam No Messages 0.859355 PMM 99 W18X50 Beam No Messages 0.708108 PMM 100 W18X35 Beam No Messages 0.604102 PMM 101 W18X35 Beam No Messages 0.703132 PMM 102 W18X35 Beam No Messages 0.555890 PMM 103 W18X35 Beam No Messages 0.707778 PMM 104 W18X46 Beam No Messages 0.961750 PMM 105 W18X50 Beam No Messages 0.770842 PMM 106 W18X35 Beam No Messages 0.626399 PMM 107 W18X35 Beam No Messages 0.710931 PMM 108 W18X35 Beam No Messages 0.556016 PMM 109 W18X35 Beam No Messages 0.733206 PMM 110 W18X50 Beam No Messages 0.872839 PMM 111 W24X68 Beam No Messages 0.774733 PMM 112 W18X35 Beam No Messages 0.653766 PMM 113 W18X35 Beam No Messages 0.715774 PMM 114 W18X35 Beam No Messages 0.555219 PMM 115 W18X35 Beam No Messages 0.669705 PMM 116 W24X68 Beam No Messages 0.777887 PMM 117 W24X68 Beam No Messages 0.844423 PMM 118 W18X35 Beam No Messages 0.674991 PMM 119 W18X35 Beam No Messages 0.716063 PMM 120 W18X35 Beam No Messages 0.554100 PMM 121 W18X35 Beam No Messages 0.697533 PMM 122 W24X68 Beam No Messages 0.842340 PMM 123 W24X68 Beam No Messages 0.857607 PMM 124 W18X35 Beam No Messages 0.701159 PMM 125 W18X35 Beam No Messages 0.714608 PMM 126 W18X35 Beam No Messages 0.555034 PMM 127 W18X35 Beam No Messages 0.754192 PMM 128 W24X68 Beam No Messages 0.857637 PMM 129 W24X68 Beam No Messages 0.902872 PMM 130 W18X35 Beam No Messages 0.723931 PMM 131 W18X35 Beam No Messages 0.713293 PMM 132 W18X35 Beam No Messages 0.555988 PMM 133 W18X35 Beam No Messages 0.800137 PMM 134 W24X68 Beam No Messages 0.901143 PMM 135 W24X76 Beam No Messages 0.889992 PMM 136 W18X35 Beam No Messages 0.748768 PMM 20 Story MRF.sdb SAP2000 v17.3.0 20 S tory MRF 27 March 2016 Computers and Structures, Inc. Page 10 of 33 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 137 W18X35 Beam No Messages 0.713635 PMM 138 W18X35 Beam No Messages 0.559234 PMM 139 W18X35 Beam No Messages 0.791637 PMM 140 W24X76 Beam No Messages 0.889146 PMM 141 W24X76 Beam No Messages 0.912557 PMM 142 W18X35 Beam No Messages 0.771009 PMM 143 W18X35 Beam No Messages 0.712927 PMM 144 W18X35 Beam No Messages 0.560398 PMM 145 W18X35 Beam No Messages 0.851148 PMM 146 W24X76 Beam No Messages 0.910562 PMM 147 W24X84 Beam No Messages 0.923174 PMM 148 W18X35 Beam No Messages 0.795037 PMM 149 W18X35 Beam No Messages 0.713681 PMM 150 W18X35 Beam No Messages 0.569266 PMM 151 W18X35 Beam No Messages 0.925627 PMM 152 W24X84 Beam No Messages 0.922273 PMM 153 W30X90 Beam No Messages 0.958105 PMM 154 W18X35 Beam No Messages 0.777388 PMM 155 W18X35 Beam No Messages 0.720174 PMM 156 W18X35 Beam No Messages 0.570975 PMM 157 W18X35 Beam No Messages 0.770548 PMM 158 W30X90 Beam No Messages 0.967270 PMM 159 W30X99 Beam No Messages 0.907317 PMM 160 W18X35 Beam No Messages 0.827470 PMM 161 W18X35 Beam No Messages 0.731754 PMM 162 W18X35 Beam No Messages 0.580075 PMM 163 W18X35 Beam No Messages 0.822341 PMM 164 W30X99 Beam No Messages 0.914344 PMM 165 W30X99 Beam No Messages 0.985957 PMM 166 W18X35 Beam No Messages 0.843778 PMM 167 W18X35 Beam No Messages 0.752429 PMM 168 W18X35 Beam No Messages 0.594687 PMM 169 W18X35 Beam No Messages 0.823966 PMM 170 W30X99 Beam No Messages 0.980951 PMM 171 W24X68 Beam No Messages 0.888125 PMM 172 W18X35 Beam No Messages 0.718042 PMM 173 W18X35 Beam No Messages 0.687512 PMM 174 W18X35 Beam No Messages 0.487736 PMM 175 W18X35 Beam No Messages 0.719691 PMM 176 W24X68 Beam No Messages 0.882319 PMM 177 W14X61 Column No Messages 0.624354 PMM 178 W14X34 Column No Messages 0.964230 PMM 179 W14X30 Column No Messages 0.653544 PMM 180 W14X26 Column No Messages 0.895462 PMM 181 W14X22 Column No Messages 0.702297 PMM 182 W14X22 Column No Messages 0.436386 PMM 183 W14X22 Column No Messages 0.279754 PMM 184 W14X22 Column No Messages 0.118894 PMM 185 W14X145 Column No Messages 0.914250 PMM 186 W14X120 Column No Messages 0.955471 PMM 187 W14X99 Column No Messages 0.955343 PMM 188 W14X90 Column No Messages 0.853614 PMM 189 W14X82 Column No Messages 0.962441 PMM 190 W14X68 Column No Messages 0.972506 PMM

