Citation
Alternate determinations of wind design surface roughness factors using geographic information systems

Material Information

Title:
Alternate determinations of wind design surface roughness factors using geographic information systems
Creator:
Ellison, Nicole
Place of Publication:
Denver, CO
Publisher:
University of Colorado Denver
Publication Date:
Language:
English

Thesis/Dissertation Information

Degree:
Doctorate ( Doctor of philosophy)
Degree Grantor:
University of Colorado Denver
Degree Divisions:
Department of Civil Engineering, CU Denver
Degree Disciplines:
Civil engineering
Committee Chair:
Rens, Kevin
Committee Members:
Rutz, Frederick R.
Marshall, Wesley
Troy, Austin
Li, Cheng

Notes

Abstract:
The surface roughness of the earth has a significant effect on wind speed. Surface roughness of the earth is defined by the terrain, landscaping and built environment. For decades, structural engineers have been grouping the surface roughness surrounding a site into discrete categories based on the recommendations in The American Society of Civil Engineers Standard 7 (ASCE7), Minimum Design Loads for Buildings and Other Structures. This study presents alternate methods of calculating the roughness factors correlating to the surface roughness surrounding a site using geographic information system (GIS) data and tools. Using GIS, the surface roughness surrounding a structure can be analyzed to refine the roughness factors currently utilized and more precisely define the surface roughness values surrounding a site. This research examines different types of GIS data and multiple methods for determining surface roughness that include methods not traditionally used by wind engineers. These methods offer an alternate approach that account for surface roughness changes and offer to remove the oversimplification of selecting a single exposure to represent what is often more complex terrain. This modeling and analysis is directed toward use in practical design of structures.

Record Information

Source Institution:
University of Colorado Denver
Holding Location:
Auraria Library
Rights Management:
Copyright Nicole Ellison. Permission granted to University of Colorado Denver to digitize and display this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.

Downloads

This item has the following downloads:


Full Text
ALTERNATE DETERMINATIONS OF WIND DESIGN SURFACE ROUGHNESS
FACTORS USING GEOGRAPHIC INFORMATION SYSTEMS by
NICOLE ELLISON
B.S.C.E., Florida State University, 1995 M.S.C.E., University of Colorado, Denver, 2015
A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Civil Engineering Program
2017


This dissertation for the Doctor of Philosophy degree by Nicole Ellison has been approved for the Civil Engineering Program by
Kevin Rens, Chair Frederick R. Rutz, Advisor Wesley Marshall Austin Troy Cheng Li
Date: December 16, 2017


Ellison, Nicole (PhD, Civil Engineering)
Alternate Determinations of Wind Design Surface Roughness Coefficient, Kz, Using Geographic Information Systems (GIS) Modeling Dissertation directed by Professor Frederick Rutz
ABSTRACT
The surface roughness of the earth has a significant effect on wind speed. Surface roughness of the earth is defined by the terrain, landscaping and built environment. For decades, structural engineers have been grouping the surface roughness surrounding a site into discrete categories based on the recommendations in The American Society of Civil Engineers Standard 7 (ASCE7), Minimum Design Loads for Buildings and Other Structures. This study presents alternate methods of calculating the roughness factors correlating to the surface roughness surrounding a site using geographic information system (GIS) data and tools. Using GIS, the surface roughness surrounding a structure can be analyzed to refine the roughness factors currently utilized and more precisely define the surface roughness values surrounding a site. This research examines different types of GIS data and multiple methods for determining surface roughness that include methods not traditionally used by wind engineers. These methods offer an alternate approach that account for surface roughness changes and offer to remove the oversimplification of selecting a single exposure to represent what is often more complex terrain. This modeling and analysis is directed toward use in practical design of structures.
The form and content of this abstract are approved. I recommend its publication.
Approved: Fredrick R. Rutz
iii


ACKNOWLEDGMENTS
This dissertation and research work was inspired by a truly exceptional teacher,
Dr. Frederick Rutz. This work was funded in part by the University of Colorado, Denver and by my amazing husband, Bryan Ellison, whose love and belief in me is and continues to be bottomless. This work would also not be possible without my dad, Jeffrey Guidry. My dad has offered objective insight on my research, criticism and best of all, he has given me inspiration that has fueled me to finish this project.
IV


TABLE OF CONTENTS
CHAPTER
I. OVERVIEW............................................................1
Introduction.......................................................1
Purpose............................................................2
Scope..............................................................2
II. WIND FLOW...........................................................4
Boundary Layer.....................................................4
Fluid Mechanics of Air Flow........................................7
Wind Profile Changes..............................................15
Wind Speed........................................................19
Turbulence Intensity..............................................21
Engineering Models................................................22
Power Law.........................................................23
Log Law...........................................................24
III. ESTIMATION OF SURFACE ROUGHNESS LENGTH............................26
Roughness Modeled Using Field Measurements........................26
Alternate Roughness Models........................................28
Roughness Modeled in Wind Tunnel Testing..........................31
Area of Influence.................................................38
Changes in Roughness..............................................39
IV. CURRENT PRACTICE FOR DETERMINING WIND LOAD ON STRUCTURES42
ACE7-10 Wind Load Equations.......................................45
EDSU Factored Basic Wind Speed Approach...........................54
Estimation of Terrain Parameters, zo and d..................56
v


Surface Roughness Factors Ks* and Ks........................57
Australian/New Zealand Standard...................................59
United Kingdom of Great Britain and Northern Ireland.............62
V. BACKGROUND ON GIS AND ITS USE IN ASSESS SING SURFACE ROUGHNESS .........................................................................65
GIS Data .........................................................66
GIS Studies Involving Surface Roughness...........................71
Urban Planning GIS Studies Involving Surface Roughness...........72
Wind Based GIS Studies Involving Surface Roughness...............73
Wind Pollution GIS Studies Involving Surface Roughness............74
GIS Spatial Methods for Determining Roughness Not involving Wind..77
VI. GIS ROUGHNESS ANALYSIS METHODS......................................80
GIS Study - Building Shapefile Vector Data........................85
GIS Study - Raster Land Cover Data................................88
GIS Study - FiDAR Data............................................91
VII. VALIDATION METHODS.................................................93
Wind Tunnel Studies...............................................94
Field Wind Data...................................................95
Gardner Study...............................................95
Masters Study...............................................98
Lombardo Study.............................................100
VIII. GIS INITIAL ROUGHNESS STUDY......................................102
Lubbock Building Shapefile Study.................................102
Denver and Wyoming - Land Cover Study............................121
Tampa Study Building Shapefile and LiDAR Study...................129
vi


IX. GIS ROUGHNESS STUDY - MULTIPLE SITE STUDY
140
Tallahassee Site Study...............................................140
Opa-Locka LiDAR Site Study...........................................142
Jacksonville LiDAR Site Study........................................144
Wallops LiDAR Site Study.............................................145
Lumberton LiDAR Site Study...........................................147
Bob Sikes LiDAR Site Study...........................................149
Slidell LiDAR Site Study.............................................151
Pearland, Texas LiDAR Site Study.....................................152
X. GIS ROUGHNESS STUDY RESULTS............................................155
Standard Deviation Method Best Fit...................................156
Standard Deviation Method Fit Based on Average Values................160
Model Grid Size Investigation........................................170
First Order Slope Method.............................................174
First Order Slope Method Fit Based on Average Values.................178
Second Order Slope Method............................................188
Second Order Slope Method Fit Based on Average Values................192
LiDAR Combined.......................................................202
XI. SUMMARY................................................................223
Synopsis.............................................................223
Conclusions..........................................................224
Possible Sources of Error............................................226
Opportunities for Future Research....................................227
vii


XII. REFERENCES
229
XIII. APPENDIX
A.
B.
C.
D.
E.
...........................................................236
Appendix A Python Code.....................................236
USGS Land Cover Classifications and Corresponding z0 Values.... 239
Appendix B GIS Methodology.................................242
Wind Tunnel Data...........................................247
Site Study Comparison......................................258
vm


LIST OF TABLES
TABLE
Table III. 1 ASCE7 Table C26.7-2 Davenport Classification of Terrain Roughness (ASCE7-10 Used with permission from ASCE)...................................27
Table III.2 Rostek Roughness Lengths Based on Peg Density...................34
Table III.3 Minvielle Roughness Lengths Based on Peg Density................35
Table III.4 Summary of Peterson’s 1997 Roughness Length Study (reproduced with permission).................................................................37
Table III. 5 Stathopoulos Comparison of Roughness Length Change Full Scale Models to Wind Tunnel Models (Stathopoulos 1984)......................................38
Table IV. 1 Comparison of Roughness Lengths Values..........................44
Table IV.2 Summary of Area of Influence by Building Design Standard/Code....45
Table IV.3: Kz Values Corresponding to ASCE7 Ranges for z0.(Adapted from ASCE7 Table 26.7-1)...............................................................52
Table VI.2 Comparison of calculated z„ values using Multiple Methods for the Denver site........................................................................86
Table VI.3 Comparison of calculated z„ values using Multiple Methods for the Loveland site........................................................................86
Table VI.4 Comparison of calculated z„ values using Multiple Methods for the Loveland site........................................................................87
Table VI.5 z0 Values for Denver Site........................................89
Table VI.6 z0 Values for Wyoming Site.......................................90
Table VI.7 Masters Calculated Roughness Lengths at Ten Key Airports CPP Roughness ..................................................................................100
Table VII. 1 Building Data Summary for Site Located in the Agricultural Field (WEMITE 1) from ArcGIS Building Model.....................................................108
Table VII.2 Building Data Summary for Site Located in the Residential Community ( WEMITE 2) from ArcGIS Building Model..............................................108
Table VI. 1 Summary Table VII.3 CPP Comparison of z0’s Calculated by Gardner Using COM and TITs (Gardner 2004).......................................................110
IX


Table VII.4 Building Data Summary for Site Located in the Agricultural Field (WEMITE 1) from ArcGIS Building Model...........................................................115
Table VII.5 CPP Building Data Summary for Site Located in the Residential Neighborhood (WEMITE 2) from ArcGIS Building Model...........................119
Table VII.6 Denver GIS Calculated and Wind Tunnel Testing Roughness Factors.123
Table VTI.7 Wyoming GIS Calculated and Wind Tunnel Testing Roughness Factors.... 127
Table VII.8 Comparison of Roughness Factors for Building Model, LiDAR Model and Masters Equivalent Values....................................................133
Table VII.9 LiDAR Elevation Study............................................136
Table VII. 10 Comparison of Roughness Factors for LiDAR Elevation Model and Masters Equivalent Values............................................................136
Table IX. 1 Summary of Best Fit Roughness Adjustment Values for Standard Deviation Method.......................................................................160
Table IX.2 Summary of Best Fit Roughness Adjustment Values for First Order Slope Method.......................................................................178
Table IX.3 Summary of Best Fit Roughness Adjustment Values for Second Order Slope Method.......................................................................192
Table IX.4 Tampa Site Comparison of Summary of LiDAR GIS Methods to Masters Field Wind Derived Values..........................................................203
Table IX.5 Tallahassee Site Comparison of Summary of LiDAR GIS Methods to Masters Field Wind Derived Values....................................................204
Table IX.6 Opa-Locka Site Comparison of Summary of LiDAR GIS Methods to Masters Field Wind Derived Values....................................................205
Table IX.7 Jacksonville Site Comparison of Summary of LiDAR GIS Methods to Masters Field Wind Derived Values....................................................206
Table IX.8 Wallops Site Comparison of Summary of LiDAR GIS Methods to Masters Field Wind Derived Values....................................................207
Table IX.9 Lumberton Site Comparison of Summary of LiDAR GIS Methods to Masters Field Wind Derived Values....................................................208
Table IX. 10 Bob Sikes Site Comparison of Summary of LiDAR GIS Methods to Masters Field Wind Derived Values...............................................209
x


Table IX. 11 Slidell Site Comparison of Summary of LiDAR GIS Methods to Masters Field Wind Derived Values...............................................210
Table IX. 12 Pearland Site Comparison of Summary of LiDAR GIS Methods to Masters
Field Wind Derived Values...........................................................211
Table IX. 13 GIS Difference Between GIS Values for each Area of Influence Compared to Masters Field Wind Derived Values....................................................213
Table IX. 14 GIS Difference Between GIS Values Compared to Masters Field Wind Derived Values with Directions Facing Water in Blue..................................216
Table IX. 15 GIS Difference Between GIS Values Compared to Masters Field Wind Derived Values with Directions with Forests in Purple Text...........................217
Table XI. 1 z0 Values for USGS Land Use Classifications..............................240
Table XI.2 z0 Values for USGS Land Use Classifications Continued.....................241
Table XI.3 GIS Data Collection Date for Each Site....................................258
xi


LIST OF FIGURES
FIGURE
Figure II-1 Typical Wind Profile..................................................4
Figure II-3 Isolated Roughness Flow (Gardner 2004)................................6
Figure II-4 Wake Interference Flow (Gardner 2004).................................6
Figure II-5 Skimming Flow (Gardner 2004)..........................................7
Figure II-1 Ng Figure of CFD Predicted Wind Flow at Two Different Building Configuration in Hong Kong (Ng 2011) (reproduced with permission)...............15
Figure II-6 Wind Profile Changes Smooth-to-rough (Potter 2009)....................16
Figure II-7 Transitional Flow Regime at a Change in Roughness (Gardner 2004)......17
Figure II-8 Wind Rose for Denver International Airport............................21
Figure II-9 Comparison of ASCE7-02 Gust Profiles with those Predicted by the Harris Deaves Model (Irwin 2006 with permission from ASCE).............................23
Figure III-l Wind Profile at Urban Areas (Yuan 2014) (reproduced with permission).30
Figure III-2 Wind Tunnel Diagrams (Peterka and Cermak 1978) (reproduced with permission).....................................................................32
Figure III-3 Block Configuration Depicting Suburban Roughness Modeled in ArcMAP. 33
Figure III-4 Block Configuration Depicting Urban Roughness Modeled in ArcMAP......33
Figure III-5 Plan View of Peg Rostek Peg Configuration............................34
Figure III-6 Roughness Types used by Peterson (Peterson 1997) (reproduced with permission).....................................................................36
Figure IV-1 Wind Profile (CPP 2015.)(Reproduced with Permission from CPP).......43
Figure IV-2 ASCE7 Photo of Typical Exposure Category B Terrain. (ASCE 2010)....47
Figure IV-3 ASCE7 Photo of Typical Exposure Category B Terrain (ASCE 2010)....47
Figure IV-4 ASCE7 Photo of Typical Exposure Category B Terrain (ASCE 2010)....48
Figure IV-5 ASCE7 Photo of Typical Exposure Category C Terrain (ASCE 2010)....49
xii


Figure IV-6 ASCE7 Photo of Typical Exposure Category C Terrain (ASCE 2010)......49
Figure IV-7 ASCE7 Photo of Typical Exposure Category D Terrain (ASCE 2010)......50
Figure IV-8 Examples of Changes in Terrain Category.............................61
Figure IV-9 Notation for Changes in Terrain.....................................61
Figure IV-10 United Kingdom Wind Code Table NA.3 Roughness Change from Sea to Land (reproduced with permission)...............................................63
Figure IV-11 United Kingdom Wind Code Table NA.4 Roughness Change from Country to Town (reproduced with permission)............................................64
Figure V-l Screenshot of Loveland Table in ArcMAP...............................67
Figure V-2 Screenshot of Loveland Building Shapefile Model in ArcMAP............68
Figure V-3 Screenshot of Land Use Data for Denver Area modeled in ArcMAP........69
Figure V-4 Screenshot of LiDAR Data for Tampa Site modeled in Quick Terrain Modeler ..................................................................................71
Figure V-5 Screenshot of LiDAR Data for Tampa Site modeled in Quick Terrain Modeler
................................................................................72
Figure V-6 Frontal Area Density in Wuhan and Potential Air Paths (Yuan 2014) (reproduced with permission)....................................................76
Figure V-7 Urban, Podium and Building Layers in a Urban Setting (Ng et al. 2011) (reproduced with permission)....................................................77
Figure V-8 Wind Permeability in Hong Kong (Ng et al. 2011)......................78
Figure V-9 Riley Terrain Ruggedness Index Definition (Popit and Verbovsek 2013).79
Figure VI-1 Summary of Roughness Variables......................................83
Figure VI-2 Simplified Grid.....................................................85
Figure VI-3 Detailed Grid.......................................................86
Figure VI-4 Denver Site Land Cover..............................................90
Figure VI-5 Denver Site Surface Roughness z0 Values.............................92
Figure VI-6 Wyoming Site Surface Roughness z0 Values............................92
Figure VI-7 Screenshot of Tampa Model in QT Modeler............................94
xiii


Figure VII-1 Gardner Aerial View of Site (Gardner 2004).........................105
Figure VII-2 Google Map with Gardner’s Sites (Google Earth 2015)................106
Figure VII-3 Wind Direction Sections............................................107
Figure VII-4 Screenshot from ArcGIS Building Model for Site Located in the Agricultural Field (WEMITE 1)................................................................108
Figure VII-5 Google Screenshot from ArcGIS Building Model for Site Located in the Residential Community (WEMITE 2)............................................108
Figure VII-6 Graph Comparing the z„ Values Calculated Using GIS Data and Gardeners Calculated z„ values from her Wind Measurements for the Site Located in the Agricultural Field (WEMITE 1)................................................................114
Figure VII-7 Google Graph Comparing the zo Values Calculated Using GIS Data and Gardeners Calculated z„ values from her Wind Measurements for the Site Located in the Residential Community (WEMITE 2)............................................115
Figure VII-8 Google Map View for the Site Located in the Near the Agricultural Field (WEMITE 1) with Distances Marked and Wind Direction Sections....................116
Figure VII-9 Graph Comparing the z„ Values Calculated Using GIS Data for Three Different Areas of Influence and Gardeners Calculated z„ values from her Wind Measurements for the Site Located in the Agricultural Field (WEMITE 1)..........118
Figure VII-10 Google Map View for the Site Located in the Residential Community (WEMITE 2) with Distances of 4 km Marked and Wind Direction Sections............119
Figure VII-11 Google Map View for the Site Located in the Residential Community (WEMITE 2)......................................................................120
Figure VII-12 Graph Comparing the z„ Values Calculated Using GIS Data for Three Different Areas of Influence and Gardeners Calculated z„ values from her Wind Measurements for the Site Located in the Residential Neighborhood (WEMITE 2)....122
Figure VII-13 Denver Site with 1 km Area of Influence...........................123
Figure VII-14 Denver Site with 5 km Area of Influence...........................124
Figure VII-15 Denver Site with 10 km Area of Influence..........................124
Figure VII-16 Denver Site Comparison of GIS Calculated Roughness Factors to Wind Tunnel Roughness Factors........................................................126
Figure VII-17 Wyoming 1 km Area of Influence....................................127
Figure VII-18 Wyoming Site with 5 km Area of Influence..........................128
xiv


Figure VII-19 Wyoming Site with 10 km Area of Influence
128
Figure VII-20 Wyoming Site Comparison of GIS Calculated Roughness Factors to Wind
Tunnel Roughness Factors.....................................................130
Figure VII-21 Google Earth View of Tampa Site (Google Earth 2016)............131
Figure VII-22 Google Earth View of Tampa Site (Google Earth 2016)............132
Figure VII-23 Screenshot of Building Vector Data for the Tampa Site Modeled in ArcMAP.......................................................................133
Figure VII-24 Screenshot of LiDAR Data for Tampa Site modeled in Quick Terrain Modeler......................................................................134
Figure VII-25 Screenshot of Building Vector Data Overlaid on the LiDAR Data for the Tampa Site Modeled in ArcMAP.................................................135
Figure VII-26 Comparison of Roughness Factors for Building Model, LiDAR Model and Masters Equivalent Values....................................................137
Figure VII-27 Screenshot of the LiDAR Data for the Tampa Site Modeled in ArcMAP 138 Figure VII-28 Comparison of Roughness Factors for LiDAR Elevation Model and Masters
Equivalent Values.............................................................140
Figure VII-29 Comparison of Masters Roughness Lengths and Terrain for a 1 km Area of Influence (Masters, 2011; Google, 2017).......................................141
Figure VII-30 Comparison of Masters Roughness Lengths and Terrain for a 2 km Area of Influence (Masters, 2011; Google, 2017........................................142
Figure VII-31 Comparison of Masters Roughness Lengths and Terrain for a 5 km Area of Influence (Masters, 2011; Google, 2017........................................142
Figure VIII-1 Tallahassee Aerial View of Site 1 km (Google Maps 2017).........144
Figure VIII-2 Tallahassee Aerial View of Site 5 km (Google Maps 2017a)........144
Figure VIII-3 Tallahassee Aerial View of Site 10 km (Google Maps 2017)........145
Figure VIII-4 Opa-Locka Aerial View of Site 1 km (Google Maps 2017)...........146
Figure VIII-5 Opa-Locka Aerial View of Site 5 km (Google Maps 2017)...........146
Figure VIII-6 Jacksonville Aerial View of Site 1 km (Google Maps 2017)........147
Figure VIII-7 Jacksonville Aerial View of Site 5 km (Google Maps 2017)........148
xv


Figure VIII-8 Wallops Aerial View of Site 1 km (Google Maps 2017d).............149
Figure VIII-9 Wallops Aerial View of Site 5 km (Google Maps 2017d).............149
Figure VIII-10 Wallops Aerial View of Site 10 km (Google Maps 2017d)..........150
Figure VIII-11 Lumberton Aerial View of Site 1 km (Google Maps 2017e)..........151
Figure VIII-12 Lumberton Aerial View of Site 5 km (Google Maps 2017e)..........151
Figure VIII-13 Bob Sikes Aerial View of Site 1 km..............................152
Figure VTTT-14 Bob Sikes Aerial View of Site 5 km..............................153
Figure VIII-15 Bob Sikes Screen Shot of ArcMAP GIS Model......................154
Figure VIII-16 Slidell Aerial View of Site 1 km................................155
Figure VIII-17 Slidell Aerial View of Site 5 km................................155
Figure VIII-18 Pearland Aerial View of Site 1 km...............................156
Figure VIII-19 Pearland Aerial View of Site 5 km...............................157
Figure IX-1 Tampa Best Fit Standard Deviation Roughness.......................160
Figure IX-2 Tallahassee Best Fit Standard Deviation Roughness Values...........160
Figure IX-3 Opa-Locka Best Fit Standard Deviation Roughness Values.............161
Figure IX-4 Jacksonville Best Fit Standard Deviation Roughness Values..........161
Figure IX-5 Wallops Best Fit Standard Deviation Roughness Values...............162
Figure IX-6 Lumberton Best Fit Standard Deviation Roughness Values.............162
Figure IX-7 Tampa Fit Based on Average Standard Deviation Roughness Values....164
Figure IX-8 Tallahassee Fit Based on Average Standard Deviation Roughness Values . 165
Figure IX-9 Opa-Locka Fit Based on Average Standard Deviation Roughness Values ..166
Figure IX-10 Jacksonville Fit Based on Average Standard Deviation Roughness Values ...............................................................................167
Figure IX-11 Wallops Fit Based on Average Standard Deviation Roughness Values.168
Figure IX-12 Lumberton Fit Based on Average Standard Deviation Roughness Values 169
Figure IX-13 Bob Sikes Fit Based on Average Standard Deviation Roughness Values.. 170
xvi


Figure IX-14 Slidell Fit Based on Average Standard Deviation Roughness Values..171
Figure IX-15 Pearland Fit Based on Average Standard Deviation Roughness Factor.172
Figure IX-16 Tampa Fit Based on 3 Meter Grid Using Average Standard Deviation Roughness Factor...............................................................173
Figure IX-17 Tampa Fit Based on 30 Meter Grid Using Average Standard Deviation Roughness Factor...............................................................174
Figure IX-18 Tampa Fit Based on 50 Meter Grid Using Average Standard Deviation Roughness Factor...............................................................174
Figure IX-19 Jacksonville Fit Based on 3 Meter Grid Using Average Standard Deviation Roughness Factor...............................................................175
Figure IX-20 Tampa Fit Based on 30 Meter Grid Using Average Standard Deviation Roughness Factor...............................................................176
Figure IX-21 Tampa Fit Based on 100 Meter Grid Using Average Standard Deviation Roughness Factor...............................................................176
Figure IX-22 Tampa Best Fit First Order Slope Roughness Factor.................179
Figure IX-23 Tallahassee Best Fit First Order Slope Roughness Factor...........180
Figure IX-24 Opa-Locka Best Fit First Order Slope Roughness Factor.............180
Figure IX-25 Jacksonville Best Fit First Order Slope Roughness Factor..........181
Figure IX-26 Wallops Best Fit First Order Slope Roughness Factor...............181
Figure IX-27 Tampa Fit Based on First Order Slope Roughness Factor.............183
Figure IX-28 Tallahassee Fit Based on Average First Order Slope Roughness Factor.... 184
Figure IX-29 Opa-Locka Fit Based on Average First Order Slope Roughness Factor.... 185
Figure IX-30 Jacksonville Fit Based on Average First Order Slope Roughness Factor .. 186
Figure IX-31 Wallops Fit Based on Average First Order Slope Roughness Factor...187
Figure IX-32 Lumberton Fit Based on Average First Order Slope Roughness Factor .... 188
Figure IX-33 Bob Sikes Fit Based on Average First Order Roughness Factor.......189
Figure IX-34 Slidell Fit Based on First Order Slope Roughness Factor...........190
Figure IX-35 Pearland Fit Based on First Order Slope Roughness Factor..........191
xvii


Figure IX-36 Tampa Best Fit Second Order Slope Roughness Factor.............193
Figure IX-37 Tallahassee Best Fit Second Order Slope Roughness Factor.......194
Figure IX-38 Opa-Locka Best Fit Second Order Slope Roughness Factor.........194
Figure IX-39 Jacksonville Best Fit Second Order Slope Roughness Factor......195
Figure IX-40 Wallops Best Fit Second Order Slope Roughness Factor...........195
Figure IX-41 Tampa Fit Based on Second Order Slope Roughness Factor.........197
Figure IX-42 Tallahassee Fit Based on Average Second Order Slope Roughness Factorl98
Figure IX-43 Opa-Locka Fit Based on Average Second Order Slope Roughness Factor 199
Figure IX-44 Jacksonville Fit Based on Average Second Order Slope Roughness Factor ............................................................................200
Figure IX-45 Wallops Fit Based on Average Second Order Slope Roughness Factor ....201
Figure IX-46 Lumberton Fit Based on Average Second Order Slope Roughness Factor 202
Figure IX-47 Bob Sikes Fit Based on Average Second Order Roughness Factor...203
Figure IX-48 Slidell Fit Based on Second Order Slope Roughness Factor.......204
Figure IX-49 Pearland Fit Based on Second Order Slope Roughness Factor......205
Figure IX-50 Tampa Combined Comparison......................................207
Figure IX-51 Tallahassee Combined Comparison................................208
Figure IX-52 Opa-Locka Combined Comparison..................................209
Figure IX-53 Jacksonville Combined Comparison...............................210
Figure IX-54 Wallops Combined Comparison....................................211
Figure IX-55 Lumberton Combined Comparison..................................212
Figure IX-56 Bob Sikes Combined Comparison..................................213
Figure IX-57 Slidell Combined Comparison....................................214
Figure IX-58 Pearland Combined Comparison...................................215
Figure IX-59 Differences in Standard Deviation Method for Nine Sites........218
Figure IX-60 Differences in First Order Slope Method for Nine Sites.........218
xviii


Figure IX-61 Differences in Second Order Slope Method for Nine Sites........219
Figure IX-62 Maximum GIS Roughness Factors for Tampa.......................222
Figure IX-63 Maximum GIS Roughness Factors for Tallahassee.................222
Figure IX-64 Maximum GIS Roughness Factors for Opa-Locka...................223
Figure IX-65 Maximum GIS Roughness Factors for Jacksonville................224
Figure IX-66 Maximum GIS Roughness Factors for Wallops.....................224
Figure IX-67 Maximum GIS Roughness Factors for Lumberton...................225
Figure IX-68 Maximum GIS Roughness Factors for Bob Sikes...................225
Figure IX-69 Maximum GIS Roughness Factors for Slidell.....................226
Figure IX-70 Maximum GIS Roughness Factors for Pearland....................226
Figure XI-1 Diagram of the Initial Process..................................247
Figure XI-2 Screenshot of QT Modeler Grid Statics Selection Screen..........249
Figure XI-3 Photographs of the Completed Denver Model in the Wind Tunnel....250
Figure XI-4 Pressure Tap Locations and Net Pressures.........................251
Figure XI-5 Pressure Tap Locations and Net Pressures.........................252
Figure XI-6 Pressure Tap Locations and Net Pressures.........................253
Figure XI-7 Pressure Tap Locations and Net Pressures.........................254
Figure XI-8 Photographs of the Completed Cheyenne Model in the Wind Tunnel..255
Figure XI-9 Roof Plan.......................................................256
Figure XI-10 Pressure Tap Locations and Net Pressures........................257
Figure XI-11 Pressure Tap Locations and Net Pressures........................258
Figure XI-12 Pressure Tap Locations and Net Pressures........................259
Figure XI-13 Pressure Tap Locations and Net Pressures........................260
Figure XI-14 Lubbock Site in 2014 (Google Earth 2017)........................262
Figure XI-15 Lubbock Site in 2002 (Google Earth 2017)........................262
xix


Figure XI-16Tampa Site in 2010 (Google Earth 2017)...........................263
Figure XI-17 Tampa Site in 2007 (Google Earth 2017)..........................263
Figure XI-18 Slidell Site in 2010 (Google Earth 2017).........................264
Figure XI-19 Slidell Site in 1999 (Google Earth 2017)........................264
Figure XI-20 Bob Sikes Site in 2010 (Google Earth 2017)......................265
Figure XI-21 Bob Sikes Site in 2007 (Google Earth 2017).......................265
Figure XI-22Tallahassee Site in 2010 (Google Earth 2017).....................266
Figure XI-23 Tallahassee Site in 2007 (Google Earth 2017).....................266
Figure XI-24 Lumberton Site in 2010 (Google Earth 2017)......................267
Figure XI-25 Lumberton Site in 1999 (Google Earth 2017).......................267
Figure XI-26 Wallops Site in 2010 (Google Earth 2017)........................268
Figure XI-27Wallops Site in 2013 (Google Earth 2017).........................268
Figure XI-28 Jacksonville Site in 2010 (Google Earth 2017)...................269
Figure XI-29Jacksonville Site in 2007 (Google Earth 2017)....................269
Figure XI-30 Opa-Locka Site in 2010 (Google Earth 2017).......................270
Figure XI-31 Opa-Locka Site in 2007 (Google Earth 2017).......................270
Figure XI-32 Pearland Site in 2010 (Google Earth 2017)........................271
Figure XI-33 Pearland Site in 2006 (Google Earth 2017)........................271
xx


CHAPTER I
OVERVIEW
Introduction
Scientists and engineers have been studying the effects of wind for centuries and have found that wind behavior is not only complex, but that storms further complicate the nature of wind loading. Because wind has a profound effect on everything it interacts with, understanding and quantifying the effects of wind is critical to the design of structures and the components used in structures. Understanding the wind load on a building or structure is required to design both the primary structural framing required for building stability, performance and the efficiency of the structure. Designing for too little wind loading can result in failures of the structure and finishes as seen in the hurricane type failures where roofs are detached and blown off. While designing for too much wind will increase the cost of the construction materials and connections(CPP Wind Engineering and Air Quality Experts 2017; Johnson 2003). Wind tunnels and other equipment have been used to develop tools to empirically estimate wind forces on structures, and these estimates incorporate many variables including the structure's shape and height and the nature of the surrounding area. The surrounding environment influences the structure’s response because the surrounding terrain topography, including hills, escarpments, vegetation and surrounding structures can redirect the winds and intensify turbulence that often increases the effective wind shear and pressures.
In common design practice, structural engineers in the United States use the requirements of the American Society of Civil Engineers Standard 7 (ASCE7 2010). This standard generalizes roughness variables into three categories known as Exposure B, C and D based on the roughness of the terrain surrounding the site of interest. These categories are
1


water. However, there is considerably less certainty when the terrain surrounding a site is not homogeneous. Designers will often use Exposure C as a default in lieu of interpolating between categories resulting in structures being designed for more wind loading. The Standard includes a simplified method for determination of the effects of roughness changes, although this is rarely used in practice. Rather, it is more common for structural engineers to design a structure for one exposure category that best fits the terrain surrounding a site. As noted by Irwin, “One of the greatest sources of uncertainty in the calculation of wind loads occurs in the selection of the wind exposure(\vW\n 2006)”. Because of changes in the surface roughness length, denoted by zo, combinations of open fields and urban environments, a representative exposure category can be difficult to select. Lombardo states,
“Documentation of recent wind engineering research needs have highlighted the need for improved methods to estimate zo including the development of tools that automate the process. These methods would be made more robust by using objective methods of analysis to reduce biases due to human estimation.” (Lombardo and Krupar 2017)
Purpose
The purpose of the study is to (1) develop and (2) to validate a method of calculating the surface roughness surrounding a site as it applies to wind loading utilizing Geographic Information Systems (GIS) technology. The study aims at eliminating the need for discrete Exposure Categories as outlined in ASCE7 to account for a wider range of surface roughness characteristics. Expanding the range of values for the velocity pressure coefficient will provide designers the ability to better quantify the wind pressures on a structure and reduce uncertainty associated with selecting a discrete Exposure Category.
Scope
The scope of this study is limited to areas in the United States that have primarily flat topography. The study is applicable to areas outside urban areas with terrain consisting of
2


combinations of a combination of rural and suburban areas including open country, low rise structures and some bodies of water. Urban areas with tall structures are outside the scope of this study, due to the complexity of wind loading in urban areas and on tall structures. Research also suggests that urbanized areas with plan surface area covered by structure exceeding 40% of free area required a different method to estimating roughness (Gardner 2004; Grimmond and Oke 1998). To provide comparison for the analysis and calculations, the subject structure for each area will be based on a specific height of 10 meters (33 feet) which corresponds to the standard height of the anemometers at wind stations. The 10 meter height also corresponds well to a typical residential two-story structures.
3


