Synthesis of azulene bent-core dye manifesting helical nanofilament phase

Material Information

Synthesis of azulene bent-core dye manifesting helical nanofilament phase
El-Batal, Dania
Place of Publication:
Denver, Colo.
Metropolitan State University of Denver
Publication Date:

Record Information

Source Institution:
Metropolitan State University of Denver
Holding Location:
Auraria Library
Rights Management:
Copyright [name of copyright holder or Creator or Publisher as appropriate]. Permission granted to University of Colorado Denver to digitize and display this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.


This item has the following downloads:

Full Text
Synthesis of Azulene Bent-Core Dye Manifesting Helical Nanofilament Phase
by Dania El-Batal
An undergraduate thesis submitted in partial completion of the Metropolitan State University of Denver Honors Program
December 8, 2017
Dr. Ethan Tsai
Lee Foley
Dr. Megan Hughes-Zarzo
Primary Advisor
Second Reader
Honors Program Director

El-Batal 1
Synthesis of Azulene Bent Core Dye Manifesting Helical Nanofilament Phase
Dania El-Batal, Lee Foley, and David Walba PhD.
Research Conducted Through the Department of Chemistry & Biochemistry, University of Colorado, Boulder, Boulder, CO 80309, United States
Honors Thesis in Association with the Department of Chemistry, Metropolitan State University of Denver, Denver, Colorado 80217, United States
Received: June 6, 2017; In Final Form: November 17, 2017
The HNF phase of bent-core liquid crystals presents as an array of helical nanofilaments where each filament is composed of twisted layers driven by saddle splay inherent to the intermolecular arrangement of the bent-core molecules. These filaments form porous bundles, are crystalline within the layers, and are capable of alignment over large length scales which suggests a favorable usage of the phase in photovoltaic devices. Currently, organic based solar cells (OSCs) are limited in efficiency due in part to the random distribution of materials in the active layer of blended-bulk heterojunctions. Utilization of the HNF phase would allow for the fabrication of a well-defined, ordered bulk heterojunction to circumvent this problem. However, to date, no known HNF forming material significantly absorbs visible electromagnetic (EM) radiation, which is an essential characteristic of the solar cell active layer. By utilizing its structural simplicity and built in absorption properties, azulene, a simple, dark blue hydrocarbon, was incorporated into novel bent-core molecules with the aim of sensitizing the HNF phase to the visible EM spectrum, thus potentially providing an HNF material that can be incorporated in OSC devices. Results acquired upon characterizing the azulene rigid arm complex determined the compound to have a unique absorption, potential effective charge transport properties, and rare mesogenic behavior.
Liquid crystals (LCs) have considerably revolutionized efforts in the fields targeting non-display applications in various optical, photonic, and electro-optic spheres, including organic photovoltaics (OPVs) [1], However, the efficiency of current OPVs remains at about 10% [1], There are several developments considered to increasing OPV efficiency, where many approaches focus on bulk heterojunction (BHJ) solar cells (Fig. 1) [1], Increases in efficiency have unfortunately been delayed by a lack of control in morphology and nanostructure [1],

El-Batal 2
- ^


T 1
C£> *\j HOMO
Anode HOMO Cathode
Al cathode
Donor Acceptor
Glass substrate
Fig. 1 : Bulk heterojunction solar cell illustration [5].
This investigation focuses on the helical nanofilament (HNF) liquid crystal phase, also known as the B4 phase. Several considerations have been suggested in favor of the HNF phase to provide a new approach that could increase OPV efficiency [2]. One essential element of this stems from the discovery (from reference 2) that HNF phase-forming materials fashion dopable nanoconfined composites with various materials, and allows remarkable nanostructural and morphological control [2].
The HNF phase presents as an array of helical nanofilaments where each filament is composed of twisted layers inherent to the intermolecular arrangement of the bent-core molecules [3]. Negative Gaussian curvature provides the lowest free-energy structure possible when covalently bound half-layers require orthogonal arrangement, leading to a twisted layer structure as illustrated in the diester in Fig. 2 [2]. Based on the self-assembling formation of nanoscale aggregates manifesting well-defined structure, HNF phases have demonstrated a high potential as an active component of an OPV [2]. In addition, HNF properties have been correlated with enhanced carrier mobility and exciton diffusion in small molecule systems based on their unique and highly-ordered crystalline smectic layers [2]. In comparison to other self-assembling small molecule systems, the HNFs have an advantage in that their cylindrical structural packing cannot fill complete space, which allows for contact or doping between the C60 molecule and the electron acceptor [2]. Moreover, these nanofilaments can be effectively aligned, allowing for direct charge transport through the smectic layer ends then to the electrodes for extraction through the potential to orient the molecule's long axis normal to the electrodes [2].

El-Batal 3
Fig. 2 : Illustration of the hierarchical structure of the helical nanofilament (HNF) phase of the liquid crystal mesogen NOBOW. The LC director, n, is along the bow string, and the molecular polar axis is along the arrow. Illustration of the structure of a single twisted layer composed of HNF mesogens; stacking of the twisted layers produces "twisted rod"-
shaped HNF [2].
The azulenes are a unique class of compounds, hydrocarbons, based on the parent azulene (Fig. 3), whose peculiar properties have interested chemists since their discovery [4]. These hydrocarbons have shown a curious physical and chemical display of properties, including unique reactivity, and most strange is that azulenes are almost always colored [4].
Fig. 3 : Parent azulene compound [10].
A discussion of the chemistry of azulene would not be complete without a discussion of diversity of the azulene derivatives' colors. The blue color of azulene is derived from the S0->Si transition which absorbs light in the EM spectral region centered around 580 nm, the yellow to red portion of the visible light spectrum [4]. Azulene also presents a small HOMO-LUMO band gap, which refers to the energy difference between the top of the valence band and the bottom of the conduction band [4]. Upon excitation, electrons can jump from one band to another. However, for an electron to jump from a valence band to a conduction band, it requires a specific minimum amount of energy for the transition. Electrons can gain enough energy to jump to the conduction band by absorbing a photon (from light). The azulene HOMO-LUMO gap is reduced due to the reduction of mutual repulsion between electrons, bringing the corresponding absorbance from ultraviolet to visible wavelengths [4]. Moreover, the emission from this molecule emanates from a higher excited state, and the light transmitted is primarily blue [4].
Azulene's fluorescence is mostly derived from the S2 state, where S2->S0 is the dominant emission pathway, whereas the expected Si->S0 optical transition is nearly negligible [11]. The transition pattern identified in azulenes defy Kasha's rule [11], which states that emission predominantly occurs from the lowest excited state (S0). Despite their fascinating properties, azulenes have been found to have relatively few chemical uses [4], however, there are some ongoing studies investigating azulene used for exciton pooling, and azulene-containing conducting polymers and photochromic materials [4].
Due to the sensitive nature HNF phase space, only simple modifications can be made to the molecular backbone to preserve formation of the phase, and must be considered in the design of new HNF forming materials with new absorption properties. Azulene is a simple, dark blue hydrocarbon that fulfills these molecular requirements. In short, these novel, light-absorbing properties of HNFs suggest they might be suitable materials for use in excitonic photovoltaics. This, to our knowledge, is the first work exploring this phase for use in donor-acceptor heterojunctions.

El-Batal 4
Molecular Design
By utilizing its structural simplicity and built in absorption properties, azulene was incorporated into novel bent-core molecules with the aim of sensitizing the HNF phase to the visible EM spectrum.
Although the 1- and 3-positions are the most active sites in azulene [4], other positions can also be functionalized to provide linear optical materials, resulting in the potential formation of an HNF material that can be incorporated into OSC devices.
The positions of interest in the investigation were the 2,6-disubstituted sites on the azulene bent-core, consisting of the alkoxy-phenyl substituent on the 6-position and the diester on the 2-position, see Fig. 4 (right). Ordinarily, it is the rigid, aromatic core of the mesogen molecules that permits charge transport, giving rise to the advantage of having extensive aromaticity in the design of the molecule [6]. Evidently, phases that exhibits n- n stacking between the cores of neighboring molecules are considered theoretically viable as materials for charge transport [6]. Carrier mobility studies on crystal materials designed to form the B4 LC phase (based on calamitic (rodlike) phases), have shown a distinct advantage over the contrary discotic phases [6]. These rodlike phases can conduct in two dimensions within each smectic layer, making them considerably less vulnerable to the disruption of charge transport [6].
Fig. 4 2,6-disubstituted sites on the azulene bent-core, consisting of the alkoxy-phenyl substituent on the 6-position and the diester on the 2-position

El-Batal 5
Synthetic Scheme
K2CO3 / CS2CO3 (cat.)
DMF, 12h, 120C

El-Batal 6

El-Batal 7
Experimental Procedure
Synthesis of Compound la (l-bromo-4-methoxy-benzene):
4-bromophenol (4.33 g, 25 mmol, 1 eq.) was dissolved in DMF (50 mL) and allowed to stir at room temperature with 1.1 molar equivalents of potassium carbonate (3.80 g, 27.5 mmol) and catalytic amounts of cesium carbonate for approximately 15-30 minutes, or until a color change from a transparent to a chalky white color. The reaction vessel was then charged with the corresponding halo-alkane (6.5 mL, 27.5 mmol, 1.1 eq.). The solution was topped with a condenser, and the reaction was heated to approximately 120 C and stirred for 12-24 hours.
After being verified via TLC, reaction was worked up by diluting with water and extracting three times into ethyl acetate. The organic fractions were then washed three times with water, dried over magnesium sulfate, and then concentrated under rotary evaporation. The crude mixture was purified via flash column chromatography using a hexane eluent to afford white crystals (76% yield).
Synthesis of Compound 2a (4-(4-methoxy-phenyl)-pyridine):
The mixture of l-bromo-4-methoxy-benzene (4.55 g, 25.3 mmol, 1 eq.), pyridine-4-boronic acid (3.12 g, 25.3 mmol, 1 eq.), and potassium carbonate (6.99 g, 50.6 mmol, 2 eq.) was instilled in DMF (50 mL) under inert conditions, topped with a condenser. A saturated solution of Tetrakis(triphenylphosphine)palladium(0) (1.02 g, 0.89 mmol, 0.03 eq.) instilled in 50 mL of DMF was then placed in liquid nitrogen and allowed to freeze completely. Once frozen, the flask was placed under vacuum for 1 minute, or until the THF began to thaw, at which point it was refilled with inert atmosphere. This process was repeated three times, and after the third iteration, allowed to warm to room temperature. The catalyst was then cannulated into the reaction mixture, and heated to approximately 120 C and stirred for 12-24 hours.

El-Batal 8
TLC verified the formation of product through the appearance of a fluorescent material. The reaction was worked up by diluting with water and extracting three times into ethyl acetate. The organic phase was washed an additional three times with water, dried over magnesium sulfate, and concentrated under rotary evaporation. The crude mixture was purified via dry-load column chromatography using hexane/ethyl acetate (70:30) for the eluent to afford white, fluffy crystals (30% yield).
One plausible reason for the lack of successful yields determined from the Suzuki coupling is presumed to be the lack of favorable substitutions on the starting materials for an effective coupling. The presence of electron withdrawing group in the aryl halide, and electron donating group in aryl boronic acid would enhance the reaction rate of the Suzuki coupling reaction. However, in the reaction scheme for compound 2a, the presence of nitrogen, the electron withdrawing group, in the aryl boronic acid moderately deactivates the boronic acid component as well as the aromatic ring by decreasing the electron density on the ring through a resonance withdrawing effect. The resonance only decreases the electron density at the ortho- and para-positions, making these sites less nucleophilic.
Synthesis of Compound lb; (2,4-Cyclopentadiene-l-carboxylic acid, methyl ester):
A sodium cyclopentadienylide solution (2 M in THF, 14 mmol) was charged in a flame-dried flask topped with a condenser. To this solution was added an equal volume of THF and 5.9 mL dimethylcarbonate (70 mmol) at room temperature with stirring. The reaction mixture was then heated to reflux for 4 hours and then cooled to room temperature. The mixture was concentrated in vacuo. The resulting solid was washed with cold ether via filtration with a resulting brown-red solid which NMR results indicated consisted of freshly cracked cyclopentadiene (28 mmol). The solid was highly reactive with atmosphere and had to be stored under argon and refrigerated.
Synthesis of Compound 3a; (Methyl Ester Azulene Rigid Arm) Ziegler-Hafner Azulene Synthesis:
4-(4-methoxy-phenyl)-pyridine (0.362 g, 1.07 mmol, 1 eq.) was dissolved in dry and inert conditions in 300 mL of toluene, topped with a condenser. To this solution at 0C was added 3.6 mL of trifluoromethanesulfonic anhydride (21.4 mmol, 20 eq.). After the solution was stirred for 5 min, 4.4 mL of dry diethylamine (42.8 mmol, 40 eq.) and 3.75 g of 2,4-Cyclopentadiene-l-carboxylic acid, methyl ester (25.7 mmol, 24 eq.) were added at room temperature, then the mixture was refluxed for 10 hours.
TLC verified the formation of the blue 2-methyl ester azulene, as well as the purple isomer, 1-methyl ester azulene. Upon evaporation of the solvent, the residue was purified by dry-load column chromatography to afford the flakey, blue 2,6-disubstituted methyl ester azulene (70% yield) using hexane/ethyl acetate (10:1) as the eluent.
Although there are other synthetic routes for azulenes, the Ziegler-Hafner method is the most functional for azulene compounds with substituents on diverse positions at the five-membered and particularly, the seven-membered ring [7]. However, the Hafner method is limited in its versatility, especially in terms of scaling up and increasing the concentration of the reaction.