PAGE 213

! 206 20 Story MRF.sdb SAP2000 v17.3.0 20 Story MRF 27 March 2016 Computers and Structures, Inc. Page 11 of 33 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 191 W14X61 Column No Messages 0.984566 PMM 192 W14X68 Column No Messages 0.914876 PMM 193 W14X233 Column No Messages 0.936140 PMM 194 W14X193 Column No Messages 0.972506 PMM 195 W14X159 Column No Messages 0.994346 PMM 196 W14X132 Column No Messages 0.982100 PMM 197 W14X109 Column No Messages 0.917018 PMM 198 W14X90 Column No Messages 0.795532 PMM 199 W14X61 Column No Messages 0.821587 PMM 200 W14X43 Column No Messages 0.749552 PMM 201 W14X211 Column No Messages 0.953351 PMM 202 W14X176 Column No Messages 0.990350 PMM 203 W14X159 Column No Messages 0.928782 PMM 204 W14X132 Column No Messages 0.926864 PMM 205 W14X99 Column No Messages 0.958651 PMM 206 W14X82 Column No Messages 0.970878 PMM 207 W14X61 Column No Messages 0.774624 PMM 208 W14X43 Column No Messages 0.708294 PMM 209 W14X233 Column No Messages 0.935994 PMM 210 W14X193 Column No Messages 0.972264 PMM 211 W14X159 Column No Messages 0.994267 PMM 212 W14X132 Column No Messages 0.982654 PMM 213 W14X109 Column No Messages 0.916995 PMM 214 W14X90 Column No Messages 0.795283 PMM 215 W14X61 Column No Messages 0.823597 PMM 216 W14X43 Column No Messages 0.749635 PMM 217 W14X145 Column No Messages 0.915564 PMM 218 W14X120 Column No Messages 0.957563 PMM 219 W1 4X99 Column No Messages 0.950735 PMM 220 W14X90 Column No Messages 0.845528 PMM 221 W14X82 Column No Messages 0.961945 PMM 222 W14X68 Column No Messages 0.972917 PMM 223 W14X61 Column No Messages 0.984576 PMM 224 W14X68 Column No Messages 0.914778 PMM 225 W14X30 Column No Messages 0.769727 PMM 226 W14X26 Column No Messages 0.793986 PMM 227 W14X22 Column No Messages 0.772235 PMM 228 W14X22 Column No Messages 0.640360 PMM 229 W14X22 Column No Messages 0.522076 PMM 230 W14X22 Column No Messages 0.424960 PMM 231 W14X22 Column No Messages 0.277427 PMM 232 W14X22 Column No Messages 0.118782 PMM 233 W18X35 Beam No Messages 0.805801 PMM 234 W18X35 Beam No Messages 0.560928 PMM 235 W18X35 Beam No Messages 0.681005 PMM 236 W18X35 Beam No Messages 0.559657 PMM 237 W18X35 Beam No Messages 0.679765 PMM 238 W18X35 Beam No Messages 0.654282 PMM 239 W18X35 Beam No Messages 0.916595 PMM 240 W18X35 Beam No Messages 0.561519 PMM 241 W18X35 Beam No Messages 0.679493 PMM 242 W18X35 Beam No Messages 0.559325 PMM 243 W18X35 Beam No Messages 0.676689 PMM 244 W18X35 Beam No Messages 0.739875 PMM 20 Story MRF.sdb SAP2000 v17.3.0 20 Story MRF 27 March 2016 Computers and Structures, Inc. Page 12 of 33 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 245 W18X40 Beam No Messages 0.830879 PMM 246 W18X35 Beam No Messages 0.563173 PMM 247 W18X35 Beam No Messages 0.678253 PMM 248 W18X35 Beam No Messages 0.559438 PMM 249 W18X35 Beam No Messages 0.677118 PMM 250 W18X35 Beam No Messages 0.846487 PMM 251 W18X40 Beam No Messages 0.906537 PMM 252 W18X35 Beam No Messages 0.563198 PMM 253 W18X35 Beam No Messages 0.676933 PMM 254 W18X35 Beam No Messages 0.559561 PMM 255 W18X35 Beam No Messages 0.674797 PMM 256 W18X40 Beam No Messages 0.763730 PMM 257 W18X46 Beam No Messages 0.840123 PMM 258 W18X35 Beam No Messages 0.566541 PMM 259 W18X35 Beam No Messages 0.681131 PMM 260 W18X35 Beam No Messages 0.559102 PMM 261 W18X35 Beam No Messages 0.668821 PMM 262 W18X40 Beam No Messages 0.843479 PMM 263 W18X46 Beam No Messages 0.906161 PMM 264 W18X35 Beam No Messages 0.572127 PMM 265 W18X35 Beam No Messages 0.689111 PMM 266 W18X35 Beam No Messages 0.557922 PMM 267 W18X35 Beam No Messages 0.683262 PMM 268 W18X40 Beam No Messages 0.913724 PMM 269 W18X50 Beam No Messages 0.683639 PMM 270 W18X35 Beam No Messages 0.586659 PMM 271 W18X35 Beam No Messages 0.696398 PMM 272 W18X35 Beam No Messages 0.557323 PMM 273 W18X35 Beam No Messages 0.690858 PMM 274 W18X46 Beam No Messages 0.858207 PMM 275 W18X50 Beam No Messages 0.708568 PMM 276 W18X35 Beam No Messages 0.603977 PMM 277 W18X35 Beam No Messages 0.702756 PMM 278 W18X35 Beam No Messages 0.555886 PMM 279 W18X35 Beam No Messages 0.707348 PMM 280 W18X46 Beam No Messages 0.960355 PMM 281 W18X50 Beam No Messages 0.770955 PMM 282 W18X35 Beam No Messages 0.626291 PMM 283 W18X35 Beam No Messages 0.710509 PMM 284 W18X35 Beam No Messages 0.556008 PMM 285 W18X35 Beam No Messages 0.732657 PMM 286 W18X50 Beam No Messages 0.872001 PMM 287 W24X68 Beam No Messages 0.774777 PMM 288 W18X35 Beam No Messages 0.653685 PMM 289 W18X35 Beam No Messages 0.715305 PMM 290 W18X35 Beam No Messages 0.555213 PMM 291 W18X35 Beam No Messages 0.669320 PMM 292 W24X68 Beam No Messages 0.776829 PMM 293 W24X68 Beam No Messages 0.844457 PMM 294 W18X35 Beam No Messages 0.674567 PMM 295 W18X35 Beam No Messages 0.715550 PMM 296 W18X35 Beam No Messages 0.554088 PMM 297 W18X35 Beam No Messages 0.696952 PMM 298 W24X68 Beam No Messages 0.842258 PMM

PAGE 214

! 207 20 Story MRF.sdb SAP2000 v17.3.0 20 Story MRF 27 March 2016 Computers and Structures, Inc. Page 13 of 33 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 299 W24X68 Beam No Messages 0.857601 PMM 300 W18X35 Beam No Messages 0.700401 PMM 301 W18X35 Beam No Messages 0.713531 PMM 302 W18X35 Beam No Messages 0.555020 PMM 303 W18X35 Beam No Messages 0.753353 PMM 304 W24X68 Beam No Messages 0.857735 PMM 305 W24X68 Beam No Messages 0.902457 PMM 306 W18X35 Beam No Messages 0.722861 PMM 307 W18X35 Beam No Messages 0.712002 PMM 308 W18X35 Beam No Messages 0.556066 PMM 309 W18X35 Beam No Messages 0.799038 PMM 310 W24X68 Beam No Messages 0.901543 PMM 311 W24X76 Beam No Messages 0.889635 PMM 312 W18X35 Beam No Messages 0.747419 PMM 313 W18X35 Beam No Messages 0.712212 PMM 314 W18X35 Beam No Messages 0.559269 PMM 315 W18X35 Beam No Messages 0.790387 PMM 316 W24X76 Beam No Messages 0.889760 PMM 317 W24X76 Beam No Messages 0.911549 PMM 318 W18X35 Beam No Messages 0.769425 PMM 319 W18X35 Beam No Messages 0.711242 PMM 320 W18X35 Beam No Messages 0.560408 PMM 321 W18X35 Beam No Messages 0.849769 PMM 322 W24X76 Beam No Messages 0.911225 PMM 323 W24X84 Beam No Messages 0.923672 PMM 324 W18X35 Beam No Messages 0.793502 PMM 325 W18X35 Beam No Messages 0.711759 PMM 326 W18X35 Beam No Messages 0.569312 PMM 327 W18X35 Beam No Messages 0.923942 PMM 328 W24X84 Beam No Messages 0.923457 PMM 329 W30X90 Beam No Messages 0.968037 PMM 330 W18X35 Beam No Messages 0.813173 PMM 331 W18X35 Beam No Messages 0.720718 PMM 332 W18X35 Beam No Messages 0.570892 PMM 333 W18X35 Beam No Messages 0.769100 PMM 334 W30X90 Beam No Messages 0.968012 PMM 335 W30X99 Beam No Messages 0.914738 PMM 336 W18X35 Beam No Messages 0.831416 PMM 337 W18X35 Beam No Messages 0.732548 PMM 338 W18X35 Beam No Messages 0.579768 PMM 339 W18X35 Beam No Messages 0.820682 PMM 340 W30X99 Beam No Messages 0.914938 PMM 341 W30X99 Beam No Messages 0.981584 PMM 342 W18X35 Beam No Messages 0.843234 PMM 343 W18X35 Beam No Messages 0.751082 PMM 344 W18X35 Beam No Messages 0.594370 PMM 345 W18X35 Beam No Messages 0.822069 PMM 346 W30X99 Beam No Messages 0.981679 PMM 347 W24X68 Beam No Messages 0.882768 PMM 348 W18X35 Beam No Messages 0.716287 PMM 349 W18X35 Beam No Messages 0.686240 PMM 350 W18X35 Beam No Messages 0.487567 PMM 351 W18X35 Beam No Messages 0.717397 PMM 352 W24X68 Beam No Messages 0.882916 PMM 20 Story MRF.sdb SAP2000 v17.3.0 20 Story MRF 27 March 2016 Computers and Structures, Inc. Page 14 of 33 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 353 W14X68 Column No Messages 0.892368 PMM 354 W14X61 Column No Messages 0.871682 PMM 355 W14X53 Column No Messages 0.982181 PMM 356 W14X53 Column No Messages 0.922838 PMM 357 W14X43 Column No Messages 0.955540 PMM 358 W14X43 Column No Messages 0.763810 PMM 359 W14X34 Column No Messages 0.938699 PMM 360 W14X30 Column No Messages 0.654993 PMM 361 W14X311 Column No Messages 0.976380 PMM 362 W14X283 Column No Messages 0.960565 PMM 363 W14X233 Column No Messages 0.949787 PMM 364 W14X211 Column No Messages 0.943954 PMM 365 W14X176 Column No Messages 0.939289 PMM 367 W14X145 Column No Messages 0.899817 PMM 368 W14X99 Column No Messages 0.960934 PMM 369 W14X82 Column No Messages 0.993818 PMM 370 W14X311 Column No Messages 0.970035 PMM 371 W14X283 Column No Messages 0.954259 PMM 372 W14X233 Column No Messages 0.995120 PMM 373 W14X211 Column No Messages 0.925108 PMM 374 W14X159 Column No Messages 0.995342 PMM 375 W14X132 Column No Messages 0.926982 PMM 376 W14X90 Column No Messages 0.953824 PMM 377 W14X82 Column No Messages 0.954063 PMM 378 W14X68 Column No Messages 0.897217 PMM 379 W14X61 Column No Messages 0.876600 PMM 380 W14X53 Column No Messages 0.990968 PMM 381 W14X53 Column No Messages 0.932016 PMM 382 W14X43 Column No Messages 0.967231 PMM 383 W14X43 Column No Messages 0.780994 PMM 384 W14X34 Column No Messages 0.968962 PMM 385 W14X30 Column No Messages 0.679518 PMM 386 W18X35 Beam No Messages 0.241472 PMM 387 W18X35 Beam No Messages 0.251838 PMM 388 W18X35 Beam No Messages 0.216821 PMM 389 W18X35 Beam No Messages 0.251009 PMM 390 W18X35 Beam No Messages 0.244412 PMM 391 W18X35 Beam No Messages 0.262224 PMM 392 W18X35 Beam No Messages 0.271339 PMM 393 W18X35 Beam No Messages 0.156775 PMM 394 W18X35 Beam No Messages 0.269650 PMM 395 W18X35 Beam No Messages 0.266005 PMM 396 W18X35 Beam No Messages 0.303972 PMM 397 W18X35 Beam No Messages 0.290740 PMM 398 W18X35 Beam No Messages 0.155574 PMM 399 W18X35 Beam No Messages 0.288250 PMM 400 W18X35 Beam No Messages 0.308553 PMM 401 W18X35 Beam No Messages 0.326670 PMM 402 W18X35 Beam No Messages 0.310279 PMM 403 W18X35 Beam No Messages 0.157033 PMM 404 W18X35 Beam No Messages 0.306541 PMM 405 W18X35 Beam No Messages 0.332468 PMM 406 W18X35 Beam No Messages 0.362572 PMM 407 W18X35 Beam No Messages 0.326108 PMM