CHAPTER II
WIND FLOW Boundary Layer
The boundary layer is a region of flow near the surface of a body or in the case of structural engineering near Earth. In this layer beginning at the Earth and extending 1 km to 4 km upwards to the free atmosphere, the air inside the boundary layer tends to stay within this layer. In this layer, the flow is affected by the shear stresses on the body or Earth. Next to the Earth’s surface, the flow is brought to zero by friction, while far away from the body, the flow is unaffected by the shear stress. The condition at the surface and the condition away from the surface when the flow is no longer affected by the stress are the boundary conditions as shown in Figure 0-1. The flow at a smooth boundary layer is more simplified than on rough surfaces as the flow is assumed to be laminar or lacking turbulence.
Figure 0-1 Typical Wind Profile
Assumptions must be made about the boundary extent or thickness in order to define the wind velocity profile. The thickness or height of the boundary is often referred to as the
4


velocity is nearly the same as the local main-stream velocity. At this level, the Reynolds stress is zero and the pressure force and Coriolis force form a balanced condition.
There are two types of boundary layer flows, laminar flow and turbulent flow. In laminar flow, the flow is smooth and in turbulent flow there is random motion with velocity fluctuations. These changes affect the wind velocity profile as shown below in Figure II-1. There are two portions of the boundary layer, the upper portion is the Ekman Layer and the very bottom portion of the boundary layer is the surface layer which extends approximately 50 to 100 meters from the Earth’s surface.
While the majority of the boundary layer consists of the Ekman layer which sits above the surface layer, the focus of this study is the surface layer where the majority of the structures lie. In the surface layer, the wind typically behaves in a logarithmic profile. The Reynolds stress increases from zero at the gradient height to a maximum at the top of the interfacial layer. The Reynolds stress increases downwards through this layer as the mean wind momentum decreases.
The surface layer is where the structures are located. This layer can be subdivided into the lower and upper portion. The lower portion, or the viscous layer is the layer where the flow is “trapped among the roughness elements” (Sutton 1949) This is also referred to as the ‘zero-plane displacement” depth and is sometimes denoted with a “rT. The height of d, is generally less than the general height of the surrounding buildings ( ESDU 1993). Flow in the layer is controlled by local flow around objects such as buildings and trees (Wieringa 1992). The objects are referred to as roughness elements. Roughness elements vary in size from grains of sand to objects as big as tall buildings. This flow is often categorized into three types of behavior based on the spacing of the objects (Morris 1955).
5


Where objects such as buildings are spaced far apart, the wind flow moves over and around the structures with wind being impacted by each structure. The wind wake separates at each structure and reattaches before the flow reaches the next structure. This condition is referred to as isolated flow and is shown in Figure II-2.
Figure II-2 Isolated Roughness Flow (Gardner 2004)
Where the objects are spaced closer together, the turbulent wind flow, referred to as wake flow, reaches the next structure before it can reattach, creating a flow condition as shown in Figure II-3. This is referred to as wake interference.
Figure II-3 Wake Interference Flow (Gardner 2004)
The third condition is called skimming flow. The structures or objects are located so
closely that flow skims over the objects. In this condition shown in Figure II-4, stable vortices are developed between each roughness element.
6


Figure II-4 Skimming Flow (Gardner 2004)
Lee and Solimon (Lee and Soliman 1977) used results from wind tunnel testing to define the various flow regimes for normal and staggered patterns of elements by the roughness element density. Isolated roughness flow correlated to a roughness element density less than 6 % respectively. Wake interference flow correlated to roughness element density was between 16% and 40%. Skimming flow correlated to roughness element densities greater than 40%. These types of wind flow impact the lower portion of the wind flows, where the surface roughness has the most influence.
Fluid Mechanics of Air Flow
A fundamental knowledge of fluid mechanics is required to understand the air’s movements or wind. It has been shown that wind behaves like a fluid. The basic properties of a fluid are pressure, temperature, density, viscosity, compressibility and thermal properties.
At any point in fluid, there is pressure. Pressure is the amount of force acting per unit area. When a body is placed in a moving fluid such as air(wind), its surface is “bombarded by a large number of molecules moving at random” (Cook 1985). The air’s pressure produces aerodynamic forces as it moves over and around large objects such as buildings. These pressures are not uniform over the surfaces.
In gases, the matter is in molecules that are in motion relative to each other. The molecules possess kinetic energy which is sensed as temperature of the gas.
7


The density of a material is the measure of the amount of material contained in a specified volume. While the density may vary from point to point, the density of air at standard temperature and pressure is 1.2256 kg/m3 (0.07651bm/ft3).
Viscosity is sometimes compared to the “stickiness” of a fluid (Houghton and Carruthers 1976) and is a measure of a fluid’s internal friction. The higher the internal friction, the greater amount of force it takes to cause movement in fluid. Viscosity is a fluid’s rate of change of shear strain or it’s tendency to resist sliding.
Compressibility is the measure of how a fluid can be compressed. It is defined as the ratio of a change in pressure to the volumetric strain.
The thermal properties of the air of interest here is the amount of heat necessary to raise the temperature of a unit mass of the material. For dry air at normal aerodynamic temperatures, the specific heat at constant volume, cv is 718 J/kg K
To predict or estimate wind loadings on a structure, some simplifications are made in order to the quantify the pressure of the wind. First, at velocities customarily encountered in structural engineering, the flow of air is assumed to be incompressible, where the density of the fluid particle as it moves is considered constant. Second, the viscous or friction effects are neglected.
When you neglect the viscous flow, and consider the density to be constant, then Bernoulli’s principle can be used. In Bernoulli’s principle, in most flows of liquids and of gases at low flow velocity, the density of a fluid can be considered to be constant, regardless of pressure variations in the flow. A common form of Bernoulli's equation, valid at any arbitrary_point along a streamline, is:
V pV2 + pgz +p = constant Equation II-1
8


where:
V= fluid flow speed
g = the acceleration due to gravity
z = is the elevation of the point above a reference plane
p = pressure
p = density of the fluid
When the wind flow reaches the surface of the Earth, its behavior becomes more complex because the surface of Earth affects the wind speed and direction. Winds blow across the Earth from high-pressure systems to low-pressure systems and does not travel linearly. “The actual paths of winds and of ocean currents, which are pushed by wind are partly a result of the Coriolis effect” (National Geographic Society 2016). Wind flow has been divided into three categories, mean wind, turbulence, and waves (Stull 1988).
The wind flow at the Earth’s surface is viscous and subject to frictional forces that change its flow; it cannot be predicted solely with Bernoulli’s equation. The viscosity must be considered at the Earth’s surface. Wind speeds start from zero where in direct contact with the ground and increase with height above the ground. The earth’s surface exerts a horizontal drag force on the wind flow that retards the flow of air. Another factor impacting wind flow and velocity is the roughness on the earth’s surface. When wind flows over terrain such as buildings and trees, the flow changes from laminar, or smooth to turbulent.
Wind flow changes as it comes into contact with objects or bodies. A body is aerodynamically “bluff’ when the flow does not follow the surface of the body. The flow will detach from the body, creating regions of separation in the flow or wakes. The opposite of a bluff body is a streamlined body where the flow remains laminar. The flow around a streamlined body will remain attached or tangential to the surface. These bodies are found in
9


aircraft, whereas buildings and structures are typically bluff. When wind encounters buildings, large turbulent wakes or eddies are generated.
Wind flow changes in direction and velocity as it passes over obstacles. Surface roughness such as buildings and trees creates a turbulent wake. Turbulent fluid flow is random and irregular causing mixing of fluid particles. When the flow is turbulent, the flow contains circular or eddying motions, referred to as eddies. The eddies are typical random and range in sizes. Turbulent flow is characterized by unsteady eddying motions that are in constant motion with respect to each other. At any point in the flow, the eddies produce fluctuations in the flow velocity and pressure. Because of the variable nature of turbulent flows, predicting the behavior of turbulent flow becomes complicated.
The eddies interact with each other as they move around, and they can exchange momentum and energy. For example, for flow within a circular conduit, an eddy that is near the centerline of the pipe, and therefore has a relatively high velocity, may move towards the wall and interact with eddies near the wall (which typically have lower velocities). As the eddies mix and interact with one other, the momentum differences tend to smooth out. (Princeton University 2016).
Transitions in wind flow due to turbulence generally occur over a range of Reynolds numbers, which will be further discussed in the following chapter, depending on multiple factors, including the level surface roughness, heat transfer, vibration, and other disturbances. Turbulent flow is characterized by unsteady eddying motions that are in constant motion with respect to each other. At any point in the flow, the eddies produce fluctuations in the flow velocity and pressure. When flow is measured in a pipe, the turbulent flow is seen varying with time (Princeton University 2016).
10


The relative strengths of eddies are defined as Turbulence Spectrum (Stull 1988).
This phenomenon us summed up by the parody of a well-known verse, attributed to the British meteorologist, L F Richardson in 1922 (Cook 1985):
Big whirls have little whirls That feed on their velocity,
And little whirls have lesser whirls And so on to viscosity
Reynolds Number (Re) is a dimensionless quantity that combines the three physical parameters that determine whether flow is laminar or turbulent (Potter 2012). The concept was introduced by George Gabriel Stokes in 1851. Re equals the velocity times the length of flow divided by kinematic viscosity or momentum forces (inertial forces) to viscous forces. The kinematic viscosity is the measure of the fluid’s flow resistance to gradual deformation by shear stress flow with Re less than 3 x 105 being laminar (Potter 2012).
The equation for the dimensionless term Re is shown below.
Re = VL/v Equation II-2
V= velocity
L = length
u = kinematic viscosity
A large part of the mechanical energy in the flow goes into the formation of these eddies which eventually dissipate their energy as heat. As a result, at a given Reynolds number, the drag of a turbulent flow is higher than the drag of a laminar flow. Also, turbulent flow is affected by surface roughness, so that increasing roughness increases the drag.
The motion of air in the atmosphere is modeled using the equations of fluid mechanics that include the equations of continuity, mass conservation and the equations of
11


momentum or Newton’s second law. In the equation of continuity, the momentum is averaged with respect to time.
The Conservation of mass principal or Law of Conservation is based on the discovery that mass is neither created or destroyed in chemical reactions (Sterner 2011). In any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as system mass cannot change quantity if it is not added or removed. Therefore, the quantity of mass is "conserved". The law requires that in an isolated system, the total mass of the reactants or starting materials must be equal to the mass of the products. Another fundamental concept of physics paired with Conservation of Mass is the Conservation of Energy. This proven concept is that the total energy of an isolated system remains constant (National Aeronautics and Space Administration 2017). The energy is conserved over time. Energy can neither be created nor destroyed; rather, it transforms from one form to another. Per the Conservation of Momentum, the resultant force acting a system equals the rate of momentum change of the system. Momentum changes are equal in magnitude and opposite in direction.
The general behavior of a Newtonian flow including the effects of turbulence can be described by four partial differential equations. These equations include the equation of motion in each direction and the continuity equations. These equations are known as the Navier Stokes equations. The Navier-Stokes equations are a set of nonlinear partial differential equations that describe the flow of fluids. The Navier-Stokes equations are time-dependent and consist of a continuity equation for conservation of mass, three conservation of momentum equations and a conservation of energy equation.
12


The following equations describe the mean motion in the boundary layer (Simiu and
Scanlan 1996):
Equation II-3
Equation II-4
Equation II-5
Equation II-6
dX dy dZ
Where:
U= the mean velocity components in the x direction V= mean velocity components in they direction
W= the mean velocity components in the z direction, where the z is vertical
P = the mean pressure
p = air density
/=Coriolis parameter
g = acceleration due to gravity
rn = shear stresses in the x direction
tv = shear stresses in they direction
There is some debate whether the Navier stokes equations can be used to predict turbulent flow. Multiple scientists agree that the exact behavior of turbulent flow cannot be calculated even with complex sets of equations such as the Navier Stokes equations. Cook states, “The equations are very complex and insoluble for all but the most simple flow situations'’’ (Cook 1985). Potter states” The Navier Stokes equations have not been solvedfor turbulent flow” (Potter 2012).
13


These sets of equations have been used to model weather, the movement of air in the atmosphere, ocean currents, water flow in a pipe, as well as many other fluid flow phenomena. Several methods have been used in order to solve these complex equations. Most methods assume the boundary conditions are at the ground surface, where the velocity is zero, and at the top of the boundary layer where the shear stresses are zero. Another method is to assume that the Reynolds numbers for turbulent flow, or Reynolds stresses, are proportional to velocity. This method is known as the Reynolds Averaged Navier Stokes (RANS) where the Reynolds stress is the component of the total stress tensor when averaged over the Navier Stokes equations. “Such methods produce answers that are unlike observed behavior where turbulence does not dominate the flow (e.g. flows around vehicles), but usually require calibration of the assumed value of eddy viscosity against observed behavior (Cook 1986).
Methods such as Reynolds Averaged Navier Stokes are currently being utilized in computerized fluid dynamics (CFD) models and the Navier Stokes equations are being used in Computational Fluid Dynamics (CFD) to predict the wind behavior around objects such as buildings in city environments. An example of a CFD wind velocity model was completed in research by Ng where a city block in Hong Kong is modeled with two different building configurations(Ng et al. 2011). This Urban Planning study by Ng utilized both CFD and GIS technology to determine the wind velocity and wind flow as it relates to urban ventilation and air quality, not wind loading on structures.
Figure II-5 shows Ng CFD predicted wind flow at two different building configuration in Hong Kong (Ng et al. 2011).
14


E. Ng et al. / Landscape and Urban Planning 101 (2011) 59-74
Figure II-5 Ng Figure of CFD Predicted Wind Flow at Two Different Building Configuration in Hong Kong (Ng 2011) (reproduced with permission)
Wind Profile Changes
Wind behavior is studied from the surface to the free atmosphere, where the wind behavior is characterized by a second order curve referred to as the “wind profile”. This curve has a zero value at the earth’s surface and increases until it reaches the free atmosphere layer at the top of the boundary layer. When the wind has traveled a long distance over uniform terrain, the atmospheric boundary layer is in equilibrium with a uniform wind profile. Over smooth surfaces, such as open fields or frozen bodies of water the momentum required for equilibrium is less than where the surface is rougher, such as that of terrain of a
15


city with many buildings. Each condition has a different wind profile. The wind speeds near the ground are faster for the smoother terrain. With rough terrain, the wind speed is slower.
As wind passes over changes in roughness, for example an open field to a city, the equilibrium is disturbed. The boundary layer adjusts to the new surface friction. The adjustment is not instantaneous and the change is not complete until the interface reaches the gradient height or top of the boundary layer. Depending on whether the change in roughness is from a smooth surface to a rougher surface or from a rough surface to a smooth, the change is different as shown in Figure II-6 below. Where there is a transition from smooth-to-rough, the wind speed is slowed and the opposite for rough-to-smooth.
Laminar ---------x- Transition -x--------------- Turbulent
â–º Turbulent region
y Buffer layer
\ Viscous sublayer
Figure II-6 Wind Profile Changes Smooth-to-rough (Potter 2009)
There is a period of transition as the wind profile reaches equilibrium where the upper parts of the boundary layer do not reach equilibrium until approximately 100 km downwind of a roughness change (Irwin 2008). The changes occur more quickly in the lower portion of the boundary layer and are “essentially complete within about 10 km” (Irwin 2006). This transition is shown in Figure II-7 below. Transitions can occur with wind potentially passing
16


over open fields, then streets, trees and open spaces such as parks. The altered profile is sometimes considered a combination of the two profiles separated by a transition region, where the lower part of the profile is governed by the new surface roughness (Gardner 2004) where BL denotes the boundary layer and IBL denotes the internal boundary layer.
Figure II-7 Transitional Flow Regime at a Change in Roughness (Gardner 2004)
Fetch is a nautical term used in the concept of wind induced wave generation that has been adopted into wind engineering (Cook 1985). The unobstructed length of ocean surface is the fetch length. The fetch is rectangular with the width of the fetch equal to the fetch length (Mani 2011). In wind engineering, the fetch is the length or distance of a given roughness, which could include a body of water, open field or suburban neighborhood. A site with roughness changes will have multiple fetches, one for each type of roughness. An infinite fetch distance as it relates to wind loading on a structure describes the conditions where a single roughness with lengths of 10 kilometers are more, where the boundary layer wind profile is fully developed. In contrast, where there are multiple roughness conditions or changes in roughness, the wind profile is not a smooth parabolic curve. Instead the bottom of the profile curve is in transition and changing each time there is a significant roughness
17


change. Since sites often are made up of several types of roughness, each with its own fetch distance, the term to describe the combination of roughness surrounding a site that impact the wind on that site, will be referred to as the area of influence.
There is a significant amount of field research on single transitions in roughness. Blackadar et all (Blackadar et all 1967) measured wind velocity profiles in the salt marshes in southern New Jersey. The salt marshes contained natural growing grasses with height of approximately 20 cm in height that stretches for several miles without any buildings or trees. A change is surface roughness was created by cutting a portion of the grasses to 5 cm in height. Sensors measured the wind profile at multiple heights at multiple distances to the roughness change (mown hay to unmown hay). These measurements allowed Blackadar to compare the wind profiles at the transition to the equilibrium wind profiles.
Bradley measured both rough-to-smooth and smooth-to-rough changes in roughness using a grid of metal spikes, airfield tarmac and grass (Bradley 1968). Bradley used a series of anemometers to measure the surface stress variation and velocity profiles downwind of the transitions in roughness. He found that the wind profile curve follows a 4/5 power law. He found that the equilibrium in the wind profile was achieved at a height to fetch ratio of 1:200. His observations established a trend where the rough-to-smooth changes reached equilibrium more quickly than smooth-to-rough transitions. His measurements suggest that rough-to-smooth transitions occur at a rate twice as fast as smooth-to-rough.
18


Wind Speed
Wind speed is chaotic, and the wind speed measured at any given instant can vary significantly. The design of buildings and other structures must take into account the wind speed in determining the wind loading on that structure. Wind speeds vary based on the physical location and height. Field wind data is used in determining the wind speed at different locations throughout the United States and worldwide.
The Automated Surface Observing System (ASOS) and its predecessor, the Automated Weather Observing System (AWOS), record surface meteorological conditions and provide weather data for hundreds of ground based weather stations across the United States; many of which are located at airports. Wind speed measurements collected at these sites are available on the National Oceanic and Atmospheric Administration (NOAA) National Weather Service website (NOAA 2016). This data is public and available from the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information, formally the National Climatic Data Center (NCDC). Standard for measurements are taken at anemometers located at 10 meters in height. The anemometers are typically located away from structures that could affect the wind measurements. The sensors collect data on wind direction, wind gusts (peak wind speeds) and wind speeds, taken typically at one, two and ten-minute intervals. ASOS stations report their wind data over a two- minute period (AOML 2016). The peak wind speed is the value of the maximum 3 second gust over a 1-minute period is on the order of 1.3 times (or 30% higher than) than the 1 min sustained wind (AOML 2016). This is sometimes referred to as the 3 second gust speed.
In order to utilize this data for use in design, the wind speed averaged over some period of time often needs to be converted to the probable maximum wind speed averaged over
19


some shorter interval within that period. A traditional approach is to define a gust factor, G of the ratio of the maximum gust speed, U, to the corresponding hourly mean wind speed, U.
G=U/U Equation II-7
Typical gust factors vary (Krayer et al. 1992). There are multiple gust values offered by wind experts. Durst suggests the gust ratio varies based on gust duration as shown in ASCE-10 Figure C26.5-1 (ASCE 2016). Holmes suggest that a gust factor be based on the terrain. Holmes recommends a gust factor of 1.57 for open terrain (Holmes 2001).
Figure II-6 is a diagram illustrating the wind for Denver calculated using gust factors calculated by Cermak, Peterka and Peterson (CPP) based on wind data collected at the Denver International Airport. Note the predominant winds from the southwest. This type of diagram is referred to as a wind rose.
20


WIND ROSE
N
> 32 mph
1 24 - 32 mph
16-24 mph Denver International Airport 1995-2016: Anemometer at 10 m
8-16 mph ALL MONTHS, ALL HOURS
0-8 mph
Figure II-8 Wind Rose for Denver International Airport
Turbulence Intensity
Variations of wind speed in the atmospheric boundary layer are generally random in nature, and do not repeat in time. The variations are caused by eddies or vortices within the air flow, moving along at the mean wind speed. These eddies are never identical, and statistical methods can be used to describe the gustiness. (Holmes 2001).
21


The general level of turbulence or ‘gustiness’ in the wind speed can be measured by its standard deviation, or root-mean-square (Holmes 2001). The ratio of the standard deviation of each fluctuating component to the mean value is known as the turbulence intensity (TI) and is given by the equation:
Error! Reference source not found.
where ou is the standard deviation of the longitudinal component of the mean wind speed and V is the mean wind speed.
Many field studies have shown a direct correlation between roughness and the turbulence intensity from wind speed measurements over extended periods of time (Davenport 1960). Many researchers, such as Wang, Masters and Lombardo, have shown a correlation between the wind speed and the surface roughness using the turbulence intensity (Wang 2005; Masters et al. 2010; Lombardo and Krupar 2015; Gardner 2004). Using this method, surface roughness lengths can be determined from the longitudinal turbulence intensity, TI.
Engineering Models
Because of the complexity of wind flow over the earth’s surface, several engineering models have been used to estimate the wind profile curves. Mathematical and engineering principals are used to create a profile, velocity and pressure of the wind. The primary models utilized by todays code for building design are the Power Law and Log Law. The Power Law is utilized for uniform terrain by ASCE7. The Log Law is utilized by wind engineering firms and the Engineering Sciences Data Unit (ESDU). Each of these will be explored more fully in the sections to follow. Wind research and studies have shown that both models produce similar results for homogenous terrain consistent with the four exposure classifications
22


presented in the ASCE 7, A-D. Research shows the variations between the two models are of little consequence especially considering the uncertainties in wind speed. Figure II-9 below is a graph comparing the gust profiles as computed by the Power Law utilized in ASCE7-02 method and Log Law (Harris and Deaves Model) method.
Figure II-9 Comparison of ASCE 7-02 Gust Profiles with those Predicted by the Harris Deaves Model (Irwin 2006 with permission from ASCE).
Power Law
The Power Law is a mathematical equation used in many applications, including statistics, economics and physics to describe the relationship between two variables. The Power Law has traditionally been for the study of wind loading on structures which exist within the lowest portion of the atmospheric boundary layer. The vertical distribution of horizontal mean wind speeds is modeled as a simple shear with a vertical velocity profile varying according to a power law with a constant exponential coefficient based on surface type. The equation is used to estimate the wind speed at a certain height z, within the gradient height, zg. Where the gradient height is the nominal top of the boundary layer based on an engineering simplification proposed in 1935 by Pagon (Simiu and Scanlan 1996).


(Simiu and Scanlan 1996)(Simiu and Scanlan 1996)(Simiu and Scanlan 1996)(Simiu and Scanlan 1996)(Simiu and Scanlan 1996)(Simiu and Scanlan 1996)(Simiu and Scanlan 1996)(Simiu and Scanlan 1996)(Simiu and Scanlan 1996)(Simiu and Scanlan 1996)(Simiu and Scanlan 1996)(Simiu and Scanlan 1996)(Simiu and Scanlan 1996)(Simiu and Scanlan 1996)(Simiu and Scanlan 1996)(Simiu and Scanlan 1996)(Simiu and Scanlan 1996)
The Power Law assumes the terrain is homogenous. Figure II-l shows the typical mean wind profile (Irwin 2006).
A wind profile Power Law relationship is:
Vz/Vg = (z/zg)a Equation II-8
Where:
z = height above ground of the structure.
zg= gradient height or height of the boundary wind layer
Vz = mean wind velocity at height z.
Vg = mean velocity at gradient height.
a = empirically derived exponent/coefficient that varies dependent on the roughness of the terrain.
Log Law
The Power Law does not account for surface roughness effects of the surface. The Log Law also referred to as the Harris and Deaves model as it was developed based on their work (Cook 1997) includes the effects of surface friction and accounts for Coriolis forces (Irwin 2006). The Harris and Deaves model is a semi-empirical relationship also used to describe the vertical distribution of horizontal mean wind speeds within the lowest portion of the atmospheric boundary layer. Some experts believe this method is considered to be a
24


more reliable method of determining wind speeds in the lower portion of the ABL, with heights less than 100 meters (328 feet).
The Harris and Deaves model is as follows (Harris 1981):
Vz = 2.5u * In (z/zo) Equation II-9
Where:
V= mean velocity, z = height above ground.
u* = velocity of flow which is dependent on the surface shear, density of the air and the roughness length.
z0= roughness parameter used as a corrective measure to account for the effect of the roughness of a surface on wind flow.
25


CHAPTER III
ESTIMATION OF SURFACE ROUGHNESS LENGTH
There is a large body of research work that has been done to estimate the aerodynamic roughness of a surface, referred to as roughness length, z0. In 1961, Kutzback piloted experiments using bushel baskets on a frozen lake to modify the surface roughness. Lettau continued this work and his equation for roughness appears in ASCE7 today.
Roughness Modeled Using Field Measurements
Much of the early work focused on cases where there is uniform terrain with studies including a wide variety of types of terrain including but not limited to forests, open fields and paved runways (Davenport 1960). This work includes the study of wind as it applies to surface roughness using field collected wind measurements. Studies have been performed using barrels on frozen lakes, asphalt, hay, mown hay, crops and buildings (Hansen 1993).
In 1960, Alan Davenport began studies to classify terrain into roughness categories (Davenport 1960). Davenport, a Canadian scientist at Western Engineering University, paved the way for use of boundary layer wind tunnels in the design for wind sensitive structures. ASCE7 z0 values are based on the both Lettau’s work and Davenport studies (ASCE 7). Davenport’s classification of effective terrain roughness includes eight roughness categories while ASCE7 simplifies roughness into three categories. The Davenport classifications are shown in Table 0.1 ,with the z„, a, zj and corresponding directly with ASCE7.
The terrain exposure constants, erand zg„ correspond to different terrain types. The displacement height, zj is defined as the “elevation above ground that the base of the logarithmic law (power law) wind profile must be elevated to accurately depict the boundary layer windflow” (ASCE7, 2010). The displacement height has also been defined as the
26


depth of still air trapped among rough elements (Sutton O.G. 1950). Research by Davenport (Davenport 1960), found that zd is proportional to the roughness element height.
Table III.l ASCE7 Table C26.7-2 Davenport Classification of Terrain Roughness (ASCE7-10 Used with permission from ASCE).
Tabic C26.7-2 Davenport Classification of Effective Terrain Roughness
Class z0, ft (m) [note 1J a [note 2] zg, ft (m) [note 2] zd (ft or m) [note 3] Wind flow and landscape description4
l 0.(X)07 (0.0002) 12.9 509 (155) Zj = 0 "Sea”: Open sea or lake (irrespective of wave size), tidal flat, snow-covered flat plain, featureless desert, tarmac and concrete, with a free fetch of several kilometers.
2 0.016 (0.005) 11.4 760 (232) Zj=0 “Smooth": Featureless land surface without any noticeable obstacles and with negligible vegetation; e.g. beaches, pack ice without large ridges, marsh and snow-covered or fallow open country.
3 0.1 (0.03) 9.0 952 (290) Zd = o "Open": Level country with low vegetation (e.g. grass) and isolated obstacles with separations of at least 50 obstacle heights; e.g. grazing land without windbreaks, heather, moor and tundra, runway area of airports. Ice with ridges across-wind.
4 0.33 (0.10) 7.7 1,107 (337) 11 "Roughly open Cultivated or natural area with low crops or plant covers, or moderately open country with occasional obstacles (e.g. low hedges, isolated low buildings or trees) at relative horizontal distances of at least 20 obstacle heights.
5 0.82 (0.25) 6.8 1,241 (378) Zj = 0.2zh “Rough”: Cultivated or natural area with high crops or crops of varying height, and scattered obstacles at relative distances of 12 to 15 obstacle heights for porous objects (e.g. shcltcrbclts) or 8 to 12 obstacle heights for low solid objects (e.g, buildings).
6 1.64 (0.5) 6.2 1,354 (413) Zd = 0.5zH "Very Rough”: Intensely cultivated landscape with many rather large obstacle groups (large farms, clumps of forest) separated by open spaces of about 8 obstacle heights. Low densely-planted major vegetation like bushland, orchards, young forest. Also, area moderately covered by low buildings with interspaces of 3 to 7 building heights and no high trees.
7 3.3 (1.0) 5.7 1,476 (450) Zj = 0.7z„ "Skimming": Landscape regularly covered with similar-size large obstacles, with open spaces of the same order of magnitude as obstacle heights; e.g. mature regular forests, densely built-up area without much building height variation.
8 >6.6 <> 2) 5.2 1,610 (490) Analysis by wind tunnel advised "Chaotic": City centers with mixture of low-rise and high-rise buildings, or large forests of irregular height with many clearings. (Analysis by wind tunnel advised)
27


Alternate Roughness Models
Since Lettau’s research in 1969, additional research suggests that this relationship to a rectangular roughness element height may not be effective when applied to suburban exposures and urban exposures which have irregularly shaped structures located at non-uniform spacing and include trees and vegetation, especially when the spacing between structures becomes smaller, or the structures become denser. In areas with higher density of structures, Studies by Counihan (Counihan 1971), Abtew (Abtew et al 1989), and Kondo and Yamazawa (Kondo and Kamazawa 1986) suggest that the calculation of surface roughness must be adjusted based on the density of the structures, referred to as fraction of cover. The fraction of cover or area of roughness element on site, Ar, is the combined area of the structures divided by the total area of the site, Asue, shown in the following equation.
Fc = Ar/ASite Equation III-1
Where Fc represents the fractional cover of the building footprint to open area.
Counihan’s method for calculating z0, is as follows in Equation 1.9 (Counihan 1971):
z0 = H (1.08/7-0.08) Equation TTT-2
where H = height of the roughness in feet
Abtew’s method for calculating z0, is as follows in Equation 1.10 (Abtew et al 1989):
z0 = 0,13H (1 -Fc) Equation III-3
Kondo and Yamazawa’s method for calculating z0, is as follows (Kondo and Kamazawa 1986):
z0 = 0.25HFC Equation III-4
28


Studies by Nikuradse and Fang and Sill suggest that the calculation of surface roughness is only dependent on the height of the roughness element where Hmean is the mean
obstacle or building height.
Equation III-5 (Nikuradse 1950)
Equation III-6 (Fang and Sill 1992)
This is not consistent with ASCE7 and is counterintuitive as it does not take into account the density of the structures.
Research suggest that models with regular shaped structures equally spaced in a consistent grid do not adequately represent the actual roughness (Wang 2005). Research also suggests that surface roughness cannot be calculated using just one formula for all terrain (Gardner 2004). Studies have shown that wind behavior differs in high density areas such as large cities from areas where there is a low density of structures (Grimmond et al. 1998). These differing characteristics are a result of the flow regime in different densities of structures. In short, surface roughness cannot be calculated using just one formula for all terrain.
In low density areas, the wind flow consists primarily idealized flows over simplified arrays of roughness elements. In these simulations the flow is often relatively constant in direction, typically normal to the face of the elements, and the array is often regularly spaced (in rows or a staggered grid) (Grimmond et al. 1999). These conditions differ from those in real cities, where wind direction is ever changing and, even if the street pattern is relatively regular, the size and shape of individual roughness elements (mainly buildings and trees) are not regular.
29


The characteristics of high density areas are different from areas where there is a low density of structures. These characteristics are a result of the flow regime in different densities of structures. As the density increases so does the roughness of the system, but a point comes where adding new elements merely serves to reduce the effective drag of those already present due to mutual sheltering; that is, they start to “smother”' the roughness of the system, where elements are so close they merge to form a new surface. This is depicted in Yuan’s Wind Profile in City Built From (Yuan et al. 2014) shown in Figure III-l
Figure III-l Wind Profile at Urban Areas (Yuan 2014) (reproduced with permission)
Studies show that z„ returns to its background value (i.e., the z„ used in the normalized scale is the additional roughness contributed by the tall elements). This behavior matches observations from wind tunnel studies with cylinders, cubes, and scale models of plant stands, and from field studies of vegetation (Raupach 1992). Further, it agrees with the wind tunnel work of (Hussain and Lee 1980) who distinguish three flow regimes, isolated flow, in wake interference flow; and skimming flow (Grimmond and Okel999). Lettau did not specify limits for his formula. However, it is widely recognized that it fails when roughness area density Ap or Xf increases beyond 0.2 ± 0.03, where Ap is the plan density or the area of
30


the roughness elements to open area and Af is the frontal area density or ratio of the element wall area normal to the wind to the open area.
According to MacDonald, Lettau’s relationship is limited to low roughness element densities and does not account for the nonlinear decrease of the roughness length at high roughness densities. It also does it account for drag differences caused by different obstacle shapes or layouts (Macdonald et al. 1998).
Roughness Modeled in Wind Tunnel Testing As an alternate to determining wind load using traditional codes and standards, wind tunnel testing has been performed to determine the wind loading on structures. Wind tunnel testing is generally used for tall or atypical structures where wind conditions require a higher level of analysis. Simulations in atmospheric boundary layer wind tunnels must account for different types of surface roughness such as open country, suburban and urban. In order to develop wind flow to mimic naturally developed wind, a sufficiently long length of the tunnel must be used to develop a wind profile similar to that created in the boundary layer. Figure III-2 shows a plan and elevation used by Colorado State University in wind studies performed in the 1970’s and 1980’s.
31


ZB.04
PLAN o 1.* I
ELEVAT1ON
INDUSTRIAL AERODYNAMICS WIND TUNNEL
Figure 2 - Wind Tunnel Configuration
Figure III-2 Wind Tunnel Diagrams (Peterka and Cermak 1978) (reproduced with permission)
Roughness is created in the wind tunnel by changing the elevation profile of the bottom surface of the wind tunnel. This is typically done by using wood surfaces, such as plywood for Open country and then roughness is created by adding cylindrical pegs or square or rectangular blocks to the surface in a gridded method. The z„ values for the wind tunnel are found through wind tunnel measurements, where several anemometers are placed in the wind tunnel downwind of the roughness and the wind speeds are measured at different heights. From these measurements, the wind profile can be established to verify that the appropriate roughness has been developed.
32


Below are two diagrams that show the roughness for suburban and urban roughness models used in Wang’s research at Concordia University. Wang used carpet to simulate the Open country roughness. (Wang 2005) Figure III-3 depicts 1” x 1” x 1” blocks occupying a gridded apace of 12” by 16” used in the wind tunnel to simulate a wind profile consistent with suburban area roughness with zQ of 0.42 m (Wang 2005).
Figure III-3 Block Configuration Depicting Suburban Roughness Modeled in ArcMAP
Figure HI-4 shows Wang’s 1.5” x 1.5” x 1.5” blocks occupying a gridded apace of 12” by 16” used in the wind tunnel to simulate a wind profile consistent with suburban area roughness with zQ of 1.0 m (Wang 2005).
Figure TTT-4 Block Configuration Depicting Urban Roughness Modeled in ArcMAP
33


Wood pegs are also used in wind tunnels to create roughness, where the number of pegs on a gridded surface is increased to simulate suburban conditions. Rostek performed wind tunnel experiments to determine roughness for several different conditions. Rostek used 1.27 cm tall by 0.64 cm in diameter pegs to introduce roughness to a pegboard with peg holes at 2.54 cm on center. Initially all the pegs holes are filled and then pegs are systematically removed for each condition until only one peg is placed at location 1 for the fourth condition. Figure III-5 shows the relationship of density to roughness length in Rostek’s study (Rostek & Snow, 1985).
(Morrison et al. 2012)
Figure III-5 Plan View of Rostek Peg Configuration
Table III.2 Rostek Roughness Lengths Based on Peg Density
Area Density Peg 2 per cm Zo(cm)
0.155 0.565
0.078 0.46
0.039 0.278
0.019 0.144
Pegboard 0.00241
Plywood 0.000529
34