El-Batal 9
Further synthetic investigations will consider means of improving and/or altering the conditions to permit a higher production of the desired product.
Synthesis of Compound 4a; (Carboxylic Acid Azulene) Hydrolysis:
Ester cleavage of the rigid arm was achieved through dissolving 0.054 g of the methyl ester azulene compound (0.12 mmol, 1 eq.) in THF/water (1 (5 ml_):l (5 mL)), and then ground lithium hydroxide (0.27 g, 0.605 mmol, 5 eq.) was added. The mixture was refluxed overnight then cooled to room temperature. TLC verified the formation of the acid. The pH of the mixture was brought to 2.0 using HCI and the resulting solid was filtered and washed with cold ethanol (53% yield).
The resulting solid was observed to be a green, flakey substance, difficult to dissolve in any solvent necessary to proceed with the final target synthesis. Some dissolution of the hydrolyzed compound was observed in DMF. Additionally, the acid is highly sensitive and relatively unstable, and re-configures to isomeric product with time.
Synthesis of Compound 5a; (Target Bent-Core Molecule) Steglich Esterification:
To a stirred solution of 0.0284 g carboxylic acid azulene (0.066 mmol, 1 eq.) in 3 mL anhydrous DMF is added catalytic amounts of DMAP and 0.0033 mL of 1,5-pentanediol (0.0314 mmol, % eq.). 0.012 g of EDC is added to the reaction mixture at 0C, which is then stirred for 5min at 0C, then stirred at room temperature for 24 hours.
TLC indicated the potential formation of the target. Dropwise addition of concentrated HCI was used to achieve a pH of approximately 2.0. The organic was extracted with three portions of diethyl ether and washed with three portions of brine solution. The organic was dried over magnesium sulfate and then filtered. The ether was removed by vacuum evaporation, and proceeded with dry-load column chromatography using methylene chloride to isolate the potential diester compound.
NMR revealed the formation of the mono-substituted ester. Considerations for other attempts using the Steglich esterification may include proceeding with the mono-ester in an additional esterification with supplementary acid azulene.
Synthesis of Compound 5c; (Target Bent-Core Molecule):
A single-necked, 10 mL round-bottom flask was charged with 0.120 g of the acid azulene (0.277 mmol, 1 eq.) and CH2CI2 (1 mL). The reaction vessel was vacuum purged and refilled with inert atmosphere three times, before being charged with oxalyl chloride (0.04 mL, 0.3601 mmol, 1.3 eq.), followed by 2 drops of anhydrous DMF. The resulting mixture was stirred at room temperature for 4 hours, and then concentrated by rotary evaporation. To the resulting crude mixture containing the acid chloride was added 1 mL of CH2CI2 and the solution was concentrated by rotary evaporation.
A separate three-necked, round-bottomed flask, vacuum purged and refilled with inert atmosphere three times, was charged with 1 mL of CH2CI2 and 0.06 mL of triethylamine (0.4155 mmol, 1.5 eq.). The mixture was cooled to 0C, where the crude acid was transferred, dropwise,

El-Batal 10
to the stirred solution. Upon completion of the addition of the acid chloride solution, the mixture was stirred at room temperature for 2 hours.
Observations made during the addition of the acid chloride revealed an instant color change to a bright red solution. Regardless, the mixture was diluted with HCI and transferred to a separatory funnel, where the organic layer was washed with brine three times and concentrated via vacuum. The organic phase was diluted with methanol and re-concentrated under vacuum, giving rise to a crude, red solid. NMR revealed the mysterious formation of the azulene 1-methyl ketoester.
Results and Discussion
In addition to characterizing compound 3a as DEB1_83, the methyl ester azulene rigid arm complex was found to have a unique absorption spectrum, potential effective charge transport properties, and rare mesogenic behavior.
Production by a UV/VIS spectrometer revealed a spectrum of the conjugated dye modelled in relation to its wavelengths and peak absorptions. The results illustrated in Fig. 5 identified the absorbance versus wavelength relationship in the conjugated dye within the wavelength range of 350-750 nm, with a maximum wavelength of absorption at 394 nm and an effective wavelength of absorption at 598 nm. The results acquired from the UV/VIS spectrometer confirm that the emission of observed blue color of DEB1_83 is indicative of the capable absorption of the compound extending into the yellow to red portion of the visible light spectrum. According to the results determined from the spectrometer, the compound exhibits versatile and highly favorable light absorbing properties.
Absorbance [AU] vs Wavelength [nm] analysis of
DEB1 83
Fig. 5 : Absorbance versus wavelength spectrum of DEB1_83, illustrating the strongest wavelength of absorbance at 394 nm and the weakest wavelength of absorbance at 598 nm.

El-Batal 11
Differential scanning calorimetry (DSC) analysis of DEB1_83 (Fig. 6A), paramorphic at low temperatures and a highly ordered smectic, exhibited unique mesomorphism transitions upon heating and cooling. At the time of heating, a broad exotherm centered at 66.90C leads from the glass directly into the liquid crystal phase transition. Three key phase transitions are observed upon heating, where the first endotherm observed at 112.74C corresponds to the transition into the extremely stable smectic E phase (Fig. 6F->G), and second endotherm observed at 180.79C corresponds to the transition into the metastable smectic A phase (Fig. 6G->H), which is followed by an endotherm at 227.79C correlating to the isotropic melt (Fig.
Upon cooling, there is an exotherm at 225.69C followed by the appearance of smooth focal conic fans, as observed via PLM analysis, oriented uniformly with the extinction brushes aligned with the polarizer and analyzer, identified as the smectic A phase (Fig. 6B). This transition is followed by an additional exotherm centered at 178.97C accompanied by the appearance of a blue, "oil and water" mosaic texture (in the homeotropic slide) as well as circular, ring-textured focal conic fans, also present no tilt in phase order alignment through PLM imaging. This phase transition was identified as the smectic E phase (Fig. 6C-^D, E), which became highly ordered upon cooling through the increasing intensity of the textural characteristics at the mesophase. A final exotherm is observed at 54.05C where the material appears to form an extremely stable glass phase.
225.69C 178.97C 54.05C
Iso ^ w SmA ^ w SmE ^ w Crystal
227.79C 180.79C 66.90C
In the smectic state, the molecules maintain the general orientational order of nematics, but also tend to align themselves in layers or planes [12]. In the smectic A mesophase, the director is aligned perpendicular to the smectic plane, suggesting orientational order, however there is no particular positional order within the layer [12]. As observed in the characteristics analyzed using polarized light microscopy (PLM), smectic A traits were identified by the smooth planar regions of the focal conic fans as well as black homeotropic regions within the mesophase. An atypical occurrence upon cooling into the smectic A phase transition, was the lack of batonnets formation, but rather immediate formation of focal conic fans. Upon analysis using PLM, textural characteristics of the compound for the smectic E phase are identified by the distinct circular rings around the focal conic fans, lacking uniformity in their distribution. An additional unique feature includes the extinction brushes aligning with the polarizer and analyzer of the scope, indicating orientational and positional order in alignment with the direction of the director, perpendicular to the smectic plane [8]. Due to their higher ordered phase alignment at low temperatures, smectic E phases are particularly interesting in their ordered molecular packing and potential higher efficiency in charge transport [8].

El-Batal 12
Fig. 6:
Integral 124.07 ml normalized 34.46 Jg'M
B: 215.5C on cooling homeotropic at 20x magnification
C: 175C on cooling homeotropic at 20x magnification
D: 165C on cooling homeotropic at 20x magnification
E: 97.4C on cooling homeotropic at 20x magnification

El-Batal 13
F: 100C on heating planar at 20x magnification
G: 115C on heating planar at 20x magnification
H: 190.2C on heating planar at 20x magnification
I: 228.5C on heating planar at 20x magnification
X-ray powder diffraction (XRD) analysis using liquid Crystal films of DEB1_83 (Fig. 7) were prepared in the smectic A phase and cooled down to the crystal E phase. At each temperature, the diffraction signal was collected from different spatial positions on the sample oriented perpendicular to the incident x-ray beam. Stronger intensities within the diffraction pattern discerns higher positional order within the layers, indicative of the smectic E phase (Fig. 7B)
[13]. Faint diffraction signals correlate with orientational order, but not necessarily structural within the layers, suggesting the smectic A phase (Fig. 7C) [13]. The data shows strong periodicity that exists within the materials crystalline phase and appears to diminish as the material is heated. At the isotropic phase, no peaks are observed in the plot in Fig. 7A, as expected for a melted material. Upon cooling, strong, intense peaks are observed at small values of Q, with the absence of peaks at larger values of Q, suggesting the formation of layers within the smectic phase, but an absence of order in the layer between the layers upon formation. Upon cooling the material further, the appearance of wide, broad peaks begins to arise at larger values of Q, suggesting periodicity and intermolecular structure and crystallinity within the smectic phase. XRD results confirmed the presumed phase transitions being observed through DSC and PLM analysis, where DEB1_83 is verified to possess a unique and high ordered

El-Batal 14
crystalline smectic E phase, and undergo the cooling phase transition of lso->SmA->SmE-> Crystal.
Fig. 7:
The azulene bent-core complex, DEB1_83, has successfully demonstrated a potential interest in the incorporation of OSC devices. The results from the analysis of the rigid arm from PLM, DSC, and XRD have provided significant insight on the nature of the material for viable charge transport based on crystallinity, alignment, and high-ordered molecular packing. Additionally, high absorption of the compound was determined through UV/VIS analysis, extending into the yellow to red portion of the visible light spectrum.
Due to time constraints and rather unexpected synthetic challenges, the complete bent-core molecule could not be completed as of yet, and therefore, no testing could be accomplished to determine whether the simple dye modification would permit the formation of the HNF phase, and how the occupancy of the phase would exist in OPVs. Fortunately, several synthetic routes are being considered for the final target synthesis, including the base-catalyzed trans esterification synthetic scheme illustrated for compound 4d.