PAGE 215

! 208 20 Story MRF.sdb SAP2000 v17.3.0 20 Story MRF 27 March 2016 Computers and Structures, Inc. Page 15 of 33 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 408 W18X35 Beam No Messages 0.156560 PMM 409 W18X35 Beam No Messages 0.328886 PMM 410 W18X35 Beam No Messages 0.364746 PMM 411 W18X35 Beam No Messages 0.376829 PMM 412 W18X35 Beam No Messages 0.351377 PMM 413 W18X35 Beam No Messages 0.152477 PMM 414 W18X35 Beam No Messages 0.353853 PMM 415 W18X35 Beam No Messages 0.379899 PMM 416 W18X35 Beam No Messages 0.401012 PMM 417 W18X35 Beam No Messages 0.376140 PMM 418 W18X35 Beam No Messages 0.152299 PMM 419 W18X35 Beam No Messages 0.377500 PMM 420 W18X35 Beam No Messages 0.404774 PMM 421 W18X35 Beam No Messages 0.416265 PMM 422 W18X35 Beam No Messages 0.402216 PMM 423 W18X35 Beam No Messages 0.149814 PMM 424 W18X35 Beam No Messages 0.400929 PMM 425 W18X35 Beam No Messages 0.420562 PMM 426 W18X35 Beam No Messages 0.436704 PMM 427 W18X35 Beam No Messages 0.436213 PMM 428 W18X35 Beam No Messages 0.150983 PMM 429 W18X35 Beam No Messages 0.433105 PMM 430 W18X35 Beam No Messages 0.441551 PMM 431 W18X35 Beam No Messages 0.448060 PMM 432 W18X35 Beam No Messages 0.464281 PMM 433 W18X35 Beam No Messages 0.151253 PMM 434 W18X35 Beam No Messages 0.459260 PMM 435 W18X35 Beam No Messages 0.453634 PMM 436 W18X35 Beam No Messages 0.449153 PMM 437 W18X35 Beam No Messages 0.468974 PMM 438 W18X35 Beam No Messages 0.151363 PMM 439 W18X35 Beam No Messages 0.467688 PMM 440 W18X35 Beam No Messages 0.454504 PMM 441 W18X35 Beam No Messages 0.452156 PMM 442 W18X35 Beam No Messages 0.490296 PMM 443 W18X35 Beam No Messages 0.152585 PMM 444 W18X35 Beam No Messages 0.494218 PMM 445 W18X35 Beam No Messages 0.456399 PMM 446 W18X35 Beam No Messages 0.475396 PMM 447 W18X35 Beam No Messages 0.510909 PMM 448 W18X35 Beam No Messages 0.152603 PMM 449 W18X35 Beam No Messages 0.519259 PMM 450 W18X35 Beam No Messages 0.478841 PMM 451 W18X35 Beam No Messages 0.468658 PMM 452 W18X35 Beam No Messages 0.522001 PMM 453 W18X35 Beam No Messages 0.156147 PMM 454 W18X35 Beam No Messages 0.531662 PMM 455 W18X35 Beam No Messages 0.471674 PMM 456 W18X35 Beam No Messages 0.498456 PMM 457 W18X35 Beam No Messages 0.542517 PMM 458 W18X35 Beam No Messages 0.155624 PMM 459 W18X35 Beam No Messages 0.555515 PMM 460 W18X35 Beam No Messages 0.500945 PMM 461 W18X35 Beam No Messages 0.476156 PMM 20 Story MRF.sdb SAP2000 v17.3.0 20 Story MRF 27 March 2016 Computers and Structures, Inc. Page 16 of 33 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 462 W18X35 Beam No Messages 0.558978 PMM 463 W18X35 Beam No Messages 0.157972 PMM 464 W18X35 Beam No Messages 0.581243 PMM 465 W18X35 Beam No Messages 0.478335 PMM 466 W18X35 Beam No Messages 0.524777 PMM 467 W18X35 Beam No Messages 0.549576 PMM 468 W18X35 Beam No Messages 0.164241 PMM 469 W18X35 Beam No Messages 0.576093 PMM 470 W18X35 Beam No Messages 0.536782 PMM 471 W18X35 Beam No Messages 0.471170 PMM 472 W18X35 Beam No Messages 0.479257 PMM 473 W18X35 Beam No Messages 0.163901 PMM 474 W18X35 Beam No Messages 0.472293 PMM 475 W18X35 Beam No Messages 0.483058 PMM 476 W18X35 Beam No Messages 0.578842 PMM 477 W18X35 Beam No Messages 0.582520 PMM 478 W18X35 Beam No Messages 0.162415 PMM 479 W18X35 Beam No Messages 0.615279 PMM 480 W18X35 Beam No Messages 0.593004 PMM 481 W18X35 Beam No Messages 0.500804 PMM 482 W18X35 Beam No Messages 0.518818 PMM 483 W18X35 Beam No Messages 0.301421 PMM 484 W18X35 Beam No Messages 0.557523 PMM 485 W18X35 Beam No Messages 0.516002 PMM 486 W14X68 Column No Messages 0.892051 PMM 487 W14X61 Column No Messages 0.871669 PMM 488 W14X53 Column No Messages 0.982555 PMM 489 W14X53 Column No Messages 0.923269 PMM 490 W14X43 Column No Messages 0.955840 PMM 491 W14X43 Column No Messages 0.763945 PMM 492 W14X34 Column No Messages 0.938744 PMM 493 W14X30 Column No Messages 0.654946 PMM 494 W14X311 Column No Messages 0.976496 PMM 495 W14X283 Column No Messages 0.960588 PMM 496 W14X233 Column No Messages 0.950217 PMM 497 W14X211 Column No Messages 0.944354 PMM 498 W14X176 Column No Messages 0.939570 PMM 499 W14X145 Column No Messages 0.900068 PMM 500 W14X99 Column No Messages 0.961534 PMM 501 W14X82 Column No Messages 0.994629 PMM 502 W14X311 Column No Messages 0.970123 PMM 503 W14X283 Column No Messages 0.954319 PMM 504 W14X233 Column No Messages 0.995412 PMM 505 W14X211 Column No Messages 0.925534 PMM 506 W14X159 Column No Messages 0.995669 PMM 507 W14X132 Column No Messages 0.927251 PMM 508 W14X90 Column No Messages 0.954230 PMM 509 W14X82 Column No Messages 0.955045 PMM 510 W14X68 Column No Messages 0.897490 PMM 511 W14X61 Column No Messages 0.876589 PMM 512 W14X53 Column No Messages 0.990607 PMM 513 W14X53 Column No Messages 0.931551 PMM 514 W14X43 Column No Messages 0.966791 PMM 515 W14X43 Column No Messages 0.780697 PMM