In Minvielle’s 2003 wind tunnel study addressing cases of low density roughness, 2.55 cm tall by 0.953 cm diameter pegs were used with varying densities. Table III.3 shows the relationship of density to roughness length in Minvielle’s study. (Minvielle et al. 2003)
Table III.3 Minvielle Roughness Lengths Based on Peg Density
Area Density Peg 2 per cm Zo(cm)
0.027 0.04066
0.011 0.01649
0.0052 0.01163
0.0026 0.004109
Peterson performed studies that included wind tunnel testing to test multiple methods for estimating surface roughness length based on the physical dimensions of structures or obstructions at three refineries and two uniform roughness configurations. Seven different methods were used to estimate surface roughness from the velocity profiles and a wide range of z0 estimates was obtained from these methods. The two roughness configurations used in Peterson’s wind tunnel study are shown in Figure III-6.
35


Figure HI-6 Roughness Typ^ permission)
used Peterson (person
1997) (reproduced with
36


Velocity profiles were measured in the wind tunnel for these roughness configurations. These roughness configurations were analyzed to estimate the surface roughness using Letta’s method and Counihan’s method. Table III.4 shows a summary of the results.
Table III.4 Summary of Peterson’s 1997 Roughness Length Study (reproduced with permission)
Table 1. Comparison of Lettau and Counihan estimates with velocity profile estimates (domain
— L < X < L: - 200 < Y < 200)
Wind direction Lettau estimated z0 (m) Counihan estimated z (m) Simplified Counihan o estimated r0 (m) Method 6 (LogAve)io (m) Method 7 (Log Ave)z0 (m)
Refinery 1
337.5 0.90 2.85 1.51 0.73 1.23
247.5 0.85 2.88 1.88 0.47 0.57
Refinery 2
180 0.40 1.85 1.22 0.53 0.99
112.5 0.45 2.06 1.46 0.27 0.66
Refinery 3
0 0.36 1.02 0.28 0.35 0.90
67.5 0.45 1.42 0.50 0.33 0.62
Mixed 2 and (double stacked) 4 N/A 0.73 in cube at a 1 : 2.45 240 scale 0.32 0.65 LOO
Half inch cube N/A rouuhness at a I 0.02 : 240 scale N/A N/A 0.01 0.04
The results of the evaluation which included wind tunnel testing showed that the Lettau method provides a good estimate (within a factor of 0.5-1.5 at the 95% confidence interval) of surface roughness length and one that is better than the other methods tested. (Peterson 1997).
The wind tunnel roughness factor must be translated from wind tunnel to full-scale. (Stathopoulos 1984). The roughness factor is equivalent to the ASCE velocity pressure coefficient, Kz which is applied to the wind loading equations to adjust the wind loading for
37


the surface roughness. Table III.5 shows his comparison of the roughness factor for full scale models compared to the roughness factor for wind tunnel models.
Table III.5 Stathopoulos Comparison of Roughness Length Change Full Scale Models to Wind Tunnel Models (Stathopoulos 1984)
Full Scale Wind Tunnel
Open Country Urban Open Country Urban
Zo(cm) 1-10 100-500 0.01 1.2
Wind tunnel roughness cannot be compared directly using traditional roughness equations such as Lettau’s roughness equation due to the small scale of the roughness elements utilized in wind tunnels. For example, using 0.5-inch blocks is different than using 5-inch block. When you start squaring the area, the results are quite different for the same proportions or density of objects.
Area of Influence
In order to estimate the surface roughness surrounding a site, an area of influence must be established that includes the length or distance of terrain surrounding a site that influences the wind at that site. It is easy to visualize that the surface roughness in Canada is likely not to affect the wind loading in Texas. However, as you move closer to the site the surface roughness will begin to have a greater influence on the wind loading. Areas of influence used in wind engineering vary considerably. While meteorological studies use areas of influence distances upwards of 100 kilometers (km) or 62 miles, investigations by Tamura done in 2001 suggest that a building’s areas of influence is dependent on the building height. Tamura’s studies show that areas of influence of one to four kilometers are applicable to buildings with heights less than 50 meters (164’) and that “a 1 km upstream areas of
38


influence may be important for exposure classification” (Tamura, 2001). Stathopoulos agrees with a smaller area of influence for low buildings and suggest as short as 300 - 400 m, irrespective of the configurations of the further upwind terrain (Stathopoulos et al 2009).
Wind engineers and researchers will often divide the terrain surrounding the site into pie-shaped sections (CPP 2016) so that changes in terrain can be more easily classified. In each section, the terrain surrounding the site is classified by the roughness. The area of influence used by experts also varied for low rise buildings. Examples include 20 times the building height (Bill Esterday, personal communication March 30, 2016); 2 km (Forest Masters, personal communication, June 26, 2016); 10 km to 20 kilometers (Jon Peterka, personal communication June 6, 2016); and Lombardo and Krupar use a 3 km radius for the area of influence in their 2015 study (Lombardo and Krupar 2015).
Changes in Roughness
Another source of ambiguity is changes in roughness. When considering a site in suburban areas, rarely does the terrain surrounding the site consist of just one roughness type. Developments in the United States often consists of developing land that is between the suburbs and open country areas or rural areas that has not been developed. Designers often face surrounding terrain that consists of more than one traditional roughness type, as defined by building code. Studies have shown that there are several factors that affect the wind loading at changes in roughness that include, type of roughness change, size of roughness change, location of roughness change to site and area of influence (Davenport 1960; Lettau 1969; Wieringa 1992). When there is a transition period in the wind profile when the wind sees a change in roughness. Researchers such as Peterson suggest when the wind sees a change in roughness there is a transition region, beginning at the change in roughness to a
39


distance downwind where the wind profile transitions from the wind profile at the downwind
roughness to the wind profile upwind at the change in roughness (Peterson 1997).
The two main types of roughness change include rough-to-smooth changes and smooth-to-rough changes. A number of studies have been completed to estimate the influence of a change in roughness lengths in the wind profile. (Jensen, 1978; Taylor, 1970; Walmsley et al., 1986; Yu et al., 2006). These studies suggest that when z0 is small, the wind profile increases rapidly with height over a short length, and then is relatively stable above that height. When z0 is large, the profile has a slow and smooth increase with height. The change in these types of roughness was studied by Harris and Deaves (Cook 1997) and the following relationship is suggested:
r. r.. 0.36(.v.v..)" ' for low to high roughness Equation III-7
r. r.. 0.07.V (z 0 z0)0-5 for high to low roughness Equation III-8
Wang performed a wind tunnel study that considered type of roughness change, size of roughness change and location of roughness change relative to subject site. Wang’s study consisted of wind tunnel and numerical analysis on over 60 fetch cases using different size patches (Wang 2005). Wang stipulates that inhomogeneous terrain roughness can be regarded as a combination of different roughness patches. Different size roughness patches are considered at differing distances to the site. The study also included type of roughness change. The area of influence considered is 4 km. Wang’s results imply that small patches close the site have a significant impact on the wind pressure.
It is intuitive that changes in roughness close to the site have a greater impact on the wind loading on the site than changes in roughness far from the site. However, Peterka suggests that small changes in roughness or “open patches” can be ignored if they are located
40


more than their width away from the building (Dr. Jon Peterka, CPP, personal communication June 6, 2016). AS/NZS 2011 disregards small changes in roughness directly adjacent the site due to lag distance downwind from the start of the new terrain (AS/NZS 2011). ASCE defines an “open patch” as an opening greater than or equal to approximately 50 m by 50 m (ASCE7 2010) and requires that these small changes in roughness be considered heavily when determining the exposure category.
41


CHAPTER IV
CURRENT PRACTICE FOR DETERMINING WIND LOAD ON STRUCTURES
Traditional design of buildings utilizes code recommendations to determine design forces or pressures due to wind. The wind speeds used by designers are typically recommend by local building officials. The wind speed values are incorporated into the design utilizing the local building code or standard, such as ASCE7 applicable in the US; ESDU, applicable in Europe; AS/NZS 1170.2:2011, applicable in Australia and New Zealand, 1BSNAEN 1991-1-4 (2010) applicable in the United Kingdom. The recommended methods and calculations for each standard are similar in methodology with calculations to account for parameters that affect the wind pressure, including geographical location; the reference wind speed, the height of the point above the ground, the surrounding topography such as hills and slopes, the surface roughness at the site in question and surface roughness changes upwind of the site.
An example of a primary differences in the above codes is that all but ASCE7 allow and include directionality adjustments due to wind loading. Where ASCE penalizes the entire structure for the worse case wind speed, other international codes provide directional wind factors. For example, if the prevailing high winds are commonly from the west; if there are entry canopy structures located on the east side, they would not be subject to the highest winds. Wind engineering firms determine the wind speed in each direction and utilize these values when determining the wind loads on the structure based on winds in each direction.
In ASCE7, AS/NZS and IBS NAEN codes, the terrain is generalized and categorized into four primary types including Open Water, Open Country, Suburban and Urban in order to adjust the wind loading to account for the surrounding surface roughness. Figure 0-1 shows four simplified wind velocity profiles for each corresponding homogeneous terrain.
42


ESDU provides more detailed table which corresponds roughness type to roughness length, which will be discussed further in the following section.
N 1 ^
MORE GUSTY LESS GUSTY
Figure IV-1 Wind Profile (CPP 2015.)
One of these terrain categories is typically selected to represent the surface roughness surrounding a site. Roughness factors are assigned to each category of terrain. The adjustment values for each of the codes are very similar. ASCE7, ESDEi and AS/NZS roughness factors are compared in Table IV. 1 Comparison of Roughness Lengths Values.
43


Table IV.l Comparison of Roughness Lengths Values
Roughness Length Corresponding to Terrain Category (m)
Code or Standard Sea Open Country Suburban Urban
ASCE7-10 (US) 0.005 0.02 0.3 2.0
ESDU(Europe 0.002-.01 .02-. 06 0.2-0.5 0.7-2.0
AS/NZS (Australia and New Zealand) 0.002 0.02 0.2 2.0
In the following chapter, each of four wind standards will be discussed in more detail as they apply to determining wind load on a structure.
In practice when determining wind loading at a suburban or urban site, there often exists changes in roughness. For example, in coastal areas, there is likely a roughness change from the open sea to suburban. In suburban area, a town may be surrounded by open fields, so the site may have roughness change from smooth at the open field to rougher exposure, where the town begins. There may also be smaller changes in roughness and the terrain change may be gradual where there is not a constant value of z0 on either side of a change. Each code is specifically reviewed for the methods as they apply to adjustment to account for surface roughness and its approach to addressing changes in roughness. Each of the four codes offer adjustments for at least one change in roughness. The ESDU offers the most extensive discussion of change in roughness. The standard includes methodology and ESDU offers software for calculating multiple changes in roughness.
The area of influence varies greatly in building codes/standards used in common design practice from 0.46 km in ASCE7 to 100 km in ESDU. The areas of influence are summarized in Table IV.2.
44


Table IV.2 Summary of Area of Influence by Building Design Standard/Code
Design Standard Area of Influence Range Based on
ASCE7 0.8 km to 1.5 km or 20H Exposure Classification or Building height
UK 20 km to 100 km Exposure Class at Roughness Change
ESDU 100 km No range
AS/NZS 1 km to 3 km Building height
ACE7-10 Wind Load Equations
ASCE7 is the standard used in wind design in the United States. ASCE7 provides the designer equations for finding the vertical and horizontal wind pressures on structures.
ASCE7 adds adjustments for wind directionality, velocity exposure and topographic effects. The wind velocity pressure qz, evaluated at height z is calculated using the following equation where Kz is the adjustment factor for differing surface roughness conditions:
qz=0.00256KzKztKdV2 /„■ (ASCE7 equation 27.3-1) Equation IV-1
Where:
qz = velocity pressure at height “z” in pounds per square foot.
Kz = velocity pressure exposure coefficient evaluated at height “z” for Exposure Category B, C or D.
Kd = wind directionality factor.
Kzt = topographic factor.
V= basic wind speed in MPH for 3-second gust.
Iw = Importance factor for wind design.
ASCE7 provides the adjustment factor Kz, for three Exposure Categories, B, C and D. The upwind distance affecting the Exposure Category is will be referred to as the “Area of
45


Influence”. The area of influence distances provided by ASCE7, as noted below, vary with the roughness of the terrain and building height.
In previous versions of ASCE7, Exposure A was used in densely populated urban
areas with tall and closely spaced buildings. In ASCE7-02 (ASCE7 2002) Exposure A was
deleted because areas in close proximity to tall buildings have higher wind loads due to the
effect of local channeling and wake buffeting effects. As noted by Ho, Surry and Davenport
after their research on wind load effects near a densely built city center in Canada:
“Another observation is that while high pressures or suctions are often reduced in complex surroundings, the lower loads increase. This reduction of mean loads and increase of dynamic loads due to increase in turbulence in the clattered environment result in an increase of the lower peak loads for the Random City results.'” (Ho, et al 1991)
Therefore, Exposure A was deleted in the current edition of ASCE7 and is only applicable when wind tunnel testing is performed.
Exposure B is defined as “Urban and suburban areas, wooded areas, or other terrain with numerous, closely spaced obstructions having the size of single-family dwellings or larger. ” Exposure B is applicable when the structure’s surrounding terrain meets these criteria for 1500 feet or more for structures with heights 30 feet or less. For buildings with heights greater than 30 feet, the areas of influence distance is increased to 2600 feet or 20 times the building height, whichever is greater. The distance of 1500 feet has been reduced from the 2005 version of ASCE7 from 2600 feet. Figure IV-2 and Figure IV-3 depict areas categorized by Exposure B.
46


Figure IV-2 ASCE7 Photo of Typical Exposure Category B Terrain. (ASCE 2010 with permission from ASCE)
Figure IV-3 ASCE7 Photo of Typical Exposure Category B Terrain (ASCE 2010 with permission from ASCE).
47


Figure IV-4 ASCE 7 Photo of Typical Exposure Category B Terrain (ASCE 2010 with permission from ASCE).
Exposure C is defined as “open terrain with scattered obstructions having heights less than 30 feet. This category includes flat Open country and grasslands ” a depiction of Exposure C is shown in Figure IV-5 and Figure IV-6. Exposure D is defined as “flat, unobstructed areas and water surfaces. This category includes smooth mudflats, salt flats, and unbroken ice ” as shown in Figure IV-7. ASCE7 states that Exposure C is to be used when Exposure B and D do not apply. ASCE7 sets up Exposure C to be the default exposure category for areas of uncertainty.
48


Figure IV-5 ASCE 7 Photo of Typical Exposure Category C Terrain (ASCE 2010 with permission from ASCE).
Figure IV-6 ASCE 7 Photo of Typical Exposure Category C Terrain (ASCE 2010 with permission from ASCE)
ASCE7 defines Exposure D as “flat, unobstructed areas and water surfaces. This category includes smooth mudflats, salt flats and unbroken ice. Exposure D “prevails in the upwind direction for a distance of5000feet or 20 times the building height, whichever is greater” (ASCE7 2010) and is shown below in Figure IV-7. ASCE7 states that “Exposure D shall also apply where the ground surface roughness immediately upwind of the site is B or


C, and the site is within a distance of 600feet or 20 times the building height, whichever is greater, from an Exposure D condition” (ASCE7 2010).
Figure IV- 7 ASCE 7 Photo of Typical Exposure Category D Terrain (ASCE 2010 with permission from ASCE).
After the exposure category is selected for the site, the Kz value can be found from ASCE7 Table 27.3-1 based on the exposure category and building height.
The equations in ASCE7 for the Velocity Pressure Coefficient, Kz are based on the Power Law. The equation allows the exposure type and height above the ground to be applied to the wind gust loads. The 2.01 factor is the ratio of the gust speed at gradient height to that in standard open terrain at 10 meters (33 feet). As shown in the Power Law equations, the coefficient, a, is an empirically derived exponent/coefficient that varies dependent on the roughness of the terrain. The equation is as follows:
Kz=2.0l(z/zg)2la for 15 ft < z < zg (ASCE7 equation C27.3-1) Equation IV-2
50


Kz=2m{\5lzgfa for 15 ft > z (ASCE7 equation C27.3-2)
Equation IV-3
a=ci z0 0 133 Equation IV-4
and
zg = C2 z00 125 Equation IV-5
Where:
ci and C2 are constants. ci=6.62 and C2= 1,273 ASCE7 page 547
Zg = ASCE7 gradient height or nominal height of the atmospheric boundary.
z0 = surface roughness parameter.
ASCE7 uses a similar equation to determine the roughness parameter that was developed by Lettau in 1969. ASCE7 uses the ground roughness length parameter, z0, to determine the ground surface roughness which is directly related to ASCE7 Exposure Category, B, C or D. The ground surface roughness, z0, is measured for a lot or area, using the structures or projections on that lot. Lettau’s 1969 research found values for z0 in the range of 4.1 to 0.41 for “houses of city in dense versus loose array(Lettau 1969)
ASCE7 equation for z0 is as follows:
z0 = 0.5Hob{Sob/Aob ) ASCE7 equation C26.7-1. Equation IV-6
Where:
Hob = the average height of the roughness in the upwind terrain in ft.
Sob = the average vertical frontal area per obstruction.
Aob = the average area of ground occupied by each obstruction, including open area surrounding it in ft2.
51


Table IV3: Kz Values Corresponding to ASCE7 Ranges for z0.(Adapted from ASCE7 Table 26.7-1)
Exposure Zo( ft) Kz at 15' ht Kz at 30' ht Kz at 33' ht Kz at 66'ht
A 2.300 0.433 0.548 0.566 0.715
A/B 2.200 0.438 0.553 0.571 0.720
B 1.800 0.460 0.577 0.595 0.746
B 1.400 0.488 0.607 0.626 0.779
B 1.000 0.525 0.648 0.667 0.822
B 0.750 0.558 0.683 0.702 0.859
B 0.660 0.573 0.699 0.718 0.875
B/C 0.500 0.606 0.733 0.753 0.911
C 0.400 0.632 0.761 0.780 0.939
C 0.200 0.715 0.846 0.866 1.026
c 0.066 0.848 0.981 1.001 1.158
C/D 0.033 0.930 1.063 1.082 1.236
D 0.032 0.934 1.066 1.086 1.239
D 0.016 1.014 1.144 1.164 1.313
Notes:
1. Bold entries relate to the values by ASCE7.for Kz
ASCE7 acknowledges that there are sites that will be located where there is a combination of terrain. In areas of “transition”, ASCE7 allows an “intermediate exposure” between Exposures B, C and D to be determined “in a transition zone provided that it is determined by a rational analysis methodThe commentary of ASCE7 gives empirical formulas to calculate the velocity pressure exposure coefficient, Kz, for single and multiple roughness changes so that the Kz factor can be determined for buildings that fall between exposure categories. Equation C27-9 can be used for the most common condition of a single roughness change, for example from Exposure B to Exposure C:
Change in roughness is calculated using incremental adding to the Kz factor as shown in the equation below:
K= Kzj + AK (ASCE7 equation C27.3-5) Equation IV-7
52


AK = (Z33u-K33d) X {K,a IKxaa) X AFak(x) (ASCE7 equation C27.3-6)
Equation IV-8
|A^| = | ATâ„¢ - Xzd|
Equation IV-9
77ak(x) = logio(xi/x)/ logio(xi/x0) (ASCE7 equation C27.3-7)
Equation IV-10
Where:
Kz = Velocity pressure exposure coefficient Kza = Kz value downwind at the design building Kxaa = Kz value downwind at the height of 33 feet.
Kzu = Kz value upwind of the design building.
x = distance from site to terrain change in miles.
xi = 6.21 miles (10 km) for AAvVAVu (wind from smoother terrain upwind to rougher terrain downwind).
xi = 62.1 miles (100 km) for K33d>K33u (wind from rougher terrain upwind to smoother terrain downwind).
C3 = 0.621 miles (1.0 km)
The change in surface roughness equations were developed to be used with a simplified exposure classification system. The equations are intended to be used where there are significant changes between roughness, such as sea to land or open county to urban. The equations begin to break down when many changes in roughness are used or were there are small open patches near the site.
As part of this study, the values for buildings with building height of 33 feet were tabulated for transitions from Exposure B to C and C to B based on ASCE7 equations for change in roughness using single terrain change upwind of the site beginning with 164 feet,
53


ASCE7 length identified as an “open patch” up to a distance of six miles. These tables are included in the Appendix A.
EDSU Factored Basic Wind Speed Approach
The Engineering Sciences Data Unit (ESDU) is the wind standard utilized Europe and by wind tunnel laboratories. ESDU is an engineering advisory organization based in the United Kingdom. The staff that was involved in the methods used to determine wind loading on structures, often referred to as just ESDU includes A.G. Davenport. These methods are also referred to as the Deaves and Harris approach, where they are based on their work (Deaves and Harris 1981). It is also referred to as the log law because it is described in terms of the logarithmic law.
Contrary to ASCE, the ESDU allows the designer to use different wind speeds and corresponding wind pressures in different directions. Cook states:
“It has been found over many years of usage that the most convenientway of presenting wind speed data for design is by multiplying the basic hourly -mean wind speed or gust wind speed by a series of S-Factors which adjust the basic values to design values for particular terrain of the site (Cook 1986).
Using this technique, multiple wind speeds are used for up to 36 different wind directions, where wind direction is changed by as little as 10 degrees. In order to estimate the wind speed in each direction, a reference wind speed is typically established using an extreme wind value obtained from a statistical analysis. This analysis utilized data from local wind stations, often located at airports.
“In the simplest case, the general description of the terrain roughness upwind from the site in question is assumed to be the same for at least 100 km ” (ESDU 1993). The wind speed is given by:
Vz = u*r (Kn/Knv)K6K.s*Kz*Kl Equation IV-11
54


where:
Kn= correction factor for risk of exceedance and exposure period
Kvr = correction factor for reference wind speed for risk of exceedance and exposure
period
Ke= correction factor for direction of wind
Ks* = correction factor for difference between in roughness zor and actual site roughness zc
Kz* = correction for height over terrain
Kl = correction for effect of local topography such as hills or slope where:
u*r = Vr/Kz*r Equation IV-12
Vr = reference wind speed at height zr and 10 meters for reference terrain
roughness (ASOS also uses 10-meter height recommendation for anemometer heights at ground weather stations.)
Where there is a significant nearby or sudden change in roughness upwind of the site, a new inner layer develops and is given by:
Vzx = Vz*Kx Equation IV-13
where:
Vzx = value for the wind speed nearest change in terrain roughness Kx= correction factor for terrain roughness
55


As shown in the equations, important to the wind calculation is the wind direction and probability of occurrence in each wind direction.
Estimation of Terrain Parameters, zo and d
ESDU provides a wider range of roughness lengths, z0, with over 20 types of roughness including, ice and mud flat, airport runways, forests, farmland and small and large town centers.
“The flow between obstructions near ground level is very complex and no prediction of wind speed can be made with certainty’’ (ESDU 1993). In practice the wind speed will depend on the plan-area density of surface roughness elements, A. Data obtained from various wind-tunnel investigations were used to derive a correlation between height of surrounding buildings and roughness length. These correlations are as follows:
For A< 0.8
H-d/zo = 4.3(1- A) + 10 exp (-90 A L5°) Equation IV-14
And
d = H - zo [4.3(1- A) + (10 exp (-90 A L50)] Equation IV-15
where:
H = height of the surrounding buildings
A = plan-area density of surface roughness
d= zero plane displacement (less than the building height)
For A > 0.2
d = H - Zo 4.3(1-X) Equation IV-16
56


Equation 6.2 was derived using wind tunnel data and is also applicable to vegetation type roughness. In a city where H is approximately 25 meters and z0 is approximately 0.8, H-d = 2.5z0. In areas that are not built up, d is often assumed to be zero.
For heights close to the surface or less than 30 meters, the following equation can be
used:
Vz = 2.5 it- In (z/zo) Equation IV-17
Surface Roughness Factors Ks*andKs
The factors that account for local roughness at the site are defined as:
K s* = a*;•/ ii- Equation IV-18
where
u* =friction velocities at the actual site u*r =friction velocities at the reference site and
K s* = ln(105/zor) / ln(105/zo) Equation IV-19
4.2 Variation of Wind Speed due to Changes in Roughness
ESDU recommends considering roughness changes with at least 3 times zc value on either side. ESDU also addresses the consideration is the length of the roughness change. Suppose that there is an Exposure B suburban type roughness surrounding the site for 1 mile and beyond this there is Open country for less than one mile, it can be assumed that the velocity profile will return to the Exposure B profile by the time it gets to the site. Of significance are where the length of the roughness surrounding the site is less than the surrounding roughness. Also of importance is whether the change is roughness from smooth-
57


to-rough or rough-to-smooth as the wind profile curve is different. To account for roughness changes or steps, the following equation can be used:
Vz = 2.5 u- Kx In (z/zo) Equation IV-20
Where Kx is the correction factor for roughness step.
For a single step change, ESDU provides the following formula for the parameter R that is required to find Kx, the correction factor for a change in roughness or step change:
R = ln(105/zor) //(u*r/ (feo))a Equation IV-21
where n = 0.23 for smooth-to-rough and n = 0.14 for rough-to-smooth
Kx= 1 + 0.67 R 0 S5fs, for smooth-to-rough Equation IV-22
and
Kx = 1 - 0.41 R frs for rough-to-smooth Equation IV-23
Where frs and fsr are a function of the distance x (the distance of the roughness
change near the site )
Where
fsr = 0.1143 X2 - 1.32X44.087 (forX< 5.5) Equation IV-24
fsr = 0 (for X> 5.5)
frs = 0.0192 X2 - 0.55X +2.477 (for X,< 5.6) Equation IV-25
frs = 0 (for X> 5.6) Equation IV-26
where X= logiox in meters, where x is the distance of the roughness change to the
site.
These equations are based on the Deaves and Harris research (Deaves and Harris 1981). They are limited to values of x!z0 >10 and for values of x that are less than 3 km.
58


Australian/New Zealand Standard
Australian/New Zealand Standard, Structural Design Actions, Part 2: Wind actions AS/NZS 1170.2:2011 (AS/NZS) is limited to buildings less than or equal to 200 m in height, structures with roof spans less than 100 m and structures other than offshore structures, bridges and transmission towers. Like ASCE7, the site wind pressure is based on regional 3 second gust wind speed. The wind speed is multiplied by a series of adjustment factors for height, topography (hills and escarpments), shielding from adjacent buildings, surface roughness, wind direction and the influence of high winds near coastal regions.
Similar to ESDU, the AS/NZS allows the designer to use different wind speeds and corresponding wind pressures in different directions. The adjustment factor for surface roughness is called the terrain height multiplier. A minimum of four orthogonal directions must be considered based on the orientation of the structure. The terrain surrounding the site is classified with based on the following category descriptions as provided by AS/NZS:
(a) Category 1—Exposed open terrain with few or no obstructions and water surfaces at serviceability wind speeds with corresponding roughness length, z0 = 0.002.
(b) Category 2—Water surfaces, open terrain, grassland with few, well-scattered obstructions having heights generally from 1.5 m to 10 m with corresponding roughness length, z0 = 0.02.
(c) Category 3—Terrain with numerous closely spaced obstructions 3 m to 5 m high, such as areas of suburban housing with corresponding roughness length, z0 = 0.2.
(d) Category 4—Terrain with numerous large, high (10 m to 30 m high) and closely spaced obstructions, such as large city centres and well-developed industrial complexes. (AS/NZS 2011) with corresponding roughness length, zQ = 2.0.
59


Similar to the ASCE, AS/NZS provides a “terrain/height multiplier” for each terrain classification, specific to “fully developed terrains” and allow the designer to use linear interpolation for intermediate values of height, z, and terrain category.
Where there are changes in roughness upwind of a structure, as shown in Figure IV-8, within the area of influence or within the “averaging distances ” as referred to the AS/NZS, the following equation is provided to determine an adjusted terrain/height multiplier.
The adjusted terrain/height multiplier, Mz,cat, is a weighted average value over the averaging distance upwind of the structure at height z above ground level. The weighted average of Mz,cat is weighted by the length of each terrain upwind of the structure and includes a lag distance at each terrain category change to account for the wind profile to adjust to the next surface roughness.
For evaluation at height (z), a change in terrain incorporates a lag distance, x,, shown in Figure IV-9 given as
Mz,2 %t2 + Mz,4 Xf4 + MZ3 Xf3 Averaging distance
Equation IV-27
follows:
Equation IV-28
x, = distance downwind from the start of a new terrain roughness to the position
where the developed height of the inner layer equals z (lag distance)
zor = larger of the two roughness lengths at a boundary between roughness.
z = reference height on the structure above the average local ground level
The averaging distance upwind of structure as shown in in meters is 1 km for structures with height less than 50 meters, 2 km for structures with heights between 50
60


meters and 100 meter and 3 km for structures with heights between 100 meters and 200
meters.
Wind
Direction
Averaging Distance
*t3
*t4

Lag Response
Actual
Surface
Terrain Cat 3
Lag Dist. Lag Dist
Terrain Cat 4 Terrain Cat 2
Figure IV-8 Examples of Changes in Terrain Category
Figure IV-9 Notation for Changes in Terrain
Structure
k
61


United Kingdom of Great Britain and Northern Ireland
The United Kingdom of Great Brittan and Northern Ireland puts the issue of change in roughness at the forefront of their wind loading recommendations. Their code, the IBS NAEN 1991-1-4 (2010), provides three terrain categories, “the Sea, Country Terrain and Town Terrain” (UK 2010):
They stipulate that “a// inland lakes extending more than 1 km in the direction of wind and closer than 1 km upwind of the site should be treated as Sea” (UK 2010): Taking into account the common single roughness change, their code states “the roughness factor cr(z) depends on upwind distance to sea and additionally on the distance upwind to the edge of the Urban area for sites in Town terrain” (UK 2010): The code provides tables for determining the roughness correction factor, cr(z), for terrain changes from Sea to Country and Town and terrain changes from Town to Country where the adjustment factors vary based on the distance to the change in roughness. Based on these figures, the area of influence is 100 km where the site is located near large bodies of water and 20 km for sites located on land.
62


Figure NA.3 Values of cr(r)
Figure IV-10 United Kingdom Wind Code Table NA.3 Roughness Change from Sea to Land (reproduced with permission)
63


Figure NA.4 Values of correction factor cr;r for sites in Town terrain
Figure IV-11 United Kingdom Wind Code Table NA.4 Roughness Change from Country to Town (reproduced with permission)
64


CHAPTER V
BACKGROUND ON GEOGRAPHIC INFORMATION SYSTEMS (GIS) AND ITS USE IN
ASSESSING SURFACE ROUGHNESS
In this work GIS is used in the analysis of geographic meta data files. GIS programs have made it possible to turn what used to be paper maps into spatial computer models that contain sophisticated data and objects that can be analyzed and manipulated in a myriad of different ways. GIS tools enable the manipulation of data related to two dimensional maps, municipal files and complex data collected from airborne and space platforms.
GIS data can be accessed from computer programs such as ESRI ArcMAP (ESRI 2012), a propriety software , Quantum Geographic Information System(QGIS 2017), an open source software and QT Modeler (Applied Imagery 2016). Often the top layer will consist of a graphical representation of the data, such as a point, line or polygon shape. The underlying data, often presented in table format, can consist of numerous pieces of information linked to the geographic objects. For example, if the object is a building, the data layers in GIS could include, year built, size, address, owner, type of structure and purchase price. GIS software is used in many different fields, both private and public. Local governments can use GIS to manage property data that might affect property taxes and road work. Businesses can use GIS to help them determine where to locate a new store based on information about the surrounding population and other businesses. Biologists can use GIS to track animal migration patterns.
GIS data comes in many different forms. Often GIS data will have different sources and formatting with different scales or projections. GIS technology allows the combination of the different types of data and corresponding information to be combined into a single
65


required in order to process and analysis the GIS data. Because of the complexity of the data and software, building GIS models and analyzing results can be an arduous process
GIS Data
Three primary types of GIS data were used in this study for their suitability for determining the site's terrain surface roughness; vector shapefile data, raster data and Light Detecting And Ranging (LiDAR) data. Each data type contains geographic data that is linked to a coordinate system.
Vector shapefile data consists of layers or collections of geographic objects represented by points, lines or polygons and associated data. The layers might include states, counties, roads, rivers and buildings with associated shape and size and its relationship to the coordinate system which places the data in its geographic location on the software generated map. The files that contain this data are often referred to as shapefiles.
Many have land use data that includes property size, land use and some include building footprint size. The data developed for the City and County of Denver includes address, property size and property value (City and County of Denver 2015). Figure V-l shows a screenshot of a building shapefile model in ArcMAP that includes buildings shown in purple, roads shown in brown and bodies of water shown in blue. The vector layers used in this research include building size, height and location.
66


Figure V-l Screenshot of Loveland Building Shapefile Model in ArcMAP
Many municipalities such as City and County of Denver provide free access their GIS data.
A drawback is that there are many local governments that do not have nor use GIS data and therefore this vector data is not uniformly available throughout the US.
One of the most commonly used types of raster data is the United States Geological Survey (USGS) Land Cover Institute Land Cover Database. This is the second type of GIS data used in this study. Raster data models contain their spatial data and associated information about the data itself organized in a regular set of cells in a grid pattern. Raster data models are utilized in continuous spatial features, such as land use, elevation or slope that can have significant changes over broad areas. The USGS Land Cover Institute has developed land use data files for the United States. This data is available to the public at no cost (USGS Land Cover Institute 2016). See Figure V-2 for screenshot of Land Use data for Denver site modeled in ArcMAP.
67


Downtown Denver
Denver Surface Roughness by Land Use
Legend
Land Use by Roughness (z value in meters)
Open_Water (z=0 0002)
Open_Space (z=0 066)
__| Open_Space_Grassland (z=0.25)
~] Developed_Low_lntensity (z=0 35)
| Trees (z=0.5)
| Develeped_Medium_lntensity (z=0 6) | Developed_High_lntensity (z=1 0)
”1 Miles 14
Figure V-2 Screenshot of Land Cover Data for Denver Area modeled in ArcMAP
The disadvantage of the USGS land-use data is that the resolution is relatively low with resolutions of 30 meters. The land-use data also does not differentiate between buildings and paved surfaces. Therefore, areas such as airport runways are designated similar to suburban housing developments. The USGS land-use data has been used in pollution applications (Environmental Protection Agency 2008). The Environmental Protection Agency (EPA) provides criteria for assigning roughness length to USGS land-use type as they apply to petroleum and chemical industries modeling to determine dispersion of pollutants (Environmental Protection Agency 2008). For example, the EPA assigns Open Water with a
68


roughness length of 0.001 meters and High Intensity Residential a roughness length of 1.0 meters. To address large expanses of pavement at airport, the EPA differentiates Commercial/Industrial land cover between “site at airport” and “site not at airport (Environmental Protection Agency 2008). The EPA classification applies to an area of influence of 3 km surrounding the site.
The third type of GIS data utilized in this study is LiDAR LAS point data. LiDAR is a remote sensing method that uses light from a laser to measure the objects on the ground such as water, trees, buildings and anything that is within its resolution range. High resolution LiDAR data can include small objects such as people observed from above. The USGS provides LiDAR discrete-return point cloud data in the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS (Laser) format for areas in the US where this data has been collected(USGS 2016). The raw LiDAR data can consist of millions of points, often referred to as a “point cloud” as shown below in Figure V-3. The LAS format is a standardized binary format for storing 3-dimensional point cloud data. Data points are stored as a 3-dimensional data cloud as a series of x (longitude), y (latitude) and z (elevation) points (USGS 2016).
69