El-Batal 15
Charge carrier mobility is dependent on molecular order in a smectic layer, and the highest mobility is achieved in the highest ordered smectic phases [9], Studies conducted on DEB1_83 have led to an interest in further exploring a wide variation of highly-ordered smectic phases demonstrating carrier mobility, including the smectic G phase. Future work will also include the investigation of other derivatives of the azulene bent-core complex, suggesting a "plug-and-play" of substituents, including the incorporation of a Schiff base linker (rather than the alkoxy phenyl substituent) often observed in B4 phase molecules.
Dr. David Walba: For allowing me to spend the summer in your lab to do research in a novel and exciting area of frontier science.
Lee Foley: For always being willing to help when needed and mentoring me in the ways of academic development, research-investigative mindset, and benchtop chemistry.
Edward Guzman: For investing a weekend of your time, always keeping my spirits high, and being available for logical suggestion.
Dr. Ethan Tsai: For supporting me and providing me with independence in my research.
The funding from the NSF for the SMRC MRSEC, which allows students such as myself to gain experience and understand what it means to be a scientist.
[1] Walba, David. "Exploring the Helical Nanofilament Liquid Crystal Phase for Organic Photovoltaics." SPIE Newsroom (2015).
[2] Callahan, Rebecca A., David C. Coffey, Dong Chen, Noel A. Clark, Garry Rumbles, and David M. Walba. "Charge Generation Measured for Fullerene-Helical Nanofilament Liquid Crystal Heterojunctions." ACS Applied Materials & Interfaces 6, no. 7 (2014): 4823.
[3] Chen, Dong, Joseph E. Maclennan, Renfan Shao, Dong Ki Yoon, Haitao Wang, Eva Korblova, David M. Walba, Matthew A. Glaser, and Noel A. Clark. "Chirality-Preserving Growth of Helical Filaments in the B4 Phase of Bent-Core Liquid Crystals." Journal of the American Chemical Society 133, no. 32 (2011): 12656.
[4] Bevan, Thomas. Azulene-based Protecting Groups: a thesis submitted to the Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy. Master's thesis, Victoria University of Wellington.
[5] Zhang, Bing, Kaixuan Zhou, Shufan Mo, Lilin Zhu, Zhoucheng Su, Jianxi Yao, and Songyuan Dai. "Some insights into the self-assembly patterns of two diamine derivatives as low molecular mass organogelators from molecular dynamics." Molecular Simulation, 2017, 1-7. doi:10.1080/08927022.2017.1357811.

El-Batal 16
[6] Walba, David M. ORGANIC PHOTOVOTAICS. US Patent US 2013/0207090 Al, filed February 11, 2013, and issued August 15, 2013. Appl_ No; 13/764,660,
[7] Wang, Zerong, Hafner, and Meinhardt. "Ziegler-Hafner Azulene Synthesis." Comprehensive Organic Name Reactions and Reagents, 2010. doi:10.1002/9780470638859.conrr694.
[8] Hanna, Jun-lchi, Akira Ohno, and Hiroaki lino. "Charge carrier transport in liquid crystals." Thin Solid Films554 (2014): 58-63. doi:10.1016/j.tsf.2013.10.051.
[9] Bushby, Richard J., S. M. Kelly, and O'Neill, Mary (Professor of physics). 2013;2012;2011;. Liquid crystalline semiconductors: Materials, properties and applications. 1. Aufl.;l; ed. Vol. 169. Dordrecht;London;: Springer.
[10] Copyright 2017 Sigma-Aldrich Co. LLC. All Rights Reserved. Azulene 99%.®ion=US
[11] Dong, Jin-Xue, and Hao-Li Zhang. 2016. Azulene-based organic functional molecules for optoelectronics. Chinese Chemical Letters 27 (8): 1097-104.
[12] Phases of Liquid Crystals. Issued 9/21/04.
[13] Nakagawa, Kosuke, Miho Yokoyama, Takahiro Yokoyama, Kozo Toyota, Noboru Morita, Shunji Ito, Shota Tahata, et al. 2010. Synthesis and liquid crystalline behavior of azulene-based liquid crystals with 6-hexadecyl substituents on each azulene ring. Tetrahedron 66 (42): 8304-12.

Full Text


Synthesis of Azulene Bent Core Dye Manifesting Helical Nanofilament Phase by Dania El Batal An undergraduate thesis submitted in partial completion of the M etropolitan State University of D enver Honors Program December 8, 2017 Dr. Ethan Tsai Lee Foley Dr. Megan Hughes Zarzo Primary Advisor Second Reader Honors Program Director


!" # $%&%"' ( !"#$%&'(')*+),-./&#&)0&#$)1*2&)3"&)45#(+&'$(#6)7&/(85/)95#*+(/5:&#$);%5'& ) )%*+%'!" # $%&%" ,' -..'/0".1 ,' %*2' )%3+2'4%"5% 67)8 !"#"$%&'()*+,-&.",(/'%*-0'(.'"(1"2$%.3"+.(*4()'"35#.%6(7(85*&'"35#.%69(:+5;"%#5.6(*4( )*<*%$,*9(8*-<,"%9( 8*-<,"%9()=(>?@?A 9(:+5.",( B.$."# ( C*+*%#(/'"#5#(5+(D##*&5$.5*+(E5.'(.'"( 1"2$%.3"+.(*4()'"35#.%69(F".%*2*<5.$+(B.$."( :+5;"%#5.6(*4(1"+;"%9(1"+;"%9()*<*%$,*(>?GHI9(:+5.",(B.$."# ( !"&"5;",J( K-+"(L9(G?HIM(N+(O5+$<(O*%3J(P*;"3Q"%(HI9(G?HI ( ,<'$258$ ) 97.':;/' <7%=.' 0>'5.*& # ?0@.'"+AB+2'?@1=&%" =' <@ .=.*&='%='%*'%@@%1'0> 7."+?%"' *%*0>+ "%C.*&= D7.@.' .%?7'>+"%C.*&'+=' ?0C< 0=.2'0>'&D+=&.2'"%1.@='2@+3.*' 51 =%22".'=<"%1'+*7.@.*&'&0'&7.' +*&.@C0".?B"%@'%@@%*E.C.*&'0>'&7.'5.*& # ?0@.'C0".?B".= 8 97.=. >+"%C.*&=' >0@C'<0@0B='5B*2".=,' %@.' ?@1=&%""+*. D+&7+*'&7. "%1.@=,'%*2'%@.'?%<%5".'0>'%"+E*C.*&'03.@'"%@E.'".*E&7'=?%".='D7+?7' =BEE.=&='%'>%30@%5".'B=%E.'0>'&7.'<7%=.'+*'<70&030"&%+?'2.3+?.=8' FB@@.*&"1,'0@E%*+?'5%=.2'=0"%@' ?.""='GHIF = J'%@.'"+C+&.2'+*'.>>+?+.*?1'2B.'+*'<%@&'&0'&7.'@%*20C'2+=&@+5B&+0*'0>'C%&.@+%"=' +*'&7.' %?&+3.'"%1.@'0>'5".*2.2 # 5B"K'7.&.@0LB*?&+0*= 8' M&+"+N%&+0*'0>'&7.':;/'<7%=.'D0B"2'%""0D'>0@'&7.' >%5@+?%&+0*'0>'%'D."" # 2.>+*.2,'0@2.@.2'5B"K'7.&.@0LB*?&+0*'&0'?+@?BC3.*&'&7+='<@05".C8':0D.3.@,' &0'2%&.,'*0'K*0D*':;/'>0@C+*E'C%&.@+%"'=+E*+>+?%*&"1'%5=0@ 5='3+=+5".'.".?&@0C%E*.&+?' G!OJ' @%2+%&+0*,'D7+?7'+='%*'.==.*&+%"'?7%@%?&.@+=&+?'0> &7.'=0"%@'?.""'%?&+3.'"%1.@8' $1'B&+"+N+*E'+&=' =&@B?&B@%"'=+C<"+?+&1'%*2'5B+"&'+*'%5=0@ <&+0*'<@0<.@&+.=,'%NB".*. ,'%'=+C<".,'2%@K'5"B.' 712@0?%@50*, D%='+*?0@<0@%&.2'+*&0'*03." 5.*& # ?0@.'C0".?B".='D+&7'&7.'%+C'0>'=.*=+&+N+*E'&7.' :;/'<7%=.'&0'&7.'3+=+5".'!O'=<.?&@BC,'&7B=' <0&.*&+%""1' <@03+2+*E'%*':;/'C%&.@+%"'&7%&'?%*'5.' +*?0@<0@%&.2'+*'HIF 2.3+?.=8 P.=B"&='%?AB+@.2'B<0*'?7%@%?&.@+N+*E'&7.'%NB".*.'@+E+2'%@C' ?0C<".Q'2.&.@C+*.2'&7. ?0C<0B*2 &0'7%3.'%'B*+AB.'%5=0@<&+0*, <0&.*&+%"'.>>.?&+3.'?7%@E.' &@%*=<0@&'<@0<.@&+.=,'%*2'@%@.'C.=0E.*+?'5.7%3+0@8' =#$2*>.8$(*# -+AB+2'?@1=&%"='G-F=J' 7%3.'?0*=+2.@%5"1' @.30"B&+0*+N.2'.>>0@& = +*'&7.'>+."2 =' &%@E.&+*E'*0* # 2+=<"%1' %<<"+?%&+0*='+*'3%@+0B='0< &+?%",'<70&0*+?,'%*2'.".?&@0 # 0<&+?'=<7.@.=,'+*?"B2+* E'0@E%*+?' <70&030"&%+?='GH6R=J' ?@A 8':0D.3.@ ,'&7.'.>>+?+.*?1'0>'?B@@.*&'H6R='@.C%+*='%&'%50B&'(ST ?@A 8' 97.@.'%@.' =.3.@%" 2.3."0>+?+.*?1,' D7.@.' C%*1' %<<@0%?7.= >0?B='0* 5B"K'7.&.@0LB*?&+0*'G$:UJ'=0"%@'?.""= G/+E8'(J ?@A 8'V*?@.%=.='+*'.>>+?+.*?1' 7%3.' B*>0@&B*%&."1' 5..*' 2."%1.2'51'%'"%?K'0>'?0*&@0"'+* C0@<70"0E1'%*2'*%*0=&@B?&B@. ?@A 8


!" # $%&%"' W B(6C)@D) $B"K'7.&.@0LB*?&+0*'=0"%@'?.""'+""B=&@%&+0*' ?EA 8' 97+='+*3.=&+E%&+0* >0?B=.='0*'&7.'7."+?%"'*%*0>+"%C.*&'G:;/J'"+AB+2'?@1=&%"'<7%=.,'%"=0'K*0D*'%=' &7.' $X <7%=.8' I.3.@%"'?0*=+2.@%&+0*='7%3.'5..*'=BEE.=&.2'+*'>%30@'0> &7.':;/'<7%=.'&0'<@03+2.' %'*.D'%<<@0%?7'&7%&'?0B"2'+*?@.%=.'H6R'.>>+?+.*?1 ?FA 8' H*.'.==.*&+%"'.".C.*&'0> &7+ ='=&.C='>@0C' &7. 2+=?03.@1' G>@0C'@.>.@.*?.'WJ' &7%&':;/'<7%=. # >0@C+*E'C%&.@+%"= > %=7+0*'20<%5". *%*0?0*>+*.2'?0C<0=+&.='D+&7' 3%@+0B= C%&.@+%"= %*2 %""0D=' @.C%@K%5".' *%*0=&@B?&B@%"'%*2' C0@<70"0E+?%"'?0*&@0" ?FA 8 97.':;/'<7%=.'<@.=.*&='%='%*'%@@%1'0>'7."+?%" *%*0>+"%C.*&='D7.@.'.%?7'>+"%C.*&'+='?0C<0=.2' 0>'&D+=&.2 "%1.@=' +*7.@.*&'&0'&7.'+*&.@C0".?B"%@'%@@%*E.C.*&'0>'&7.'5.*& # ?0@.'C0 ".?B".= ?GA 8' ;.E%&+3.'Y%B==+%*'?B@3%&B@.'<@03+2.='&7.'"0D.=&'>@.. # .*.@E1'=&@B?&B@.'<0==+5".'D7.*'?03%".*&"1' 50B*2'7%"> # "%1.@='@.A B+@.'0@&70E0*%"' %@@%*E.C.*& ,'".%2+*E'&0'%'&D+=&.2'"%1.@'=&@B?&B@.'%=' +""B=&@%&.2 +* &7.'2+.=&.@' +*'/+E8'W ?FA 8 $%=.2'0*'&7.'=."> # %==.C5"+*E'>0@C%&+0*'0>'*%*0=?%".' %EE@.E%&.='C%*+>.=&+*E'D."" # 2.>+*.2'=&@B?&B@.,' :;/'<7%=.='7%3.'2.C0*=&@%&.2'%'7+E7'<0&.*&+%" %='%*'%?&+3.'?0C<0*.*&'0>'%*'H6R' ?FA 8'V*'%22+&+0*,' :;/'<@0<.@&+.='7%3.'5..* ?0@@."%&.2'D+&7' .*7%*?.2'?%@@+.@'C05+"+&1'%*2'.Q?+&0*'2+>>B=+0*'+*'=C%""'C0".?B".'=1=&.C= 5%=.2'0*'&7.+@'B*+AB.' %*2'7+E7"1 # 0@2.@.2'?@1=&%""+*.'=C.?&+?'"%1.@= ?F A 8'V*'?0C<%@+=0*'&0 0&7.@'=."> # %==.C5"+*E'=C%""' C0".?B".'=1=&.C= &7.':;/='7%3.' %* %23%*&%E. +*'&7%&' &7.+@'?1"+*2@+?%"'=&@B?&B@%"'<%?K+*E'?%**0&' >+""'?0C<".&.'=<%?. ,'D7+?7'%""0D = >0@'?0*&%?&' 0@'20<+*E' 5.&D..*'&7.' F ZS C0".?B".'%*2'&7.' .".?&@0*'%??.<&0@ ?FA 8 O0@.03.@,'& 7. =. *% *0>+"%C.*&='?%*'5.' .>>.?&+3."1' %"+E*.2 %""0D+*E'>0@' 2+@.?&'?7%@E.'&@%*=<0@&'&7@0BE7'&7.'=C.?&+?'"%1.@'.*2='&7.*'&0'&7.'.".?&@02.='>0@'.Q&@%?&+0*' &7@0BE7 &7.'<0&.*&+%"'&0'0@+.*&' &7.'C0".?B".[=' "0*E'%Q+='*0@C%"'&0'&7.'.".?&@02.= ?FA 8