PAGE 216

! 209 20 Story MRF.sdb SAP2000 v17.3.0 20 Story MRF 27 March 2016 Computers and Structures, Inc. Page 17 of 33 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 516 W14X34 Column No Messages 0.968568 PMM 517 W14X30 Column No Messages 0.679255 PMM 518 W18X35 Beam No Messages 0.243316 PMM 519 W18X35 Beam No Messages 0.251941 PMM 520 W18X35 Beam No Messages 0.214722 PMM 521 W18X35 Beam No Messages 0.250718 PMM 522 W18X35 Beam No Messages 0.242604 PMM 523 W18X35 Beam No Messages 0.264084 PMM 524 W18X35 Beam No Messages 0.271400 PMM 525 W18X35 Beam No Messages 0.156756 PMM 526 W18X35 Beam No Messages 0.269453 PMM 527 W18X35 Beam No Messages 0.264250 PMM 528 W18X35 Beam No Messages 0.305705 PMM 529 W18X35 Beam No Messages 0.290731 PMM 530 W18X35 Beam No Messages 0.155534 PMM 531 W18X35 Beam No Messages 0.288072 PMM 532 W18X35 Beam No Messages 0.306857 PMM 533 W18X35 Beam No Messages 0.328376 PMM 534 W18X35 Beam No Messages 0.310303 PMM 535 W18X35 Beam No Messages 0.155611 PMM 536 W18X35 Beam No Messages 0.306398 PMM 537 W18X35 Beam No Messages 0.330926 PMM 538 W18X35 Beam No Messages 0.364090 PMM 539 W18X35 Beam No Messages 0.326108 PMM 540 W18X35 Beam No Messages 0.157279 PMM 541 W18X35 Beam No Messages 0.328714 PMM 542 W18X35 Beam No Messages 0.363274 PMM 543 W18X35 Beam No Messages 0.378236 PMM 544 W18X35 Beam No Messages 0.351362 PMM 545 W18X35 Beam No Messages 0.153730 PMM 546 W18X35 Beam No Messages 0.353668 PMM 547 W18X35 Beam No Messages 0.378645 PMM 548 W18X35 Beam No Messages 0.402116 PMM 549 W18X35 Beam No Messages 0.376126 PMM 550 W18X35 Beam No Messages 0.153302 PMM 551 W18X35 Beam No Messages 0.377309 PMM 552 W18X35 Beam No Messages 0.403768 PMM 553 W18X35 Beam No Messages 0.417198 PMM 554 W18X35 Beam No Messages 0.401870 PMM 555 W18X35 Beam No Messages 0.149853 PMM 556 W18X35 Beam No Messages 0.401066 PMM 557 W18X35 Beam No Messages 0.419635 PMM 558 W18X35 Beam No Messages 0.437365 PMM 559 W18X35 Beam No Messages 0.435992 PMM 560 W18X35 Beam No Messages 0.150992 PMM 561 W18X35 Beam No Messages 0.433233 PMM 562 W18X35 Beam No Messages 0.440692 PMM 563 W18X35 Beam No Messages 0.448553 PMM 564 W18X35 Beam No Messages 0.464078 PMM 565 W18X35 Beam No Messages 0.151270 PMM 566 W18X35 Beam No Messages 0.459364 PMM 567 W18X35 Beam No Messages 0.452746 PMM 568 W18X35 Beam No Messages 0.449535 PMM 569 W18X35 Beam No Messages 0.468897 PMM 20 Story MRF.sdb SAP2000 v17.3.0 20 Story MRF 27 March 2016 Computers and Structures, Inc. Page 18 of 33 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 570 W18X35 Beam No Messages 0.151411 PMM 571 W18X35 Beam No Messages 0.467443 PMM 572 W18X35 Beam No Messages 0.453915 PMM 573 W18X35 Beam No Messages 0.452333 PMM 574 W18X35 Beam No Messages 0.490218 PMM 575 W18X35 Beam No Messages 0.152614 PMM 576 W18X35 Beam No Messages 0.493981 PMM 577 W18X35 Beam No Messages 0.455934 PMM 578 W18X35 Beam No Messages 0.475452 PMM 579 W18X35 Beam No Messages 0.510813 PMM 580 W18X35 Beam No Messages 0.152643 PMM 581 W18X35 Beam No Messages 0.519002 PMM 582 W18X35 Beam No Messages 0.478517 PMM 583 W18X35 Beam No Messages 0.468614 PMM 584 W18X35 Beam No Messages 0.521879 PMM 585 W18X35 Beam No Messages 0.156191 PMM 586 W18X35 Beam No Messages 0.531360 PMM 587 W18X35 Beam No Messages 0.471437 PMM 588 W18X35 Beam No Messages 0.498356 PMM 589 W18X35 Beam No Messages 0.542370 PMM 590 W18X35 Beam No Messages 0.155653 PMM 591 W18X35 Beam No Messages 0.555211 PMM 592 W18X35 Beam No Messages 0.500810 PMM 593 W18X35 Beam No Messages 0.476029 PMM 594 W18X35 Beam No Messages 0.559014 PMM 595 W18X35 Beam No Messages 0.157998 PMM 596 W18X35 Beam No Messages 0.580936 PMM 597 W18X35 Beam No Messages 0.478177 PMM 598 W18X35 Beam No Messages 0.524603 PMM 599 W18X35 Beam No Messages 0.549439 PMM 600 W18X35 Beam No Messages 0.164308 PMM 601 W18X35 Beam No Messages 0.575623 PMM 602 W18X35 Beam No Messages 0.536514 PMM 603 W18X35 Beam No Messages 0.470874 PMM 604 W18X35 Beam No Messages 0.475793 PMM 605 W18X35 Beam No Messages 0.163975 PMM 606 W18X35 Beam No Messages 0.465851 PMM 607 W18X35 Beam No Messages 0.482892 PMM 608 W18X35 Beam No Messages 0.578505 PMM 609 W18X35 Beam No Messages 0.582159 PMM 610 W18X35 Beam No Messages 0.162499 PMM 611 W18X35 Beam No Messages 0.614892 PMM 612 W18X35 Beam No Messages 0.592881 PMM 613 W18X35 Beam No Messages 0.500513 PMM 614 W18X35 Beam No Messages 0.518373 PMM 615 W18X35 Beam No Messages 0.300689 PMM 616 W18X35 Beam No Messages 0.557045 PMM 617 W18X35 Beam No Messages 0.515883 PMM 618 W14X665 Column No Messages 0.904913 PMM 619 W14X550 Column No Messages 0.966332 PMM 620 W14X455 Column No Messages 0.985740 PMM 621 W14X370 Column No Messages 0.986949 PMM 622 W14X283 Column No Messages 0.997974 PMM 623 W14X211 Column No Messages 0.943728 PMM