Figure V-3 Screenshot of LiDAR Data for Tampa Site modeled in Quick Terrain Modeler
The quality of LiDAR data varies depending on a variety of factors including the quality of the sensor, location of the sensor and atmospheric interference. While this data offers the advantage of containing elevation data, data on bodies of water, trees and buildings, the data files are large and more difficult to process than vector data or land cover raster data. The data consisting of thousands to millions of points needs to be converted into a usable format where the information about elevation and ground cover can be analyzed. The data files are large and often consists of tiles due to the size of the files. The LiDAR data for an area for a five-kilometer radius of a research site would typically consist of one hundred 50 GB files (USGS 2016). These tiles can be seen in Figure V-4. LiDAR technology is also only publicly available for limited areas in the United States. However, LiDAR technology is developing quickly and data is becoming more and more ubiquitous.
70


Figure V-4 Screenshot of LiDAR Data for Tampa Site modeled in Quick Terrain Modeler
GIS Studies Involving Surface Roughness
GIS technology and data have been used to estimate surface roughness in studies that are applicable to wind pressure and applications outside wind studies. These studies include urban planning, drainage studies and ecological studies such as vegetation growth.
The methods utilized by these studies are largely dependent on the data type. Morphometric or geometric methods are often utilized when using vector shapefile data that includes building plan area, height and density. Traditional GIS morphometric method apply the relationship of the structure’s plan area and height to the area not occupied by structures, or the density of the structures. These geometric relationships are based on previous field studies by Lettau, Counihan and others, discussed in the previous chapters of this thesis. The methods to estimate surface roughness employed by GIS studies utilizing LiDAR point data often differ as the data is composed of thousands of points and not building shapes. The
71


methods utilized to calculate surface roughness using LiDAR data include re-parameterizing effective length using elevation (Hammond et al. 2012), standard deviation and first and second order slope, where the roughness is estimated by analyzing the relative topographic position of the data points in the point cloud.
Urban Planning GIS Studies Involving Surface Roughness
The study of urban form or urban morphology is an important tool in describing the development of cities and the developments surrounding cities (Bentley 1990).
Understanding the urban morphology of an area provides planners the opportunity to plan and configure future developments that are conducive for movement and ultimately are more enjoyable to live and work in. Evans compares cities that are growing too quickly without the benefit of urban planning to a pregnant woman “growing ever pregnant against her wishes” (Evans 2005). There are multiple characteristics used to study urban cities depending on what is being studied. Some of the attributes include street configuration, lot size, ratio of open space, population density, land use and density of residential dwellings.
Methods to quantify surface roughness utilized in urban planning are similar methods to those used by the engineering community in determining wind loads on structures, reviewing the relationship of structures to the land they occupy. Similar to wind engineers, urban planning researchers are using GIS data and software to model cities for planning purposes and to study the effect of new construction on the wind environment. Planners and designers are aware that the wind environment has a significant impact on pollution and pedestrian comfort.
Using satellite images and low aerial photographs, Ellefsen assembled urban morphology data for a number of US cities where a grid is created and in each grid, the density of the terrain is calculated using a number of factors including building density,
72


building height (Cionco and Ellefsen 1998). The study is based on Ellefson’s 1987 study, where Ellefsen groups structures into 19 Urban Terrain Zones (UTZ) ranging from “Open-set Houses” and “Closed-set Houses” to “Commercial” (Ellefsen 1987). As part of their work, Cionco and Ellefsen creates a digitized morphology database of these zones for Sacramento, California for use for wind flow modeling (Cionco and Ellefsen 1998).
Wind Based GIS Studies Involving Surface Roughness
Grimmond and Oke performed a comprehensive study using a combination of aerial photographs and field surveys create GIS data models with buildings’ and trees footprints, heights and building spatial distribution for 11 sites in the United States located in populated areas. The study includes GIS analysis using seven morphometric (geometric) formulas developed from field studies to estimate z0. GIS analysis surface roughness derived from each of the seven morphometric methods is compared to field wind data and data from wind tunnel testing to determine its accuracy. The seven morphometric methods include those by Bottema, Counihan, Garrat, Kutzbach, Lettau, Macdonald and, Raupach (Bottema 1995; Counihan 1971, Garrat 1992, Kutzbach 1961, Lettau 1969, Macdonald 1998; Raupach 1992) These studies use a traditional method of estimating roughness that involve the relationship between structures and trees and the land they occupy and their height.
Grimmond and Oke found few GIS model methods that had a strong statistical correlation with the field wind roughness or wind tunnel roughness models. Various geometric methods showed stronger correlations using different statistical comparison methods. Grimmond and Oke attribute this lack of correlation to lack of high quality data, errors in field observation data for winds over inhomogeneous surfaces and uncertainties in both measurement and prediction of surface roughness. Based on their study, Grimmond and
73


Oke rank geometric methods based on the type of terrain. For example, they suggest that Bottema method is best suited for regular buildings, where Raupach is better suited for terrain that contains random building arrangements. Similar to Cionco and Ellefsen, Grimmond and Oke categorizes roughness type. Grimmond and Oke provide four UTZ consisting of Low Density, Medium Density, High Density and High-rise.
Wind Pollution GIS Studies Involving Surface Roughness
There is a large body of research that has been completed in China, where there is concern about pollution and the wind environment. Hong Kong is one of the most highly dense and populated cities in the world. Natural ventilation in urban planning is a big challenge to local planners.
“Recently tall buildings have been constructed. They highly affect local air circulation. Thus, local researchers and governors has worked together to develop a wind information layer for planning use based on the available meteorological records”, (Yuan et al. 2014).
In Yuan’s study, geometric parameters, such as frontal area density and site coverage ratio are used to predict air flow and estimate pedestrian comfort levels based on air flow as shown in Figure V-5 (Yuan et al. 2015).
74


Figure V-5 Frontal Area Density in Wuhan and Potential Air Paths (Yuan 2014) (reproduced with permission)
Work by Ng involves mapping and analyzing the surface roughness surrounding Hong Kong in order to study the ventilation issues (Ng et al. 2011). In this study wind tunnel data was used to test the sensitivities of the site’s permeability across the different ground cover ratios at three urban zones; the Podium Layer, Building Layer, and Canopy Layer. The Podium Layer is located at 0 to 15 meters, at top of one and two-story low-rise buildings, the Building Layer is located at 15 to 60 meters, based on the average building height in urban areas and Urban Canopy Layer is 0-60 meters and encompasses the urban buildings. These are shown in Figure V-6.
75


Urban Boundary Layer (UBL)
Roughness Sublayer (RSL)
Urban Canopy Layer (UCL) _f________t Podium Layer
Average Building Height of the Urban Areas
V n
Figure V-6 Urban, Podium and Building Layers in a Urban Setting (Ng et al. 2011) (reproduced with permission)
Ng’s study included review of four different grid sections from 50 meters to 50 meters to 300 meters to 300 meters to determine the wind permeability and potential air flow. Their study indicates that there is restricted airflow between buildings because of the high density of buildings. (Ng et al., 2011). Figure V-7 is a summary of the permeability in Hong Kong based on NG’s study.
Tlit Map of Wind Permeability a( (Resolution: 200x200m)
H o%-O Location of the case â–¡ (MongKok)
1.000 2.000
4.000
Meters
Potential air paths
76


Figure V-7 Wind Permeability in Hong Kong (Ng et al. 2011) (reproduced with permission)
GIS Spatial Methods for Determining Roughness Not involving Wind
Moving away from traditional wind based studies regarding structures and towards GIS based LiDAR studies, the definition of surface roughness differs as do the methods for estimating surface roughness. For example, Pollyea and Fairley define surface roughness as “the standard deviation of point elevations above a reference datum” (Pollyea and Fairley 2012). Frankel and Dolan define surface roughness as “the standard deviation of slope over a moving window" (Frankel and Dolan 2007). In addition to the standard deviation method, the GIS based methods also include first order-slope or terrain ruggedness index (TRI), second-order slope, ordinary least-square, root mean square of elevation and arc-chord ratio (ACR) rugosity which will be discussed further.
Pollyea and Fairley have found the surface roughness models are “far from standardized” (Pollyea and Fairley 2012). The Pollyea and Fairley method uses orthogonal distance regression (ODR) to create a gridded reference datum. The surface roughness of each grid is determined by the standard deviation of the orthogonal points to the reference datum. Pollyea and Fairley investigates four small grid sizes of 0.125 meters to 1.0 meters. Pollyea and Fairley found the larger grid of 1.0 meters better correlation with the larger grid size. Pollyea and Fairley compare their surface roughness from LiDAR data to wind tunnel testing (Pollyea and Fairley 2011). In their 2012 study, they compare the ODR standard deviation method to the a method using ordinary least-squares plane fitting (Fardin et al. 2004). Pollyea and Fairley study found that the ODR standard deviation method provides a good method for determining surface roughness using LiDAR remote sensing data.
77


Popit and Verbovse GIS study implements slope variability and the Terrain Ruggedness Index (TRI) to determine surface roughness from airborne laser scanning data in their geomorphologic analysis of the Rebrenic area in Slovenia (Popit and Verbovsek 2013). The slope variability method involves analyzing the difference between the lowest and highest elevations in each gridded area as shown below:
TRI = [ I Hmax2 - Hmin \ ]1/2 Equation V-1
The Popit and Verbovse study found that both methods were effective at identifying morphologic characteristics related to surface roughness (Popit and Verbovsek 2013).
Riley defines TRI as the sum of change in elevation between a grid and its eight neighborhood grid as shown in TRI = Y [ XOv - xoo)2]1/2
Equation V-2 and in Figure V-8, where Xy is the elevation of the neighboring cell to the middle cell, xoo. This methodology is sometimes referred to as “grid statitics” (ESRI 2016). Each square represents a grid cell in the GIS elevation model and statitics are run on each grid cell with reference to the surrounding cells.
TRI = Y [ X(x// - xoo)2]1/2 Equation V-2
Figure V-8 Riley Terrain Ruggedness Index Definition (Popit and Verbovsek 2013)
78


Similarly, Melton suggest that the surface roughness of a basin area can be calculated as difference between maximum and minimum elevation in catchment area divided by square root of catchment area size. This calculation is performed in the same way as Riley’s method for each grid cell (Melton 1965). Preez’s 2014 study related to Lanscape Ecology studies the shape of the sea floor utilizes a methodology to determine surface roughness defined as rugosity. Preez defines rugosity as
“an index of surface roughness that is widely used as a measure of landscape structural complexity in studies investigating spatially explicit ecological patterns and processes”
(Preez 2014).
Preez’s method applies the following equation :
Countoured distance Countoured area
Rugosity --------------:----------or-------------------- Equation V-3
Planar distance Planar area
There are a variety of GIS based software tools and programs that implement the surface roughness methods discussed above for determining surface roughness using GIS based analysis including Quick Terrain Modeler, ENVI and ArcMap. Both Quick Terrain Modeler and ArcMap are used in this study to compute the grid statistics for GIS data. Both programs have software that runs an algorithm on the GIS data utilizing a rectangular grid with size that can be set by the user.
79


CHAPTER VI
GIS ROUGHNESS ANALYSIS METHODS
This research includes a study of various methods of predicting surface roughness using different types of GIS data including vector shapefile building data, USGS Land Cover raster data and LiDAR data. Each of these data types varies on content as it relates to surface roughness and each type of data lends itself to different methodology for calculating roughness. Each set of methodology will which will be discussed further in the sections to follow. These are summarized in Figure 0-1 along with the variables affecting roughness that are included in the study. For example, vector shapefile building data contains building footprint and height as documented typically by city municipalities and lends itself to a geometric methodology. The building shapefile data does not include trees and shrubbery.
RESEARCH SUMMARY
GIS
Calculated
Roughness
Factors
Change in Roughness Area of Influence
Methods
Figure VI-1 Research Summary
80


Full Text

PAGE 1

nnrnnr rnnnrn nn r !"#!$ %&&' "#!$ (!"#!)*%' +!$$$,! +! r., ( +!, !.+( +! "#!$ ("/ (,(-!" ( +!!0,!-!" $( +!!1!!( . (+$/+ #"1"!!"11)*%2

PAGE 2

+$$$! "( +!. (+$/+!1 !! .!$" +$!!"//#!( +! #"1"!!"113!#"!"$+ r!!.4, 5#$ !$!$+ ,$ " +!"1 !6!.!-!%7)*%2

PAGE 3

$".!8+#"1"!!"19 !" !! !-" "$("!$1",(.!, 1+"!$$!((.!" $"1 !1/+.n"("$ !-$8n9!"1 $$! "!. !(!$$r!!.4, 5 +!$,(.!,1+"!$$( +!! ++$$1"(." !((!. ":"$/!!,(.! ,1+"!$$( +!! +$!("! +! !" "$./"1", !"#"-!" r !.!$$ ,. ,!"1"!!$+#!!!"1,/"1 + !$,(.!,1+"!$$$,,""1$ ! " $.! !. !1!$$!" +!!.--!" "$"+!-!.".! (# "1"!!$ "2829 nrn n +$$ ,/!$!" $ !" !-! +$(.., " 1 +!,1+"!$$(. $ .! "1 +!$,(.!,1+"!$$$,,""1 $ !,$"11!1/+."(" $$ !-8n9 " $$"1n +!$,(. !,1+"!$$$,,""1$ ,. ,! ."!"5! !("! +!,1+"!$$(. $., !" , 5!"-!/!.$! !("! +!$,(.!,1+"!$$#,!$$,,""1$ !+$!$!.+!;-"!$((!!" /!$(n "-, /!-! +$(! !-" "1$,(.!,1+"!$$ + ".,! -! +$" ",$!:"!"1"!!$ +!$!-! +$((!" !" ! //.+ + ..," ($,(.!,1+"!$$.+"1!$ "((! !-#! +! #!$-/(. "($!!. "1$"1!!;/$,! !/!$!" :+ $( !"-!.-/!; !"+$-!"1""$$$!. ! :,$!"/. .!$1"( $ ,. ,!$ +!(-"." !" ( +$$ . !//#! n!.--!" $/,. " //#!6r!.4, 5

PAGE 4

# nrr +$$$! ""!$!.+:4:$"$/! ,!;.!/ " !.+! r!!.4, 5+$:4:$(,"!"/ +!"#!$ (!"#! "--5"1+,$""$":+$!# !"!!("-!$"." ",!$ ! -!$$+$:4:,$" !/$$ !: +, -
PAGE 5

# rnnr n>>n % n" ,. " % ,/$! ) ./! ) nnnr ? ,"! ? r,!.+".$(r: 2 "(!+"1!$ %' "/!! %& ,,!".!n" !"$ )% "1"!!"1!$ )) :!: )@ 1: )? nnnnnrr )7 ,1+"!$$!!$"1r!!$,!-!" $ )7 !" !,1+"!$$!$ )A ,1+"!$$!!"",""!!$ "1 @% !(n"(,!".! @A +"1!$",1+"!$$ @& n>nrnnn ?) 2B%*"0, "$ ?' r. !$."/!!//.+ '? $ "(!"-! !$5" '7

PAGE 6

# ,(.!,1+"!$$r. $3$C"3$ '2 ,$ "D!:E!" " '& " !3"1-(! "" +!"n!" 7) >3nnnn r 7' n 77 n ,!$n"##"1,(.!,1+"!$$ 2% """"1n ,!$n"##"1,(.!,1+" !$$2) "$!n ,!$n"##"1,(.!,1+"!$$ 2@ ", "n ,!$n"##"1,(.!,1+" !$$2? n/ ! +$(! !-""1,1+"!$$ "##"1"22 >nnn A* n ,B,"1+/!(!>!. A' n ,F$ !"#! AA n ,F &% >nn>nn &@ ",""! ,!$ &? r!" &' "! , &' $ !$ , &A , % ** >nnnnnnn % *) ,.4,"1+/!(! , %*) !"#!"-"1F"#! , %)% -/ ,,"1+/!(!" , %)&

PAGE 7

# nGnFnn %?*+$$!! ! , %?*/B.4 ! , %?)<.4$"#! ! , %??/$ ! , %?',-! " ! , %?24!$ ! , %?&! ! , %'%!"!;$ ! , %')Gn %'' "!# "! +!$ r %'7 "!# "! +r $!"#!1!>, !$%7*!5!n"#!$ 1 " %2*r$ !/!! + %2?r$ !/!! +r $!"#!1!>,! $%2A!."!/!! + %AA!."!/!! +r $!"#!1!>, !$%&)-"! )*)Gn ))@"/$$ ))@".,$"$ ))?$$!,.!$( ))7// ," !$(r, ,!!$!.+ ))2

PAGE 8

# Gnnr ))&GnnnnG )@7//!"; +"! )@7"#!$$(. "$"!$/""15>,!$)@&//!";n! +1 )?)",""! )?2 ! ,-/$" )'A

PAGE 9

n nrrrn !"# $%&'(#))* nrrr + !"#"#'," ./nrrr.0 !"#"#', "-.1nrrr/!))-,233 !"# "#!'-$'!'(# )* .nrrr1#!) !"# "##"4!0' 5'!0'$#!36/* .6 nr7) !"#"#7! //nr7!))-r!n-!'" "''8'/1nr7.9:;7!'" " $'') n* 1n7r)!' !!"0!0#'# 6n7r.)!' !!"0!0#'#' 6n7r/)!' !!"0!0#'#' 6n7r1 7! 63n7r 7!5-)" 3% n7r0!' !"#"# :-,, !"# %%n7rr!'"!))-' #"!!4'$50r *)
PAGE 10

; !>nn?,"1 ,--( !. ! " +!1., ,r!8n %9(-.n,"1! %%'!>nn',"1 ,--( !. !" +!!$!" !1++8n)9(-.n,"1! %%&!>nn7!"#!n., !"",""! !$ "1,1+"!$$r. $%)@!>nn2-"1n., !"",""! !$ "1,1+"!$$r. $%)2!>nnA-/$"(,1+"!$$r. $(, "1!!" $ !$0,#!" >,!$ %@@!>nn&!# " , %@7!>nn%*-/$"(,1+"!$$r. $( !# "!"$ !$ 0,#!" >,!$ %@7 !nG%,--(!$ r ,1+"!$$=,$ -!" >,!$( "!# " ! + %7* !nG),--(!$ r ,1+"!$$=,$ -!" >,!$(r$ !/! ! + %2A !nG@,--(!$ r ,1+"!$$=,$ -!" >,!$(!."!/! ! + %&) !nG?-/ !-/$"(,--( n! +$ $ !$r! "!#!>,!$ )*@ !nG'+$$!! !-/$"(,-(n! +$ $ !$ r!"!#!>,!$ )*? !nG7/B.4 !-/$"(,--( n! +$ $ !$ r!"!#!>,!$ )*' !nG2<.4$"#! !-/$"(,-(n! +$ $ !$ r!"!#!>,!$ )*7 !nGA/$ !-/$"(,--( n! +$ $ !$ r!"!#!>,!$ )*2 !nG&,-! " !-/$"(,--( n! +$ $ !$ r!"!#!>,!$ )*A !nG%*4!$ !-/$"(,--( n! +$ $ !$ r!"!#!>,!$ )*&

PAGE 11

; !nG%%! !-/$"(,--( n! +$ $ !$ r!"!#!>,!$ )%* !nG%)!" !-/$"(,--( n! +$ $ !$ r!"!#!>,!$ )%% !nG%@n((!!".!! :!!"n>,!$(! .+!(n"(,!".!-/! $ !$r!"!#!>,!$ )%@ !nG%?n((!!".!! :!!"n>,!$-/ ! $ !$r!" !#!>,!$: +!. "$r."1 !",! )%7 !nG%'n((!!".!! :!!"n>,!$-/ ! $ !$r!" !#!>,!$: +!. "$: +r!$ $",/ !!; )%2!Gn% >,!$("$!$$(. "$ )?*!Gn) >,!$("$!$$(. "$" ",! )?%!Gn@n !. " !(.+ ! )'A

PAGE 12

rn 4r<& 4"!rr-5', / 4"!rr.r' !"#4($<'%%/* 4"!rr/5+r4($<'%%/* 4"!rr1+))"4($<'%%/* 4"!rr>"4"!4,''5'4( (!'" "!D":"$>"%*$'!'( #)*1 4"!rr5',#")#!"#$, %%3* 4"!rr4( ")#" !"#$<'%%/* 4"!rr65' r 4"!rr3)%
PAGE 13

4"!r7,#-!" -$%%*/3 4"!r7,#-!" -$%%*1% 4"!r76)#""4"!r73>#" 4"!r7%&':"')5''n>. !"##") '$'!'(#)* . 4"!r7&':"')5''n>/ !"##")!($'!'(#)* / 4"!7#'n0, 4"!7#'!'"# 0'0,6 4"!7.#'& )''0,3 4"!7/# ) )''F!+0' 4"!71# ) )''F!+0' 4"!74-5!#', ,#$E!%/* $'!'(#)* 4"!7&n?,'!)'!'"-& n"$>"%* $'!'(#)* 4"!765',)n-D":"$>" %* 6 4"!73 !""'r' $,'7nG+%.*3 4"!7r!))!"#7n 6. 4"!7r)'<' 61 4"!7r.'<' 6 4"!7r/' 3% 4"!7r1! !"# 7! 3 4"!7r5-)"! !"# 7! 3 4"!7r#)0'F0' 3/

PAGE 14

4"!7rr<'7($<' %%/* %1 4"!7rr<"0(#<'2$<" #%1*% 4"!7rr.5' % 4"!7rr/#)#"!!4' $50r*(#0+''5' 4"!7rr3<#)"# 7!!'&""#n#'$50r* 4"!7rr.(#+)r! . 4"!7rr/(#1+)r! / 4"!7rr1(#%+)r! / 4"!7rr)
PAGE 15

4"!7rr35-)"(#%+)r ! 6 4"!7rr%5-)")
PAGE 16

4"!7rrr657(+)$< "0%'*/3 4"!7rrr357(1+)$< "0%'*/3 4"!7rrr%57(%+)$< "0%'*1% 4"!7rrr!)n7(+)$ <"0%*1 4"!7rrr!)n7(1+)$ <"0%*1 4"!7rrr.n+7(+) 1 4"!7rrr/n+7(1+) 1. 4"!7rrr1n+#0,
PAGE 17

4"!rA/'4'"'' !"#7! 4"!rA1,'4'"'' !"#4 4"!rA)4'.0<'&" "'' !"#4 . 4"!rA)4'.%0<'&" "'' !"#4 / 4"!rA6)4'1%0<'&" "'' !"#4 / 4"!rA3C+4'.0<' &""'' !"#4 1 4"!rA%)4'.%0<'&" "'' !"#4 4"!rA)4'%%0<'& ""'' !"#4 4"!rA)44=' !"# 43 4"!rA.#44=' !"#46% 4"!rA/=+44=' !"#46% 4"!rA1C+44=' !"#46 4"!rA544=' ! "#46 4"!rA)4'4=' !"#46. 4"!rA6#4'"4 =' !"#46/ 4"!rA3=+4'"4= ' !"#461 4"!rA.%C+4'"4 =' !"#46 4"!rA.54'"4=' !"#46 4"!rA.!)n4'"4= ' !"#466 4"!rA..n+4'"4= ' !"#463 4"!rA./'4'4=' !"#43% 4"!rA.1,'4'4=' !"#43

PAGE 18

4"!rA.)4'=' !" #43. 4"!rA.#4'=' !"#43/ 4"!rA.6=+4'=' !"#43/ 4"!rA.3C+4'=' !"#431 4"!rA/%54'=' !"#431 4"!rA/)4''=' !"#43 4"!rA/#4'" '=' !"#436 4"!rA/.=+4'"' =' !"#433 4"!rA//C+4'" '=' !"#4 %% 4"!rA/154'"'= ' !"#4% 4"!rA/!)n4'"' =' !"#4% 4"!rA/n+4'"' =' !"#4%. 4"!rA/6'4''=' !"#4%/ 4"!rA/3,'4''=' !"#4%1 4"!rA1%))n') % 4"!rA1#)n') %6 4"!rA1=+)n') %3 4"!rA1.C+)n') % 4"!rA1/5)n') 4"!rA11!)n)n') 4"!rA1n+)n') . 4"!rA1')n') / 4"!rA16,')n') 1 4"!rA13''0# '>6 4"!rA%4='0# '>6

PAGE 19

4"!rA'='0# '>3 4"!rA0)!),! 1 4"!Ar1,!'>,! 1 4"!Ar,!'>,! 1. 4"!Ar,!'>,! 1/ 4"!Ar6,#"##)'#-0 '#5'!11 4"!Ar3 , 1 4"!Ar%,!'>,! 1 4"!Ar,!'>,! 16 4"!Ar,!'>,! 13 4"!Ar.,!'>,! % 4"!Ar/!nn+%/$<"#% * 4"!Ar1!nn+%%$<"#% *

PAGE 20

4"!Ar)%%$<"#%* . 4"!Ar)%%$<"#%* . 4"!Ar6'%%$<"#% * / 4"!Ar3'333$<"#% * / 4"!Ar%n+%%$<"# %* 1 4"!Arn+%%$<"# %* 1 4"!Ar#%%$<"# %* 4"!Ar.#%%$<" #%* 4"!Ar/!)n%%$<"# %* 4"!Ar1!)n333$<"# %* 4"!Ar5%%$<"#% * 6 4"!Ar5%.$<"#% * 6 4"!Ar6C+%%$<" #%* 3 4"!Ar3C+%%$<"# %* 3 4"!Ar.%=+%%$<"# %* % 4"!Ar.=+%%$<"# %* % 4"!Ar.,'%%$<"#% * 4"!Ar..,'%%$<"#% *

PAGE 21

!"r n#r#r $% .!" $ $"!"1"!!$+#!!!"$ ,"1 +!!(( !. $(:"(.!" ,!$"+#! (," + :"!+#$" ".-/!;, + $ -$(, +!.-/. ! +!" ,! (:""1!.,$!:"+$/(,"!((!. "!#! +"1 " !. $: + ,"!$ ""1"0," ("1 +!!((!. $(:" $. . +!!$1"($ ,. ,!$" +!.-/"!" $,$!"$ ,. ,!$"!$ ""1 +!:"","1$ ,. ,!$ !0,! !$1" + +!/-$ ,. ,("1!0,!(,"1$ /!(-".!" +!!((.!".( +!$ ,. ,! !$1""1( !:""1." !$, "(,!$( +!$ ,. ,!"("$+!$$ $!!"" +!+,."! /!(,!$:+!! ($!! .+!":"((+!!$1""1 ( -,.+:":".!$! +!.$ ( +!."$ ,. "!$".""!. "$8 ""1"!!"1"I, ;/! $)*%2K<+"$")**?9" ,""!$" +! !0,/-!" +#!!!",$! !#!/ $ !-/.!$ !:"(.!$"$ ,. ,!$" +!$!!$ !$"./ !-" #!$".,"1 +!$ ,. ,!L$$+/!"+!1+ " +!" ,!( +!$,,""1! +!$,,""1!"#"-!" "(,!".!$ +!$ ,. , !H$!$/"$!!.,$! +!$,,""1 !" /1/+".,"1+$!$./-!" $# !1! ""$,,""1$ ,. ,!$." !!. +!:"$"" !"$( ,,!".! + ( !"".!$!$ +!!((!. #!:"$+!" /!$$,!$ n".--"!$1"/. .!$ ,. ,!"1"!!$" +!" ! !$,$! +! !0,!-!" $( +!-!.".! (#"1" !!$ "282)*%*9+$ $ "1!"!5!$,1+"!$$#!$" +!! . !1!$4":"$;/$,!" $!" +!,1+"!$$( +! !"$,,""1 +!$ !(" !!$ +!$!. !1!$!

PAGE 22

: !:!#! +!!$."$!!$$.! " :+!" +! !"$,,""1$ !$" +-1!"!,$!$1"!$:( !",$!;/$,! $!(, "!,(" !/ "1 ! :!!". !1!$!$, "1"$ ,. ,!$!"1! $1"!(-!:""1+! "".,!$$-/(!-! +(! !-" "( +!!((!. $(,1+"!$$.+"1!$ +,1+ +$$!,$!"/. .! +! $-!.--"($ ,. ,!"1"!!$ !$1"$ ,. ,!("!!;/$,!. !1 + !$ ( $ +! !"$,,""1$ !$ " !n:"M nnnnnnn nnnnnn 8n:")**79N!.,$!(.+"1!$" +!$,(.! ,1+"!$$!"1 +!" ! .-" "$(/!"(!$","!"#"-!" $ !/!$!" #!!;/$,!. !1."!((., $!!. -$ !$ M nnnnnnnn nn!nnnnn !nnnn nn!nnn n n"nnn#nnn## #$n!nn nn#nnn N8-"3,/)*%29"$&' +!/,/$!( +!$ ,$ 8%9!#!/"8)9 # !-! +(.., "1 +!$,(.!,1+"!$$$,,""1$ !$ // !$ :""1, 5"1!1/+. n"("$ !-$8n9 !.+"1+!$ , -$ !-" "1 +!"!!($.! ! ;/$,! !1!$$, "!"2 ..," (:!"1!($,(.!,1+"!$$ .+. !$ .$;/""1 +!"1!(#,!$( +!#!. /!$$,!.!((.!" : /#!!$1"!$ +! ! !0," ( + !:"/!$$,!$"$ ,. ,!"!,.! ,".! " $$. !: +$!!. "1$.! !; /$,! !1 %& +!$./!( +$$ ,$! !$" +! " ! !$ + +#!/-( /1/++!$ ,$//.! !$, $ !,"!$: + !"."$$ "1(

PAGE 23

.-" "$(.-" "(,"$,," !$".,"1/!".," :$! $ ,. ,!$"$-!!$(: !"!$: + $ ,. ,!$!, $! +!$./!( +$$ ,,! +!.-/!; (:""1 ","!$"" $ ,. ,!$ !$!.+$$,11!$ $ + ,"5!!$: +/ "$,(.!!.#!!$ ,. ,! !;.!!"1?*O((!!!!0,!((!!" -! + !$ "1,1+"!$$8"! )**?K--""4!%&&A9/#!.-/$ "( +!"$$".., "$ +!$,=!. $ ,. ,!(!.+!:!$! "$/!.(.+!1+ (%*-! !$8@@(!! 9 :+.+.!$/"$ +!$ "+!1+ ( +!"! --! !$ :"$ "$+!%*-! ! +!1+ $.!$/"$:! /.!$!" :B$ $ ,. ,!$

PAGE 24

!"r n $(( +!,"!$!1"((:"! +!$, (.!(" +!.$!( $ ,. ,!"1"!!"1"! +n" +$! !1"""1 +! +"!; !""1%4@4-,/:$ +!(!! -$/+!! +!"$! +!,"! !"$ $ : +" +$!n" +$! +!(:$((!. ! +!$+!$ !$$!$" +! +!; +! +H$$,(.! +!(:$,1+ 5! (. ":+!(:(+! +!(:$,"((!. ! +!$+!$ !$$+!. " " +!$,(.!" +!." " :(+!$,(.!:+!" +!(:$""1!( (!. ! +!$ !$$! +!," ." "$$$+:"" r1,!*A% +!(: $+,"!$-!$-/ (! +"",1+$,(.!$$ +!(:$$$,-! ! -".4"1 ,,!".! )$*+,(& %" $$,-/ "$-,$ !-!, +!,"!; !" +.4"!$$"! !("! +!:"#!. /(!+! +.4"!$$+!1+ ( +!,"$( !"!(!! $ +!