!" # $%&%"' \ B(6C)F ]'V""B=&@%&+0*' 0>'&7.'7+.@%@?7+?%"'=&@B?&B@.'0>'&7.'7."+?%"'*%*0>+"%C.*&'G:;/J'<7%=.'0>' &7. "+AB+2'?@1=&%"' C.=0E.*' ;H$H48'97.'-F'2+@.?&0@,'*,'+='%"0*E'&7.'50D'=&@+*E,'%*2'&7.'C0".?B"% @'<0"%@'%Q+='+='%"0*E'&7.'%@@0D8'V ""B=&@%&+0*'0>'&7.' =&@B?&B@.'0>'%'=+*E".'&D+=&.2'"%1.@ ?0C<0=.2'0>':;/ C.=0E.*=^'= &%?K+*E'0>'&7.'&D+=&.2'"%1.@='<@02B?.='_&D+=&.2'@02` # =7%<.2':;/ ?FA 8 97.'%NB".*.='%@.'%' B*+AB.'?"%=='0>'?0C<0B*2=,'712@0?%@50*= ,'5%=.2'0*'&7.'<%@.*&'%NB".*.' G/+E8' \ J,'D70=.' <.?B"+%@ <@0<.@&+.='7%3.'+*&.@.=&.2 ?7.C+=&=' = +*?.'&7.+@' 2+=?03.@1 ?HA 8'97.=.' 712@0?%@50*=' 7%3.'=70D* %'?B@+0B= <71=+?%"'%*2'?7.C+?%"' 2+=<"%1'0>' <@0<.@&+.=,'+*?"B2+*E' B*+AB.'@.%?&+3+&1,' %*2' C0=&'=&@%*E.'+='&7%&'%NB".*.=' %@.'%"C0=&'%"D%1='?0"0 @.2 ?HA 8' ) B(6C)GD) 6%@.*&'%NB".*.'?0C<0B*2 ?@IA 8 a' 2+=?B==+0*'0> &7.'?7.C+=&@1'0>'%NB".*. D0B"2'*0&'5.'?0C<".&.'D+&70B&'%'2+=?B==+0*'0>' 2+3.@=+&1' 0>'&7.' %NB".*.' 2.@+3%&+3.=['?0"0@= 8'97.'5"B.'?0"0 @'0>' %NB".*.' +='2.@+3.2 >@0C'&7.'I S I ( &@%*=+&+0*' D7+?7 %5=0@5='"+E7 &'+*'&7.'!O =<.?&@%"'@.E+0* ?.*&.@.2 %@0B*2' bcS'*C,' &7.'1.""0D'&0'@.2'<0@&+0*' 0>'&7.'3+=+5".'"+E7&'=<.?&@BC ?HA 8 aNB".*.' %"=0' <@.=.*&=' %' =C%""':HOH d -MOH'5%*2'E%< ,'D7+?7' @.>.@='&0'&7.'.*.@E1'2+>>.@.*?.'5.&D..*'&7.'&0<'0>'&7.'3%".*?.'5%*2'%*2'&7.'50&&0C'0>'&7.' ?0*2B?&+0*'5%*2 ?HA 8'M<0*'.Q?+&%&+0*,'. ". ?&@0*='?%*'LBC<'>@0C'0*.'5%*2'&0'%*0&7.@8':0D.3.@,' >0@ %*'.".?&@0*'&0'LBC<'>@0C'%'3%".*?.'5%*2'&0'%'?0*2B?&+0*'5%*2,'+&'@.AB+@.='%'=<.?+>+?' C+*+CBC'%C0B*&'0>'.*.@E1'>0@'&7.'&@%*=+&+0*8'!".?&@0*='?%*'E%+*'.*0BE7'.*.@E1'&0'LBC<'&0'&7.' ?0*2B?&+0*'5%*2'51' %5=0 @5+*E'%' <70&0*'G >@0C' "+E7&J8' 97.' %NB".*.' :HOH # -MOH'E%<'+='@.2B?.2' 2B.'&0'&7.'@.2B?&+0*'0>' CB&B%"'@.@0C'B"&@%3+0".&'&0'3+=+5".'D%3.".*E&7= ?HA 8' O0@.03.@,'&7.'.C+==+0*'>@0C'&7+=' C0".?B".'.C%*% &.='>@0C'%'7+E7.@'.Q?+&.2'=&%&. ,'%*2'&7. "+E7& &@%*=C+&&.2'+='<@+C%@+"1'5"B.' ?HA 8 aNB".*. [= >"B0@.=?.*?.' +='C0=&"1'2.@+3.2'>@0C'&7.'I W =&%&.,'D7.@.'I W I S +='&7.'20C+*%*&' .C+==+0*'<%&7D%1,'D7.@.%='&7.'.Q<.?&.2'I ( I S 0<&+?%"'&@%*=+&+0*'+='*.%@"1'*.E"+E+5".' ?@@A 8'97.' &@%*=+&+0*'<%&&.@*'+2.*&+>+.2'+*'%NB".*.='2.>1 e%=7%f='@B". ?@@A ,' D7+?7'=&%&.='&7%&'. C+==+0*' <@.20C+*%*&"1'0??B@='>@0C'&7 .'"0D.=&'.Q?+&.2'=&%&.'GI S J 8').=<+&.'&7.+@'>%=?+*%&+*E'<@0<.@&+.=,' %NB".*.='7%3.'5..*'>0B*2'&0'7%3.'@."%&+3."1'>.D'?7.C+?%"'B =.=' ?HA ,'70D.3.@,' & 7.@.'%@. =0C.'0* # E0+*E' =&B2+.='+*3.=&+E%&+*E %NB".*.' B=.2'>0@'.Q?+&0*'<00"+*E ,'%*2' %NB".*. # ?0*&%+*+*E'?0*2B?&+*E' <0"1C. @='%*2'<70&0?7@0C+?' C%&.@+%"= ?H A 8 )B.'&0'&7.'=.*=+&+3.'*%&B@.':;/'<7%=.'=<%?.,'0*"1'=+C<".'C02+>+?%&+0*='?%*'5.'C%2.' &0'&7.' C0".?B"%@'5%?K50*.'&0'<@.=.@3.'>0@C%&+0*'0>'&7.'<7%=.,'%*2'CB=&'5.'?0*=+2.@.2'+*'&7.'2.=+E*' 0>'*.D':;/'>0@C+*E'C%&.@+%"='D+&7'*.D'%5=0@<&+0*'<@0<.@&+.=8' aNB".*.'+='%'=+C<".,'2%@K'5"B.' 712@0?%@50*'&7%&'>B">+""='&7.=.'C0".?B"%@'@.AB+@.C.*&=8'V*'=70@&, &7.=.'*03." "+E7& # %5=0@5+*E' <@0<.@&+.='0>':;/='=BEE.=&'&7.1'C+E7&'5.'=B+&%5".'C%&.@+%"='>0@'B=.'+*'.Q?+&0*+?'<70&030"&%+?=8' 97+=,'&0'0B@'K*0D".2E.,'+='&7.'>+@=&'D0@K'.Q<"0@+*E'&7+='<7%=.'>0@'B=.'+*'20*0@g%??.<&0@' 7.&.@0LB*?&+0*=8 ) )


!" # $%&%"' X ) ) 4*/&8./52)3&'(6# ) $1'B&+"+N+*E'+&='=&@B?&B@%"'=+C<"+?+&1'%*2'5B+"&' +*'%5=0@ <&+0*'<@0<.@&+.=,'%NB".*.'D%=' +*?0@<0@%&.2'+*&0'*03." 5.*& # ?0@.' C0".?B".='D+&7'&7.'%+C'0>'=.*=+&+N+*E'&7.' :;/'<7%=.'&0'&7.'3+=+5".' !O'=<.?&@BC 8' a"&70BE7' &7.' ( # %*2'\ # <0=+&+0*='%@.'&7.' C0=&'%?&+3.'=+&.='+*'%NB".*. ?HA ,'0&7.@' <0=+&+0*='?%*'%"=0'5.'>B*?&+0*%"+N.2 &0' <@03+2.'"+*.%@'0<&+?%"'C%&.@+%"= ,' @.=B"&+*E'+*' &7.'<0&.*&+%"'>0@C%&+0*'0> %*':;/'C%&.@ +%"' &7%&'?%*'5.'+*?0@<0@%&.2'+* &0'HIF 2.3+?.=8 97.'<0=+&+0*='0>'+*&.@.=&' +*'&7. +*3.=&+E%&+0*' D.@. &7.'W,Z # 2+=B5=&+&B&.2' =+&.='0 *' &7.' %NB".*. 5.*& # ?0@. ,' ?0*=+=&+*E'0>'&7.'%"K0Q1 # <7.*1"'=B5=&+&B.*&'0*'&7.'Z # <0=+&+0*'%*2' &7.' 2+.=&.@ 0*'&7.'W # <0=+&+0* ,'=..'/+E8'X G@+E7&J 8' H@2+*%@+"1 ,'+&'+='&7.'@ +E+2,'%@0C%&+?' ?0@.'0>'&7.'C.=0E.*'C0".?B".='&7%&' <.@C+&= ?7%@E.'&@%*=<0@&,'E+3+*E'@+=.'&0'&7.'%23%*&%E.'0>'7%3+*E'.Q&.*=+3.'%@0C%&+?+&1'+*'&7.'2.=+E*'0>' &7.'C0".?B". ?JA 8' !3+2.*&"1,' <7%=. = &7%&'.Q7+5+&=' h # h =&%?K+*E'5.&D..*'&7.'?0@.='0>' *.+E750@+*E C0".?B".=' %@.'?0*=+2.@.2 &7.0@.&+?%""1'3+%5".' %=' C%&.@+%" = >0@'?7%@E.'&@%*=<0@& ?JA 8'F%@@+ .@' C05+"+&1'=&B2+.='0*'?@1=&%"' C%&.@+%"='2.=+E*.2'&0'>0@C'&7.'$X'-F'<7%=. G5%=.2'0*'?%"%C+&+?'G@02 # "+K.J'<7%=.=J,'7%3.'=70D*'%' 2+=&+*?&'%23%*&%E.'03.@'&7.' ?0*&@%@1' 2 +=?0&+?'<7%=.= ?J A 8' 97.=.'@02 # "+K.'<7%=.= ?%*'?0*2B?&'+*'&D0'2+C.*=+0*='D+&7+*'.%?7'=C.?&+?'"%1.@,' C%K+*E'&7.C'?0*=+2.@%5"1' ".== 3B"*.@%5".'&0' &7.' 2+=@B<&+0*'0>'?7%@E.'&@%*=<0@& ?J A 8 ) ) ) ) ) ) ) )


!" # $%&%"' b ) ) !"#$%&$(8)!8%&:& '