PAGE 217

! 210 20 Story MRF.sdb SAP2000 v17.3.0 20 Story MRF 27 March 2016 Computers and Structures, Inc. Page 19 of 33 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 624 W14X120 Column No Messages 0.971238 PMM 625 W14X74 Column No Messages 0.937059 PMM 626 W14X665 Column No Messages 0.904890 PMM 627 W14X550 Column No Messages 0.966315 PMM 628 W14X455 Column No Messages 0.985708 PMM 629 W14X370 Column No Messages 0.987115 PMM 630 W14X283 Column No Messages 0.998037 PMM 631 W14X211 Column No Messages 0.943674 PMM 632 W14X120 Column No Messages 0.971378 PMM 633 W14X74 Column No Messages 0.937093 PMM 634 W14X665 Column No Messages 0.905017 PMM 635 W14X550 Column No Messages 0.966455 PMM 636 W14X455 Column No Messages 0.985877 PMM 637 W14X370 Column No Messages 0.987099 PMM 638 W14X283 Column No Messages 0.998170 PMM 639 W14X211 Column No Messages 0.943630 PMM 640 W14X120 Column No Messages 0.970676 PMM 641 W14X74 Column No Messages 0.935856 PMM 642 W14X665 Column No Messages 0.905009 PMM 643 W14X550 Column No Messages 0.966434 PMM 644 W14X455 Column No Messages 0.985876 PMM 645 W14X370 Column No Messages 0.987281 PMM 646 W14X283 Column No Messages 0.998253 PMM 647 W14X211 Column No Messages 0.943598 PMM 648 W14X120 Column No Messages 0.970763 PMM 649 W14X74 Column No Messages 0.935780 PMM 650 W24X131 Beam No Messages 0.891911 PMM 651 W24X131 Beam No Messages 0.889843 PMM 652 W24X131 Beam No Messages 0.891934 PMM 653 W24X131 Beam No Messages 0.891959 PMM 654 W24X131 Beam No Messages 0.889844 PMM 655 W24X131 Beam No Messages 0.891924 PMM 656 W18X60 Beam No Messages 0.992827 PMM 657 W18X35 Beam No Messages 0.427140 PMM 658 W18X60 Beam No Messages 0.992823 PMM 659 W18X60 Beam No Messages 0.984981 PMM 660 W18X35 Beam No Messages 0.426001 PMM 661 W18X60 Beam No Messages 0.984996 PMM 662 W18X60 Beam No Messages 0.985355 PMM 663 W18X35 Beam No Messages 0.425561 PMM 664 W18X60 Beam No Messages 0.985358 PMM 665 W18X60 Beam No Messages 0.984994 PMM 666 W18X35 Beam No Messages 0.426002 PMM 667 W18X60 Beam No Messages 0.984984 PMM 668 W18X60 Beam No Messages 0.992823 PMM 669 W18X35 Beam No Messages 0.427139 PMM 670 W18X60 Beam No Messages 0.992826 PMM 672 W18X60 Beam No Messages 0.992522 PMM 673 W18X35 Beam No Messages 0.431148 PMM 674 W18X60 Beam No Messages 0.992529 PMM 675 W18X60 Beam No Messages 0.992540 PMM 676 W18X35 Beam No Messages 0.426467 PMM 677 W18X60 Beam No Messages 0.992537 PMM 678 W18X60 Beam No Messages 0.985043 PMM 20 Story MRF.sdb SAP2000 v17.3.0 20 Story MRF 27 March 2016 Computers and Structures, Inc. Page 20 of 33 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 679 W18X35 Beam No Messages 0.425485 PMM 680 W18X60 Beam No Messages 0.985051 PMM 681 W18X60 Beam No Messages 0.985048 PMM 682 W18X35 Beam No Messages 0.425486 PMM 683 W18X60 Beam No Messages 0.985045 PMM 684 W18X60 Beam No Messages 0.992537 PMM 685 W18X35 Beam No Messages 0.426468 PMM 686 W18X60 Beam No Messages 0.992539 PMM 687 W18X60 Beam No Messages 0.992529 PMM 688 W18X35 Beam No Messages 0.431142 PMM 689 W18X60 Beam No Messages 0.992521 PMM 690 W24X131 Beam No Messages 0.889892 PMM 691 W24X131 Beam No Messages 0.888811 PMM 692 W24X131 Beam No Messages 0.889884 PMM 693 W24X131 Beam No Messages 0.889940 PMM 694 W24X131 Beam No Messages 0.888811 PMM 695 W24X131 Beam No Messages 0.889906 PMM 696 W18X60 Beam No Messages 0.992788 PMM 697 W18X35 Beam No Messages 0.427125 PMM 698 W18X60 Beam No Messages 0.992786 PMM 699 W18X60 Beam No Messages 0.992449 PMM 700 W18X35 Beam No Messages 0.426187 PMM 701 W18X60 Beam No Messages 0.992448 PMM 702 W18X60 Beam No Messages 0.985049 PMM 703 W18X35 Beam No Messages 0.425836 PMM 704 W18X60 Beam No Messages 0.985051 PMM 705 W18X60 Beam No Messages 0.992448 PMM 706 W18X35 Beam No Messages 0.426185 PMM 707 W18X60 Beam No Messages 0.992449 PMM 708 W18X60 Beam No Messages 0.992786 PMM 709 W18X35 Beam No Messages 0.427126 PMM 710 W18X60 Beam No Messages 0.992788 PMM 711 W18X60 Beam No Messages 0.992492 PMM 712 W18X35 Beam No Messages 0.430385 PMM 713 W18X60 Beam No Messages 0.992496 PMM 714 W18X60 Beam No Messages 0.992581 PMM 715 W18X35 Beam No Messages 0.426560 PMM 716 W18X60 Beam No Messages 0.992579 PMM 717 W18X60 Beam No Messages 0.992444 PMM 718 W18X35 Beam No Messages 0.425715 PMM 719 W18X60 Beam No Messages 0.992443 PMM 720 W18X60 Beam No Messages 0.992443 PMM 721 W18X35 Beam No Messages 0.425714 PMM 722 W18X60 Beam No Messages 0.992443 PMM 723 W18X60 Beam No Messages 0.992579 PMM 724 W18X35 Beam No Messages 0.426558 PMM 725 W18X60 Beam No Messages 0.992581 PMM 726 W18X60 Beam No Messages 0.992496 PMM 727 W18X35 Beam No Messages 0.430390 PMM 728 W18X60 Beam No Messages 0.992492 PMM 729 W24X131 Beam No Messages 0.890211 PMM 730 W24X131 Beam No Messages 0.888735 PMM 731 W24X131 Beam No Messages 0.890005 PMM 732 W24X131 Beam No Messages 0.890257 PMM