PAGE 25

#!. $"! +!$-!$ +!.-"B$ ! -#!. +$!#! +!!"$ $ !$$$5!" +!/!$$,!(.!"$ (.!(-".!." " +!!! : /!$(,"!(:$-" (:" ,,!" (:n" -"(: +!(:$$+"" ,,!" ( : +!!$"-": +#!. (,. , "$+!$!.+"1!$((!. +!:"#!. /(!$$+:"!:" r1,!nnB% +!!! :/ "$( +!,"! +!, //!/ "$ +!4-"!" +! #! -/ "( +!,"!$ +!$, (.!!:+.+!; !"$//;! '* %**-! !$(+! +H$$,(.! +! +!-= ( +!,"!."$$ $ ( +!4-"!:+.+$ $#! +!$,(.!! +!(.,$( +$$ ,$ +!$ ,(.!!:+!! +!-= ( +! $ ,. ,!$!n" +!$,(.!! +!:" / .!+#!$"1 +-./(!+! !"$$ !$$".!$!$(-5! +!1!" +!1+ -;-,+! /( +! " !(.!+!!"$$ !$$".!$!$ :":$ +,1+ +$!$ +!-!" :"--!" ,-!.!$!$ +!$,(.!!$:+!! +!$ ,. ,!$!. !+$!."!$,#!" +!:!",//!/ "+!:!/ " +!#$.,$!$ +!!:+!! +! (:$M //!-"1 +!,1+"!$$!!-!" $N8, "%&?&9+$$$!(!! $ +! P5!B/"!$/.!-!" N!/ +"$$-! -!$! " !: +M N+!+!1+ ( $ 1!"!!$$ +" +!1!"!+!1+ ( +!$, ,""1,"1$8%&&@9r:" +!!$." !.(:,"=!. $$,.+$,"1$" !!$8!"1 %&&)9+!=!. $!!(!! $,1+"!$$! !-!" $,1+"!$$!!-!" $#"$5! (-1"$($" =!. $$1$ , "1$+$(:$( !". !15!" +!! /!$(!+#$!" +!$/."1( +! =!. $8$%&''9

PAGE 26

+!!=!. $$,.+$,"1$!$/.!(/ +!:"(:-#!$#!" ," +!$ ,. ,!$: +:"!"1-/. !! .+$ ,. ,!+!:":4!$!/ !$ !.+$ ,. ,!"! .+!$!(! +!(:! .+!$ +!"!; $ ,. ,!+$." "$ !(!! $$ !(:"$$+:""r1,! nnB) )$*-',$).'',/0-1123 +!! +!=!. $!$/.!.$! 1! +! +! ,,!" :"(:!(!! $ :4!(:!.+!$ +!"!; $ ,. ,!!(! ." ! .+.! "1(:." "$ $+:""r1,!nnB@+$$!(!! $:4! " !(!!".! )$*4%,/0-1123 +! +." "$.!$4--"1(:+!$ ,. ,!$=!. $!. !$ .$! + (:$4-$#! +!=!. $n" +$ ." "$+:""r1,!nnB?$ ! # .!$!!#!/!! :!!"!.+,1+"!$$!!-! "

PAGE 27

)$*2 ),/0-1123 !!"-"8!!"-"%&229,$!!$, $ (-:" ,""! !$ "1 !("! +!#,$(:!1-!$("-"$ 1 1!!/ !"$(!!-!" $ +! ,1+"!$$!!-!" !"$ n$ !,1+"!$$(: .! ! ,1+"!$$!!-!" !"$ !$$ +"7O!$/!. #!4!" !(!!".!(: .! ! ,1+"!$$!!-!" !"$ :$! :!!"%7O"?*O4--"1(:.! ! ,1+"!$$!!-!" !"$ !$ 1! ! +"?*O+!$! /!$(:"(:-/. +!:!/ "( +!:"(:$ :+!! +!$,(.!,1+"!$$+$ +!-$ "(,!".! ,$ %. %' ,/ (,"-!" 4":!1!((,-!.+".$$!0, ! ,"!$ " +!H$ -#!-!" $:"n +$!!"$+:" + :"!+ #!$4!(,+!$.//! !$ ((,!/!$$,! !-/! ,!!"$ #$. $ .-/!$$ " +!-//! !$ "/" "(, +!!$/!$$,!!$$,! $ +!-," ((.!. "1/!," !+!"$/.!"-#"1(,$,.+ $8:"9 $$,(.!$M ##n #n#nnn! N84%&A'9+!H$/!$$,! /,.!$!"-.(.!$$ -#!$#!" ,"1!=!. $$,.+$,"1$ +!$!/!$$,!$!" ,"(-#! +!$,(.!$ n"1$!$ +!!$"-!.,!$ + !""! #! !.+ +!+! -!.,!$/$$!$$4"! .!"!1:+.+$$!"$!$ !-/! ,!( +!1$

PAGE 28

+!!"$ (!$ +!-!$,!( +!," (!." "!" $/!.(!#,-!+! +!!"$ -#(/" /" +!!"$ ( $ " !-/! ,!"/!$$,!$%))'741D-@8**27'-D( @9 >$.$ $$-! -!$.-/! +!M$ .4"!$$N ((,8,1+ "" , +!$%&279"$-!$,!((,H$" ! "(. "+!+1+! +!" !" (. " +!1! !-," ((.! 4!$ . ,$!-#!-!" "(,>$.$ $(,H$ !(.+"1!($+!$ " H$ !"!". !$$ $"1 -/!$$ $ +!-!$,!(+:(,." !.-/!$$!n $!("!$ +! (.+"1!"/!$$,! +!#,-! .$ " +! +!-//! !$( +!(" !!$ +!! $ +!-," (+! "!.!$$ $! +! !-/! ,!(," -$$( +!! r "-!"-. !-/! ,!$ +!$/!.(.+! ."$ " #,-! !$2%A
PAGE 29

n :+!!6 % S (,(:$/!! S +!..!! ",! 1# S $ +!!!# "( +!/" #!!(!!".!/ "! S/!$$,! r = !"$ ( +!(, +!" +!:"(:!.+!$ +!$,(.!( +! + $!+#!.-!$-! .-/!;!.,$! +!$,(.!( +((!. $ +!: "$/!!"!. ""$: .$$ +! +(-+1+B/!$$,!$$ !-$ :B /!$$,!$$ !-$"!$" #! "! &"nnn' nn#n nn(nn) 8 "!1/+..! )*%79"(:+$ !!"#!" +!!. !1!$-!":" , ,!".!":#!$8 ,%&AA9 +!:"(: +! +H$$,(.!$#$.,$" $,=!. (. "(.!$ + .+"1! $(:K ."" !/!. !$!: + !",H$!0, "+!#$.$ -,$ !."$!! +! +H$$,(.!"$/!!$ $ (-5!:+!!"!. ." . : + +!1,""".!$!: ++!1+ #! +! 1,"+!! +H$$,(.!!;! $ +5" 1(.!" +!:"(: + ! $ +!(:(" +!(. -/. "1 :"(:"#!. $ +!,1+"!$$" +!! +H$$,(.!+!":"(:$#! !" $,.+$,"1$" !!$ +!(:.+"1!$(-"$+ ,,!" "(:.+"1!$$ .-!$" ." . : += !. $!$$ !"-.M,((N:+!" +!(:!$" ( : +!$,(.!( +!+!(: :! .+(+!.! "1!1"$($!/ "" +!(::4!$+!//$ ! (,(($$ !-"!:+!! +!( :!-"$-"+!(:," $ !-"!:!-" .+! "1!" +!$,(.!+!$!!$!(,""

PAGE 30

.( :+!!$,"1$"$ ,. ,!$! / .,((+!":"!".," !$ ,"1$1! ,,!" :4!$!!$!1!"! ! "(:.+"1!$"!. ""#!. $ / $$!$#!$ .!$,(.! ,1+"!$$$,.+$,"1$" !!$.! !$ , ,!" :4!,,!" (,(:$ "-"!1,.,$"1-;"1((,/ . !$+!" +!(:$ ,,!" +!(: ." "$..,!"1"$!(!! $!!$+!!!$! /."""1!"$5!$,,!" (:$.+. !5! ,"$ !!"1"$ + !" ."$ " ": +!$/!. !.+ +! " /" " +!(: +!!!$/,.! (,. , "$" +!(:#!. "/!$$,!! .,$!( +!#!" ,!( ,,!" (:$/!. "1 +!!+#( ,,!" (:! .-!$.-/. ! +!!!$" !. : +!.+ +!$ +!-#! ,"" +!."!;.+"1! --!" ,-"!"!1r!;-/!((:: +" ..,.", "! + $"! +!.!" !"!( +!//!" +!!(!+$! #!+1+#!. --#! :$ +! :"" !. : +!!$"! +!:8:+.+ /.+#!:!#!. !$9$ +! !!$-;"" !. : +"! +! +!--!" , -((!!".!$ !" $+, 8".! ""#!$ )*%79 "$ "$":"(:,! ,,!".!1!"! ..,#!"1!(!"$ ",-!$:+.+:!(, +!$.,$$!" +!( :"1.+/ !!/!""1"-, /! (. $".,"1 +!!#!$,(.!,1+"!$$+! "$(!# "" +!$ ,".!$ ,,!" (:$.+. !5!,"$ !!"1 "$ + !"."$ " ": + !$/!. !.+ +! "/" " +!(: + !!!$/,.!(,. , "$" +!(: #!. "/!$$,!+!"(:$-!$,!" //! +! ,,!" (:$$!!"#"1 : + -! 8".! ""#!$ )*%79

PAGE 31

+!! #!$ !"1 +$(!!$!!("!$, ,!".!/!. ,8 ,%&AA9 +$/+!"-!"",$$,--!,/ +!/(:! B4":"#!$! , ! +! $+-! !1$ r.+$""%&))84 %&A'96 !nn "nnn!n' *n!nnn *! !"$,-!8 +n 9$-!"$"!$$0," + .-"!$ +! + !!/+$. /-! !$ + ! !-"!:+! +!(:$-" ,,!" 8 !)*%)9+!.".!/ :$" ,.!!1!! 4!$"%A'% +n !0,$ +!#!. -!$ +!!"1 +( (:#!4"!.#$.$ --!" ,-( .!$8"! (.!$9 #$.,$ (.!$ +!4"!.#$.$ $ +!-!$,!( +!(, H$(:!$$ ".! 1,!(" $+!$ !$$(:: + +n !$$ +"@;%*'!"1-"8 !)*%)9 +!!0, "( +! -!"$"!$$ !+n $$+:"!: +n ,%r-u 0, "nnB) % S#!. r S!"1 + uS4"!.#$.$ 1!/ ( +!-!.+".!"!1" +!(:1 !$" +!("( +!$! !!$:+.+!#!" ,$$/ ! +!!"!1$+ ! $!$, 1#!"!"$ ",-! +!1( ,,!" (:$+1+! +" +!1(-"(:$ ,,!" (:$((!. !$,(.!,1+"!$$$ + ". !$"1,1+"!$$".!$!$ +!1 +!"(" +! -$/+!!$-!!,$" 1 +!!0, "$((, -!.+".$ + ".,! +!!0, "$(." ", -$$."$!# "" +!!0, "$(

PAGE 32

--!" ,-!: "H$$!.":n" +!!0, " (." ", +!--!" ,-$ #!1!: +!$/!. -! +!"$!# "(-$$/"./:("$! # "$$!" +!$.#! + -$$$"! +!.! !!$ !".+!-. !. "$8 !"!)*%%9n""$$ !.$! "$(!$(!"!"!1 +!$$( +!$$ !--,$ !-"."$ " #! -!$$$ !--$$."" .+"1!0," ( $" !!-#!+!!(! +! 0," (-$$$T."$!#!T+!:!0,!$ + ""$ !$$ !+! -$$( +!!. " $$ "1!$-,$ !!0, +!-$$( +!/,. $" +! (,"-!" .".!/ (/+$.$/!: +"$!# "($$$ +!"$!# "( "!1+$/#!".".!/ $ + +! !"! 1("$ !$$ !-!-"$."$ " 8 "!", .$"/.!-"$ ")*%2 9+!!"!1$."$!#!#! -! "!1.""! +!!.! !"!$ !K +! "$(-$(-"!(" +! ! +!"$!# "(-!" ,+!!$, " ( .!. "1$$ !-!0,$ +! !( --!" ,-.+"1!( +!$$ !--!" ,-.+"1!$ !!0,"-1" ,!"//$ ! "!. " +!1!"!!+#(!: ""(:".,"1 +!!((!. $( ,,!".!."! !$.!(,/ ((!!" !0, "$ +!$!!0, "$".,! +!!0, "( ""!.+!. "" +!." ", !0, "$+!$!!0, "$!4":"$ +! #! 4!$!0, "$+!#!B 4!$!0, " $!$! ("""!/ ((!!" !0, "$ + !$.! +!(:(( ,$+!#!B 4!$!0, "$! -!B !/!"!" "."$$ (." ", !0, "( ."$!# "(-$$ +!!."$!# " (--!" ,-!0, "$"."$!# "(!"!1 !0, "

PAGE 33

+!(:"1!0, "$!$.! +!-!""" +!,"!8-," .""%&&796 n r n 0, "nnB@ n r n 0, "nnB? n r 0, "nnB' 0, "nnB7 +!!6. S +!-!"#!. .-/"!" $" +! !. " % S-!"#!. .-/"!" $" +! !. " / S +!-!"#!. .-/"!" $" +! !. ":+!! +! $#! . 0 S +!-!"/!$$,! !"$ S$/-! ! S..!! ",! 1# $+!$ !$$!$" +! !. " , $+!$ !$$!$" +! !. " +!!$$-!! !:+! +! +!#!$ 4!$!0, "$."!,$! /!. ,,!" (:, /!$.!" $ $1!! + +!!;. !+ #( ,,!" (:."" !.., ! !#!": +.-/!;$! $(!0, "$$,.+$ +!# ! 4!$!0, "$4$ !$M "n n1n!nn#n# nn N84 %&A'9 !$ !$N "n2!n3nn1!n#nn!n #n N 8 !)*%)9

PAGE 34

+!$!$! $(!0, "$+#!!!",$! -!:! +! +!-#!-!" (" +! -$/+!!.!".,!" $: !(:"//! $:!$-" +!(,(: /+!"-!"!#!-! +$+#!!!",$!"! $#! +!$!.-/!;!0, "$ $ -! +$$$,-! +!,"." "$! +!1,"$,(.!:+!! +!#!. $5!" +! /( +!,"!:+!! +!$+!$ !$$!$!5!" +! -! +$ $$,-! + +!!"$",-!$( ,,!" (:!"$$ !$$!$! // " #!. +$-! +$4":"$ +!!"$#!1!#! 4!$ 89:+!! +!!"$$ !$$$ +!.-/"!" ( +! $ !$$ !"$:+!"#!1! #! +!#! 4!$!0, "$M nnnn3n#n! n #n!nn#nnnnn 4n!nn5'# n1n#nn!n n!#n!n#n! 84%&A79 ! +$$,.+$!"$#!1!#! 4!$! .,!" !"1, 5!" .-/, !5!(,"-.$8r9-!$" +! #! 4!$!0, "$!!"1,$! "-/, "r,"-.$8r9 /!. + !:"!+#,"=!. $$,.+$ ,"1$". !"#"-!" $"!;-/!(r :"#!. -!:$.-/! !" !$!.+1:+!!. .4""13"1$!!: + :((!!" ,"1 ."(1, "$81! )*%%9+$"""" 1$ ,1, 5! +r"n !.+"1 ! !-"! +!:"#!. ":" (:$ ! !$ ,"#!" "" 0, " :""1"$ ,. ,!$ r1,!nnB' $+:$1r/!. !:"(: :((!!" ,"1."(1, "" "13"181! )*%%9

PAGE 35

)$*5) )$" % ,/ / $ , ) )$ !))0)-1++30&$%/ .& '' 3 " ,.)' "!+#$$ ,!(+!$,(.! +!( !! -$/+!!:+!! +!:" !+#$.+. !5!$!."!.,#! !(!! $ +!M:"/(!N+$ .,#!+$5!#,! +!! +H$$,(.!" ".!$!$," !.+!$ +!(!! -$/+!! ! +! /( +!,"!+!" +!: "+$ #!!"1$ ".!#! ,"(!" +! -$/+!.,"!$ "!0,,-: +,"(-:" /(!#!$+$,(.!$$,.+$/!"(!$ (5!"!$(: ! +!--!" ,!0,!(!0,,-$!$$ +":+!! +!$, (.!$,1+!$,.+$ + ( !"(

PAGE 36

. : +-","1$.+." "+$( (!!" :"/(!+!:"$/!!$"! +!1,"!($ !( +!$+! !" +,1+ !" +!:"$/!!$$:! $:"/$$!$#!.+"1!$",1+"!$$(!;-/ !"/!"(! . +! !0,,-$$ ,!+!,"!=,$ $ +!"!:$,(.!(. "+! =,$ -!" $" "$ " "!,$" +!.+"1!$" .-/! !," +!" !(.!!.+!$ +! 1!" +!1+ /( +!,"!!/! ""1":+! +! +!.+"1!",1+"!$$ $(-$+$,(.! ,1+!$,(.!( -,1+$,(.! $+ +! .+"1!$((!!" $$+:""r1,!nnB7!: +!! +!!$ "$ "(-$+B B,1+ +!:"$/!!$$:!" +!//$ ! (,1+B B$+ )$*6 " ,.)'.**$). 0"-1173 +!!$/!( "$ "$ +!:"/(! !.+!$!0,,-:+!! +!,//! / $( +!,"!" !.+!0,, -," //;!%**4-:":" (,1+"!$$.+"1!8n:")**A9+!.+"1!$. .,-!0,.4" +!:!/ "( +!,"!"!M!$$!" .-/! !: +", %*4-N8n:")**79+$ "$ "$$+:""r1,!nnB2!:"$ "$."..,: +:"/ !" /$$"1

PAGE 37

#!/!"(!$ +!"$ !! $ !!$"/!"$/. !$$,.+$/4$+! !!/(!$ $-! -!$."$!!.-" "( +! :/( !$$!/ ! "$ "!1" :+!! +!:!/ ( +!/(!$1#!"! +!"!:$,(.!,1+"!$$8"!)**?9 :+!! r !" !$ +!,"!" 6r !" !$ +!" !","! )$*8' ,,/) .) $).''0-1123 r! .+$", . !-,$!" +!.".!/ (: "",.!:#!1!"! " + +$ !!"/ !" :"!"1"!!"184%&A'9+ !,"$ ,. !!"1 +(.!"$,(.! $ +!(! .+!"1 ++!(! .+$!. "1,: + +!: +( +!(! .+!0, +!(! .+ !"1 +8")*%%9n":"!"1"!!"1 +!(! .+ $ +!!"1 +$ ".!(1#!" ,1+"!$$:+.+.,".,!(: !/! "(!$,,""!1++$ ! : +,1+"!$$.+"1!$:+#!-, /!(! .+!$ "!(!.+ /!(,1+"!$$" "(" !(! .+$ ".!$ ! !$ :" "1"$ ,. ,!!$.!$ +!." "$ :+!!$"1!,1+"!$$: +!"1 +$(%*4-! !$!-!:+!! +!,"! :"/(!$(,!#!/!n"." $ :+! ! +!!!-, /!,1+"!$$." "$ .+"1!$",1+"!$$ +!:"/(!$" $+/..,#!n"$ ! +! -( +!/(!.,#!$" "$ "".+"1"1!. + -! +!!$$1"(." ,1+"!$$

PAGE 38

.+"1!".!$ !$( !"!-!,/($!#! /!$(,1+"!$$!.+: + $:"(! .+ $ ".! +! !!$.! +!.-" "( ,1+"!$$$,,""1$ ! + -/. +! :"" + $ !:!!(!! $ +!! ("(,!".! +!!$$1"(." -," ((!!$!.+" $"1! "$ "$",1+"!$$ .4! 8.4! %&729-!$,!: "#!. /(!$" +!$ -$+!$ "$, +!"!:
PAGE 39

n & "$/!!$.+ ." +!:"$/!!-!$,! "1#!""$ " ."# $1"(." +!!$1"(,"1$" +!$ ,. ,!$-,$ 4!" ..," +!:" $/!!"! !-""1 +!:""1" + $ ,. ,!"$/!!$#$!" +! /+$.. ""+!1+ r!:" $, $!"! !-""1 +!:"$/!! ((!!" . "$ +,1+, +!" ! !$" ::! +!, !,(.!$!#"1$ !-89" $/!!.!$$ +!, ! ! +!$!#"1$ !-89!.$,(.!-! !1.." "$"/#! :! +! (+,"!$(1,"$!:! +!$ "$.$$ +!" ! !$K-"( :+.+!. ! / $"$/!!-!$,!!" $.!. ! +!$!$ !$!#! " +! ".!"." -$/+!.-"$ "89 "! +!!#.! :!$ !8)*%79+$ $/,."# !(+! ".!"." -$/+!.-"$ "89 "!" !$ ("#"-!" n"(" (+! ". !" !89 "( -!$,!-!" $! 4!" "!--! !$. ! %*-! !$"+!1+ +! "!--! !$! /.. !: (-$ ,. ,!$ + .,((!. +!:"-!$,!!" $+!$!"$$.!. ":" !. ":"1,$ $8/!4:"$/!!$9":"$ /!!$ 4!" /. "! :" !"B-", !" !#$$ "$!/ +!: " #! :B-", !/! 8)*%79+!/!4:"$/!!$ +!#,!( +!-;-,-@$!."1,$ #!%B -", !/!$" +!!(%@ -!$8@*O +1+! +"9 +" +!%-"$,$ "!:" 8)*%79+$$$-! -!$!(!! $ +!@ $!."1,$ $/!! n"! , 5! +$ (,$!"!$1" + !:"$/!!#!1!#!$-!/! ( -!( !""!!$ !."#! ! +!/! -;-,-:"$/!!#!1!#!

PAGE 40

$-!$+ !" !#: +" + /! "//.+$ !("!1,$ (. 7 ( +! ( +!-;-,-1,$ $/!! +!.!$/""1+,-!":"$/!! 7 r 0, "nnB2/.1,$ (. $#83!! %&&)9+ !!!-, /!1,$ #,!$((!! :"!;/! $,$ $,11!$ $ +!1,$ # !$$!"1,$ , "$$+:"" B%*r1,!)7'B%8)*%79-!$$,11!$ + 1,$ (. !$!" +! !"-!$!.--!"$1,$ (. (%'2( /!" !"8-!$)**%9 r1,!nnB7 $1-,$ "1 +!:"(!"#!.. , !,$"11,$ (. $ .., !!-4! !4"! !$"89 $!":" .!. ! +! !"#!n" !" "/ ! +!/!-"" :"$(+!$, +:!$ +$ /!( 1-$!(!! $:"$!

PAGE 41

)$*9 ': , & $;$,%' ( > "$(:"$/!!" +! -$/+!.," !!1!"!"-" " ,!"" !/! " -!+!# "$ !.,$!!!$# .!$: +" +! U:-#"1"1 +!-!":"$/!!+!$! !!$!"!#!!" ." $ $ .-! +$."!,$! !$.! +!1,$ "!$$8-!$)**%9

PAGE 42

+!1!"!!#!( ,,!".!P1,$ "!$$H" +!:"$/!!."!-!$,! $ $ "!# " B-!"B$0,!8-!$)** %9+! ( +!$ "!# " (!.+U,. , "1.-/"!" +!-!"#,!$4 ":"$ +! ,,!".!" !"$ 8n9 "$1#!" +!!0, "6 r%'$%$ :+!! $ +!$ "!# "( +!"1 ,".-/ "!" ( +!-!":"$/!!" $ +!-!":"$/!! "(!$ ,!$+#!$+:"!. .! " ! :!!",1+"!$$" +! ,,!".!" !"$ (-:"$/!!-!$,!-!" $ #!!; !"!/!$( -! 8#!"/ %&7*9"!$!.+!$$,.+$"1 $ !$"-+#!$+:" .! "! :!!" +!:"$/!!" +!$,(.! ,1+"!$$,$"1 +! ,,!".!" !"$ 8"1)**'K$ !$! )*%*K-"3,/ )*%'K"!)**?9$"1 +$ -! +$,(.!,1+"!$$!"1 +$."!! !-"! (+!"1 ," ,,!".! " !"$ "6 r) ),' !.,$!( +!.-/!; (:"(:#! +!! +H$$,(.!$!#!!"1"!!"1 -!$+#!!!",$! !$ ! +!:"/(! .,#!$ +!."!"1"!!"1 /"./$!,$! .! !/(!#!. "/!$$,!( +!:"+!/--!$ , 5! $.!(,"1!$1"! +! :!:"1:+!:!: $, 5!(,"(!"2+!1 :$, 5!:"!"1"!!"1(-$ " +!"1"!!"1.!".!$ " 89. +( +!$!:!!;/!-!(, " +!$!. "$ (:"!$!.+"$ , !$+#!$+:" + +-!$/,.! $-!$, $(+-1!",$ !"."$$ !" : + +!(,!;/$,!.$$(. "$

PAGE 43

/!$!" !" +!2B!$!.+$+:$ +!# "$! :!!" +! :-!$!( !."$!0,!".!!$/!.."$!"1 +!,".! " !$":"$/!! r1,!nnB& !: $1/+.-/"1 +!1,$ /(!$$.-/, ! +!:!:, 5!"2B*) -! +"1:8$"!#!$!9-! + nr !"# $%&'(rr) * "// +!:!:$+!.!0, ",$!""//. "$".,"1 $ $ .$!."-.$"/+$.$ !$.! +! ! "$+/! :!!" :#!$+! :!:+$ "!!"( +!$ ,(: ""1"$ ,. ,!$:+.+!;$ : +" +!:!$ / "( +! -$/+!.," !+!#! .$ , "( +5" -!":"$/!!$$-!!$$-/! $+!: +#! .#!. /(! #"1.."1 /:!:: +."$ " !; /"!" .!((.!" $!"$,(.! /!+!!0, "$,$! !$ ! +!:"$/ !! .! "+!1+ : +" +! 1!" +!1+ +!! +!1!" +!1+ $ +!"-" /( +!,"!$! ""!"1"!!"1$-/(. "//$!"%&@' 1"8-,".""%&&79

PAGE 44

8-,".""%&&798-,".""%&&798 -,".""%&&798-," .""%&&798-,".""%&&798-,". ""%&&798-,"."" %&&798-,".""%&&798-,".""%&& 798-,".""%&&798-, ".""%&&798-,".""%&&798-," .""%&&798-,"."" %&&798-,".""%&&798-,".""%&& 798-,".""%&&79 +!:!:$$,-!$ +! !"$+-1!",$r 1,!nnB%$+:$ +! /. -!":"/(!8n:")**79:"/(!:!:! "$+/$6%-%,4-9a 0, "nnBA +!!6 S+!1+ #!1,"( +!$ ,. ,! 1 ,1!" +!1+ +!1+ ( +!,":"! %S-!":"#!. +!1+ %S-!"#!. 1!" +!1+ aS!-/.!#!!;/"!" D.!((.!" + # !$!/!"!" " +!,1+"!$$( +! !" )/ +!:!:!$" ..," ($,(.!,1+"!$ $!((!. $( +!$,(.!+! 1:$!(!! $ +!$"!#!$!$ :$!#!/!$!" +! :484%&&29".,!$ +!!((!. $($,(.!( . ""..," $($(.!$ 8n:")**79+!$"!#!$-!$$!B!-/.! "$+/$,$! !$.! +!#! .$ , "(+5" -! ":"$/!!$: +" +!:!$ / "( +! -$/+!.,"!-!!;/! $!! #! +$-! +$."$!! !

PAGE 45

-!!!-! +(! !-""1:"$/!!$" +!:!/ "( +!: + +!1+ $!$$ +"%**-! !$8@)A(!! 9+!$"!#!$-!$$(:$8$% &A%96 %S)' C"8 -90, "nnB& +!!6% S-!"#!. S+!1+ #!1," CS#!. ((::+.+$!/!"!" " +!$,( .!$+!!"$ ( +!" +! ,1+"!$$!"1 +S,1+"!$$/-! !,$!$.!. #!-!$,! ..," ( +!!((!. ( +! ,1+"!$$($,(.!":"(:

PAGE 46

!"r rnnrn!rr! +!!$1!(!$!.+:4 + +$!! ""! !$ ! +! !"-.,1+"!$$($,(.!!(!! $ ,1+"!$$!"1 + n"%&7%3, 5.4 / !!;/!-!" $,$"1,$+!$4! $"(5! "4! -( +!$,(.!,1+"!$$ ! ,." ",! +$:4"+$!0, "(, 1+"!$$//!$"2 $)/''-' ) -'$' ,.+( +!!:4(.,$!".$!$:+!! +!! $,"(!": +$ ,!$ ".,"1:!#! ( /!$( !""., "1, " ! (!$ $/!"(!$ "/#!,":$8#!"/ %&7*9+$:4". ,!$ +!$ ,(:"$ //!$ $,(.!,1+"!$$,$"1(!.!. !:"-!$, !-!" $ ,!$+#!!!"/!(-! ,$"1!$"(5!"4!$$/+ +-:"+ ./$","1$8"$!"%&&?9 n"%&7*"#!"/ !1"$ ,!$ .$$( !"" ,1+"!$$. !1!$ 8#!"/ %&7*9#!"/ ""$.!" $ !$ !""1"!!"1"#!$ /#! +!:(,$!(,"!:" ,""!$" +!!$1"(:"$!"$ #!$ ,. ,!$ 2 #,!$!$!" +! +! ,H$:4"# !"/ $ ,!$829 #!"/ H$.$$(. "(!((!. #! !", 1+"!$$".,!$!1+ ,1+"!$$. !1!$ :+!2$-/(!$,1+"!$$" +!!. !1 !$+!#!"/ .$$(. "$! $+:""!*%: + +! a " .!$/""1!. : +2 +! !"!;/$,!."$ " $a" '.!$/" ((!!" !" /!$+! $/.!-!" +!1+ $!("!$ +!M nn!#!nn#nn 4n5n#nn n!nnnn# n N82)*%*9+!$/.!-!" +!1+ +$$ !!"!("!$ +!

PAGE 47

!/ +($ //!-"1,1+!!-!" $8, "%&'*9!$!.+#!"/ 8#!"/ %&7*9(," + $// " +!,1+"!$$!!-!" +!1+ ;,+r8;,-68*-:&,'' % $).'' 0r8*+1'/ .& '' r3

PAGE 48

,$).'',' ".!! ,H$!$!.+"%&7& "!$!. +$,11!$ $ + +$! "$+/ !. "1,,1+"!$$!!-!" +!1+ -" !!(( !. #!:+!"//! $,," !;/$,!$","!;/$,!$:+.++#!!1, $+/!$ ,. ,!$. ! ""B ,"(-$/."1"".,! !!$"#!1! "! $/!.:+!" +!$/."1! :!!" $ ,. ,!$!.-!$$-! +!$ ,. ,!$!.!!"$!n"!$: ++1+!!"$ ( $ ,. ,!$ ,!$,"+"8,"+"%&2%9 !:8 !:! %&A&9"3"" -5:83""3-5:%&A79$,11!$ + +! .., "($,(.!,1+"!$$ -,$ !=,$ !$!" +!!"$ ( +!$ ,. ,!$!(!! $(. "(.#!+! (. "(.#!!(,1+"!$$!!-!" "$ ! *$ +!.-"!!( +! $ ,. ,!$#! +! !( +!$ ! *n$+:"" +!(:"1!0, " 8S *-*n0, "nnnB% +!! 8!/!$!" $ +!(. ".#!( +!,"1( /" /!"! ,"+"H$-! +(.., "1 $$(:$"0, "%&8,"+"%&2%96 S 9 8%*A 8B**A90, "nnnB) :+!! 9 S+!1+ ( +!,1+"!$$"(!! !:H$-! +(.., "1 $$(:$"0, "%%*8 !:! %&A&9 6 S*%@ 9 8%B 890, "nnnB@ 3""-5:H$-! +(.., "1 $$(:$83""3-5: %&A796S*)' 98 0, "nnnB?

PAGE 49

n ,!$4,$!"r"1"$,11!$ + +!.., "($,(.! ,1+"!$$$"!/!"!" " +!+!1+ ( +! ,1+"!$$!!-!" :+!! 9n$ +!-!" $ .!,"1+!1+ S 9nD@*0, "nnnB'84,$!%&'*9 S 9nD%*0, "nnnB78r"1"%&&)9 +$$" ."$$ !" : +2"$.," !" , #!$ !$" 4!" ..," +! !"$ ( +!$ ,. ,!$ !$!.+$,11!$ + -!$: +!1,$+/!$ ,. ,!$!0,$/.!" ."$$ !" 1" !0, !!/!$!" +!. ,,1+"!$$8"1)**'9!$!.+$ $,11!$ $ + $,(.!,1+"!$$."" !.., ! ,$"1=,$ "!(-,( !" 8"!)**?9 ,!$+#!$+:" + :"!+# ((!$"+1+!"$ !$$,.+$ 1!. !$(-!$:+!! +!!$:!"$ ($ ,. ,!$8--"! %&&A9 +!$!((!"1.+. !$ .$!!$, ( +! (:!1-!"((!!" !"$ !$( $ ,. ,!$n"$+ $,(.!,1+"!$$."" ! .., !,$"1=,$ "!(-,( !" n":!"$ !$ +!:"(:."$$ $/!5!(:$#!$-/(! $(,1+"!$$!!-!" $n" +!$!$-, "$ +!(:$( !"! #!."$ " " !. " /."+!(.!( +!!!!" $" +!$( !"!1,$/.! 8":$$ 11!!198--"! %&&& 9+!$!." "$((!(+$!" !. !$:+!!:"!. "$!#!.+"1"1 "!#!"( +!$ !! / !"$! #! !1, +!$5!"$+/!("#,,1+"!$$ !!-!" $8-","1$" !!$9! " !1,

PAGE 50

+!.+. !$ .$(+1+!"$ !$!((! !" (-!$:+!! +!!$: !"$ ($ ,. ,!$+!$!.+. !$ .$! !$, ( +!(:!1-!"((!!" !"$ !$($ ,. ,!$$ +!!"$ ".!$!$ $!$ +!,1+"!$$( +!$$ !-, /" .-!$:+!!"1"!:!!-!" $-!!$!#!$ !,.! +!!((!. #!1( +$! !/!$!" ,! -, ,$+! !"1K + $ +!$ M$+!NL +!,1+"!$$( +! $$ !-:+!!!!-!" $!$.$! +!-!1! ( -"!:$,(.!+$$!/. !" ,"H$"(!" , r-8,"! )*%?9$+:""r1,!nnnB% )$*+ " ,;'0<$-1+2 30&$%/ .& '' 3 ,!$$+: + ! ,"$ $.41,"#,!8! +! ,$!" +!"-5! $.!$ +! ",1+"!$$." , ! + ! !!-!" $9+$!+#.+!$ $!# "$(-:" ,""!$ ,!$: +."! $.,!$"$.!-!$(/" $ "$"(-(!$ ,!$(#!1! "8,/ .+%&&)9r, +! 1!!$: + +!:" ,""!:4(8,$$""!!%&A*9:+$ "1, $+ +!!(:!1-!$$ !(:" :4!" !(!!".!(:K"$4--"1(:8--" "4!%&&&9! ," $/!.($(+$(-,:!#! $: !!.1"5! + ($:+!",1+"!$$ !!"$ l0 l8".!$!$!"*)V**@:+!!l0$ +!/"!"$ +!!(

PAGE 51

+!,1+"!$$!!-!" $ /!"!"l8$ +!(" !!"$ ( +!!!-!" :!"+!:" +!/!"! .."1 ."! ,H$! "$+/$ ! :,1+"!$$!!-!" !"$ !$"!$" ..," ( +!"""!! .!$!( +!,1+"!$$!"1 + +1+ ,1+"!$$!"$ !$n $!$ ..," ( 1((!!".!$.,$!((!!" $ .! $+/!$, $8."! %&&A9 $).'', $,' ) $" !" ! ! !-""1:",$"1 ".!$"$ "$:" ,""! !$ "1+$!!"/!(-! ! !-"! +! :""1"$ ,. ,!$" ,""! !$ "1$1!"!,$!( /.$ , . ,!$:+!!:"." "$!0,!+1+! !#!("$$-, "$" -$/+!.," !:" ,""!$-,$ ..," ( ((!!" /!$($,(.!,1+"!$$$,.+$/!". ," $,,"","n"! !#!/:"(: --." ,!#!/!:" $,((.!" "1!"1 +( +! ,""!-,$ !,$! !#!/:"/(!$+ .! !" +!,"! r1,!nnnB)$+:$/""!!# ",$! !"#!$ ":"$ ,!$ /!(-!" +!%&2*H$"%&A*H$

PAGE 52

)$*$, )'0" +78930&$%/ . & '' 3 ,1+"!$$$.! !" +!:" ,""!.+"1"1 +!!!# "/(!( +! -$,(.!( +!:" ,""!+$$ /. "!,$"1:$,(.!$$,.+$ /:(/!".," " +!",1+"!$$$.! !"1."./!1$$0,! !. "1,.4$ +!$,(.!"1!! ++! #,!$( +!:" ,""! !(," +,1+:" ,""!-!$,!-!" $:+!!$ !#!"!--! !$!/.!" +! :" ,""!:":"( +!,1+"!$$" +!:" $/!!$!-!$,! ((!!" +!1+ $r+!$!-!$,!-!" $ +!:"/(! ."!!$ $+! #!( + +! /// !,1+"!$$+$!!"!#!/!