!" # $%&%"' Z '


!" # $%&%"' i ' KLM&2(:&#$5/);2*8&>.2& B6+.'"#5#( *4()*32*-+,( @5 ) RH S Q%*3* S T S 3".'*U6 S Q"+V"+"W ] X # 5@0C0<7.*0"'GX8\\'E,'Wb'CC0",'('.A8J'D%='2+==0"3.2'+*')O/'GbS'CJ'%*2'%""0D.2'&0 =&+@'%&' @00C'&.C<.@%&B@.'D+&7'(8( C0"%@'.AB+3%".*&='0>'<0&%==+BC'?%@50*%&. G\8cS'E,'Wi8b'CC0"J %*2' ?%&%"1&+?'%C0B*&='0>'?.=+BC'?%@50*%&.'>0@'%<<@0Q+C%&."1'(b # \S'C+*B&.=,'0@'B*&+"' % ?0"0@'?7%*E.' >@0C'%' &@%*=<%@.*& &0'%' ?7%"K1'D7+&. ?0"0@8'97.'@.%?&+0*'3.==."'D%='&7.*'?7%@E.2' D+&7'&7.' ?0@@.=<0*2+*E'7%"0 # %"K% *. GZ8b'C-,'Wi8b'CC0",'(8('.A8J 8'97.'=0"B&+ 0*' D%='&0<<.2'D+&7'%' ?0*2.*=.@,'%*2'&7.'@.%?&+0*'D%='7.%&.2'&0'%<<@0Q+C%&."1'(WSj'F'%*2'=&+@@.2'>0@'(W # WX 70B@=8' a>&.@'5.+*E'3.@+>+.2'3+%'9-F,'@.%?&+0*'D%='D0@K.2'B<'51'2+"B&+*E D+&7'D%&.@'%*2'.Q&@%?&+*E'&7@..' &+C.= +*&0'.&71"'%?.&%&.8'97.'0@E%*+?'>@%?&+0 *='D.@.'&7.*'D%=7.2'&7@..'&+C.='D+&7'D%&.@,'2@+.2' 03.@'C%E*.=+BC'=B">%&.,'%*2'&7.*'?0*?.*&@%&.2'B*2.@' @0&%@1'.3%<0@%&+0* 8'97.'?@B2.'C+Q&B@.' D%='+.2'3+%'>"%=7'?0"BC*'?7@0C%&0E@%<71 B=+*E'%'7.Q%*.'."B.*&'&0'%>>0@2' D7+&. ?@1=&%"=' GiZ T 1+."2 J8 B6+.'"#5#(* 4()*32*-+,( F5 ) RT S RT S 3".'*U6 S 2'"+6'( # 5@0C0 # X # C.&70Q1 # 5.*N.*.'GX8bb'E,'Wb8\'CC0" ,'('.A8J ,'<1@+2+*. # X # 50@0*+?'%?+2' G\8(W'E,'Wb8\'CC0" ,'('.A8J,' %*2' <0&%==+BC'?%@50*%&.'GZ8kk'E,'bS8Z'CC0" ,'W'.A8J D%='+*=&+"".2'+*' )O/'GbS'C-J'B*2.@'+ *.@&'?0*2+&+0*=,'&0<<.2'D+&7'%'?0*2.*=.@8' a'=%&B@%&.2'=0"B&+0*'0>' 9 .&@%K+=G&@+<7.*1"<70=<7+*.J<%""%2+BCGSJ G(8SW'E,'S8ck CC0", S8S\ .A8J +*=&+"".2'+*'bS'C-'0>')O/' D%='&7.*'<"%?.2'+*'"+AB+2'*+&@0E.*'%*2'%""0D.2'&0'>@..N.'?0C<".&."18'H*?.'>@0N.*,'&7.'>"%=K'D %=' <"%?.2'B*2.@'3%?BBC'>0@'('C+*B&. 0@'B*&+"'&7.'9:/'5.E%*'&0'&7%D,'%&'D7+?7'<0+*&'+&'D%='@.>+"".2' D+&7'+*.@&'%&C0=<7.@.8'97+='<@0?.=='D%='@.<.%&.2'&7@..'&+C.=,'%*2'%>&.@'&7.'&7+@2'+&.@%&+0*,' %""0D.2'&0'D%@C'&0'@00C'&.C<.@%&B@.8'97.'?%&%"1=&'D%='&7.*'?%** B"%&.2'+*&0'&7.'@.%?&+0*' C+Q&B@.,'%*2' 7.%&.2'&0'%<<@0Q+C%&."1'(WSj'F'%*2'=&+@@.2'>0@'(W # WX'70B@=8'


!" # $%&%"' c 9-F'3.@+>+.2'&7.'>0@C%&+0*'0>'<@02B?&'&7@0BE7'&7.'%<<.%@%*?.'0>'%'>"B0@.=?.*&'C%&.@+%"8'97.' @.%?&+0*'D%='D0@K.2'B<'51'2+"B&+*E' D+&7'D%&.@'%*2'.Q&@%?&+*E'&7@. .'&+C.='+*&0'.&71"'%?.&%&.8'97.' 0@E%*+?'<7%=.'D%='D%=7.2'%*'%22+&+0*%"'&7@..'&+C.='D+&7'D%&.@,'2@+.2'03.@'C%E*.=+BC'=B">%&.,' %*2'?0*?.*&@%&.2'B*2.@'@0&%@1'.3%<0@%&+0*8'97.'?@B2.'C+Q&B@.'D%='+.2'3+%'2@1 # "0%2'?0"BC*' ?7@0C%&0E@%<71'B=+*E' 7.Q%*.l.&71"'%?. &%&.'GiS]\SJ' >0@'&7.'."B.*&'&0'%>>0@2'D7+&.,'>"B>>1'?@1=&%"=' G\ST'1+."2J8' H*.'<"%B=+5".'@.%=0*'>0@'&7.'"%?K'0>'=B??.==>B"'1+."2='2.&.@C+*.2'>@0C'&7.'IBNBK+'?0B<"+*E'+=' <@.=BC.2'&0'5.'&7.'"%?K'0>'>%30@%5".'=B5=&+&B&+0*='0*'&7.'=&%@&+*E'C%&.@+%"='>0@'%*'.>> .?&+3.' ?0B<"+*E8'97.'<@.=.*?.'0>'.".?&@0*'D+&72@%D+*E'E@0B<'+*'&7.'%@1"'7%"+2.,'%*2'.".?&@0*'20*%&+*E' E@0B<'+*'%@1"'50@0*+?'%?+2'D0B"2'.*7%*?.'&7.'@.%?&+0*'@%&.'0>'&7.'IBNBK+'?0B<"+*E'@.%?&+0*8' :0D.3.@,'+*'&7.'@.%?&+0*'=?7.C.'>0@'?0C<0B*2' F5 ,'&7.' <@.=.*?.'0>'*+&@0E.*,'&7.'.".?&@0*' D+&72@%D+*E'E@0B<,'+*'&7.'%@1"'50@0*+?'%?+2'C02.@%&."1' 2.%?&+3%&. = &7.' 50@0*+?'%?+2'?0C<0*.*&' %='D.""'%='&7.' %@0C%&+?'@+*E'51'2.?@.%=+*E'&7.'.".?&@0*'2.*=+&1'0*'&7.'@+*E'&7@0BE7'%'@.=0*%*?.' D+&72@%D+*E'.>>.?& 8' 97.'@.=0*%* ?.'0*"1'2.?@.%=.='&7.'.".?&@0*'2.*=+&1'%& &7.'0@&70 # %*2'<%@% # <0=+&+0*=,'C%K+*E'&7.=.'=+&.='".=='*B?".0<7+"+? 8 B6+.'"#5#(*4()*32*-+,( @< J( R G9T S )6&<*2"+.$,5"+" S H S &$%Q*U6<5&($&5,9(3".'6<("#."% W J ( a'=02+BC'?1?"0<.*&%2+.*1"+2.'=0"B&+0*'GW'O'+*'9:/,'(X'CC0"J'D%= ?7%@E.2'+*'%'>"%C. # 2@+.2'>"%=K' &0<<.2'D+&7'%'?0*2.*=.@8'90'&7+='=0"B&+0*'D%='%22.2'%*'.AB%"'30"BC.'0>'9:/'%*2'b8k'C-' 2+C.&71"?%@50*%&.'GiS'CC0"J'%&'@00C'&.C<.@%&B@.'D+&7'=&+@@+*E8'97.'@.%?&+0*'C+Q&B@.'D%='&7.* 7.%&.2'&0'@.>"BQ'>0@'X'70B@= %*2'&7.*'?00".2' &0'@00C'&.C<.@%&B@.8'97.'C+Q&B@.'D%=' ?0*?.*&@%&.2'+*'3%?B08'97.'@.=B"&+*E'=0"+2'D%=' D%=7.2'D+&7'?0"2'.&7.@'3+%'>+"&@%&+0*'D+&7'%' @.=B"&+*E'5@0D* # @.2'=0"+2 D7+?7';OP'@.=B"&='+*2+?%&.2'?0*=+=&.2' 0>'>@.=7"1'?@%?K.2' ?1?"0<.*&%2+.*.'GWc'CC0"J 8'97.'=0"+2'D%='7+E 7"1'@.%?&+3.'D+&7'%&C0=<7.@.'%*2'7%2'&0'5.'=&0@.2' B*2.@'%@E0*'%*2'@.>@+E.@%&.28' B6+.'"#5#(*4()*32*-+,( G5 J( R F".'6<(X#."%(DV-<"+"(!505,(D%3 W ( Y5"0<"% S C$4+"%(DV-<"+"(B6+.'"#5# J ( X # GX # C.&70Q1 # <7.*1"J # <1@+2+*. GS8\ZW'E,'(8Si'CC0",'('.A8J'D%='2+==0"3.2'+*'2@1'%*2 +*.@&' ?0*2+&+0*='+*'\SS'C-'0>'&0"B.*.,'&0<<.2'D+&7'%'?0*2.*=.@8'90'&7+='=0"B&+0*'%&'S 0 F'D%='%22.2'\8Z' C-'0>'&@+>"B0@0C.&7%*.=B">0*+?'%* 712@+2.'GW(8X'CC0",'WS'.A8J8'a>&.@'&7.'=0"B&+0*'D%='=&+@@.2'>0@' b'C+*,'X8X'C-'0>'2@1'2+.&71"%C+*.'GXW8c'CC0",'XS'.A8J'%* 2'\8ib'E'0>' W,X # F1?"0<.*&%2+.*. # ( # ?%@50Q1"+?'%?+2,'C.&71"'.=&.@ GWb8i'CC0",'WX'.A8J'D.@.'%22.2'%&'@00C'&.C<.@%&B@.,'&7.*'&7.' C+Q&B@.'D%='@.>"BQ.2'>0@'(S'70B@=8' 9-F'3.@+>+.2'&7.'>0@C%&+0*'0>'&7.'5"B.'W # C.&71"'.=&.@ %NB".*.,'%='D.""'%='&7.''&7.'=0"3.*&,'&7.'@.=+2B.'D%='+.2'51'2@1 # "0%2' ?0"BC*'?7@0C%&0E@%<71'&0'%>>0@2'&7. >"%K.1,'5"B. W,Z # 2+=B5=&+&B&.2'C.&71"'.=&.@'%NB".*.' GiST' 1+."2J' B=+*E'7.Q%*.l.&71"'%?.&%&.'G(S](J'%='&7.'."B.*&8 a"&70BE7'&7.@. %@.'0&7.@'=1*&7.&+?'@0B&. = >0@'%NB".*.=,'&7.'m+.E".@ # :%>*.@'C.&702'+='&7.'C0=&' >B*?&+0*%"'>0@'%NB".*.'?0C<0B*2='D+&7'=B5=&+&B.*&='0*'2+3.@=.'<0=+&+0*='%&'&7.'>+3. # C.C5.@.2' %*2'<%@&+?B"%@"1 &7.'=.3.* # C.C5.@.2'@+*E ?NA 8' :0D.3.@,'&7.':%>*.@'C.&702'+=' "+C+&. 2'+*'+&=' 3.@=%&+"+&1,'.=<.?+%""1'+*'&.@C='0>'=?%"+*E'B<'%*2'+*?@.%=+*E'&7.'?0*?.*&@%&+0*'0>'&7.'@.%?&+0*8'