PAGE 218

! 211 20 Story MRF.sdb SAP2000 v17.3.0 20 Story MRF 27 March 2016 Computers and Structures, Inc. Page 21 of 33 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 733 W24X131 Beam No Messages 0.888734 PMM 734 W24X131 Beam No Messages 0.890055 PMM 735 W18X60 Beam No Messages 0.992745 PMM 736 W18X35 Beam No Messages 0.426920 PMM 737 W18X60 Beam No Messages 0.992743 PMM 738 W18X60 Beam No Messages 0.992436 PMM 739 W18X35 Beam No Messages 0.426093 PMM 740 W18X60 Beam No Messages 0.992435 PMM 741 W18X60 Beam No Messages 0.985041 PMM 742 W18X35 Beam No Messages 0.425774 PMM 743 W18X60 Beam No Messages 0.985045 PMM 744 W18X60 Beam No Messages 0.992436 PMM 745 W18X35 Beam No Messages 0.426093 PMM 746 W18X60 Beam No Messages 0.992435 PMM 747 W18X60 Beam No Messages 0.992744 PMM 748 W18X35 Beam No Messages 0.426922 PMM 749 W18X60 Beam No Messages 0.992744 PMM 750 W18X60 Beam No Messages 0.992479 PMM 751 W18X35 Beam No Messages 0.429872 PMM 752 W18X60 Beam No Messages 0.992479 PMM 753 W18X60 Beam No Messages 0.992552 PMM 754 W18X35 Beam No Messages 0.426431 PMM 755 W18X60 Beam No Messages 0.992551 PMM 756 W18X60 Beam No Messages 0.992430 PMM 757 W18X35 Beam No Messages 0.425681 PMM 758 W18X60 Beam No Messages 0.992429 PMM 759 W18X60 Beam No Messages 0.992430 PMM 760 W18X35 Beam No Messages 0.425681 PMM 761 W18X60 Beam No Messages 0.992430 PMM 762 W18X60 Beam No Messages 0.992551 PMM 763 W18X35 Beam No Messages 0.426432 PMM 764 W18X60 Beam No Messages 0.992551 PMM 765 W18X60 Beam No Messages 0.992478 PMM 766 W18X35 Beam No Messages 0.429875 PMM 767 W18X60 Beam No Messages 0.992476 PMM 768 W24X131 Beam No Messages 0.890166 PMM 769 W24X131 Beam No Messages 0.888778 PMM 770 W24X131 Beam No Messages 0.890106 PMM 771 W24X131 Beam No Messages 0.890216 PMM 772 W24X131 Beam No Messages 0.888762 PMM 773 W24X131 Beam No Messages 0.890173 PMM 774 W18X60 Beam No Messages 0.992753 PMM 775 W18X35 Beam No Messages 0.426947 PMM 776 W18X60 Beam No Messages 0.992759 PMM 777 W18X60 Beam No Messages 0.992431 PMM 778 W18X35 Beam No Messages 0.426075 PMM 779 W18X60 Beam No Messages 0.992434 PMM 780 W18X60 Beam No Messages 0.985082 PMM 781 W18X35 Beam No Messages 0.425747 PMM 782 W18X60 Beam No Messages 0.985075 PMM 783 W18X60 Beam No Messages 0.992432 PMM 784 W18X35 Beam No Messages 0.426075 PMM 785 W18X60 Beam No Messages 0.992434 PMM 786 W18X60 Beam No Messages 0.992753 PMM 20 Story MRF.sdb SAP2000 v17.3.0 20 Story MRF 27 March 2016 Computers and Structures, Inc. Page 22 of 33 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 787 W18X35 Beam No Messages 0.426949 PMM 788 W18X60 Beam No Messages 0.992758 PMM 789 W18X60 Beam No Messages 0.992493 PMM 790 W18X35 Beam No Messages 0.430013 PMM 791 W18X60 Beam No Messages 0.992500 PMM 792 W18X60 Beam No Messages 0.992552 PMM 793 W18X35 Beam No Messages 0.426426 PMM 794 W18X60 Beam No Messages 0.992555 PMM 795 W18X60 Beam No Messages 0.992426 PMM 796 W18X35 Beam No Messages 0.425648 PMM 797 W18X60 Beam No Messages 0.992427 PMM 798 W18X60 Beam No Messages 0.992426 PMM 799 W18X35 Beam No Messages 0.425649 PMM 800 W18X60 Beam No Messages 0.992427 PMM 801 W18X60 Beam No Messages 0.992552 PMM 802 W18X35 Beam No Messages 0.426427 PMM 803 W18X60 Beam No Messages 0.992555 PMM 804 W18X60 Beam No Messages 0.992492 PMM 805 W18X35 Beam No Messages 0.430012 PMM 806 W18X60 Beam No Messages 0.992499 PMM 807 W24X131 Beam No Messages 0.890340 PMM 808 W24X131 Beam No Messages 0.888743 PMM 809 W24X131 Beam No Messages 0.890208 PMM 810 W24X131 Beam No Messages 0.890545 PMM 811 W24X131 Beam No Messages 0.888749 PMM 812 W24X131 Beam No Messages 0.890434 PMM 813 W18X60 Beam No Messages 0.992733 PMM 814 W18X35 Beam No Messages 0.426868 PMM 815 W18X60 Beam No Messages 0.992723 PMM 816 W18X60 Beam No Messages 0.992442 PMM 817 W18X35 Beam No Messages 0.426097 PMM 818 W18X60 Beam No Messages 0.992438 PMM 819 W18X60 Beam No Messages 0.984996 PMM 820 W18X35 Beam No Messages 0.425791 PMM 821 W18X60 Beam No Messages 0.985014 PMM 822 W18X60 Beam No Messages 0.992442 PMM 823 W18X35 Beam No Messages 0.426095 PMM 824 W18X60 Beam No Messages 0.992437 PMM 825 W18X60 Beam No Messages 0.992735 PMM 826 W18X35 Beam No Messages 0.426876 PMM 827 W18X60 Beam No Messages 0.992723 PMM 828 W18X60 Beam No Messages 0.992475 PMM 829 W18X35 Beam No Messages 0.429638 PMM 830 W18X60 Beam No Messages 0.992464 PMM 831 W18X60 Beam No Messages 0.992551 PMM 832 W18X35 Beam No Messages 0.426419 PMM 833 W18X60 Beam No Messages 0.992545 PMM 834 W18X60 Beam No Messages 0.992436 PMM 835 W18X35 Beam No Messages 0.425702 PMM 836 W18X60 Beam No Messages 0.992433 PMM 837 W18X60 Beam No Messages 0.992437 PMM 838 W18X35 Beam No Messages 0.425700 PMM 839 W18X60 Beam No Messages 0.992433 PMM 840 W18X60 Beam No Messages 0.992553 PMM