PAGE 53

!:! :1-$ + $+: +!,1+"!$$( $,,"",",1+"!$$ -!$,$!""1H$!$!.+ "."#!$ "1,$!./! $-, ! +! /!".," ,1+"!$$8"1)**'9r1,!nnnB@! /. $%N;%N;%N.4$..,/"1 1!/.!(%)N%7N,$!" +!:" ,""! $-, !:"/(!."$$ !" : +$,,"!,1+"!$$: + (*?)-8"1)**'9 )$*4,% )$ & % )$;$; $).'', %"r1,!nnnB?$+:$"1H$%'N;%'N;%'N.4$ ..,/"11!/.!(%)N %7N,$!" +!:" ,""! $-, !:"/( !."$$ !" : +$,,"! ,1+"!$$: + (%*-8"1)**'9 )$*2,% )$ & % ); $).'', %"

PAGE 54

/!1$!$,$!":" ,""!$ .! ! ,1+"!$$:+!! +!",-!( /!1$"1!$,(.!$".!$! $-, ! $,,"." "$$ !4/!(-! :" ,""!!;/!-!" $ ! !-"!,1+"!$$( $!#!((!!" ." "$$ !4 ,$!%)2.*7?.-"-! !/!1$ " ,.!,1+"!$$ /!1: +/!1 +!$ )'?.-".!" !n" +!/!1$ +!$!(!" +!"/!1$! $$ !.!-#!(!.+." "," " "!/!1$/.! . "%( +! (, +." "r1,!nnnB'$+:$ +!! "$+ /(!"$ ,1+"!$$!"1 +" $ !4H$$ ,8$ !4W":%&A'9 8$"! )*%)9 )$*5",# /'") )$ ;,-'$).'').''") ' ( ' (")&% = 0%3 *%''*'7'**2A*?7**@&*)2A**%&*%?? !1***)?% :****')&

PAGE 55

n""#!!H$)**@:" ,""!$ ,!$$"1. $!$(:!"$ ,1+"!$$ )''.*&'@.--! !/!1$:!!,$!: +#"1!"$ !$!nnn @$+:$ +!! "$+/(!"$ ,1+"!$$!"1 +" "#!!H$$ ,8"#!!! )**@9 ;,4 : ,,$).'').''" )' ( ! !$"/!(-!$ ,!$ + ".,!:" ,""! !$ "1 !$ -, /!-! +$ (!$ "1$,(.!,1+"!$$!"1 +$!" + !/+$.-!"$"$($ ,. ,!$ $ ,. "$ +!!!("!!$" :,"(,1+"!$$."(1, "$!#!"((!!" -! +$:!!,$! !$ !$,(.!,1+"!$$( +!#!. /(!$":!"1! ( !$ !$:$ "!(+!$!-! +$+! :,1+"!$$."(1, "$,$!" ! !$"H$:" ,""!$ ,!$+:""r1,!nn nB7 ' (")&%-=0%3 **)2**?*77**%%**%7?& ***')**%%7@***)7***?%*&

PAGE 56

)$*6$).''(&'$';("'0" '+77830&$%/ . & '' 3

PAGE 57

>!. /(!$:!!-!$,!" +!:" ,""! ( +!$!,1+"!$$ ."(1, "$+!$!,1+"!$$."(1, "$:!! "5! !$ ! +!$,(.! ,1+"!$$,$"1! H$-! +","+"H$-! + !nnn ?$+:$$,--( +! !$, $ ;,2$("'>'+778$).'' ).$(0&$% / .& '' 3 +!!$, $( +!!#, ":+.+".,!:" ,""! !$ "1$+:! + +!! , -! +/#!$1!$ !8: +"(. ( *'B%' +!&'O."(!".!" !#9 ($,(.!,1+"!$$!"1 +""! + $! ! +" +! +!-! +$ !$ !8! !$" %&&29 +!:" ,""!,1+"!$$(. -,$ ! "$ ! (-:" ,""! (,B$.! 8 +/,$%&A?9+!,1+"!$$(. $!0,# !" +!#!. /!$$,! .!((.!" :+.+$//! +!:""1!0, "$ =,$ +!:""1(

PAGE 58

+!$,(.!,1+"!$$!nnn '$+:$+$.-/$"( +!,1+"!$$(. ( (,$.! -!$.-/! +!,1+"!$$(. (:" , ""!-!$ ;,5.&$,'& '$).'' )..)$,,%,,' $,,'0.&$,'+7923 " ,""!,1+"!$$."" !.-/!!. , $"1 ",1+"!$$!0, "$ $,.+$! ,H$,1+"!$$!0, ",! +!$$.!( +!,1+"!$$!!-!" $, 5! ":" ,""!$r!;-/!,$"1*'B".+.4 $$((!!" +",$"1'B".+.4 +!",$ $0,"1 +!! +!!$, $!0 , !((!!" ( +!$-!// "$ !"$ (=!. $ ,$% n"! !$ ! +!$,(.!,1+"!$$$,," "1$ !"!("(,!".!-,$ !!$ $+! + ".,!$ +!!"1 +$ ".! ( !"$,,""1$ ! + "(,!".!$ +!:" + $ !n $!$ #$,5! + +!$,(.!,1+"!$$""$4!" ((!. +!:""1"!;$:!#!$ ,-#!.$! +!$ ! +!$,(.! ,1+"!$$:!1" +#!1! !"(,!".!" +!:""1!$("(,!".! ,$!":"!"1"!!"1#."$!+! -! !1.$ ,!$,$!!$( "(,!".!$ ".!$,/:$(%**4-! !$84-9 7)-!$"#!$ 1 "$-, "!")**%$,11!$ + ,"1H$!$("( ,!".!$!/!"!" " +!,"1+!1+ -,H$$ ,!$$+: + !$("(,!".!(" ! (,4-! !$!//.! ,"1$: ++!1+ $!$$ +"'*-! !$8%7?H9 " + M :3nn n&$(;n&$(;=0%3 %B%*%**B'****%%) $,,%, $,

PAGE 59

n nn#nnn N8-,)**%9 +/,$1!!$ : +$-!!("(,!".!(:,"1$ "$,11!$ $$+ $@**F?**!$/!. #!( +!."(1, "$( +!(, +!, /:" !"8 +/,$! )**&9 "!"1"!!$"!$!.+!$:( !"#! + ! !"$,,""1 +!$ !" /!B$+/!$!. "$ 8)*%79$ + .+"1!$" !"."!-! !$.$$(!n" !.+$!. " +! !"$,,""1 +!$ !$. $$(! +!,1+"!$$+!!( "(,!".!,$!!;/! $$#!(:$! ,"1$;-/!$".,!)* -!$ +! ,"1+!1+ 8$ !/!$".--,". ".+@*)*%79K)4-8r!$ $ !$/!$".--,". "<,"!)7)*%79K%* 4)*4-! !$8<"! !4 /!$".--,". "<,"!7)*%79K""3,/,$!@4-,$( +! !("(,!".!" +!)*%'$ ,8-" 3,/)*%'9 .)' $).'' " +!$,.!(-1, $.+"1!$",1+"!$$ +!"."$!"1$ !" $,,"!$!!$ +! !"$,,""1 +!$ !."$$ (=,$ "!,1+"!$$ /! !#!/-!" $" +!" ! !$( !"."$$ $( !#!/"1" + $! :!!" +! $,,$"/!".," !$,!$ + +$" !!"!#!/!!$1"!$( !" (.!$,,""1 !" + ."$$ $(-! +" "! ",1+"!$$ /!$!("! ,"1.! ,!$+#!$+:" + +!! !$!#!(. $ + ((!. +!:" "1 .+"1!$",1+"!$$ + ".,! /! (,1+"!$$.+"1!$5!(,1+"!$$ .+"1!. "(,1+"!$$.+"1! $ !" !("(,!".!8#!"/ %&7*K! , %&7&K!"1%&&)9+!" +!!$ "$ "/ !" +!:"/(!:+!" +!:" $!!$.+"1!",1+"!$$!$!.+!$$,.+$! !$"$,11!$ :+!" +!:"$!!$ .+"1!",1+"!$$ +!!$ "$ "!1" !1"""1 +!.+"1!",1+"!$$

PAGE 60

$ ".!:":":+!! +!:"/(! "$ " $(+!:"/(! +!:":" ,1+"!$$ +!:"/(!,/:" +!.+"1! ",1+"!$$8! !$"%&&29 +! :-" /!$(,1+"!$$.+"1!".,!,1 +B B$+.+"1!$" $+B B,1+.+"1!$",-!($ ,!$+#! !!".-/! ! !$ ! +! "(,!".!(.+"1!",1+"!$$!"1 +$" +!: "/(!8
PAGE 61

-! +" +!: +:(+!,"18< "! !4/!$" .--,". "<,"!7)*%79DE)*%%$!1$ $-.+"1!$",1+"!$$!. =.!" +!$ !,! 1$ ".!:":"(+!$ ( +!"!: !"8DE )*%%9!("!$"M/!"/ .+N$"/!""1 1! ! +"!0, //;! '*-'*-82)*%*9"!0,!$ + +!$!$ -.+"1!$",1+"!$$! ."$!!+!#:+!"! !-""1 +!!;/$,!. !1

PAGE 62

!"r# r"rnrrnn r "!$1"(,"1$, 5!$.!!.-!" "$ ! !-"!!$1"(.!$ /!$$,!$,! :" +!:"$/!!$,$!!$1"!$! /.! .--!" .,"1((.$+!:"$/!!#,!$! "./ !" +!!$1", 5"1 +! .,"1.!$ "$,.+$ 2//.!" +!K//.!" ,/!KDE%%2*)6)*%%//.!",$ "!:E!"%%&&%A %A@8)*%*9//.!" +!" !3"1-+! !.--!"!-! +$".., "$ (!.+ $ "!$-"-! +1: +.., "$ ..," (/-! !$ + ((!. +!:"/!$$,!".,"11!1/+. . "K +!!(!!".!:"$/!! +! +!1+ ( +!/" #! +!1," +!$,," "1 /1/+$,.+$+$"$/!$ +! $,(.!,1+"!$$ +!$ !"0,!$ ""$,( .!,1+"!$$.+"1!$,/:"( +!$ ! "!;-/!(/-((!!".!$" +!#!. !$$ + , 2: "".,!!. " =,$ -!" $,! :" "1+!!/!"5!$ +! !" !$ ,. ,!( +!:$!.$!:"$/!! + !" !" ".!$/#!!. " :"(. $r!;-/!( +!/!#"1+1+ :"$!.--"(+!:!$ K( +!! !!" ."/$ ,. ,!$. !" +!!$ $ ! +!:," !$,=!. +!+1+!$ :"$"!"1"!!"1(-$! !-"! +!:"$ /!!"!.+!. "", 5! +!$! #,!$:+!"! !-""1 +!:"$" +!$ ,. ,!$!":"$"!.+!. " n"2DE"%.!$ +! !" $1!"!5!". !15! " (,//!$".,"1/!" !/!" ," ,,""""! =,$ +!:""1 ..," ( +!$, ,""1$,(.!,1+"!$$r1,!*A% $+:$(,$-/(!:"#!. /(!$(! .+.!$/""1+-1!"!,$ !"

PAGE 63

/#!$-!! ! !:+.+.!$/"$ ,1+"!$$ /! ,1+"!$$!"1 + :+.+:!$.,$$!(, +!" +!(:"1$! . " )$#*+ " ,0""-1+53 "!( +!$! !". !1!$$ /.$!!. ! !/!$!" +!$,(.!,1+"!$$ $,,""1$ !,1+"!$$(. $!$$1"! !.+. !1( !"+! =,$ -!" #,!$(!.+( +!.!$!#!$ -2"DE ,1+"!$$(. $!.-/!"!n>% nrnnr

PAGE 64

;,#+& '$).'').'#,$' n" +!(:"1.+/ !!.+((,:"$ " $:!$.,$$!"-!! $ +!// ! !-""1:""$ ,. ,! n"/. .!:+!"! !-""1:""1 $,, ","$ ! +!!( !" !;$ $.+"1!$",1+"!$$r!;-/!".$ !$ +!!$4!,1+"!$$.+"1! (+!/!"$! $,,"n"$,,"! :"-!$,,"!/!"(!$ $ +!$ !-+#!,1+"!$$.+"1!(-$+ +!/!"(! ,1+!!;/$,! :+!! +! :"!1"$+!!-$!$-!. +"1!$",1+"!$$" +! !" .+"1!-!1,:+!! +!!$" ."$ " #,!( "! +!$!(.+"1! .+.!$$/!.(.!#!:!( +!-! +$ $ +!// =,$ -!" ..," ( $,(.!,1+"!$$" $//.+ !$$"1.+ "1!$",1+"!$$.+( +!(, .!$((!=,$ -!" $( !$ "!.+"1!" ,1+"!$$+!((!$ +!-$ !; !"$#!$.,$$"(.+"1!",1+"!$$+!$ "".,!$-! +1" ((!$$( :!(.., "1-, /!.+"1!$" ,1+"!$$ +!!("(,!".!#!$1! ","1. !$D$ "$,$!".--" !$1"/. .!(-*?74-"2 %**4-" +!!$("(,!".!! $,--5!"!n>) n&$($;$;;2B%*89 ***'**) *@)* 8,/! ***)B*% *)B*7*)B*'*2B)* DE8,$ " !:E!"9***)**) *))* $).'').'& ) )( 03

PAGE 65

;,#-$(,$%;($ , ) ' )? r8*+1 r@$ ' 2$ +!$ ",$!":"!$1"" +!" ! !$2/#!$ +! !$1"!!0, "$((""1 +!#! ."+ 5" :"/!$$,!$"$ ,. ,!$ 2$=,$ -!" $(:"!. " #! . !;/$,!" /1/+. !((!. $+!:"#!. /!$$,! 1!#, ! +!1+ $.., !,$"1 +!(:"1 !0, ":+!! $ +!=,$ -!" (. (((!"1$,(.!, 1+"!$$." "$6 1S***)'7 %;682!0, ")2@B%90, "n>B% +!!6 15S#!. /!$$,! +!1+ M N"/,"$/!$0,!( 5S#!. /!$$,!!;/$,!.!((.!" !#, ! +!1+ M N( ;/$,! !1S:"!. " (. S /1/+.(. % S$.:"$/!!"(@B$!."1,$ 6Sn-/ ".!(. (:"!$1" 2/#!$ +!=,$ -!" (. ( +!!;/$,! !1!$" +!,/:"$ ".!((!. "1 +!;/$,! !1 $:!!(!! $ +!M!(

PAGE 66

n"(,!".!N+!!("(,!".!$ ".!$/# !2$" !!:#: + +!,1+"!$$( +! !"","1+!1+ n"/!#,$#!$"$(2;/$,!:$,$! "!"$!//, !," !$: + ".$!$/.!,"1$n" 2B*)82)**)9;/$,!:$ !! !!.,$!!$".$!/;, "1$+#!+1+!:"$,! +! !((!. (..+""!"1":4!,((! "1!((!. $$" !,"#!"/ ( ! +!!$!.+":"!((!. $"!! "$!, . .!" !""6 M *n#n!nnn nnnnn 'nnnn"n nnn nnn#nnnnn n!nnnnn nn3n+(n N8! %&&%9 +!!(!;/$,!:$!! !" +!.,!" ! "(2"$"//.! :+!":" ,""! !$ "1$/!(-! ;/$,!$!("!$ &.###n'nn'n n n'nn#! nnnB)"r1,!n>B@!/. !$ . !15!;/$,!

PAGE 67

)$#*r8".(& %,rA&'$)( 0r-1+1/ . & '' r3 )$#*4r8".(& %,rA&'$) ( 0r-1+1/ . & '' r3

PAGE 68

+,-" . "/-'0 . & '' r3* ;/$,!$!("!$ &nnnn#!n n= nn"nnn ) !/. "( ;/$,!$$+:""r1,!n>B'"r1,!n>B7 ;/$,!$!("!$ &' #nnnn"n n'' #3nn) $$+:""r1,!n>B2 2$ !$ + ;/$,!$ !,$! :+!";/$,!"" //2$! $,/ ;/$,! ! +!!(, !;/$,! . !1(!$(,".! "

PAGE 69

n +1-" . "-'0 . & '' r3* +(-" . "-'0 . & '' r3* 2!("!$;/$,!$M( #nnnn" nn' #3nn ;/$,!M n!n nn> nn; nn#n'n!n nn N82)*%*9"$$+:"!:"r1,!n>B2 2$ !$ + M ?n nnnnn nnnn

PAGE 70

('nnn@ nn ; nn#n'n!n nn'?n N82)*%*9 +-" . "$-'0 . & '' r3* ( ! +!!;/$,!. !1$$!!. !( +!$ ! +! #,!."!(,"(2!)2@B%$!" +!!;/$,!. !1 ","1+!1+ +!!0, "$"2( +!>!. !$$,! !((.!" !$!" +! :!:+!!0, ":$ +!!;/$,! /! "+!1+ #! +!1," ! //! +!:"1,$ $+!)*%(. $ +! ( +!1,$ $/!! 1!" +!1+ + "$ "/!" !" %*-! ! $8@@(!! 9$$+:"" +!:!: !0, "$ +!.!((.!" a$"!-/.!#!!;/"!" D.!((.!" + #!$ !/!"!" " +!,1+"!$$( +! !"+!!0, "$$(:$6 S)*%8 -9)Da (%'( X X 82!0, ")2@B%90, "n>B)

PAGE 71

S)*%8%'D 9)Da (%'( Y 82!0, ")2@B)90, "n>B@aS : *%@@0, "n>B?"S ; *%)'0, "n>B' +!!6:" ;!."$ " $ :S77)" ;S%)2@2/1!'?2 S21!" +!1+ "-"+!1+ ( +! $/+!.," S$,(.!,1+"!$$/-! ! 2,$!$$-!0, " ! !-"! +!,1 +"!$$/-! ! + :$ !#!/!! ,"%&7&2,$!$ +!1," ,1+"!$$!"1 +/-! ! ! !-"! +!1,"$,(.!,1+"!$$:+.+$ !. ! ! 2;/$,! !1+!1,"$,(.!,1+"!$$ $-!$,!( !,$"1 +!$ ,. ,!$/=!. "$" + ! , H$%&7&!$!.+(,"#,!$( " +! "1!(?% *?%(M nnn!nn N8! ,%&7&9 2!0, "( $$(:$6 S*'8 #D *#92!0, ")72B%0, "n>B7 +!!69#S +!#!1!+!1+ ( +!,1+"!$$" +!,/:" !""( #S +!#!1!#! .(" !/!$ ,. " *#S +!#!1!!(1,"..,/!!.+$ ,. "".,"1/!"!$,,""1 "( )

PAGE 72

-!+*2345 #,$''& )r8)'=0&r8 ;,-68*+3 2.4":!1!$ + +!!!$ !$ + : !. !:+!! +!!$ .-" "( !"n"!$(M N2:$"M nnnnn N ! :!!";/$,!$" !! !-"!M n!n nnn#n N+!.--!" (21#!$!-/. (-,$ .., ! +!#!. /!$$,!!;/$, !.!((.!" ($"1!"-, /! ,1+"!$$.+"1!$$ + +! (. ."!! !-"!(,"1$ + ( ! :!!" !;/$,!. !1!$0, ")2B&."!,$!( +!-$ .--"." "($"1! ,1+"!$$.+"1!(!;-/!(-;/$,! ; /$,!6 +"1!",1+"!$$$.., !,$"1".!-!" "1 +! (. $$+:" " +!!0, "!:6S RD 82!0, ")2@B'90, "n>B2rA&'$ 5 03 45+5B . 4541B . 45 44B. 45 66B. )@** *?@@ *'?A *'77 *2%' D ))** *?@A *''@ *'2% *2)* %A** *?7* *'22 *'&' *2?7 %?** *?AA *7*2 *7)7 *22& %*** *')' *7?A *772 *A)) *2'* *''A *7A@ *2*) *A'& 1661 1584 1677 18+9 1985 D *'** *7*7 *2@@ *2'@ *&%% *?** *7@) *27% *2A* *&@& *)** *2%' *A?7 *A77 %*)7 1166 1929 179+ +11+ ++59 D **@@ *&@* %*7@ %*A) %)@7 **@) *&@? %*77 %*A7 %)@& 11+6 +1+2 ++22 ++62 +4+4 !$6 % !" !$! ! +!#,!$ 2 (

PAGE 73

D S8 @@,B3@@9;8 5D @@9;D8D38;982!0, ")2@B790, "n>BA ZD ZSZ 5,B 5Z0, "n>B& 8D38;9S1%*8;%D;9D1%*8;%D;982!0, ")2@B290, "n>B%* +!!6S>!. /!$$,!!;/$,!.!((.!" 5S 5#,!:":" +!!$1","1 @@S 5#,!:":" +!+!1+ (@@(!! 5,S 5#,!,/:"( +!!$1","1 S$ ".!(-$ ! !".+"1!"-!$ %S7)%-!$8%*4-9( @@X @@,8:"(-$+! !",/:" ,1+! ! " :":"9: S7)%-!$8%**4-9( ==Y == 8:"(-,1+! !",/:" $+! ! " :":"9 S =;%*[F83 @@ B3 @@, 9\)]\B)@=S*7)%-!$8%*4-9 +!.+"1!"$,(.!,1+"!$$!0, "$:!!!#! /! !,$!: + $-/(!!;/$,!.$$(. "$$ !-+!!0, "$!" !"! !,$!:+!! +!! !$1"(." .+"1!$! :!!",1+"!$$$,.+$ $! "/!".," ,"+! !0, "$!1" !4:":+!"-".+"1!$" ,1+"!$$!,$!:!! +!!! $-/!"/ .+!$"! +!$ ! $/ ( +$$ , +!#,!$(,"1$: +,"1+!1+ (@@(!! :!! , !( "$ "$(-;/$,! " $!"2!0, "$( .+"1!",1+"!$$,$"1$"1! !".+"1!,/: "( +!$ !!1"""1: +%7?(!!

PAGE 74

2!"1 +!" (!$"M/!"/ .+N,/ $ ".!($;-!$+!$! !$! ".,!" +!//!"; r%' % &&&%. +!"1"!!"1.!".!$ " 89$ +!: "$ ", 5!,/!" :" ,""! !$$"!"1"!!" 1#$1"5 "$!" +!" !3"1-+!$ (( + :$"##!" +!-! +$,$! ! !-"!:" "1"$ ,. ,!$( !"!(!! $=,$ ".,!$#!"/ +!$! -! +$!$!(!! $ +!!#!$" $//.+:+!! +!!$!" +!:48!#!$"$%&A%9n $$! (!! $ +!1:!.,$! $ !$.!" !-$( +!1 +-.: " +!:$ +!!$1"! , $!((!!" :"$/!!$" .!$/""1:"/!$$,!$"((!!" !. " $4$ !$6 &6#nn!nnn n!nn nnnnn# n#B%%

PAGE 75

nnD 2,.!. "(. ($4(!;.!!".!"!;/$, !/! 2,.!. "(. (!(!!".!:"$/!!($4 (!;.!!".!"!;/$,! /! q,.!. "(. (!. "(:" C ,.!. "(. (((!!".!! :!!"",1+"! $$ ". ,$ ! ,1+"!$$ C,.!. "(+!1+ #! !" r,.!. "(!((!. (. /1/+$,.+$+ $$/! :+!!6C,%-C0, "n>B%)%,!(!!".!:"$/!! +!1+ 5"%*-! !$(!(!!".! !" ,1+"!$$8$,$!$%*B-! !+!1+ !.--!" "( "!--! !+!1+ $ 1,":! +!$ "$9 +!! +!!$$1"(." "!$,!".+"1 !",1+"!$$,/:"( +!$ ! "!:""!!!#!/$"$1#!"6 %,%C 0, "n>B%@ :+!!6%,#,!( +!:"$/!!"!!$ .+"1!" !" ,1+"!$$ , .!. "(. ( !",1+"!$$

PAGE 76

$$+:"" +!!0, "$-/ " +!:". ., "$ +!:"!. "" / (..,!".!"!.+:"!. " r' "'C 5 /#!$:!"1!(,1+"!$$!"1 +$ : +#!)* /!$( ,1+"!$$".,"1.!"-,( / ,": $(!$ $(-""$-"1! :".!" !$ &"n#nnn#nn!n !nnn nn#nnn N8%&&@9n"/. .! +!:"$/!!: !/!"" +!/"B!!"$ ($,(.!,1+"!$ $!!-!" $l "!(#,$:"B ,""!"#!$ 1 "$:!!,$! ! #!.! "! :!!"+!1+ ( $,,""1,"1$",1+"!$$!"1 ++!$! .! "$!$(:$6 rl < 0.8 9<-S?@8%B l9R%*!;/8B&* l%'*9 0, "n>B%? " S 9 B [?@8%B l9R8%*!;/8B&* l%'*9]0, "n>B%' :+!!6 9 S+!1+ ( +!$,,""1,"1$ l = /"B!!"$ ($,(.!,1+"!$$ S5!/"!$/.!-!" 8!$$ +" +!,"1 +!1+ 9 rl > 0.2 ,9 B ?@8%B l9 0, "n>B%7

PAGE 77

0, "7):$!#!,$"1:" ,""! " $$//.! #!1! " /!,1+"!$$n". :+!!$//;! )'-! !$" $//;!*A 9< S)' n"!$ + !" , ,/$( !"$$,! !5! r+!1+ $.$! +!$,(.!!$$ +"@*-! !$ +!(:"1!0, "."! ,$!6 %S)' 67 "8 -9 0, "n>B%2 $%$).''%' +!(. $ + ..," (.,1+"!$$ +! $ !!!("!$6 CS CD 6 0, "n>B%A nnC, (. "#!. !$ +!. ,$ ! C, (. "#!. !$ +!!(!!".!$ ! " CS"8%*'D 9 D "8%*'D 9 0, "n>B%& 2-# &$.)' $). '' !.--!"$."$!"1,1+"!$$.+"1!$: + !$ @ -!$ #,!" ! +!$!$!$$!$ +!."$! " $ +!!"1 +( +!,1+"!$$.+"1! ,//$! + +!!$";/$,!$,," /! ,1+"!$$$,,""1 +!$ !(%-! "!" +$ +!!$/!".," (!$$ +" "!-! ."!$$,-! + +! #!. /(!:! ," +!;/$,!/( ! +! -! 1! $ +!$ !( $1"(.".!!:+!! +!!"1 +( +!,1+"!$$ $,,""1 +!$ !$!$$ +" +! $,,""1,1+"!$$$(-/ ".!$:+! + ! +!.+"1!$,1+"!$$(-$+B

PAGE 78

B,1+,1+B B$+$ +!:"/(!., #!$((!!" ..," (,1+"!$$ .+"1!$$ !/$ +!(:"1!0, "."!,$! 6 % S)' 6 "8 -9 0, "n>B)* +!! $ +!.!. "(. (,1+"!$$$ !/ r$"1!$ !/.+"1!/#!$ +!(: "1(-,( +!/-! ! + $!0,! (" ' +!.!. "(. (.+"1!",1+"!$$ $ !/.+"1!6 + S"8%*'D 9 DD8 C D8 99" 0, "n>B)% :+!!"S*)@($+B B,1+""S*%?( ,1+B B$+ S%R*72 + *A' ($+B B,1+ 0, "n>B)) " S%B*?% + (,1+B B$+ 0, "n>B)@ +!! " !(,". "( +!$ ".!;8 +!$ ".!( +!,1+"!$$ .+"1!"! +!$ !9 +!! S*%%?@ E)F%@) E R?*A28( E X''9 0, "n>B)? S*8( E Y''9 S**%&) E)F*''GR)?228( E X'79 0, "n>B)' S*8( E Y'79 0, "n>B)7 :+!! E S1%*;"-! !$:+!!;$ +!$ ".!( +!,1+"! $$.+"1! +! $ ! +!$!!0, "$!$!" +!!#!$"$ !$!.+8!#!$"$ %&A%9+!!! #,!$( D Y%*"(#,!$(; + !!$$ +"@4

PAGE 79

n $', ?/D, ,$ "D!:E!" " ,. ,!$1" . "$ )6". "$ DE%%2*)6)*%%8DE9$! ,"1$ !$$ +"!0, )**-"+!1+ $ ,. ,!$: +($/"$!$$ +"%**-"$ , . ,!$ +! +"(($+!$ ,. ,!$ 1!$" "$-$$" :!$4!2 +!$ !:"/!$$,!$$!"!1"@ $!."1,$ :"$/!!+!:"$/!!$-, /! $!!$(=,$ -!" (. $( +!1+ /1/+8+$"!$./-!" $9$+!"1(=.!" ,"1$$,(.! ,1+"!$$:"!. "" +!"(,!".!(+1+ :"$"!.$ !1"$ +!DE:$ +!!$1"! ,$!((!!" :"$/!!$" .!$/""1:"/!$$,!$"((!!" !. " $+!=,$ -!" (. ($,(.! ,1+"!$$$.! +! !"+!1+ -, /! -"-,-((, +1" !. "$ -,$ !."$!!$!" +!!" "( +! $ ,. ,!+! !"$,,""1 +!$ ! $.$$(!: +$!" +!(:"1. !1 !$./ "$$/#! DE 6 45(n:F?nnnn #nn n!n#nn : +.!$/""1,1+"!$$!"1 + S***) 4#5(n;F/nn'nn' n'n : : +.!$/""1 ,1+"!$$!"1 + S**) 45(n=F"nnnn #=>' n## : +.!$/""1,1+"!$$!"1 + S*) 45(nGF"nnn'4: = 5n n#'nnn n
PAGE 80

+! DE/#!$M !"D+!1+ -, /!N(! .+ !" .$$(. "$/!.(. M(,!#!/! ! "$N": +!!$1"! ,$!"! " !/ " ( " !-! !#,!$(+!1+ " !". !1 +!! +!!!.+"1!$",1+"!$$,/:"($ ,. ,!$$+:"" r1,!n>BA : +" +!!("(,!".!: +" +!M !nn)nnnn DE +!(:"1!0, "$/#! ! !-"!" =,$ ! !"D+!1+ -, /! ! " #$ %$ & ! " #' %' & ! " #( %( )*+,-./0. 1/23-04+ 0, "n>B)2 +!=,$ ! !"D+!1+ -, /! '' $ :!1+ !#!1!#,!#! +!#!1"1 $ ".!,/:"( +!$ ,. ,! +!1+ 5#! 1,"!#!+!:!1+ !#!1!( '$:!1+ ! +!!"1 +(!.+ !",/:"( +!$ ,. ,!"".,!$1 $ ".! !.+ !". !1.+"1! ..," ( +!:"/(! =,$ +!"!; $,(.!,1+"!$$ r!#, " +!1+ 8 9.+"1!" !""./ !$1$ ".! $+:" " r1,!n>B& 1#!"$ (:$6 5 6 7 89 : ; <= >? @ < B)A , $ ".!:":"(+!$ ("!: !" ,1+"!$$ +!/$ " :+!! +!!#!/!+!1+ ( +!""!!!0, $ 81$ ".!9 , 1!( +! :,1+"!$$!"1 +$ ," ! :!!",1+"!$$ , !(!!".!+!1+ " +!$ ,. ,!#! +!#!1! .1,"!#! +!#!1"1$ ".!,/:"($ ,. ,!$$+:" ""-! !$$%4-( $ ,. ,!$: ++!1+ !$$ +"'*-! !$)4-( $ ,. ,!$: ++!1+ $! :!!"'*

PAGE 81

-! !$"%**-! !"@4-($ ,. ,!$: ++ !1+ $! :!!"%**-! !$")** -! !$ )$#*9rA&,'.)' )( )$#*7 .)'

PAGE 82

) ., +!" !3"1-(! "" +!"n !"/, $ +!$$,!(.+"1! ",1+"!$$ +!(!(" ( +!:""1 !.--!" "$+!.! +!% %&&%B%B?8)*%*9/#!$ +!! !". !1 !$M +!!," !"" :"!"N83)*%*96 +!$ /, ! + M 3nnnn:3n n n:3nn#n nnn N83)*%*964"1" ..," +!.--"$"1!,1+"!$$.+"1! +!. !$ !$M nn45 nnnn nnnnnn .#nn"n N83)*%*96+!.!/#!$ !$(! !""1 +!,1+"!$$.!. "(. 45 ( !".+"1!$(-! ," ":" " !".+"1!$(-:" ," :+!! +!=, $ -!" (. $#$!" +! $ ".! +!.+"1!",1+"!$$$!" +!$ !(1,!$ +!!("(,!".!$%**4:+!! +!$ !$. !"!1!!$(: ! ")*4-($ !$. !""

PAGE 83

)$#*+1 ) ;,4 $).''.) 0&$%/ .& '' 3

PAGE 84

)$#*++ ) ;,2 $).''.) $(/0&$%/ .& '' 3

PAGE 85

!"r# nnrn"!nn
PAGE 86

!0,!"! /.!$$""$$ +!n !.,$!( +!.-/!; ( +! "$( :!,"1n-!$""5"1!$ , $."!",,$/.!$$ +!!//!$(n :!!,$!" +$$ ,( +!$, ( ! !-""1 +!$ ! $ !"$,(.!,1+"!$$K#!. $+/!(! $ ! "1+ ! !. "1""1"189 .+ /! ." "$1!1/+. + $ "4! ." !$$ !>!. $+/!(! ."$$ $(!$.!. "$(1!1/+.=!. $!/!$!" ! /" $"!$/1"$"$$. ! +!!$-1+ ".,!$ !$.," !$ $#!$","1$: +$$. !$+/! "$5!" $! "$+/ +! ." !$$ !-:+.+/.!$ +! " $1!1 /+.. "" +!$( :!1!"! ! -/+!(!$ + ." " +$ !( !"! (!! $$+/!(!$ "+#!",$! + ".,!$//! $5! ",$!"$-!".,! ,"1( /" $5!+! !#!/!( +! "," (!"#!".,!$ !$$//! $5!"//! #,!8 " ," (!"#!)*%'9r1,!>B% $+:$$.!!"$+ (,"1$+/!(!-!" . + ".,!$,"1$$+:" "/,/!$$+:"":""!$(: ! $+:"",!+!#!. !$,$! " +$!$!.+".,!,"1$5!+!1+ " . "

PAGE 87

)$#*+%'.:,$ , ).& , , %" "-,"./ !$$,.+$ "," (!"# !/#!(!!..!$$ +!n :.4$ + +!!!-".1#!"-!" $ + " +#!",$!n " +!!(! +$#!. $" ,"(-# ! +,1+, +! "!( +!-$ .--",$! /!$($ ! $ +!" ! !$!1. ,#!89"#!n"$ , !"#! $!+$$ +!$!." /!(n ,$!" +$$ ,$ ! -!$." " +!$/ "$$. !"(" , +! $!(1"5!"!1,$! ( .!$"1/ !"$ ! -!$! , 5!"." ",,$$/ (! ,!$$,.+$ ",$!!!# "$/! + ."+#! $1"(." .+"1!$#!!$+!" #!n"$ , !+$!#!/!",$! (!$( +!" ! !$+$ $# ! +!/,. ".$ 8" #!n"$ , !)*%79!!r1,!>B)($.!!"$ + ("$! (!"#!$ ! -!!".