!" # $%&%"' k /B@&7.@'=1*&7.&+?'+*3.=&+E%&+0*='D+""'?0*=+2.@'C.%*='0>'+C<@03+*E'%*2l0@'%"&.@+*E'&7.'?0*2+&+0*=' &0'<.@C+&'%'7+E7.@'<@02B?&+0*'0>'&7.'2.=+@.2'<@02B?&8 B6+.'"#5#(*4()*32*-+,( H5 J( R)$%Q*U6<5&( D&5, ( DV-<"+"W(C6,%*<6#5#J '' !=&.@'?".%3%E.'0>'&7.'@+E+2'%@C'D%='%?7+.3.2'&7@0BE7'2+==0"3+*E'S8SbX'E'0>'&7.'C.&71"'.=&.@' %NB".*.'?0C<0B*2 GS8(W'CC0",'('.A8J +*'9:/lD%&.@'G('Gb'C-J]('Gb'C-JJ ,'%*2'&7.*'E@0B*2' "+&7+BC' 7 12@0Q+2.' GS8Wi'E,'S8ZSb'CC0",'b'.A8J'D%='%22.28'97.'C+Q&B@.'D%='@.>"BQ.2'03.@*+E7&'&7.*' ?00".2'&0'@00C'&.C<.@%&B@.8'9-F'3.@+>+.2'&7.'>0@C%&+0*'0>'&7.'%?+28'97.'<:'0>'&7.'C+Q&B@.'D%=' 5@0BE7&'&0'W8S'B=+*E':F"'%*2'&7.'@.=B"&+*E'=0"+2'D%='>+"&.@.2'%*2'D%=7.2'D +&7'?0"2'.&7%*0" Gb\ T' 1+."2J 8'' 97.'@.=B"&+*E'=0"+2'D%='05=.@3.2'&0'5.'%'E@..*,'>"%K.1'=B5=&%*?.,'2+>>+?B"&'&0'2+==0"3.'+*' %*1' =0"3.*&'*.?.==%@1'&0'<@0?..2'D+&7'&7.'>+*%"'&%@E.&'=1*&7.=+=8' I0C.'2+==0"B&+0*'0>'&7.'712@0"1N.2' ?0C<0B*2'D%='05=.@3.2'+*')O/8 a22+&+0*%""1,'&7.' %?+2'+='7+E7"1'=.*=+&+3.'%*2'@."%&+3."1' B*=&%5".,'%*2'@. # ?0*>+EB@.='&0'+=0C.@+?'<@02B?&'D+&7'&+C.8 B6+.'"#5#(*4()*32*-+,( E5 J(R/$%0".(8"+. S )*%"(F*<"&-<"W ( B."0<5&'(X#."%545&$.5*+ J ( 90'%'=&+@@.2'=0"B&+0*'0> S8SWcX'E'?%@50Q1"+?'%?+2'%NB".*.' GS8SZZ'CC0",'('.A8J'+*'\'C-'%*712@0B=' )O/ +='%22.2' ?%&%"1&+?'%C0B*&='0> )Oa6'%*2' S8SS\\'C-'0>' (,b # <.*&%*.2+0"' G S8S\(X'CC0",'n' .A8 J8 S8S(W'E'0>'!) F'+='%22 .2'&0'&7.'@.%?&+0*'C+Q&B@.'%&'S 0 F ,'D7+?7 +='&7.*'=&+@@.2'>0@'bC+*'%&'SjF ,' &7.*'=&+@@.2'%&'@00C' &.C<.@%&B@.'>0@'WX'70B@= 8' 9-F'+*2+?%&.2'&7.'<0&.*&+%"'>0@C%&+0*'0>'&7.'&%@E.&8' )@0'?0*?.*&@%&.2':F"'D%=' B=.2'&0'%?7+.3.'%'<:'0>'%<<@0Q+C%&."1'W8S8'97.'0@E%*+?'D%='.Q&@%?&.2'D+&7'&7@..'<0@&+0*='0>' 2+.&71"'.&7.@'%*2'D%=7.2'D+&7'&7@..'<0@&+0 *='0>'5@+*.'=0"B&+0*8'97.'0@E%*+?'D%='2@+.2'03.@' C%E*.=+BC'=B">%&.'%*2'&7.*'>+"&.@.28'97.'.&7.@'D%='@.C03.2'51'3%?BBC'.3%<0@%&+0*,'%*2' <@0?..2.2'D+&7'2@1 # "0%2'?0"BC*'?7@0C%&0E@%<71'B=+*E'C.&71".*.'?7"0@+2.'&0'+=0"%&.'&7.' <0&.*&+%"'2+.=&.@'?0C<0B*2 8 ;OP'@. 3.%".2'&7.'>0@C%&+0*'0>'&7.'C0*0 # =B5=&+&B&.2'.=&.@8 F0*=+2.@%&+0*='>0@'0&7.@'%&&.C<&=' B=+*E'&7.'I&.E "+?7'. =&.@+>+?%&+0*'C%1'+*?"B2. <@0?..2+*E'D+&7'&7.'C0*0 # .=&.@'+*'%*'%22+&+0*%"' .=&.@+>+?%&+0*'D+&7'=B<<".C.*&%@1'%?+2'%NB".*.8' B6+.'"#5#(*4()*32*-+,( E8 J ( R/$%0".(8"+. S )*%"(F*<"&-<"WJ ( a'=+*E". # *.? K.2,'(S'C-'@0B*2 # 50&&0C'>"%=K'D%= ?7%@E.2'D+&7'S8(WS'E'0>'&7.'%?+2'%NB".*.'GS8Wii' CC0",'('.A8J'%*2'F: W F" W' G('C-J8'97.'@.%?&+0*'3.==."'D%='3%?BBC'+"".2'D+&7'+*.@&' %&C0=<7.@.'&7@..'&+C.=,'5.>0@.'5.+*E'? 7%@E.2'D+&7'0Q%"1"'?7"0@+2.'GS8SX'C-,'S8\ZS('CC0",'(8\' .A8J,'>0""0D.2'51'W'2@0<='0>'%*712@0B=')O/8'97.'@.=B"&+*E'C+Q&B@.'D%='=&+@@.2'%&'@00C' &.C<.@%&B@.'>0@'X'70B@=,'%*2'&7.*'?0*?.*&@%&.2'51'@0&%@1'.3%<0@%&+0*8'90'&7.'@.=B"&+*E'?@B2.' C+Q&B@.'?0*&%+*+*E' &7. %?+2'?7"0@+2.'D%= %22.2' ('C-'0>' F: W F" W %*2'&7.'=0"B&+0*'D%= ?0*?.*&@%&.2'51'@0&%@1'.3%<0@%&+0*8' a'=.<%@%&.'&7@.. # *.?K.2,'@0B*2 # 50&&0C.2'>"%=K, 3%?BBC'+"".2'D+&7' +*.@&' %&C0=<7.@.'&7@..'&+C.=,'D%= ?7%@E.2'D+&7'('C-'0>'F: W F" W %*2'S8SZ'C-'0>'&@+.&71"%C+*.'GS8X(b b' CC0",'(8b'.A8J8'97.'C+Q&B@.'D%= ?00".2'&0'S 0 F,'D7.@.'&7.'?@B2.'%?+2'D%= &@%*=>.@@.2,'2@0

!" # $%&%"' (S &0'&7.'=&+@@.2'=0"B&+0*8'M<0*'?0C<".&+0*'0>'&7.'%22+&+0*'0>'&7.'%?+2'? 7"0@+2.'=0"B&+0*,'&7.' C+Q&B@.'D%= =&+@@.2'%&'@00C'&.C <.@%&B@.'>0@'W'70B@ =8' H5=.@3%&+0*='C%2.'2B@+*E'&7.'%22+&+0*'0>'&7.'%?+2'?7"0@+2.'@.3.%".2'%*'+*=&%*&'?0"0@'?7%*E.'&0'%' 5@+E7&'@.2'=0"B&+0*8'P.E%@2".==,'&7.'C+Q&B@.'D%='2+"B&.2'D+&7':F"'%*2'&@%*=>.@@.2'&0'%'=.<%@%&0@1' >B**.",'D7.@.'&7.'0@E%*+?'"%1.@'D%='D% =7.2'D+&7'5@+*.'&7@..'&+C.='%*2'?0*?.*&@%&.2'3+%' 3%?BBC8'97.'0@E%*+?'<7%=.'D%='2+"B&.2'D+&7'C.&7%*0"'%*2'@. # ?0*?.*&@%&.2'B*2.@'3%?BBC,' E+3+*E'@+=.'&0'%'?@B2.,'@.2'=0"+28';OP'@.3.%".2'&7.'C1=&.@+0B='>0@C%&+0*'0>'&7.'%NB".*.'( # C.&71"' K.&0.=&.@8' O&'./$')5#>) 3('8.''(*# V*'%22+&+0*'&0'?7%@%?&.@+N+*E'?0C<0B*2' G5 %=')!$(oc\,'&7.'C.&71"'.=&.@'%NB".*.'@+E+2'%@C' ?0C<".Q'D%=' >0B*2'&0'7%3.'%'B*+AB.'%5=0@<&+0*'=<.?&@BC,'<0&.*&+%"'.>>.?&+3.'?7%@E.'&@%*=<0@&' <@0<.@&+.=,'%*2' @%@.' C.=0E.*+?'5.7%3+0@8' 3K0@PQG 6 @02B?&+0*'51 %'MRlRVI'=<.?&@0C.&.@'@.3.%".2' %'=<.?&@BC 0>' &7.' ?0*LBE%&.2 21.'C02."".2'+*' @."%&+0*'&0'+&= D%3.".*E&7='%*2'<.%K'%5=0@<&+0*=8 97.'@.=B"&= +""B=&@%&.2'+*' B(6C)E +2.*&+>+.2'&7.' % 5=0@5%*?.'3.@=B=' D %3.".*E&7'@."%&+0*=7+<'+*'&7.'?0*LBE%&.2'21.'D+&7+*'&7.'D%3." .*E&7'@%*E.' 0>'\bS # ibS'*C,'D+&7'%'C%Q+CBC'D%3.".*E&7'0>'%5=0@<&+0*'%&'\kX *C %*2'%*'.>>.?&+3.' D%3.".*E&7'0>'%5=0@<&+0*'%&'bkc'*C8' 97.'@.=B"&='%?AB+@.2'>@0C'&7.'MRlRVI'=<.?&@0C.&.@' ?0*>+@C'&7%&'&7.'.C+==+0*'0>'05=.@3.2'5"B.'?0"0@'0>')!$(oc\'+='+*2+?%&+3.'0> &7.'?%<%5".' %5=0@<&+0*'0>'&7.'?0C<0B*2'.Q&.*2+*E'+*&0'&7.'1.""0D'&0'@.2'<0@&+0*'0>'&7.'3+=+5".'"+E7&' =<.?&@BC8 a??0@2+*E'&0'&7.'@.=B"&='2.&.@C+*.2'>@0C'&7.'=<.?&@0C.&.@,'&7.'?0C<0B*2'.Q7+5+&=' 3.@=%&+". %*2'7+E7"1'>%30@%5". "+E7&'%5=0 @5+*E'<@0<.@&+.=8 B (6C)E ]' a5=0@5%*?.'3.@=B='D%3.".*E&7'=<.? &@BC'0>')!$(oc\,'+""B=&@%&+*E'&7.'=&@0*E.=&' D%3.".*E&7'0>'%5=0@5%*?.'%&' \kX'*C'%*2' &7.'D.%K.=& D%3.".*E&7'0>'%5=0@5%*?.'%&'bkc'*C8' # S8b S S8b ( (8b W W8b \ \8b \bS XSS XbS bSS bbS ZSS ZbS iSS ibS cSS cbS a5=0@5%*?.'paMq 4%3.".*E&7'p*Cq a5=0@5%*?.'paMq'3='4%3.".*E&7'p*Cq'%*%"1=+='0>' )!$(oc\'