PAGE 219

! 212 20 Story MRF.sdb SAP2000 v17.3.0 20 Story MRF 27 March 2016 Computers and Structures, Inc. Page 23 of 33 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 841 W18X35 Beam No Messages 0.426417 PMM 842 W18X60 Beam No Messages 0.992545 PMM 843 W18X60 Beam No Messages 0.992473 PMM 844 W18X35 Beam No Messages 0.429657 PMM 845 W18X60 Beam No Messages 0.992464 PMM 846 W24X131 Beam No Messages 0.890978 PMM 847 W24X131 Beam No Messages 0.888979 PMM 848 W24X131 Beam No Messages 0.890841 PMM 849 W24X131 Beam No Messages 0.890754 PMM 850 W24X131 Beam No Messages 0.888955 PMM 851 W24X131 Beam No Messages 0.890643 PMM 852 W18X60 Beam No Messages 0.992723 PMM 853 W18X35 Beam No Messages 0.426802 PMM 854 W18X60 Beam No Messages 0.992730 PMM 855 W18X60 Beam No Messages 0.992427 PMM 856 W18X35 Beam No Messages 0.426006 PMM 857 W18X60 Beam No Messages 0.992430 PMM 858 W18X60 Beam No Messages 0.985068 PMM 859 W18X35 Beam No Messages 0.425709 PMM 860 W18X60 Beam No Messages 0.985060 PMM 861 W18X60 Beam No Messages 0.992428 PMM 862 W18X35 Beam No Messages 0.426008 PMM 863 W18X60 Beam No Messages 0.992430 PMM 864 W18X60 Beam No Messages 0.992724 PMM 865 W18X35 Beam No Messages 0.426808 PMM 866 W18X60 Beam No Messages 0.992729 PMM 867 W18X60 Beam No Messages 0.992498 PMM 868 W18X35 Beam No Messages 0.429599 PMM 869 W18X60 Beam No Messages 0.992503 PMM 870 W18X60 Beam No Messages 0.992538 PMM 871 W18X35 Beam No Messages 0.426327 PMM 872 W18X60 Beam No Messages 0.992542 PMM 873 W18X60 Beam No Messages 0.992422 PMM 874 W18X35 Beam No Messages 0.425620 PMM 875 W18X60 Beam No Messages 0.992424 PMM 876 W18X60 Beam No Messages 0.992423 PMM 877 W18X35 Beam No Messages 0.425621 PMM 878 W18X60 Beam No Messages 0.992424 PMM 879 W18X60 Beam No Messages 0.992539 PMM 880 W18X35 Beam No Messages 0.426330 PMM 881 W18X60 Beam No Messages 0.992542 PMM 882 W18X60 Beam No Messages 0.992495 PMM 883 W18X35 Beam No Messages 0.429610 PMM 884 W18X60 Beam No Messages 0.992502 PMM 885 W24X131 Beam No Messages 0.890645 PMM 886 W24X131 Beam No Messages 0.889132 PMM 887 W24X131 Beam No Messages 0.890646 PMM 888 W24X131 Beam No Messages 0.890560 PMM 889 W24X131 Beam No Messages 0.889120 PMM 890 W24X131 Beam No Messages 0.890585 PMM 891 W18X60 Beam No Messages 0.992694 PMM 892 W18X35 Beam No Messages 0.426784 PMM 893 W18X60 Beam No Messages 0.992694 PMM 894 W18X60 Beam No Messages 0.992438 PMM 20 Story MRF.sdb SAP2000 v17.3.0 20 Story MRF 27 March 2016 Computers and Structures, Inc. Page 24 of 33 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 895 W18X35 Beam No Messages 0.426107 PMM 896 W18X60 Beam No Messages 0.992438 PMM 897 W18X60 Beam No Messages 0.984982 PMM 898 W18X35 Beam No Messages 0.425823 PMM 899 W18X60 Beam No Messages 0.984985 PMM 900 W18X60 Beam No Messages 0.992439 PMM 901 W18X35 Beam No Messages 0.426105 PMM 902 W18X60 Beam No Messages 0.992438 PMM 903 W18X60 Beam No Messages 0.992697 PMM 904 W18X35 Beam No Messages 0.426785 PMM 905 W18X60 Beam No Messages 0.992695 PMM 906 W18X60 Beam No Messages 0.992438 PMM 907 W18X35 Beam No Messages 0.429278 PMM 908 W18X60 Beam No Messages 0.992435 PMM 909 W18X60 Beam No Messages 0.992535 PMM 910 W18X35 Beam No Messages 0.426397 PMM 911 W18X60 Beam No Messages 0.992535 PMM 912 W18X60 Beam No Messages 0.992435 PMM 913 W18X35 Beam No Messages 0.425739 PMM 914 W18X60 Beam No Messages 0.992435 PMM 915 W18X60 Beam No Messages 0.992435 PMM 916 W18X35 Beam No Messages 0.425738 PMM 917 W18X60 Beam No Messages 0.992434 PMM 918 W18X60 Beam No Messages 0.992536 PMM 919 W18X35 Beam No Messages 0.426398 PMM 920 W18X60 Beam No Messages 0.992535 PMM 921 W18X60 Beam No Messages 0.992438 PMM 922 W18X35 Beam No Messages 0.429294 PMM 923 W18X60 Beam No Messages 0.992438 PMM 924 W24X131 Beam No Messages 0.891383 PMM 925 W24X131 Beam No Messages 0.889225 PMM 926 W24X131 Beam No Messages 0.891385 PMM 927 W24X131 Beam No Messages 0.891299 PMM 928 W24X131 Beam No Messages 0.889208 PMM 929 W24X131 Beam No Messages 0.891317 PMM 930 W18X60 Beam Overstressed 1.294152 PMM 931 W18X35 Beam No Messages 0.492912 PMM 932 W18X60 Beam Overstressed 1.294149 PMM 933 W18X60 Beam Overstressed 1.295074 PMM 934 W18X35 Beam No Messages 0.492519 PMM 935 W18X60 Beam Overstressed 1.295073 PMM 936 W18X60 Beam Overstressed 1.295324 PMM 937 W18X35 Beam No Messages 0.492382 PMM 938 W18X60 Beam Overstressed 1.295326 PMM 939 W18X60 Beam Overstressed 1.295070 PMM 940 W18X35 Beam No Messages 0.492522 PMM 941 W18X60 Beam Overstressed 1.295074 PMM 942 W18X60 Beam Overstressed 1.294146 PMM 943 W18X35 Beam No Messages 0.492908 PMM 944 W18X60 Beam Overstressed 1.294149 PMM 945 W18X60 Beam Overstressed 1.294744 PMM 946 W18X35 Beam No Messages 0.494265 PMM 947 W18X60 Beam Overstressed 1.294752 PMM 948 W18X60 Beam Overstressed 1.294729 PMM

PAGE 220

! 213 20 Story MRF.sdb SAP2000 v17.3.0 20 Story MRF 27 March 2016 Computers and Structures, Inc. Page 25 of 33 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 949 W18X35 Beam No Messages 0.492669 PMM 950 W18X60 Beam Overstressed 1.294727 PMM 951 W18X60 Beam Overstressed 1.295092 PMM 952 W18X35 Beam No Messages 0.492339 PMM 953 W18X60 Beam Overstressed 1.295092 PMM 954 W18X60 Beam Overstressed 1.295090 PMM 955 W18X35 Beam No Messages 0.492341 PMM 956 W18X60 Beam Overstressed 1.295092 PMM 957 W18X60 Beam Overstressed 1.294728 PMM 958 W18X35 Beam No Messages 0.492673 PMM 959 W18X60 Beam Overstressed 1.294732 PMM 960 W18X60 Beam Overstressed 1.294741 PMM 961 W18X35 Beam No Messages 0.494260 PMM 962 W18X60 Beam Overstressed 1.294735 PMM 963 W24X131 Beam No Messages 0.891602 PMM 964 W24X131 Beam No Messages 0.889585 PMM 965 W24X131 Beam No Messages 0.891424 PMM 966 W24X131 Beam No Messages 0.891537 PMM 967 W24X131 Beam No Messages 0.889559 PMM 968 W24X131 Beam No Messages 0.891386 PMM 969 W18X60 Beam No Messages 0.992646 PMM 970 W18X35 Beam No Messages 0.426699 PMM 971 W18X60 Beam No Messages 0.992647 PMM 972 W18X60 Beam No Messages 0.992447 PMM 973 W18X35 Beam No Messages 0.426231 PMM 974 W18X60 Beam No Messages 0.992447 PMM 975 W18X60 Beam No Messages 0.984887 PMM 976 W18X35 Beam No Messages 0.425975 PMM 977 W18X60 Beam No Messages 0.984888 PMM 978 W18X60 Beam No Messages 0.992447 PMM 979 W18X35 Beam No Messages 0.426231 PMM 980 W18X60 Beam No Messages 0.992446 PMM 981 W18X60 Beam No Messages 0.992648 PMM 982 W18X35 Beam No Messages 0.426695 PMM 983 W18X60 Beam No Messages 0.992647 PMM 984 W18X60 Beam No Messages 0.985063 PMM 985 W18X35 Beam No Messages 0.428761 PMM 986 W18X60 Beam No Messages 0.985077 PMM 987 W18X60 Beam No Messages 0.992523 PMM 988 W18X35 Beam No Messages 0.426470 PMM 989 W18X60 Beam No Messages 0.992523 PMM 990 W18X60 Beam No Messages 0.992448 PMM 991 W18X35 Beam No Messages 0.425894 PMM 992 W18X60 Beam No Messages 0.992448 PMM 993 W18X60 Beam No Messages 0.992449 PMM 994 W18X35 Beam No Messages 0.425894 PMM 995 W18X60 Beam No Messages 0.992448 PMM 996 W18X60 Beam No Messages 0.992523 PMM 997 W18X35 Beam No Messages 0.426469 PMM 998 W18X60 Beam No Messages 0.992522 PMM 999 W18X60 Beam No Messages 0.985057 PMM 1000 W18X35 Beam No Messages 0.428759 PMM 1001 W18X60 Beam No Messages 0.985045 PMM 1002 W24X131 Beam No Messages 0.890931 PMM 20 Story MRF.sdb SAP2000 v17.3.0 20 S tory MRF 27 March 2016 Computers and Structures, Inc. Page 26 of 33 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 1003 W24X131 Beam No Messages 0.889553 PMM 1004 W24X131 Beam No Messages 0.890954 PMM 1005 W24X131 Beam No Messages 0.890868 PMM 1006 W24X131 Beam No Messages 0.889536 PMM 1007 W24X131 Beam No Messages 0.890928 PMM 1008 W18X60 Beam No Messages 0.992615 PMM 1009 W18X35 Beam No Messages 0.426551 PMM 1010 W18X60 Beam No Messages 0.992616 PMM 1011 W18X60 Beam No Messages 0.992444 PMM 1012 W18X35 Beam No Messages 0.426195 PMM 1013 W18X60 Beam No Messages 0.992444 PMM 1014 W18X60 Beam No Messages 0.992404 PMM 1015 W18X35 Beam No Messages 0.425965 PMM 1016 W18X60 Beam No Messages 0.984866 PMM 1017 W18X60 Beam No Messages 0.992444 PMM 1018 W18X35 Beam No Messages 0.426191 PMM 1019 W18X60 Beam No Messages 0.992443 PMM 1020 W18X60 Beam No Messages 0.992617 PMM 1021 W18X35 Beam No Messages 0.426559 PMM 1022 W18X60 Beam No Messages 0.992616 PMM 1023 W18X60 Beam No Messages 0.985165 PMM 1024 W18X35 Beam No Messages 0.428347 PMM 1025 W18X60 Beam No Messages 0.985176 PMM 1026 W18X60 Beam No Messages 0.992508 PMM 1027 W18X35 Beam No Messages 0.426396 PMM 1028 W18X60 Beam No Messages 0.992509 PMM 1029 W18X60 Beam No Messages 0.992448 PMM 1030 W18X35 Beam No Messages 0.425890 PMM 1031 W18X60 Beam No Messages 0.992448 PMM 1032 W18X60 Beam No Messages 0.992448 PMM 1033 W18X35 Beam No Messages 0.425888 PMM 1034 W18X60 Beam No Messages 0.992447 PMM 1035 W18X60 Beam No Messages 0.992510 PMM 1036 W18X35 Beam No Messages 0.426391 PMM 1037 W18X60 Beam No Messages 0.992509 PMM 1038 W18X60 Beam No Messages 0.985182 PMM 1039 W18X35 Beam No Messages 0.428368 PMM 1040 W18X60 Beam No Messages 0.985163 PMM 1041 W24X131 Beam No Messages 0.892199 PMM 1042 W24X131 Beam No Messages 0.889532 PMM 1043 W24X131 Beam No Messages 0.892206 PMM 1044 W24X131 Beam No Messages 0.892487 PMM 1045 W24X131 Beam No Messages 0.889500 PMM 1046 W24X131 Beam No Messages 0.892493 PMM 1047 W18X60 Beam No Messages 0.992649 PMM 1048 W18X35 Beam No Messages 0.426412 PMM 1049 W18X60 Beam No Messages 0.992651 PMM 1050 W18X60 Beam No Messages 0.992417 PMM 1051 W18X35 Beam No Messages 0.425801 PMM 1052 W18X60 Beam No Messages 0.992418 PMM 1053 W18X60 Beam No Messages 0.985036 PMM 1054 W18X35 Beam No Messages 0.425590 PMM 1055 W18X60 Beam No Messages 0.985037 PMM 1056 W18X60 Beam No Messages 0.992418 PMM