PAGE 88

)$#*-%'.:: , %" +!$#" 1!( +!"B,$! $ + +!!$, "$! #!:: + !$, "$(@*-! !$+!"B,$! $ !$" ((!!" !! :!!","1$" /#!$,(.!$+!!(!!$$,.+$/ ,":$!!$1" !$$,," +,$"1!#!/-!" $+!"B,$! +$ !!",$!"/, "//. "$ 8"#"-!" !. "1!".)**A9+ !"#"-!" !. "1!".89 /#!$. !($$1""1,1+"!$$!"1 + "B,$! /!$ +!// /! !,-".+!-.",$ !$-!"1 ! ! -"!$/!$"(/, " $ 8"#"-!" !. "1!".)**A9r!;-/ ! +!$$1"$/!" !: +

PAGE 89

n ,1+"!$$!"1 +(***%-! !$"1+n" !"$ !$!" ,1+"!$$!"1 +(%* -! !$!$$1!!;/"$!$(/#!-!" / +!((!!" !$ --!.Dn",$ ".#!! :!!"M$ ! / N"M$ !" / 8"#"-!" !. "1!".)**A9+!. $$(. "//!$ "!( "(,!".!(@4-$,,""1 +!$ ! +! + /!(n , 5!" +$$ , $/" $ !!$!"$"1-! + + ,$!$1+ (-$! -!$,! +!=!. $" +!1,"$,.+ $: ! !!$,"1$"" +"1 + $: +" $!$, ""1!1+!$, " ."".,!$-=!. $$,.+$/!/! $!#!(-#!+! /#!$$.! !B! ,"/" ., " +!-!.".! (+ 1--! "!!!"$"1898$!9(( !$" +!:+!! +$ +$!!" .!. !8)*%79+!: ."."$ $ (-"$(/" $( !"!(!! $M/" .,N$$+:"!:"r1,!>B@ +!($$ "5!" (($ "1@B-!"$"/" ., /" $!$ !$@B-!"$" .,$$!!$(;8"1 ,!98 , !9"58!!# "9/" $8)*%79

PAGE 90

)$#*4%'. & , E$ % , +!0, ( #!$!/!""1"# ! ((. $".,"1 +!0, ( +!$!"$. "( +!$!"$" -$/+! ." !(!!".!+! +$ ((!$ +! #" 1!(." ""1!!# " " !$(: ! !!$","1$ +! (!$!1!"-!((., /.!$$ +" #!. ".#!$ ! +! ."$$ "1( +,$"$ -"$(/" $ "!!$ !."#! !" ,$!(:+!! +!"(", !!# ""1,". #!."!"5!+! (!$! 1!"( !"."$$ $( !$,! +!$5! ( +!(!$+! ("!( (#!B4-! !,$(!$!.+$ !:, / .."$$ ("!+,"!'*(!$ 8)*%79+!$! !$."!$!!""r1,!>B? !.+"1$$"/,. #!(!!$" +!" ! !$ :!#! !.+"1$!#!/"1 0,.4" $!.-"1-!"-!,0, ,$

PAGE 91

)$#*2%'. & , E$ % , $ ':,: )$%$).'' n !.+"1" +#!!!",$! !$ ! $,(.!,1+"!$$"$ ,!$ + !//.! :"/!$$,!"//. "$, $!:"$ ,!$+!$!$ ,!$".,! ,"/"""1"1!$ ,!$"!.1.$ , !$$,.+$#!1! "1: + +!-! +$, 5! +!$!$ ,!$!1! !/!"!" " +! /! /+-! .1!-! .-! +$!( !", 5! :+!",$"1#!. $+/!(! + ".,!$,"1/"!+!1+ "!"$ "n-/+-! .-! +// +!! "$+/( +!$ ,. ,!H$/"!"+ !1+ +!!" ..,/!$ ,. ,!$ +!!"$ ( +!$ ,. ,!$+!$!1!-! . ! "$+/$!$!"/!#,$(! $ ,!$! ,,"+"" +!$$.,$$! " +!/!#,$.+/ !$( +$ +!$$+! -! +$ !$ !$,(.!,1+"!$$!-/! n$ ,!$, 5"1/" ( !"((!$ +! $.-/$!( +,$"$ (/" $"" ,"1$+/!$+!

PAGE 92

-! +$, 5! .., !$,(.!,1+"!$$,$ "1 ".,!!B/-! !5"1 !((!. #!!"1 +,$"1!!# "8--"! )* %)9$ "!# ""($ " $!."!$/!:+!! +!,1+"!$$$!$ ! "5"1 +!! #! /1/+. /$ "( +! /" $" +!/" ., ;", )$ ':,: )$%$). '' +!$ ,(,"(-,"-/+1$" -/ " "!$."1 +! !#!/-!" (. !$" +!!#!/-!" $$,," "1. !$8!" !%&&*9 "!$ ""1 +!,"-/+1("!/# !$/""!$ +!// ," /" "."(1,!(, ,!!#!/-!" $ + !.",.# !(-#!-!" ", !!-! !"=! #!":4"#"$.-/!$. !$ + !1:"1 0,.4: +, +!!"!( (,"/"""1 /!1"" :-"M n!nnn n) 8#"$)**'9+!!!-, /!.+. !$ .$, $! $ ,,". !$ !/!""1":+ $!"1$ ,!-!( +! , !$".,!$ !! ."(1, " $5! (/!"$/.!//, "!"$ " ,$!"!"$ (!$!" :!"1$ ! +$ 0," ($,(.!,1+"!$$, 5!", "/"""1!$--! +$ +$!,$! +!!"1"!!"1.--," "! ! -""1:"$"$ ,. ,!$ !#!:"1 +!! "$+/($ ,. ,!$ +!" +!..,/:"!"1"!!$ ,"/"""1!$!.+!$!,$"1n "$ ( :! -!. !$(/"""1 /,/$!$" $ , +!!((!. ("!:."$ ,. "" +!:"!"#"-!" ""!$" !$1"!$!:! + +!:"!"#"-!" +$ $1"(." -/. "/, "" /!!$ ".-( $"1$ ! !-1!$":!/+ 1/+$ !($!"$$!-!," -/+1 (",-!(. !$:+!!1 $.! !""!.+1 +! !"$ ( +! !"$.., !,$"1",-! ((. $".,"1,"1!"$

PAGE 93

,"1+!1+ 8"."!($!"%&&A9+!$ ,$$!"!($"H$%&A2$ , :+!!!($!"1,/$$ ,. ,!$" %&"! "E"!$8E9"1"1(-M/!"B $! ,$!$N"M$!B$! ,$!$N M--!.N 8!($!"%&A29$/ ( +! :4"."!($!".! !$1 5!-/+ 1 $!( +!$!5"!$( .-!" ("(,$!(:"(:-! "18"."!($!"%&&A9 '$ ':,: )$%$).'' --""4!/!(-!.-/!+!"$#!$ ,,$ "1.-" "(! /+ 1/+$"(!$,#!$.! !n -! $: +,"1$H" !!$( /" $ +!1+ $","1$/ $ , "(%%$ !$" +!" ! !$. !"//, ! !$+!$ ,".,!$n"$$,$"1$!#!" -/+-! .81!-! .9(-,$ !#!/!(-(!$ ,!$ !$ ! n"$$$,(.!,1+"!$$!#!(!.+( +!$!#!"-/+-! .-! +$$.-/! (!:" " (-:" ,""! !$ "1 ! !-"! $..,.+!$!# !"-/+-! .-! +$".,! +$! !-,"+" 3, 5.+! ,." ",/.+8 !-%&&'K ,"+"%&2% %&&)3, 5.+%&7%! ,% &7&."%&&AK,/.+%&&)9 +!$!$ ,!$,$! "-! +(!$ " 1,1+"!$$ + "##! +!! "$+/ ! :!!"$ ,. ,!$" !!$" +!" +!.., /" +!+!1+ --""4!(,"(!:n-!-! +$ + + $ "1$ $ . .! ": + +!(!:",1+"!$$:" ,""!,1+"!$$-!$>,$ 1!-! .-! +$$+:!$ "1!.! "$,$" 1((!!" $ $ ..-/$" -! +$--""4! , ! +$.4(. ! " .4(+1+0, !$"(!$!# " (:"$#!"+ -1!"!,$$,(.!$",".! " !$" +-!$,!-!" "/!. "($,(.!,1+"!$ $$!" +!$ ,--""

PAGE 94

4!"41!-! .-! +$$!" +! /!( ! "r!;-/! +!$,11!$ + !--! +$!$ $, !(!1,,"1$ :+!!,/.+$! !$, !( !" + ." "$"-,"1"1!-!" $ "."!($!" --""4!. !15!$,1+"!$$ /!-""4!/#!(,E ."$$ "1(:!"$ !,-!"$ 1+!" $ "1+B$! ",,$ $ ':,: )$%$). '' +!!$1!(!$!.+ + +$!!"./! !"+":+!! +!!$ .".!", /, "" +!:"!"#"-!" "13"1$"!( +!-$ +1+ !"$!"//, !. !$" +!: ,#! " "","/"""1$1 .+!"1! ./""!$M +nn#!n#nnn"n n"' nnn!n3nnn n!nn n#nn!#nnn n N8,"! )*%?9 n","H$$ ,1!-! ./-! !$$,.+$(" !!"$ "$ !.#!1! !,$! /!. (:"!$ !/!!$ ".-( !#!$$!"(:$$+:" "r1,!>B'8,"! )*%'9

PAGE 95

)$#*5,' ( $." , ".'0<$-1+23 0&$%/ .& '' 3 41"##!$-//"1""5"1 +!$,( .!,1+"!$$$,,""1 "13"1"! $ , +!#!" "$$,!$ 81! )*%%9n" +$$ ,:" ,""! :$,$! !$ +!$!"$ # !$( +!$ ! H$/!-! .$$ +!((!!" 1," .#! $ +!!,"5"!$K +!,-! ,"1!""/!+! ,-!$. ! * %'-! !$ / ("!" :B$ :B$!,"1$ +! ,"1!$. ! %' 7*-! !$$! " +!#!1!,"1+!1+ "," !$"""/!$*B7*-! !$"!". -/$$!$ +!,","1$+!$! !$+:""r1,!>B7

PAGE 96

)$#*6;C" $$ , )(' ; )0),-1++3 0&$%/ .& '' 3 1H$$ ,".,!!#!:((,((!!" 1$ !. "$(-'*-! !$ '*-! !$ @** -! !$ @**-! !$ ! !-"! +!:"/!-! "/ !" (:+!$ , ". !$ + +!!$!$ . !U:! :!!" ,"1$!.,$!( +!+1+!"$ ( ,"1$81! )*%%9r1,!>B2$$,-( +!/!-! ""13"1 $!"H$$ ,

PAGE 97

)$#*8 "; , ( !))0), -1++30&$%/ . & '' 3 & ,.' )$).'' :,: ) #"1:(":"$!$ ,!$!1 "1$ ,. ,!$" :$ n$!$ ,!$ +!!(" "($,(.! ,1+"!$$((!$$ +!-! +$( !$ "1$,(.!,1+"!$$r!;-/!! "r!!("!$,(.!,1+"!$$$ M nn!nn!#!n nnnn N8!"r! )*%)9r"4!""!("!$,(.!,1+"!$$ $M nn!n!n ! N8r"4!"")**29n" " +!$ "!# "-! + +!n$!-! +$$".,!($ !B$/ ! !",11!"!$$"!;8n9 $!."B!$/!"!$ B$0,! -! "$0,!(!!# "".B.+ 89,1$ :+.+:!$.,$$!(, +! !"r!+#!(," +!$,(.!,1+"!$ $-!$!M n) 8!"r!)*%)9+!!"r !-! +,$!$ +1" $ ".!!1!$$"89 .! !1!!(! !".! ,-+!$,(.!,1+"!$$( !.+1$! !-"! +!$ "!# " ( +! +1"/" $ +!!(!!".! ,-!"r!"#!$ 1 !$(,$1$5!$(*%)'-! !$ %*-! !$ !"r!(," +!1!1(%*-! !$! !.! ": + +!1!1 $5!!"r!.-/! +!$,(.! ,1+"!$$(:" ,""! !$ "18!"r!)*%%9n" +!)*%) $ , +!.-/! +!$ " !# "-! + +!-! +,$"1"! $ B$0,!$/"!( "18r"! )**?9!"r!$ ,(," + +! $ "!# "-! +/#!$ 1-! +(! !-""1$,(.!,1+"!$$,$"1 !!$!"$"1

PAGE 98

/ ">!#J!n$ ,-/!-!" $$/!# " +!!" ,11!"!$$n"!;8n9 ! !-"!$,(.!,1+"! $$(-"!$!$."""1 " +!1!-/+1."$$( +!!!".! "#!"8/ ">!#J!4)*%@9 +!$/!# -! +"##!$"5"1 +! ((!!".!! :!!" +!:!$ " +1+!$ !!# "$"!.+1!!$$+:"! :6 "+6 S[Z 9 ; <9 ;Z H:-;0, ">B% +!/ ">!#J!$ ,(," + +-! + $:!!!((!. #! !" ("1 -/+1..+. !$ .$! ! $,(.!,1 +"!$$8/ ">!#J!4)*%@9 !!("!$n$ +!$,-(.+"1!"!!# " ! :!!"1" $!1+ "!1++1$$+:"" "+6 S I [^8 $J 9)]%D) 0, ">B)""r1,!>BA:+!! $ $ +!!!# "( +!"!1+"1.! +!-!.! +$-! +1$$-! -!$!(!! $M1 $ .$N8n )*%79.+$0,!!/!$!" $1.!" +! n!!# "-!"$ .$!,"" !.+1.!: +!(!!".! +!$,,""1.! $ "+6 S I [^8 $J 9)]%D)0, ">B) )$#*9 ,( $))''A 0"& #;:F-1+43

PAGE 99

n -! "$,11!$ + +!$,(.!,1+"!$ $($"!."!.., ! $((!!".!! :!!"-;-,-"-"-,-!!# " ". .+-!" !#!$0,! (. .+-!" !$5!+$.., "$/! (-!" +!$-!:$!H$-! + (!.+1.!8! "%&7'9!!5H$)*%?$ , ! ! "$./!.1$ ,!$ +! $+/!( +!$!(, 5!$-! +1 ! !-"!$,(.!,1+"!$$!("!$ ,1$ !!5!("!$,1$ $M nnnnn nnn nn!nn nnnn N 8!!5)*%?9!!5H$-! +//!$ +!(:"1!0, "6,1$ SC8DE8D9FGG6HEIJF KII9G6HEIJF C8DE8D9FGI9FI KII9I9FI 0, ">B@ +!!!#! (n$!$( :! $" /1-$ + -/!-!" +! $,(.!,1+"!$$-! +$$.,$$!#!(! ! -""1$,(.!,1+"!$$,$"1n $!"$$".,"1I,.4!"!!> n"./ +I,.4!" !!"./!,$!" +$$ , .-/, ! +!1$ $ .$(n + /1-$+#!$( :! + ,"$"1 +-" + !n , 5"1!. "1,1 : +$5! + ."!$! +!,$!

PAGE 100

!"r# n!r
PAGE 101

"#!$ ! ." "$.,-!" !" .#!".,"1/!": ! .--!.",$ : +1+!"$ !$!" (!$ $"$", !$" ." " $/!.(. " +!$ ,. ,!$H( /" $+$ !$" ((!!" !! :!!","1 !$"/#!!$ ." "$ +!-$ .-/! ! : + +,$"$( /" $ + /#!"(", 1,".#! $:!$,"1( /" $"+!1+ $ +!!$!.+!1": +,"1$+/!(! " !##! ".,!"#!" +!" $ +!/!#,$ /!$:!!!!-! !!$$.-/! !: +!$/!. .., "1$,(.!,1+"!$$.+ /!( !"$ $!( ((!!" -! +$( .., "1,1+"!$$# ! +!-! +1 ,$! +$$ ,.-/!$n!$, $ !-/.-!$,!-!" $ ",-!,$$ !$. !" +! r%'$% $ $$,--( +!$ !$".,!" +!$ , +!n /!,$!" +! !-/. ,$!(.-/$"

PAGE 102

$ ) $ $%@ !"#!@&7)7 %*?A&& "B $! n ",""! +!!""!?%%?% %*?A)% "B $! n ",""! ,.4Gn%@@'&% %*%&*? +/(! (,.4 %%D2D)*%? r! ,.4Gn)@@'A? %*%&%) +/(! (,.4 %%D2D)*%? r! -/r )2&7) BA)'?* +/(! (-/ ?D)7D)*%2 r! -/r )2&7) BA)'?* AD%*D)**2 r! ! @*@?@ BA&A)) )D%D)**) r! 4!$r @*2A* BA7')@ )D%*D)**A r! +$$!!r 2))%? &@A*' )D%D)**7 r! ,-! " @?7*A B2&*'& @D)@D)**% r! /$> @2&?% B2'?7@ ?D)?D)*%' r! <.4$"#!r @*?&' BA%7&? @D%2D)**2 r! /.4r )'&*2 BA*)A* %D%*D)**A r! !"G )&'%& B&')?) %*D@%D)**7 r! (& r& %, % ;,#+$(

PAGE 103

!.+( +!$!$ !$!!. ".1!1/+. $,$! .! !n -!( +! !"$,,""1 +!$ ! ! !"! +!$,(.!,1+"!$$ +! $ ! +!. !($ !$!!. "".,!$!-/. :" ,""!(!:" # #!/!"$,.!n "$ !$ + " ".,!1! .+"1!$"!!# "$,.+$+$-," "$" +!$ !$+#!-; ,!(/!" .," "$,," !"$%'+!!((!!" /!$(n + $! #!:$!#!:!( +!,$!" 0," ("1 +!$,(.!,1+"!$$$,,""1$ !+!$!".,! +!(:"16 · ,"1( /" " !!$+/!(! # !" +! (,.4 :!$ ! + /$6DD:::-,.4,$D!/ -!" B:!$ !$D!/ -!" $D1$B B$!#.!$D+-! · ,"1( /" " !!$+/!(! # !" +! (-/ :!$ ! + /$6DD::: -/1#"! D1!1/+.B"("B$$ !-$ · 1+ ! !. "1""1"189 #! (+!" ! !$ !1.,#!89:!$ ! + /6DD! +!;/!,$1$1# · "#! #!" +!" ! !$! 1.,#!89 :!$ ! + /6DD".#!,$1$1#D".#! /+/ ( ! +!n-!$.! ! +! !"$,," "1 +!$ !$#!" $!. "$ .!$/""1 ((!!" :"!. "$$ + ,1+"!$$(!.+!. "."! .., !1:$.! !,$"1 +".-/, !.!$./ / !(+!

PAGE 104

4! H$!84! )*%79 # ! +!!("(,!".!" .+$.!$!/,.!"//!";+ !.!.! !$ +!$/!.(! ",-!(/!$+/!/1"$+/!(!$".: +.+$,$! .! ! 1: + +!.!" !( +!..! +!$ ,$ !+! /.1."$$ $( +!! ("(,!".!..!#"1! :!!"%4-! !849"%*4-,$$!" +! $ ,+$!("(,!".!$#!" %7!0 ,/ $$$+:""r1,!>nB) +$:!!(!! $ +!M$-/(!1N )$#*&, $$+:""r1,!>nB@ +!$-/(!1$(, +!#!" ((!!" !$( "(,!".!$ ".!"$/.$ "1: +Q4-"%4-"".!-!" "1 %4-,$"1 +! $".+$/.!$$ $!$.!"! " //!";

PAGE 105

)$#*4 , $(*$ , ).& ,#% +!-! +, 5! .., !,1+"!$$". /:$ +!$-!-! + ,$!"/!#,$!$!.+"!"(,(-!" ( + !, +H$$ !H$!1!!8$" )*%'9n"$,-+!!"+!1+ $( +!, "1$$,,""1 +!$ !! !; . !(+!n,"1$+/!(! $ "1 +!,"1$H!$" +!1+ $,1+"!$$!"1 +$.., !,$"1 +! "1!-! .(-,$ !#!(-:"(! ! ,8! ,%&7& 9(#"1!$("(,!".! +"1!$",1+"!$$!.., !,$"12-! +8)*%79n" $,--,$"1. +!,"1 ".,"1 ( /" "+!1+ $ " !$!. !: + +!$+/!(!1:+!!! .+$!. "!/!$!" $:" !. ""!("(,!".!(+!$ !+! ,"1$!$"+!1+ $!,$! : +! " !.+/!$!. ":+!! +!$!. "$(, +!(+!$ !!1! +$ $!; . !(-."-/ !" ;.!:+!! +!"("$ " !1 !" +!1!-! .(-,$ !$ ! +!,1+"!$$"!.+1$!. "

PAGE 106

$/ ( +$!$!.+-, /!-! +$:!!"#! $ 1 !,$"1 +! !" ! -! +$ + /,.!&'O/ "!H $!$, $( +!!$ !$!"#! #!"" +,$!"/!#,$!$!.+ 8$")*%'9 +!$!#,!$:!! .-/! +!#,!$.., !,$"1! ,H$!0 , ",$!"2"! $+:""!>n!>n"!>n $$!!"" +! ! +!!! $1"(." ((!!".!$! :!!" +!#,!$,$"1 ((!!" -! +$+!((!!".! ! :!!" +!#,!$$ !-$(+!((!!" !0, "$,$!!.+$$+:"" +/ !@r!;-/!4,$!-! +", 5!,"1+!1+ "" 4!" ..," +!!"$ ( +!$ ,. ,!$;,#+& '%,%$, 5:,$'$' )$, &,.'. :' * ;,#-& '%,%$, 5:,$'$' )$, &,.'. :,' % ! ,,"+"3" !:4,$!3,"1 , ! +%%')*7*A')%7*72%@A n""! +%7'@''%%&%&A*72%@A , !, +%)')?&*&')%%*72%@A n""!, +%7A?*7%@%%&)*72%@A, !!$ *@)B*'&*)@)?A*72%@A n""!!$ %'2@'%%A%&&*72%@A , !$ %%%%&&*A@)%2*72%@A n""!$ %)2)@A*&))%)*72%@A .,)(

PAGE 107

;,#4& '%,%$,5:,$'$' )$, &,.'. :,' ! +$,"+"4,$!"3,"1" / ,.!,1+"!$$(. $ ."$$ !" : +2+!3"H$-! +/,. !#,!$.$! #,!$ .., !,$"1! ,H$!0, "$(!$!(. -/$"" $ ."$$ !" : +/!#,$$,(.!,1+"!$$.., "$: + +!/!#,$ +!!$ !$" +! #,!$,$"1! ,H$!0, "$:!,$! % ! ,,"+"3" !:4,$!3,"1 , ! +*@%*'A*'%)@?*72%@A n""! +*%'B%?%**?)'A*72%@A , !, +*?7B*)*@))?@*72%@A n""!, +*2)*7?*'))@@*72%@A, !!$ *2%%@7*7A))?*72%@A n""!!$ *%2*A*'')@%*72%@A , !$ *%@B%)**&)''*72%@A n""!$ **AB%'2**%)7*72%@A .,)( % ! ,,"+"3" !:4,$!3,"1 , ! +*@%B*A'*%2)'%*72%@A n""! +%*2%?A*2%))@*72%@A , !, +**)B%7*)7*72%@A n""!, +**?B%7*)7*72%@A, !!$ *)B%%7*%)''*72%@A n""!!$ %*?%%)*7@))2*72%@A , !$ *%B%?7**@)'A*72%@A n""!$ *?@B*'*)')?2*72%@A .,)(

PAGE 108

$(G': +!".#! ((!$ + .#!$ + !!" !." "!" " ! !$+!!(! +$ /!:$".,!" +$$ ,0," ( +!$,(.! ,1+"!$$+!n/.!$$$!$.!"//!" ;:+!!.:$,$! /.!$$ +!".#!$ ! n"$,--! .+ /!(".#!$$$1"! ,1+"!$$!"1 +$!#!"/ H$.$$(. " $$+:""r1,!>nB?+! ,1+"!$$(. $"$$. !"B$!.$$(. "$$!"#!"/ H$ ,1+"!$$(. $!$+:""//!";"1: + +!!$./ "(!.+"B $! /! n"!.+$!. " +!,1+"!$$(. $!#!1! #! +!$!. ".!$/""1 :"!. "$$+:""r1,!>nB?

PAGE 109

n )$#*2: : +!,1+"!$$!"1 +$(!.+$ !!$+:"" !>n 2 "!>n 5 n"!.+$!. " +!,1+"!$$(. $!#!1! #! +!$!. ".!$/""1 :"!. "$$+:""r1,!>nB?;,#25#,$': % : : 5 , 03 *@*' *@*A *%A7 *)%* *%27 *)') *@%& *@)% *))A *%&& *%2& *)*% *)@7 *)%A *@%) *@)%

PAGE 110

n ;,#55#,$'( ) % ( ) = &, 03 ( ) = , ) 03 *%72 *))2 *%)% *%72 *%@@ *%7& *%?) *%2A *%A* *)@A *%7& *)?2 *%'2 *)7% *%7@ *)A@ *%?7 *)'% *%@' *)%A *%?? *)%& *%%& *%A* *%%& *%77 *%@@ *%22 *%%@ *%@& *%@% *%7@ $,--( +!!"#!$ !$$+:"r1,!>nB' "$,--( +! -"1$ !$$+:""r1,!>nB7:+!! +!4 !,!$+!$!/!$!" +1+! ,1+"!$$(. $"1+ !$+!$(,!!/!$ !" $-!,1+"!$$#,!$ .+"1$%4-: + !("(,!".!."$ $ "1(%*4-

PAGE 111

n )$#*5: $%$).''5#,$' )$#*6( ) $%$).''5#,$'$(G +!!$!.+, 5"1:$ +!-$ .-/!+!" $#!".,"1 +! 1! !$ ",-!($ !$1! !$ ",-!($,(. !,1+"!$$.., " -! +1"1!$ ",-!(!$("(,!". !+!-! +$, 5!

PAGE 112

n .., !,1+"!$$,$"1 ! +!-$ . -/!;,! +!.-/!; ( +! " +!".!$!"1!( +!$ , //!n-1!I,.4!"!! 8I!!9 8//!n-1! I,.4!"!!)*%79:$,$!"."=,". " : +n.%*) /.!$$ +!: "!(+!8 )*%79 I!! $( :!:$,$! " !/ ! +! ".! !$ !(! + .,! -/ ! .:+!! +! .,!/.!$$ !.-/! !+!I !!$( :!:$$,$! /!(-$ $ . (,". "$" +! 8//!n-1!)*%'9n"$,-+!@/" $ " +! !1,/! " 1 /.%-;%%*-;%*-!/ !""1" +!!"$ "0, ( +! n"!.+1 +!/" $!" 5!,$"1 +!$!!. !-! + $ $ ."$$ $-! -!$! ,"$-, /!!!# "$ $!" +! /$ (:+ $-!$,"1r!;-/! !! $:! ,"-, /!#,!$: + -;8($ ! ,"$9 +! /( +! !!$" -"-,-#,!$8$ ! ,"$9 +!1,"!: +! !!$ r!.+$ ! +!/" $:!!1,/!" -;-,"-"-,-!!# "$$ "!# "($ B !$/!"$!."B! $ $ .(,". "$:!!/!(-!+!/,/$! ( +!$!$ $ .(,". "$! .! ! +!-: +$,(.!,1+"!$$ + ."! ,$! .., ! +!,1+"!$$ (. $$ +!// :""1

PAGE 113

n )$#*8 %'.&, E, I-!!/,.!$$ ! $! ( +!1 !$,(.!(!.+( +! "$$$$+:""r1,!>nB2+$$ ! $! $-/ !" . :+!! +! $/.!$$!

PAGE 114

nn nnrr nnrn nrnnnn nnnnnn nnnnn nnnnnnn nnnn nnnn nnnnnn nn nnnnn nnnnn nnnnnn nn nnnnn nnn !nnn"n nnnnn rnnnnnn nn nnr#n$% #$&n n $nrnn#$nn !'(n nnn)nnn% &n"'*+,-*nn nnnnn n#$nn nnnnn n!'(nnn n)nn" nnn()n nn nnnnnnn nnnn nn#$nnn .nnnnnn nnn nnnnnn nn/nn nnnn nnn

PAGE 115

n ,1+"!$$-!!" +! ,"B ! + !$: + "!$$ +"Q4-( +!$ !+! !$!.+ !;$!.++$$+:"1.! " ! :!!":"-!$,!" +! (!":"-!$,!-!" $(-:" ,""!8. +! %&&@9 +! !$!.+!$+#!((!"1!$, $: +$1"(." $.!/".!$! :!!":" ,""! -!$,!-!" $":" .!. !" +!(! 8,$)**'K$"! )*%)9 , " +!-! + # ! +!$,(.!,1+"!$$( . .., !,$"1n ./$ .-/! +!n#,!$($,(.!, 1+"!$$: +#,!$ "! (!-!$,!-!" $"!.--"-! +(.., "1 +!$,(.!,1+"!$$$ ,$"1(!.!. !:" +!,1+"!$$!"1 +$."!!; . !(+$ ,$"1 +!,,!".!n" !"$ 8n9!#!-!8 "!)**?K$ !$)*%*9 +!n-! +$$!"!;/!-!" $,-!" "($48,-!" "($4%&7'9:+!! +!$ "!# "( +! "1 ,".-/"!" (%$ // " +!$+!#!. C$$+:"" +!0, "%@!::+!!K S $ "!# "( +!"1 ,".-/"!" ( +!-!":"$/!! nSK-%0, " >nnB%+!,1+"!$$#,!$!#!(+!!!$!.+!$ :!, 5!" +$$ , # ! +!n,1+"!$$#,!$+!$!!$!.+! $".,!"!$ !$" -+$ +$!!"".,!" +$!$! .+":!$.,$$!(, +! " +!$!. "$ + (:

PAGE 116

n $( "!.-/!"1$ ,$ +!!$!.+:4.-/! ! """! !;$!.+"1")**?$/ (+!(,(-!" (+!. (+$/+ !;$!.+"#!$ 8"!)**?9"!"#! $ 1 ! :$ !$. !" ,.4!;$"!!;$!.+"#!$ : +# "1$,(.!,1+"!$$+! :" + +!$!$ !$:!, 5!" +$$ , +!/,/$!("!L!$!.+:$ "#!$ 1 ! +!-!$( !$ "1 +!-!""1,$ :"$/!!$" +! "$ "(:!1-!" .-/! +!$! (,B$.!-!$,!-!" $$/.! -!" +!1+ $",1+"!$$ !"1 +$:!!$"#!$ 1 !(!.+$ !$! " +!:"$/!! .!. ! +!$,(.!,1+"!$$ #,!$!.., !(-(!-!$,!-!" $" .-/! #,!$.., !,$"1#$,"$/!. "",1+"!$$!!-!" $! -! +$ n""!H$!$!.+(,B$.!-!$,!-!" $:!! "!,$"1 : "$ ,-!" -! :!$""1"!!"1!n "$ ,-!" !:!;/!-!" 8n9%")" +!""1"!!"1r! 8r9 n%.!. !:" @*7%&%" %')-8%*)*@*"'*( 9 #! +!1,"!#!n).!. !:" (-)%?*7%%**" %')-82%@)*@@"'*( 9#! +!1," !#! :$.!. ! $-, "!,$(-/%&)*** %%)*** " , 5!" +! .+"1!( !"-!$:!!! $, +:!$ :"!. "8)@*_ )7'_9 "" +!$ :"!. "8'*_ A'_9

PAGE 117

n "!.., !"(-+!(!-!$,!-!" $,$"1 :-! +$K +!"$!# "($$89!#!-!" + !,,!".!n" !"$ 8n9 !#!-!+!-! +$$!":4 !,""!8! ,""!%&A'9!,""!=,$ +! !0, ! +!-," ( -$$ "$/ ! +!-!$,!:"/(! + !-$$ "$/ !1B: ( !/(!$$+:""L M 7 N O7LDP Q RST7`7O7UVO7 0, ">nnB)!: L M 7 N O7LDP Q RSTWG 8 VO70, " >nnB) $"1!,""!H$-!"!,$!$ +! (!:" -!$,!-!" $((. "#!. C":"$/!!% $#!("$ $+:""0, "%)!:S!;/["8<9F%83-C90, " >nnB@ :+!!3S#"3-"H$."$ " +!n-! +$$!"!;/!-!" $,-!" "($48,-!" "($4%&7?9:+!! +!$ "!# "( +! "1 ,".-/"!" (%$ // " +!$+!#!. C:+!!K S$ "!# "( +! "1 ,".-/"!" ( +!-!":"$/!!" +!(:"1!0, "$!,$!6KS(C0, " >nnB? :+!!S."$ " "

PAGE 118

n CS%3D"[8<9D]0, " >nnB' "K-%S(3D"[8<9D]0, " >nnB7S8<9D[!;/8(3Dn9]0, " >nnB2 "!$$,-!(" !."$ " "$ !$ + ."!.., !( !.+,",$"1KS(C!"10, "%7$(:$6S8<9D[!;/8%3D,C9]0, " >nnBA ''$( $ !$)*%*,1+"!$$$ ,".,!$.-/!+!"$ #!$ ,(,1+"!$$ ! !-"!(-:"(! +!:"(! , 5!".,!$:" .!. !!1"""1")***," )*%*+!-= ( +!$ "$" +#!(, !.$(!#!!,"1 +$ -!""(, !.$:!!,$!: + -"-,+!!B!/!(:""5!$!" +!:"!.$#! !.+$ ! $ !$.., !$ +! #,!$(%7:"$!. $ %?A"$!:" $ "$. ! / $"1 +!.$ $" + !8$ !$)*%*9+!,/:" !$("(,!".!." "$"1!(--"! +!#, ,/"! /. +! !1!"!,$> "$"!$ !$:!!$1!$"!!(-1" ,!

PAGE 119

nn /!"!;/$,!." "$:!! /./!-"" , +(( +!/ $+ !$ "!!. "$!. :+!! !",1+"!$$ :$1! ! +"*%'-" +!!(!.$$(!$, B,/8$ !$! ) *%*9 $ !$, 5!$1,$ (. :"$/!!."#!$" !.+"0,!$!#!/! $+.( 8$+.( %&&?9" ,,!".!" !"$ ! 0, "$!#!/!$" !#!$8!#!$"$%&A%9"/ ! "%&A@8"1"!!"1 .!".!$ " 89%&&@9$$+:"" +!( :"1!0, "$ X D D PY N $ &; N 0, " >nnB& +!! Z a b r c P 0, " >nnB%* +!!6 CS$+!#!. 5S+!1+ ":"/(! S,1+"!$$!"1 + LS$."1/-! ! +!!$, $(-%*/ $63!!$ n" !" " 839rK !!1"839-K3-/n" !" "839rK -839"!"!1"83>< 9!;$K4!(" 839",$-$ "1n" !" "839 ,$"Kn" !" "83n9"/B.4;!., #!83 r9r!!/,.! !:"!>nn + +!:"$!. $//!" +!!( B+"$!( +! ! .!$/""1 :"!. "K8" +98" +" +!$ 9"$"

PAGE 120

;,#+'',%$,$).'').' ( &'"" $).'' "!. "$!. $." ""1-"!." "$ : +")4-,/:"( +!$ !+#!$+!.!$n" +$$ , +!!$ , $.!". ! + / $+#! #!$!,/:" !"." "$ ;$( -H$!$!.+$$$ !$$ ,$ //!$ .., "1 ,1+"!$$!"1 +$,$"1:"(! 8-" 3,/)*%29,$!$$ !$-! + $ ,:"$/!!$ / $" +!" ! !$-"( +!$ !$ + :!!$ ,!$ !$:!!$$ ,!-, 5!:" .!. !(-)**2 )*%) -H$-! +#!$$1+ :+!! +!,1+"!$$!"1 +$!1,/!" !1+ :"!. "$$!. $ +

PAGE 121

$ !$"-$+!,"/,$+!:"" ,1+"!$$ ( +!$ !$ +! $ ,!