!" # $%&%"' (( )+>>.@.*&+%"'=?%**+*E'?%"0@+C.&@1'G)IFJ'%*%"1=+='0>')!$(oc\ G B(6C)J J ,'<%@%C0@<7+?' %&'"0D' &.C<.@%&B@. = %*2 % 7+E7"1'0@2.@.2'=C.?&+?, .Q7+5+&.2'B*+AB.'C.=0C0@<7+=C'&@%*=+&+0*='B<0*' 7.%&+*E'%*2'?00"+*E8' a&'&7.'&+C.'0>'7.%&+*E,' %'5@0%2'.Q0&7.@C'?.*&.@.2'%&'ZZ8kSjF'".%2='>@0C' &7.'E"%=='2+@.?&"1'+*&0 &7.'"+AB+2'?@1=&%"'<7%=.'&@%*=+&+0* 8'97@.. K.1'<7%=.'&@%*=+&+0*='%@.' 05=.@3.2'B<0*'7.%&+*E,'D7.@.'&7.'>+@=&'.*20&7.@C'05=.@3.2'%&'((W8iX 0 F'?0@@.=<0*2='&0'&7.' &@%*=+&+0*'+*&0'&7.'.Q&@.C."1'=&%5".'=C.?&+?'!'<7%=. G B(6C)JB R J ,'%*2'=.?0*2'.*20&7.@C' 05=.@3.2'%&'(cS8ik 0 F ?0@@.=<0*2='&0'&7.'&@%*=+&+0*'+* &0'&7.'C.&%=&%5".'=C.?&+?'a'<7%=. G B(6C) JR 7 J ,'D7+?7'+='>0""0D.2'51'%*'.*20&7.@C'%&'WWi8ik 0 F'?0@@."%&+*E'&0'&7.'+=0&@0<+?'C."& G B(6C) J= J 8' M<0*'?00"+*E,'&7.@.'+='%*'.Q0&7.@C'%&'WWb8Zk 0 F'>0""0D.2'51'&7.'%<<.%@%*?.'0>'=C00&7'>0?%"' ?0*+?'>%*=,'%='05=.@3.2'3+% 6-O'%*%"1=+=,'0@+.*&.2'B*+>0@C"1'D+&7'&7.'.Q&+*?&+0*'5@B=7.='%"+E*.2' D+&7'&7.'<0"%@+N.@'%*2'%*%"1 N.@,'+2.*&+>+.2'%='&7.'=C.?&+?'a <7%=. G B(6C)J0 J 8'97+='&@%*=+&+0*'+=' >0""0D.2'51'%*'%22+&+0*%"'.Q0&7.@C'?.*&.@.2'%&'(ic8ki 0 F'%??0C<%*+.2'51'&7.'%<<.%@%*?.'0>' %' 5"B. ,'_0+"'%*2'D%&.@` C0=%+?'&.Q&B@.'G+*'&7.'70C.0&@0<+?' ="+2.J'%='D.""'%='?+@?B"%@,'@+*E # &.Q&B@.2' >0?%"'?0*+?'>%*= %"=0'<@.=.*&'*0'&+"&'+*'<7%=.'0@2.@'%"+E*C.*&'&7@0BE7'6-O'+C%E+*E8'97+='<7%=.' &@%*=+&+0*'D%='+2.*&+>+.2'%='&7.'=C.?&+?'!'<7%=. G B(6C)J1 3 S)K J ,'D7+?7'5.?%C.'7+E7"1'0@2.@.2' B<0*'?00"+*E'&7@0BE7'&7.'+*?@.%=+*E'+*&.*=+&1'0>'&7.'&.Q&B@%"'?7%@%?&.@+=&+?='%&'&7.'C.=0<7%=.8'a' >+*%"'.Q0&7.@C'+='05=.@3.2'%&'bX8Sb 0 F'D7.@.'&7.'C%&.@+%"'%<<.%@='&0'>0@C'%*'.Q&@.C."1'=&%5".' E"%=='<7%=.8' V*'&7.'=C.?&+?'=&%&.,'&7.'C0".?B".=' C%+*&%+*'&7.'E.*.@%"'0@+.*&%&+0*%"'0@2.@'0>'*.C%&+?=,'5B&' %"=0'&.*2'&0'%"+E*'&7.C=."3.='+*'"%1.@='0@'<"%*.= ?@F A 8'V*'&7.'=C.?&+?'a'C.=0<7%=.,'&7.'2+@.?&0@'+=' %"+E*.2' <.@<.*2+?B"%@'&0'&7.'=C.?&+?'<"%*., =BEE.=&+*E'0@+.*&%&+0*%"'0@2.@,'70D.3.@ &7.@.'+='* 0' <%@&+?B"%@'<0=+&+0*%"'0@2.@'D+&7+* &7.'"%1.@ ?@F A 8'a='05=.@3.2'+*'&7.'?7%@%?&.@+=&+?='%*%"1N.2' B=+*E'<0"%@+N.2'"+E7&'C+?@0=?0<1'G6-OJ,'=C.?&+?'a'&@%+&='D.@.'+2.*&+>+.2'51'&7.'=C00&7'<"%*%@' @.E+0*='0>'&7. >0?%"'?0*+?'>%*='%='D.""'%='5"%?K'70C.0&@0<+?'@.E+0*='D+&7+*'&7.'C.=0<7%=.8'a*' %&1<+?%"'0??B@@.*?.'B<0*'?00"+*E'+*&0'&7.'=C.?&+?'a'<7%=.'&@%* =+&+0* D%='&7.'"%?K'0>'5%&0**.&= >0@C%&+0*,'5B&'@%&7.@'+CC.2+%&.'>0@C%&+0*'0>'>0?%"'?0*+?'>%*=8' M<0*'%*%"1=+='B=+ *E'6-O,' &.Q&B@%"'?7%@%?&.@+=&+?='0>'&7.'?0C<0B*2'>0@'&7.'=C.?&+?'!'<7%=.'%@.'+2.*&+>+.2'51'&7.'2+=&+*?&' ?+@?B"%@'@+*E='%@0B*2'&7.'>0?%"'?0*+?'>%*=,'"%?K+*E'B*+>0@C+&1'+*'&7.+@'2+=&@+5B&+0*8 a*'%22+&+0*%"' B*+AB.'>.%&B@.'+*?"B2.='&7.'.Q&+*?&+0*'5@B=7.='%"+E*+*E'D+&7'&7.'<0"%@+N.@'%*2'%*%"1N.@'0>'&7.' = ?0<.,'+*2+?%&+*E'0@+.*&%&+0*%" %*2'<0=+&+0*%"'0@2.@'+*'%"+E*C.*&'D+&7'&7.'2+@.?&+0*'0>'&7.' 2+@.?&0@,'<.@<.*2+?B"%@'&0'&7.' =C.?&+?'<"%*. ?QA 8')B.' &0'&7.+@'7+E7.@'0@2.@.2'<7%=.'%"+E*C.*&'%&' "0D'&.C<.@%&B@.= ,'=C.?&+?'!'<7%=.='%@.'<%@&+?B"%@"1'+*&.@.=&+*E'+*'&7.+@ 0@2.@.2'C0".?B"%@' <%?K+*E'%*2 <0&.*&+%"'7+E7.@'.>>+?+.*?1'+*'?7%@E.'&@%*=<0@& ) ?QA 8' '' '' ) )


!" # $%&%"' (W ) ) B(6C)J D a]')IF'2%&%'>0@')!$(oc\ ''' $]'W(b8b 0 F'0*'?00"+*E'70C.0&@0<+?'%&'WSQ'C%E*+>+?%&+0* F]'(ib 0 F'0*'?00"+*E'70C.0&@0<+?'%&'WSQ'C%E*+>+?%&+0* ''' )]'(Zb 0 F'0*'?00"+*E'70C.0&@0<+?'%&'WSQ'C%E*+>+?%&+0* !]'ki8X 0 F'0*'?00"+*E'70C.0&@0<+?'%&'WSQ'C%E*+>+?%&+0*


!" # $%&%"' (\ ''' /]'(SS 0 F'0*'7.%&+*E'<"%*%@'%&'WSQ' C%E*+>+?%&+0* Y]'((b 0 F'0*'7.%&+*E'<"%*%@'%&'WSQ'C%E*+>+?%&+0* ''' :]'(kS8W 0 F'0*'7.%&+*E'<"%*%@'%&'WSQ'C%E*+>+?%&+0* V]'WWc8b 0 F'0*'7.%&+*E'<"%*%@'%&'WSQ'C%E*+>+?%&+0* r # @%1'<0D2.@'2+>>@%?&+0*'GrP)J'%*%"1=+='B=+*E'"+AB+2'F@1=&%"'>+"C='0>')!$(oc\' G B(6C)N J D.@.' <@.<%@.2'+*'&7.' =C.?&+?' a'<7%=.'%*2'?00".2'20D*'&0'&7.'?@1=&%" !'<7%=.8'a&'.%?7' &.C<.@%&B@., &7.'2+>>@%?&+0*'=+E*%"'D%='?0"".?&.2'>@0C'2+>>.@.*&'=<%&+%"'<0=+&+0*='0*'&7.'=%C<".'0@+.*&.2' <.@<.*2+?B"%@'&0'&7.'+*?+2.*&'Q # @%1'5.%C8' I&@0*E.@'+*&.*=+&+.='D +&7+*'&7.'2+>>@%?&+0*'<%&&.@*' 2+=?.@*='7+E7.@'<0=+&+0*%"'0@2.@'D+&7+*'&7.'"%1.@=,'+*2+?%&+3.'0>'&7.'=C.?&+?'!'<7%=. G B(6C)N0 J ?@G A 8'/%+*&'2+>>@%?&+0*'=+E*%"='?0@@."%&.'D+&7'0@+.*&%&+0*%"'0@2.@,'5B&'*0&'*.?.==%@+"1'=&@B?&B@%" D+&7+*'&7.'"%1.@=,'=BEE.=&+*E &7.'=C.?&+?'a'<7%=. G B(6C)N1 J ?@G A 8' 97.'2%&%'=70D='=&@0*E' <.@+02+?+&1'&7%&'.Q+=&='D+&7+*'&7.'C%&.@+%"='?@1=&%""+*.'<7%=.'%*2'%<<.%@='&0'2+C+*+=7'%='&7.' C%&.@+%"'+='7.%&.28 a&'&7.'+=0&@0<+?'<7%=.,'*0'<.%K='%@.'05=.@3.2'+*'&7.'<"0&'+*' B(6C)N ,'%=' .Q<.?&.2'> 0@'%'C."&.2'C%&.@+%"8'M<0*'?00"+*E,'=&@0*E,'+*&.*=.'<.%K='%@.'05=.@3.2'%&'=C%""' 3%"B.='0>'s,'D+&7'&7.'%5=.*?.'0>'<.%K='%&'"%@E.@'3%"B.='0>'s,'=BEE.=&+*E'&7.'>0@C%&+0*'0>'"%1.@=' D+&7+*'&7.'=C.?&+?'<7%=.,'5B&'%*'%5=.*?.'0>'0@2.@'+*'&7.'"%1.@'5.&D..*'&7.'"%1. @='B<0*' >0@C%&+0*8'M<0*'?00"+*E'&7.'C%&.@+%"'>B@&7.@,'&7.'%<<.%@%*?.'0>'D+2.,'5@0%2'<.%K='5.E+*='&0' %@+=.'% &'"%@E.@'3%"B.='0>'s,'=BEE.=&+*E <.@+02+?+&1'%*2'+*&.@C0".?B"%@'=&@B?&B@.'%*2'?@1=&%""+*+&1' D+&7+*'&7.'=C.?&+?'<7%=.8' rP)'@.=B"&='?0*>+@C.2'&7.'<@.=B C.2'<7%=.'&@%*=+&+0*='5.+*E'05=.@3.2' &7@0BE7')IF'%*2'6-O'%*%"1=+=,'D7.@.')!$(oc\'+='3.@+>+.2'&0'<0==.=='%'B*+AB.'%*2'7+E7'0@2.@.2'