PAGE 221

! 214 20 Story MRF.sdb SAP2000 v17.3.0 20 Story MRF 27 March 2016 Computers and Structures, Inc. Page 27 of 33 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 1057 W18X35 Beam No Messages 0.425803 PMM 1058 W18X60 Beam No Messages 0.992417 PMM 1059 W18X60 Beam No Messages 0.992651 PMM 1060 W18X35 Beam No Messages 0.426413 PMM 1061 W18X60 Beam No Messages 0.992649 PMM 1062 W18X60 Beam No Messages 0.992507 PMM 1063 W18X35 Beam No Messages 0.428564 PMM 1064 W18X60 Beam No Messages 0.992506 PMM 1065 W18X60 Beam No Messages 0.992505 PMM 1066 W18X35 Beam No Messages 0.426028 PMM 1067 W18X60 Beam No Messages 0.992505 PMM 1068 W18X60 Beam No Messages 0.992414 PMM 1069 W18X35 Beam No Messages 0.425517 PMM 1070 W18X60 Beam No Messages 0.992415 PMM 1071 W18X60 Beam No Messages 0.992415 PMM 1072 W18X35 Beam No Messages 0.425518 PMM 1073 W18X60 Beam No Messages 0.992414 PMM 1074 W18X60 Beam No Messages 0.992506 PMM 1075 W18X35 Beam No Messages 0.426031 PMM 1076 W18X60 Beam No Messages 0.992504 PMM 1077 W18X60 Beam No Messages 0.992503 PMM 1078 W18X35 Beam No Messages 0.428563 PMM 1079 W18X60 Beam No Messages 0.992508 PMM 1080 W24X131 Beam No Messages 0.892797 PMM 1081 W24X131 Beam No Messages 0.889535 PMM 1082 W24X131 Beam No Messages 0.892774 PMM 1083 W24X131 Beam No Messages 0.892898 PMM 1084 W24X131 Beam No Messages 0.889499 PMM 1085 W24X131 Beam No Messages 0.892906 PMM 1086 W18X60 Beam No Messages 0.992594 PMM 1087 W18X35 Beam No Messages 0.426359 PMM 1088 W18X60 Beam No Messages 0.992595 PMM 1089 W18X60 Beam No Messages 0.992428 PMM 1090 W18X35 Beam No Messages 0.425938 PMM 1091 W18X60 Beam No Messages 0.992429 PMM 1092 W18X60 Beam No Messages 0.984941 PMM 1093 W18X35 Beam No Messages 0.425757 PMM 1094 W18X60 Beam No Messages 0.984943 PMM 1095 W18X60 Beam No Messages 0.992429 PMM 1096 W18X35 Beam No Messages 0.425938 PMM 1097 W18X60 Beam No Messages 0.992428 PMM 1098 W18X60 Beam No Messages 0.992596 PMM 1099 W18X35 Beam No Messages 0.426359 PMM 1100 W18X60 Beam No Messages 0.992594 PMM 1101 W18X60 Beam No Messages 0.992416 PMM 1102 W18X35 Beam No Messages 0.427993 PMM 1103 W18X60 Beam No Messages 0.992414 PMM 1104 W18X60 Beam No Messages 0.992492 PMM 1105 W18X35 Beam No Messages 0.426120 PMM 1106 W18X60 Beam No Messages 0.992493 PMM 1107 W18X60 Beam No Messages 0.992428 PMM 1108 W18X35 Beam No Messages 0.425691 PMM 1109 W18X60 Beam No Messages 0.992428 PMM 1110 W18X60 Beam No Messages 0.992428 PMM 20 Story MRF.sdb SAP2000 v17.3.0 20 Story MRF 27 March 2016 Computers and Structures, Inc. Page 28 of 33 Table: Steel Design 1 Summary Data AISC 360 10, Part 1 of 2 Frame DesignSect DesignType Status Ratio RatioType 1111 W18X35 Beam No Messages 0.425691 PMM 1112 W18X60 Beam No Messages 0.992427 PMM 1113 W18X60 Beam No Messages 0.992493 PMM 1114 W18X35 Beam No Messages 0.426120 PMM 1115 W18X60 Beam No Messages 0.992492 PMM 1116 W18X60 Beam No Messages 0.992413 PMM 1117 W18X35 Beam No Messages 0.427997 PMM 1118 W18X60 Beam No Messages 0.992418 PMM 1119 W24X131 Beam No Messages 0.893156 PMM 1120 W24X131 Beam No Messages 0.889481 PMM 1121 W24X131 Beam No Messages 0.893150 PMM 1122 W24X131 Beam No Messages 0.893130 PMM 1123 W24X131 Beam No Messages 0.889438 PMM 1124 W24X131 Beam No Messages 0.893145 PMM 1125 W18X60 Beam No Messages 0.992609 PMM 1126 W18X35 Beam No Messages 0.426295 PMM 1127 W18X60 Beam No Messages 0.992609 PMM 1128 W18X60 Beam No Messages 0.992420 PMM 1129 W18X35 Beam No Messages 0.425814 PMM 1130 W18X60 Beam No Messages 0.992421 PMM 1131 W18X60 Beam No Messages 0.984973 PMM 1132 W18X35 Beam No Messages 0.425629 PMM 1133 W18X60 Beam No Messages 0.984975 PMM 1134 W18X60 Beam No Messages 0.992421 PMM 1135 W18X35 Beam No Messages 0.425814 PMM 1136 W18X60 Beam No Messages 0.992420 PMM 1137 W18X60 Beam No Messages 0.992610 PMM 1138 W18X35 Beam No Messages 0.426296 PMM 1139 W18X60 Beam No Messages 0.992608 PMM 1140 W18X60 Beam No Messages 0.992473 PMM 1141 W18X35 Beam No Messages 0.428058 PMM 1142 W18X60 Beam No Messages 0.