!" # $%&%"' (X ?@1=&%""+*.'=C.?&+?'!'<7%=.,'%*2'B*2.@E0'&7.'?00"+*E'<7%=.'&@%*=+&+0*'0>' V=0 ICa IC! F@1=&%" 8'' B(6C)N D a]'rP)'<"0&'>0@' )!$(oc\ ''' $]' )+>>@%?&+0* +C%E.'?0"".?&.2'%&'(\W 0 F F]')+>>@%?&+0*'+C%E.'?0"".?&.2'%&'WSW 0 F 1*#8/.'(*# 97.' %NB".*.'5.*& # ?0@. ?0C<".Q,')!$(oc\ 7%=' =B??.==>B""1' 2.C0*=&@%&. 2'%'<0&.*&+%"'+*&.@.=&'+*' &7.'+*?0@<0@%&+0*'0>'HIF'2.3+?.=8'97.'@.=B"&='>@0C'&7. %*%"1=+='0>'&7.'@+E+2'%@C'>@0C'6-O,')IF,' %*2'rP)'7%3.'<@03+2.2'=+E*+>+?%*&'+*=+E7&'0*'&7.'*%&B@.'0>'&7.'C%&.@+%"'>0@'3+%5".'?7%@E.' &@%*=<0@&'5%=.2'0*'?@1=&%""+*+&1 ,'%"+E*C.*&, %*2'7+E7 # 0@2.@.2'C0".?B"%@'<%?K+*E 8'a22+&+0*%""1, 7+E7'%5=0@<&+0*'0>'&7.'?0C<0B *2 D%='2.&.@C+*.2 &7@0BE7'MRlRVI'%*%"1=+=,'.Q&.*2+*E'+*&0'&7.' 1.""0D'&0'@.2'<0@&+0*'0>'&7.'3+=+5".'"+E7&'=<.?&@BC8 )B.'&0'&+C.'?0*=&@%+*&='%*2'@%&7.@'B*.Q<.?&.2'=1*&7.&+?'?7%"".*E.=,'&7.'?0C<".&.'5.*& # ?0@.' C0".?B".'?0B"2'*0&'5.'?0C<".&.2'%='0>'1.&,'%*2'&7. @.>0@.,'*0'&.=&+*E'?0B"2'5.'%??0C<"+=7.2'&0' 2.&.@C+*.'D7.&7.@'&7.'=+C<".'21.'C02+>+?%&+0*'D0B"2'<.@C+&'&7.'>0@C%&+0*'0>'&7.':;/'<7%=. ,' %*2'70D'&7.'0??B<%*?1'0>'&7.'<7%=.'D0B"2'.Q+=&'+*'H6R= 8'/0@&B*%&."1,'=.3.@%"'=1*&7.&+?'@0B&.=' %@.'5.+*E'?0*=+2.@.2'>0@'&7 .'>+*%"'&%@E.&'=1*&7.=+=,'+*?"B2+*E'&7.'5%=. # ?%&%"1N.2'&@%*=' .=&.@+>+?%&+0*'=1*&7.&+?'=?7.C.'+""B=&@%&.2'>0@'?0C<0B*2' H> 8'


!" # $%&%"' (b F7%@E.'?%@@+.@'C05+"+&1'+='2.<.*2.*&'0*'C0".?B"%@'0@2.@'+*'%'=C.?&+?'"%1.@,'%*2'&7.'7+E7.=&' C05+"+&1'+='%?7+.3.2'+*'&7.'7+E7.=&'0@2.@ .2'=C.?&+?'<7%=.= ?TA 8' I&B2+.='?0*2B?&.2'0*')!$(oc\' 7%3.'".2'&0'%*'+*&.@.=&'+*'>B@&7.@'.Q<"0@+*E'%'D+2.'3%@+%&+0*'0>'7+E7"1 # 0@2.@.2'=C.?&+?'<7%=.=' 2.C0*=&@%&+*E'?%@@+.@'C05+"+&1,'+*?"B2+*E'&7.'=C.?&+?'Y'<7%=.8' /B&B@.'D0@K'D+""'%"=0'+*?"B2.'&7.' +*3.=&+E%&+0 *'0>'0&7.@'2.@+3%&+3.='0>'&7.'%NB".*.'5.*& # ?0@.'?0C<".Q,'=BEE.=&+*E'%'_<"BE # %*2 # <"%1`'0>'=B5=&+&B.*&=,'+*?"B2+*E'&7.' +*?0@<0@%&+0*'0>'% I?7+>>'5%=.'"+*K.@ G@%&7.@'&7%*'&7.'%"K0Q1' <7.*1"'=B5=&+&B.*&J 0>&.*'05=.@3.2'+*'$X'<7%=.'C0".?B".=8' ,8U#*V/&>6:&#$' ) @8')%3+2'4%"5%]'/0@'%""0D+*E'C.'&0'=<.*2'&7.'=BCC.@'+*'10B@'"%5'&0'20'@.=.%@?7'+*'%'*03."'%*2' .Q?+&+*E'%@.%'0>'>@0*&+.@'=?+.*?.8 -..'/0".1]'/0@'%"D%1='5.+*E'D+""+*E'&0'7."<'D7.*'*..2.2'%*2'C.*&0@+*E'C.'+*'&7.'D%1='0>' %?%2.C+?'2.3."0'10B@'&+C.,'%"D%1='K..<+*E'C1'=<+@+&='7+E7,'%*2' 5.+*E'%3%+"%5".'>0@'"0E+?%"'=BEE.=&+0*8 )@8'!&7%*'9=%+]'/0@'=B<<0@&+*E'C.'%*2'<@03+2+*E'C.'D+&7'+*2.<.*2.*?.'+*'C1'@.=.%@?78 97. >B*2+*E'>@0C'&7.';I/'>0@'&7.'IOPF'OPI!F,'D7+?7'%""0D='=&B2.*&='=B?7'%='C1=.">'&0'E%+*' .Q<.@+.*?.'%*2'B*2.@=&%*2'D7%&'+&'C.%*='&0'5.'%'=?+.*&+=&8 O&+&2&' ) ?@A) 4%"5%,')%3+28't!Q<"0@+*E'&7.':."+?%"';%*0>+"%C.*&'-+AB+2'F@1=&%"'67%=.'>0@'H@E%*+?' 670&030"&%+?=8t I6V!';.D=@00C GWS(bJ8 ?FA) F%""%7%*,'P.5.??%'a8,')%3+2'F8'F0>>.1,')0*E'F7.*,';0."'a8'F"%@K,'Y%@@1'PBC5".=,'%*2')%3+2' O8'4%"5%8'tF7%@E.'Y.*.@%&+0*'O.%=B@.2'>0@'/B"".@.*. # :."+?%"';%*0>+"%C.*&'-+AB+2'F@1=&%"' :.&.@0LB*?&+0*=8t aFI'a<<"+.2'O%&.@+ %"='u'V*&.@>%?.= Z,'*08'i'GWS(XJ]'XcW\8 ?GA) F7.*,')0*E,'U0=.<7'!8'O%?".**%*,'P.*>%*'I7%0,')0*E'e+'v00*,':%+&%0'4%*E,'!3%'e0@5"03%,' )%3+2'O8'4%"5%,'O%&&7.D'a8'Y"%=.@,'%*2';0."'a8'F"%@K8'tF7+@%"+&1 # 6@.=.@3+*E'Y@0D&7'0>':."+?%"' /+"%C.*&='+*'&7.'$X'67%=.'0>'$. *& # F0@.'-+AB+2'F@1=&%"=8t U0B@*%"'0>'&7.'aC.@+?%*'F7.C+?%"' I0?+.&1 (\\,'*08'\W'GWS((J]'(WZbZ8 ?HA) $.3%*,'970C%=8 aNB".*. # 5%=.2'6@0&.?&+*E'Y@0B<=]'%'&7.=+='=B5C+&&.2'&0'&7.'R+?&0@+%' M*+3.@=+&1'0>'4.""+*E&0*'+*'>B">+"C.*&'0>'&7.'@.AB+@.C.*&='>0@'&7.'2.E@..' 0>')0?&0@'0>' 67+"0=0<718'O%=&.@f='&7.=+=,'R+?&0@+%'M*+3.@=+&1'0>'4.""+*E&0*8 ?EA) m7%*E,'$+*E,'e%+QB%*'m70B,'I7B>%*'O0,'-+"+*'m7B,'m70B?7.*E'IB,'U+%*Q+'v%0,'%*2'I0*E1B%*' )%+8'tI0C.'+*=+E7&='+*&0'&7.'=."> # %==.C5"1'<%&&.@*='0>'&D0'2+%C+*.'2.@+3%&+3.='%='"0D'C 0".?B"%@' C%=='0@E%*0E."%&0@='>@0C'C0".?B"%@'21*%C+?=8t O0".?B"%@'I+CB"%&+0*,'WS(i,'( # i8' 20+](S8(ScSlSckWiSWW8WS(i8(\bic((8


!" # $%&%"' (Z ?JA) 4%"5%,')%3+2'O8'HPYa;VF'6:H9HRH9aVFI8'MI'6%&.*&'MI'WS(\lSWSiSkS'a(,'>+".2'/.5@B%@1' ((,'WS(\,'%*2'+==B.2'aBEB=&'(b,'WS(\8 a<<"o';0 ^'(\liZX,ZZS,' 7&&<=]ll20?=8E00E".8?0Cl3+.D.@wB@"x<%&.*&+C%E.=8=&0@%E.8E00E".%<+=8?0Cl<2>=lMIWS(\SWSiS kS8<2> ?NA) 4%*E,'m.@0*E,':%>*.@,'%*2'O.+*7%@2&8'tm+.E".@ # :%>*.@'aNB".*.'I1*&7.=+=8t F0C<@.7.*=+3.' H@E%*+?';%C.'P.%?&+0*='%*2'P.%E.*&=,'WS(S8'20+](S8(SSWlki cSXiSZ\ccbk8?0*@@ZkX8 ?QA) :%**%,'UB* # V?7+,'aK+@%'H7*0,'%*2':+@0%K+'V+*08'tF7%@E.'?%@@+.@'&@%*=<0@&'+*'"+AB+2' ?@1=&%"=8t 97+*'I0"+2'/+"C=bbX'GWS(XJ]'bc # Z\8'20+](S8(S(ZlL8&=>8WS(\8(S8Sb(8 ?TA) $B=751,'P+?7%@2'U8,'I8'O8'e.""1,'%*2'Hf;.+"",'O%@1'G6@0>.==0@'0>'< 71=+?=J8'WS(\^WS(W^WS((^8' -+AB+2'?@1=&%""+*.'=.C+?0*2B?&0@=]'O%&.@+%"=,'<@0<.@&+.='%*2'%<<"+?%&+0*=8'(8'aB>"8^(^'.28'R0"8'(Zk8' )0@2@.?7&^-0*20*^]'I<@+*E.@8 ?@IA ) F0<1@+E7&'y'WS(i'I+EC% # a"2@+?7'F08'--F8'a""'P+E7&='P.=.@3.28'aNB".*.'kkT8' 7&&<]llDDD8=+EC%%"2@+ ?78?0Cl?%&%"0El<@02B?&l%"2@+?7l%kiWS\w"%*Ex.*u@.E+0*xMI ) ?@@A) )0*E,'U+* # rB.,'%*2':%0 # -+'m7%*E8'WS(Z8'aNB".*. # 5%=.2'0@E%*+?'>B*?&+0*%"'C0".?B".='>0@' 0<&0.".?&@0*+?=8'F7+*.=.'F7.C+?%"'-.&&.@='Wi'GcJ]'(Ski # (SX8 ?@FA 67%=.='0>'-+AB+2'F@1=&%"=8'V==B.2'klW(lSX8' 7 &&<]llC%&.@+%"=82BK.8.2BlrFHMPI!IlO!c\l"?@1=&%"=W8<2> ?@GA ;%K%E%D%,'e0=BK.,'O+70'v0K01%C%,'9%K%7+@0'v0K01%C%,'e0N0'9010&%,';050@B'O0@+&%,' I7B*L+'V&0,'I70&%'9%7%&%,'.&'%"8'WS(S8'I1*&7.=+='%*2'"+AB+2'?@1=&%""+*.'5.7%3+0@'0>'%NB".*. # 5%=.2' "+AB+2'?@1=&%"=' D+&7'Z # 7.Q%2.?1"'=B5=&+&B.*&='0*'.%?7'%NB".*.'@+*E8'9.&@%7.2@0*'ZZ'GXWJ]'c\SX # (W8