PAGE 122

!"r# n!r< +!(:"1.+/ !$/!$!" +!!$, $( +!$ !$ ,!$.-/!n$,(.! ,1+"!$$(. $ ,1+"!$$(. $! !-"!( -(!:" "(:" ,""! !$ "1+!$ !$ ,!$!/!$!" ! " +!! +!:!!.-/! ! +!.-/!; ( +!n-!$"-! +1" .!$!(+!($ $ !$ , "##"1,$!(n$+/!(! ,$"1 " -! +$ .., !,1+"!$$ $,.+$ +$!!#!/!! , n-!, 5"1 "-! .-/!;!#!-! +$ .., !,1+"!$$" ( !",$!"$ ,. ,"$$ $,.+$$ "!# " + "##!-, /!/ " $" +!!A-!"$"1" +1"$ ".!!1!$$","1 +!!$!. +$ ,"!:0,!$ "$" !(.!".!$:!!$.#!!: +!.+n$ !$ , K!"1 +!,$!(((!!" /!$(n "-! +1(-!"1" # " $;;%$ )/& -$( $ ,( :$ !$",.4G:$.",. !, $"1n-!"1 .-/!!$, $(+!n-! !-/. .!. !"!"+! )**@$ ,8"!)**@9n" +!n$ , +!! !$("(,!".!:!!!#!:! (!.+$ !,$"1 (,.4,"1$+/!( ! 8 (,.4)*%'9 " +!! ,-! +:$//!(.., "1 ,1+"!$$,$"1 -! +1(."$!"1.+"1!$",1+"!$$8 Dn)*%*9 +$ !$!. !" +!$,,"$"1!A(!$!" .--," ( ,$+". !:!$ (I,4!#!",!"$, +( @ + !! +!$!$ !$:!! !$1" !n%")"!$$+:""r 1,!*A%"!!

PAGE 123

!1!( +!1., ,!(!"n)$. !"#." "!$!" $,,".--," +$ !$:!!!#!:!"1! + !"$,! + +!$,(.!,1+"!$$ $,,""1 +!$ !$ +#!" $1"(." .+"1!$".!)**?: +,B,/ ("!:$ ,. ,!$ + :,.,$!.+"1!"$,( .!,1+"!$$(-)**? n #! !(! r1,!>nnnB%" r1,!>nnnB) )$#*+ ,# / 0 -1123

PAGE 124

)$#*-),&/ .>' '0) ,r.-1+53 .+ +!:4"! +! !"$,," "1 +!$ !:$#!" A/!$!. "$.!$/""1 :"!. ". !$/""1 *a +,1+?'a !1!!$?'a &*a"$"$$+:""r1,!>nnnB@+!$,(.! ,1+"!$$( !.+$!. ":"!. ":!!(!! $"!. "*?'&*a%@'a %A*a))'a)2*a"@@'a"!>nnn"!>nnn: + +!.., ! #,!$

PAGE 125

)$#*4 % % ' !:!$.!!"$+ $(!.+( +!$ !$(+ !./%*%-!$ r1,!>nnnB?$+:$$.!!"$+ ( +!./!( +!$ !. !" +! 1., ,(!.--," :+!!"!+. ! +!n%:" :! !0,/-!" r1,!>nnnB'$+:$$.!!"$+ ( + !./-!( +!$ ! . !" +!!$!" .--," :+!!"! +. ! +!n%:" :!!0,/-!"

PAGE 126

)$#*2%'.%$ , ), % . ) %$,$, ,0rr+3 )$#*5),%'.%$ , ), % .' ,$ (0rr-3

PAGE 127

,(.!,1+"!$$(!.+( +!:"!. ":$.., !,$"1 +! " +!,"1$..," $:!!-!( !!$" +!$+,!! >nnn + $+:$ +!#,!$.., !(+!n ($ !. !" +! 1., ,(!"!>nnn $+:$ +!#,!$.., !(+!n ($ !. !" +!!$!" .--,"

PAGE 128

nrrr rrr ! n"#rr! $rrr r%&rr 'r ! $"#rr! nrrr rr r !rrr rrrr r" n # rrrrr $r%rr rr &r $ " (r &$" ) (r $ " & ) &'!!!()&n'n!)n'!!%&%(n*+'&&n+','!!!()&+),'')+,+%%!+%,!)&&(++&'!!!()&%&((,nn!%!+!)(&&&n%n,'!!!()&('(((,)*+%%!n(%,)&&,(%)&'!!!()&('!!*,n)(+%((!)+%%!&(),!!,'!!!()&+)n!!''%((!n('!(,%&%&%!*&'!!!()&)%)'%&n)(+!!+n+))n,&+',n%,'!!!()&!%,n!+'%((%%(!&+('%&'+( r rr &r $ " (r &$" ) (r $ " & ) &'!!!()&n'n!)n'!!%&%(n*+'&&n+','!!!()&+),'')+,+%%!+%,!)&&(++&'!!!()&%&((,nn!%!+!)(&&&n%n,'!!!()&('(((,)*+%%!n(%,)&&,(%)&'!!!()&('!!*,n)(+%((!)+%%!&(),!!,'!!!()&+)n!!''%((!n('!(,%&%&%!*&'!!!()&)%)'%&n)(+!!+n+))n,&+',n%,'!!!()&!%,n!+'%((%%(!&+('%&'+(

PAGE 129

n $ ".!(//;!%4-! !84-9 +! $,(.!,1+"!$$.+"1!(: !1")+$$ ".!! :!!"%4-")4+ !$,(.!,1+"!$$.+"1!" (:!1"@+$$ ".!1! ! +")4+!$,(.!,1+"!$$.+"1!

PAGE 130

;,#4""& '= >',%$,;(' )n>,'0-1123

PAGE 131

+!!$1!"1!(#,!$-!$,!!" !(:"$/!!" .!$/""1(!.+!. ""!H$!$, $!$,-5!"$. ! /!1/+(!. "$(-* @7*-, /!#,!$(!.+-!$,!-!" $+:"" +!1/+$!$, +!!$$1"( ." -," ( /" $" !"!H$1/++! +!!!, "1 / " $ + !#!"!: +! +!/" $(!.+!. ".,$ !$( . "!$!!"r!$!(.-/$" +!#,!$.., !,$"1n +#!$!!"1 /+!,$"1 +!$-! 1 +-.$.!,$!"! r +!$ !. !" +!1., ,(!8 n%9!"!.., !#,!$(!.+(!-!$,!-!" ,$"1 +!n-! +".-/!$ +!$! +!,//!":!(!.+:"!. "r1,!>nnnB7$+: $ +!#,!$ .., !,$"1 +!n ",!".-/!$ +!+!#,!$.., ! !"!$!"+!:"-!$,!-!" $: ++! /" $".4 "1!$ "..!$;.!/ ( &*"%@':"!. "$ +!n.., ! .$!(:$ +! .., !!"! +!# "$ +!&*"%@':"!. "$:!$.,$$!" +!(:"1 $!. "

PAGE 132

)$#*6&.& ). 5#,$',%$,' ) ',%$, 5:,$' '$'. % .) %$,$, ,0rr+3 +!$!.".-/$"( +!$ !. !" +! !$!" .--," 8n)9!"!.., !$ :#,!$(!.+(!-!$,!-!" ,$"1 +! -! +" +!n-! +"$+:$ +!$!" +! $-!$. !.+ r1,! >nnnB2$+:$ +!#,!$.., !,$"1 +!n ",!". -/!$ +!+!#,!$.., !!"!$!"+!:"-! $,!-!" $: ++! /" $".4 "1!$"..!$;.!/ ( )2*"@%':"!. "$ +!n.., ! .$!(:$ +! . ., !!"!:+!! +! #,!$.., !,$"1 +!n !+1+! + " +!#,!$.., ! !"!+!$!# "$:!$.,$$!" + !(:"1$!. "$!;/!. ! +!1/+$! #!( .-/! +!1/+ ( +! ( +!$ !. !" +! 1., ,$ !n%+!!$!" .--, " $ !n)$

PAGE 133

$,,"!!$!" ,"1$"!$" + #!-,.+# ""$,(.! ,1+"!$$ )$#*8),&.& ). 5#,$',%$,' ) ',%$, 5:,$' '$'. % .' ,$ (0rr-3 n" +-!$,$"1 +!1"%4-!("( ,!".! +!!:!!$!#! $!. "$:+!! +!!:$$1"(." # "! :!!" +!!"!.., ! $,(.!,1+"!$$!"1 +$" +!n.., !$, (.!,1+"!$$!"1 +$"! !$"( +!# "-! + +!n ""$$:$! %4$,,""1 +!$ !:+! +!:" .!. ! :$" !$! !$( "(,!".! $ ".!n"! "#!$ 1 ! +!+/ +!$$ + +!! !$(

PAGE 134

"(,!".! $." , "1 +!# "! :!!" +!" !#,!$" +!n .., !#,!$ +!$,,""1 !", $! +!%4-: $($ #$, !#!:!(!.+( +!$ !$,$"11!/$8 1!)*%'9 r1,!>nnnBA$+:$ +!$,,""1 !"(?4 -$,,""1 +! 1., ,$ ! )$#*9),&# /. % .. ) %$,$, ,0rr+3/ . '%' % % ' n" +!&*:"!. "!. !$ ( !% +!!! 1!,"1$ + !/ ( +!!;$!.+"#!$ .-/,$, $! +!?4 -,$ + .,!-/. "1 +!#,!$.., !"!+!$!,"1$!!$, "1"".!$! (!-!$,!#,!$(:+!! +!n.., !#,!$!:!$ +! "

PAGE 135

..," ("$,(.!,1+"!$$. !, $!% 4-( +!1., ,$ !+! "!%@':"!. "(!-!$,!-!" $(!$-! +"n .., !#,!$"-!!$, ( +!! #!$+$,(.!$( +!1( .,$!. !" +!" +!$ $!( +!1., ,$ !//;!?4-(+!$ !n" +!" !!$ (,"!$ ""1 +!!((!. ( +! !", $! +!%4-! ("(,!".! : "n-!$:!!.! ! : +!("(,!".!(@4"74./ ,! +!$,(.!,1+"!$$.+. ! $ .$( +!$!1!!$( "(,!".!!:$!>nnn$+:"1 +!#!1!#,!$.., !( +!$ ! . !" +!1., ,(!8n%9;,#2$ , )$( % .) %$,$, , 0rr+3%$ , ), % + 5 : 4 5 : 6 5 : * **? *)@ **& ?' ** 2 *?@ *)' &* *** *?? *'2 %@' **7 *'2 *A& %A* *7A *2? *&' ))' %*% *2& *7' )2* *&? *AA *7* @%' *'* *?' *)' r!$!(.-/$" +!#,!$.., !,$"1n +#!$!!" 1/+!,$"1 +!$-!1 +-.$.!,$! "!r1,!>nnnB&$+:$ +!#,!$.., !,$"1 +!n ( +! +!! !$("(,!".!+! /" $( +!#,!$(%4-!("(,!".!!$+:"", ! /" $( +!#,!$(@4-!("(,!".!!$+:""! " +! /" $( +!

PAGE 136

#,!$(74-!("(,!".!!$+:""1!! "+!#,!$.., !,$"1 @4-"74-!$("(,!".!+#!! !. ! " "!H$#,!$( +! &*:"!. ":!#! +!1"#,!(#,!(**7.., !,$"1 +!%4-!("(,!".!( +!%@':"!. "#,!$$$ .$! +! "!#,!$ + !.$! #,!(5!$,11!$ "1 + +! !".$! +!$ !+$$1"(." !((!. " +!$,(.! ,1+"!$$!"1 + )$#*7&.& ). 5 #,$',%$,' ) . ',$%' ,%$, 5 :,$'. '$'. % .) % $,$, ,0rr+3 $"1 +!$-!-! +( +!n%$ ! "#!$ 1 ! +!+/ +!$$ + +!!!("(,!".!$." , "1 + !((!!".!! :!!" +!"!

PAGE 137

#,!$" +!n$.., !#,!$ +!$,,""1 !", $! +!%4-: $ #$,!#!:!(!$!" $ !,$"11! /$81!)*%'9 r1,!>nnnB%*$+:$ +!$,,""1 !"(? 4-$,,""1 +!$ ! . !" +!!$!" .--," )$#*+1),&# /. % .' , $ (0rr-3/ . '%'2 % % ' $!"#$,!#!: +!$ !: +"?4-( +!$ !"$! +!)2*" @%':"!. "$$!. "$!.#!!: +,"1$ 4"1 +!$!$!. "$ $" .!:+ +!(!-!$,!-!" $!$1" (." !$$ +"%* :!#! $+,!" ! + +!!$:!$. !" +! " +! $" .,$ !!$ $(:"!. "$!.+ $!()2*"@%'!.,$!

PAGE 138

!"!-!" "$ + M*0r3nn03n!nnn nMN8"!)**?9 +!$!:!!. !"1! +"!$+:"!:" r1,!>nnnB%%$" !!:;!4$. !//;!74-(+! $ !+!!!$-!1!/!"$/.!$. !" :"!. "$)2*"@%' + .,!." , "1 +!:!#,!$ )$#*++ & # /. % .' , $ (0rr-3 $"1 +!$-!-! +,$!(n% : "n-!$:!!.! ! : +!("(,!".!$ ".!$(@4-"74./ ,! +!$,(.!,1+"!$$ .+. !$ .$( +!$!1!!$("(,!".! !:$!>nnn$+:"1 +! #!1!#,!$.., !( +!$ !. !" +!!$ !" "!1++ 8n)9

PAGE 139

n ;,#5""$ , )$( % .' , ).;.0rr-3%$ , ), % + ,$% 5: 4 ,$% 5: 6 ,$% 5: * *2) *?A *%& ?' *'7 *%2 *@% &* *7' *@% *7' %@' *A% *A@ *A2 %A* *2* *A? *&) ))' *A' *2* *'* )2* %@* * 2@ *'@ @%' %@@ *7A *@) r!$!(.-/$" +!#,!$.., !,$"1n +#!$!!" 1/+!,$"1 +!$-!1 +-.$.!,$! "!r1,!>nnnB%)$+:$ +!#,!$.., !,$"1 +!n ( +! +!! !$("(,!".!+! /" $( +!#,!$(%4-!("(,!".!!$+:"", ! /" $( +!#,!$(@4-!("(,!".!!$+:""! " +! /" $( +! #,!$(74-!("(,!".!!$+:""1!! "+!#,!$.., !,$"1 @4-"74-!$("(,!".!!:!".$ ! "!H$#,!$( +! )2*"@%':"!. "$,11!$ "1 +!/!"(!$, $! +!%4-!( "(,!".!!"(,!"."1 +!$,(.!,1+"!$$

PAGE 140

)$#*+-&.& ).=#,$',%$,' ) . ',$%' ,%$,=:,$'. '$'. % .' , ).;. 0rr) $!" +!.-/$"( +!n.., !#,!$ +!#,!$ .., !,$"1(!-!$,!:" !" ! +!n#,!$!."$$ !" : +! !.! "( +!@4-"74-!$ ("(,!".!

PAGE 141

%)% :( )G:$( +!".#!$ ,".,!n-!$($ !$ . !"!"#!" +!!""!-"1"! !("(,!".!(%*4-:$-/!-!" !(!.+ $ !,$"1 ".#! .., ! +!$,(.!,1+ "!$$$,,""1 +!$ !"%7 !. "$+!$!$ !$:!!$!!. !$ +!!.+ !/!$!" ((!!" $,(.!,1+"!$$!$ ":" ,""! !$ "1 :$#!( + $ !$.-/-!" $(4"1 +!%*4-,$( !"$,,""1 +!$ ! +!!"#!$ !//!$ !-!$,," :+! +!+!!""!$ !//!$ !" /!", " $!!r1,!>nnnB%@ +,1+r1,! >nnnB%& )$#*+4: / .+,$ %

PAGE 142

%)) )$#*+2: / .5,$ % )$#*+5: / .+1, $%

PAGE 143

%)@ +!!$, $( +!,1+"!$$(. r.-/$" ( +!:" ,""!-!$,!-!" $ "(+!n$ ,!/!$!" !!:;,#6:,%$, $, ' )$).''%' % $, *A%*A& *A%*A&*A7*A% *A?*2@*A&*A'*A?*A%*A)*22*A)*2@*A7*A%*AA*22*AA*A%*A?*A'*A%*A'*A'*A& *A**&%*A%*&@

PAGE 144

%)? )$#*+6: & ',%$, $).''%' $,$).''%' $$+:""r1,!>nnnB%7 +!n.., !#, !$!1!"!+1+! +" +!:" ,""!:"#,!$!;.!/ ( +!" +!"":!$ !"$!. "$$+:""!.+!"( +! 1/++$$4!!$, ( +!((!!".! " +!-!!:" ,""!,1+"!$$"n -!!,1+"!$$+!n-!$..," (,1 +"!$$, $! + -!!" +!:" ,""!+!n-!$".,!$1"(." ,1+ "!$$, $! +!'B4-!("(,!".! + !".!$"1 +!,1+"!$$(. $" +!! (!!.!$"1 +!/!$$,!$" .!$/""1,1+"!$$(. $" +!" +!"" :!$ !"$!. "$$+:""!.+!"( +!1/++!((!!".!$" +!n#,!$" +! $!$4!!$, ( +!4!" /!"$/.!".,!" +!n$ ,, " " +! :" ,""! !$ "1$ +!:" ,""! !$ "1:$/!(-!: +;/$,! !",/:" "!. "$" +!(: !

PAGE 145

%)' "/!""1$" +!!$ $!( +!$ !:!!" -!!" +!:" ,""!+$-1+ -/ + +!n-! +$-!.-/!+!"$#! + " +!:" ,""!$ //!$ $,(.!,1+"!$$$,,""1 +!$ ! )$#*+8( )+,$%

PAGE 146

%)7 )$#*+9( ) / .5, $% )$#*+7( ) / .+1 ,$%

PAGE 147

%)2 ;,#8( ),%$, $, ' )$).''%' % $, *A@*A& *A2*A&*A7*22 *A'*A%*A)*7&*A@*7&*A?*7&*A?*22*A'*22*A7*22*A'*A%*AA*A%*AA%*&*A7%%@ *AA*&@*A7*A&

PAGE 148

%)A )$#*-1( ) & ',%$, $).''%' $,$).''%' $$+:""r1,!>nnnB)* +!n.., !#,!$! 1!"!+1+! +" +!:" ,""!:"#,!$". "1 + +!!$!$$,1+"!$$ +!$!#,!$/#!-! .., !,1+"!$$(. //! +!:""1+!. !" !#,!$!4!!$, ( +!((!!".!" +!-!!:" ,""!,1+"!$$"n!!,1+"!$$:+!! +! n-!+$$1"(." !"."$$ !" : +/!", " , $! +!'B4-!( "(,!".! + !".!$"1!,."1 +!,1+"!$$(. $" +!!(!".!$"1 +! /!$$,!$".!$/""1,1+"!$$(. $+!((! !".!$" +!n#,!$" +! :!$ !""" +!"#,!$!-!((., ,"!$ " !$/!.: + +!$/4!" :" ,""!/!$$,!$" +!:!$ ":!$ " +:!$ :" !. "$$$!!;/" "$ .,".,!/!$$,!$/4!$(+! !"--! ! :":"( +!$ ,. ,!$$

PAGE 149

%)& -!!" +!:" ,""!"".!$!$"/!$$,!$!1 , !$" +!$+/!( +! $ ,. ,!+!-"1$ ,. ,!$$1"(." -! .-/!;"$+/!"/" ."(1, " +" +!$ ,. ,!. !"!"#!$ ! &$($ , ).& , $( +!-/$ !$ ," %".,!$!;-" "(# "1!$( : /!$( n "#!!$("(,!".!+!$ !$. ! +!:".!. "$ " -/n" !" "/ ,!)2&7)""1 , !BA)'?*$$+:""r1,! >nnnB)): +(#!%B4-!$("(,!".!"r1,!>n nnB))$+:"1.$!#!:(%4")4-!$("(,!".!+!$ !."$$ $(/ ," :$. !"!!$ +!$ ! "".!$!,1+"!$$" +!" +"!$ $!-/ $" +!:!$ "$, +$! ( +!$ !+!.!"$!/!$!" $".!$!$+"!$$ //;!)A4-" +! :!$ $!"" +( +!$ ! )$#*-+),r.# /& 0), r.-1+63

PAGE 150

%@* )$#*--),r.# /& 0) ,r.-1+63 +! : /!$(n ".,!#!. " +!, "1$((-/ 8 (-/)*%79" (+!8)*%7 9()B4-!( "(,!".!!#,$$ ,!$, 5!#!. $+/!(! ! !-"!$,(.!,1+"!$$ $,,""1$ !$"!"#!8$"", 5)*% '9",.4!;$8$" ", 5)*%79+!-! +$ !; . +!$,(.!,1+"!$$ $!" +!,"1$+/!(! :!! +!$-!$ +$!,$!"/!#,$$ ,!$$ "", 5" !#!r1,! >nnnB)@$+:$$.!!"$+ ( +!n,"1!". %*)8n)*%)9: + +!..!". "1%4-,$+$:!!(!! $ +!M,"1!N+! !"$,,""1 +!$ !$.$$(! +!,1+"!$ $ (%7$!. "$$,,""1 +!$ ! .+ +!:"!. "$,$!$ !$(!$ ,8 $ !$! )*%*9

PAGE 151

%@% )$#*-4%'.$ , )#%. & , %" +!!$$+:""r1,!>nnnB)? )$#*-2%'. & , E$ % ,r1,!>nnnB)'$+:$ +!,"1!#!" /( +!!+!,"1 $+/!(! $$+:""1+! $$+:"" ,!1!!"/"4"!

PAGE 152

%@) :+!!,!!/!$!" $: ! +!:!$ !!# "" + !/"4"!!$!!$( +1+!!!# ""!/!$!" !!$"$ ,. ,!$ )$#*-5%'.$ , )#%n:, . . & , %" +!,"1!$"./ !$ +!,$!( +!!((! !" -! +$ ..," ( .+"1!$",1+"!$$$/!$!" !" +!,$ " ,/!$ ".!$K +! "829 +!,$ " "8DE%%2*)6)* %%9" +!,/!":" .!"1"!!"1.!".!$ " 8%&&@9.+( +! .!$/#!-! +$( .., "1:"=,$ -!" (. (:" ..," ( $,(.!,1+"!$$.+"1!$+! :$!; . !(+!n,"1!( :! $("(,!".!" +!$ !%4")4$-, !$"1!.+"1!",1+"!$$ %4-: + !("(,!".!()

PAGE 153

%@@ 4-+!,1+"!$$=,$ -!" (. !(!! $ +!!0,#!" #!. /!$$,! !;/$,!.!((.!" "2:$.., !( +!$" 1!.+"1!",1+"!$$$!" +!/.!,!$"2DE"" +!".-/! +!!0,#!" ,1+"!$$(. $.., !$ !$(-!$,!:" .!. ! +!$ !+! !$, $( +!$!.., "$!$,--5!"!>nn n 9 "r1,!>nnnB)7+$ ! $+:$ +!.., "$(,1+"!$$,$"12DE ",$"1 .+"1!",1+"!$$,$"12" +!!0,#!" ,1+ "!$$(. $.., ! $ !$ ;,#9& '$).''%'$ , ) ,C , ''r@$ :,#,$' % ''r@$ : 45rr@$ : 45?Dr@$ : 45 rr@$ : 45 rr@$ : 45 ?Dr@$ : 45 rr@$ : 45 ? *7@*2'*7&*7A*2@*2**&) ?2? *7'*22*A%*2A*A%*A%*A' 2? *2@*2)%***A@*22*&2*A? 22? *2&*2**2%*7&*2%*7A*&* 2 *AA*&@*&A*A?*A@*A@*A7 22/ *AA*&@*&A*A'*A'*AA*&@ 2/ *A@*&**&2*2&*2&*2&*A' /2/ *A?*A%*A%*2'*A)*A@*A' / %***&?*&?*&@*&A*&2*&& // %*%%**%***&@%*2%*?*&& / *&*%**%***&@%*@%*%%*2 / *A)*&?*&A*A'*&2*&2%*2 *27*2&*2&*2A*A%*A)%*' ? *7A*2'*2?*2)*2)*2%*&% ? *77*7A*77*7@*2%*7A*A& ?? *7?*2@*2**77*A**A)*&7

PAGE 154

%@? )$#*-6& '$).''%'$ , ),C , ''r@$ :,#,$' +!,"1!,$"12"DE$+:$ +!!$ ( +!$ !$ #,!$+! /,.!-!.., !!$, $ +!" ,1+"!$$(. $ .!$/""1 $!"","1+#!!!"=,$ ! "$ ,!$ (: !(!. 4":!1!1"!" +$$ , +$! $(n +#!#" 1!$"$#" 1!$r !;-/! +!,"1 !$" ." "",1+"!$$(!!$" +!, "1 $$" $.,!" $ +! +!".-/! 1! +81! + )*%79 +!!!,"1$ !"!:$".! +!n :$.!. !"! +!!(!" ".,!" +!,"1 +!#!. ,"1 :$$! +! ( -/+! ." "$ 1!"!5!,1+"!$$ $!",1+"!$$(. $ + +#!" !!"#!(!( +! $/!.(.!$!"+!1+ $$!!"#! +!!;/!. "$ +!#,!$:,!

PAGE 155

%@' :! +" +!,"1!$ +!." " " ,1+"!$$" ".,!" +! ,"1!". "1 +!" ,1+"!$$(. $$ +,!".!$!+!!$$ ,1+"!$$ + $!"1!.!(+!/"!$ +! / $ +!$!+#!+!1+ $.$! +$!(,"1$$$+:"" +!.$!B,/#!: -/ "r1,!>nnnB)2:+!! +! /"!$$+/!."!$!!""-!1!!"+!-/. ( +!$ !=!. $:!!#!:! (, +!" +!$ !$ (: )$#*-8%'.. . & , %" +! :$#!(1! !!$,," "1 +!$ ! +" +! ,"1#!. $"1 +! "-! +" ! #!: +/" $.$$(! !!# ",1+"!$$(. $$. !: + " !$("(,!".!!.., ! +!!$("(,!".!$ : +%4-"!".!$! ' 4-"".!-!" $(%4-!

PAGE 156

%@7 >nnn +1 "r1,!>nnnB)A$,--5!$ +!,1+"!$$(. $ "1: + +!$ !$ !0,#!" ,1+"!$$#,!$ ;,#7 r,: $( ;,#+1& '$).''%' r, : , ''r@$ :,#,$' )( H$'#,$' : **%7 ; **77 = *' G *7? > @ @ * N * B * A * % ''@$ :45+r@45-r@= 4r@452r@455r@45*7@*&**A&*A7*A?*A@*7'*&?*&?*&%*A2*A7 *2@*AA*&)*A7*A2*A2*2&*A&*A2*A2*A7*A' *AA*&'*&'*&@*&@*&% *AA*&7*&)*&)*AA*A&*A@*&'*&@*&@*&%*&% *A?*&'*&?*&@*&'*&'%***&A*&&*&&%*%%*)%*%*&&%**%*@%*?%*?*&*%**%*%%*?%*'%*'*A)*&&%*%%*@%*'%*'*27*&?*&?*&7*&A*&A*7A*A2*A7*A7*A'*A'*77*&**AA*A7*A?*A?*7?*&?*&**A&*A7*A'

PAGE 157

%@2 )$#*-9& '$).''%' r,: , ''r@$ :,#,$' +!!# "!n.., !,1+"!$$(. $:!!+1+! +" +! $ !$#,!$!;.!/ +!%B4-!("(,!".! +!%B4-!("( ,!".! +! ,1+"!$$(. ( +!:!$ ":!$ $, +:!$ !. "$:!!:! +$$4! !.,$! +!!$: +: !!" "./ !".,!" +!-! %4-!$, "1 "+1+!,1+"!$$$ +!!$("(,!".!!".!$! +!$!#,!$". !$!$ +! : !" +!:!$ "$, +:!$ !. "$$./ ,!" +!n-!"". / ! " +!,1+"!$$#,!$+!?B4-"'B4-,1+"!$$(. $" +!:!$ ":!$ $, +:!$ !. "$!+1+! +" +!$ !$#,!$+!n.., ! #,!$( +! 1!!$("(,!".!$+:".!$!,1+"!$$( +!!$ !!. "$:+!! +! ,1+"!$$(. $!$ $1"(." +1+! +"$ !$, $+: ."#!1!".!+! $ !$,1+"!$$!"1 +$+#!!!"#!" +!$ !$ +!,1+"!$$( . $" $$. ! !"."!!$.-/!r1,!>nnnB)&r1, !>nnnB@*"r1,!

PAGE 158

%@A >nnnB@%$+:%4-!("(,!".!)4-!("(,!".!"'4-!("(,!".! : + $$. !2;/$,!$$(. "#,!$". !"r1,! >nnnB)& )$#*-7& '''$).'').' + ,$%0''C-1++I),C-1+83

PAGE 159

%@& )$#*41& '''$).'').' ,$%0''C-1++I),C-1+8 )$#*4+& '''$).'').' 5 ,$%0''C-1++I),C-1+8

PAGE 160

%@% !"rJ n!r<+"rr< n" " +!-/$ !!1+ "$ !$:!!-!!,$"1 "!(+!8)*%79I-!!:$, 5! "5! +! (-I-!!:$$,$! .., ! +! +1"$ ".!!1!$ $" -! +$( "!# "r$ !/!"!."!/!" $$+! (:"1.+/ !!$.!$ +!$ !.+. !$ .$(!.+ "$ !-!!$/ +$ $ , --/'' $( +!+$$!!$ !."$$ $(/!".," "$! +!%4-!("(,!".! $,,""1 +!/ : +".!$!,1+"!$$, $! +$!."$$ "1( #!1! " "(!$ !!$+!$ !$$+:"" +!(:"1(1,!$ (:K:+!!r 1,!*A% $+:$!..!!/!$!" "1%4-r1,!*A): + +!!:.. !!/!$!" "1'4-" r1,!*A?:+!! +!,!..!!/!$!" $%*4-+!$ !." !.+. !5!,1+! !",/:" $+! !":":":":".+. !5!$ +! !.$!$ +!$ !: + +!$+"!$$( +!/ ,":+$:!!(!! $,1+A A $+"-"/ $+#! +$.+. !$ .,! +!$+" ,!( +! ,":$

PAGE 161

%?% )$J*+,,.'' ,# / +0),&'-1+8 9 )$J*-,,.'' ,# / 50),&'-1+83

PAGE 162

%?) )$J*4,,.'' ,# / +10),&'-1+83 n&*% $( +!/B.4$ !$. !" +!!$ .$ (r=,$ " +(+! :! +!$ ". ! +!-D/B.4;!., #!/ +! !"$,,""1 +!$ !$-$ /!"( +!%4-!!. =.!" +!$ !$ $+:""r1,!nGB? : +$1"(." ,1+"!$$(-%4'4-."$$ "1($,,""!1++$: + $-!$-!$(: !$$!!""r1,!nGB'r1,!nGB?$+:$ !..! !/!$!" "1%4-"r1,!nGB': + +!!:..!!/!$!" "1 '4-+!,1+"!$$ ( +! !"."!.+. !5!$,1+B B$+

PAGE 163

%?@ )$J*2n&*% ,# / +0),&'-1+83 )$J*5n&*% ,# / 50),&'-1+83

PAGE 164

%?? K%': ,, $( +!<.4$"#!$ !$. ! +!:! +!$ " +!<.4$"#!n " !" " / +! !": +"%4-( +!$ !$-$ /!": +".!$! ,1+"!$$(!!$"$+,!(-%4'4-$$!!"" +!(:"1(1,!$ (:r1, ! nGB7$+:$:+ !..!!/!$!" "1%4-"r1,!nGB2: + +!! :..! !/!$!" "1'4-+!,1+"!$$( +! !"."!.+. !5!$ ,1+B B$+ )$J*6K%': ,, ,# / +0),&'-1+83

PAGE 165

%?' )$J*8K%': ,, ,# / 50),&'-1+83,,&' $( +!/$$ !$. ! +!:! +!$ " +!/$r 1+ r. " +". !1,!n$"" +!.$ (>1"+! !"$,,""1%4-( +!$ !$ -$ /!": +-, /!,":$, $!%4+! !"."$$ $(." "( !!$"$+,$"/!"$/.!" +!:!$ $!( +!$ !" +!" +"!$ $ !$ +!!!$-!$"$".!"$$!!""r1,!nGBAr1,!nGB& "r1,!nGB%*n" +!$!(1,!$ +!!..!!/!$!" $%4+!!:..!!/! $!" "1'4-" +! :+ !..!!/!$!" $%*4-!$("(,!".!+$$ !,1+"!$$. " "$ +$+B B,1+" +!!$ $!",1+B B$+" +!:!$ $!( +!$ !

PAGE 166

%?7 )$J*9,,&' ,# / +0),&'-1+83 )$J*7,,&' ,# / 50),&'-1+83

PAGE 167

%?2 )$J*+1,,&' ,# / +10),&'-1+83 $; $( +!,-! "$ !$. ! +!:! +!$ " +!,-! "!1" / " +"+! !"$,,""1%4-( +!$ !$-$ /!": + -, /!,":$$$!!""r1,!nGB%%, $!%4+! !"."$$ $( .-" "( !!$"$+,$"/!"$/.!$$$!!""r1,!nGB%)n" +!$!(1,!$ +!:+ !..!!/!$!" $%4+!1!!"..!!/!$!" "1)4-" +! ,!..! !/!$!" $'4-!$("(,!".!!"! +!,1+"!$$( +! ! "."! .+. !5!$,1+B B$+

PAGE 168

%?A )$J*++$; ,# / +0),&'-1+83 )$J*+-$; ,# / 50),&'-1+83

PAGE 169

%?& ; ' $( +!4!$$ !$. !" +!/"+"!(r +!:! +!$ ". ! +!4!$/ +! !"$,,""1 +!:! +!$ "."$ $ $(,": ,"""1" +"+!#:!!$" +!!$ ":!$ $!$$$+:""r1,!nGB%@"r1,!nGB%?n" +!$!(1,!$ +!:+ !..!!/!$!" $%4+!!:..! !/!$!" "1)4-" +!,!..!!/!$!" $'4-!$("(,!".! )$J*+4; ' ,# / +

PAGE 170

%'* )$J*+2; ' ,# / 5 +!:!!$!. !"!/!$$!#!$ + ."!! !$! !"(+! n1 !!# "-!:+!! +!,!!$!/!$!" +!:! $ !$" +!!$" !:!+1+!" +!!$""1!"!/1!$$#!+1+!$$+: ""r1,! nGB%'

PAGE 171

%'% )$J*+5; '%.%", , ,, $( +!!$ !$. ! +!:! +!$ " +!!/ +!$ !$ . !=,$ !$ (4!" .+ " (( +!.$ (,$"+! !": +"%4-( +!$ !$-$ :!: +$+! + $.! ! +!/ ,": + ,"$ " +B$, +$$+:""r1,!nGB%7"r1,!nGB%2n" +!$!(1,!$ +!:+ !..! !/!$!" $%4+!!:..!!/!$!" "1'4-!$("(,!". !+!,1+"!$$ !""$! +!%4-!("(,!".!$$+!4!$$ !

PAGE 172

%') )$J*+6, ,, ,# / + )$J*+8, ,, ,# / 5 ",CA' $( +!!"$ !$"$, +!$ !;$=,$ :!$ (#!$ ""$ , +!$ ( ,$ "+!$ !$. ! +!:! +!$ ". ! !"!1" / +! $,,""1 !"."$$ $(-; ,!(/!".," !!$":B$!$ ,. ,!$$

PAGE 173

%'@ $+:""r1,!nGB%A"r1,!nGB%&n" +!$!(1,!$ +!!. .!!/!$!" $%4+! !:..!!/!$!" "1'4-!$("(,!".! )$J*+9", ,# / +

PAGE 174

%'? )$J*+7", ,# / 5

PAGE 175

%'7 !"rJ n!r<".G"rr< n" " +!-! +$/!#,$$.,$$!" +!/!#,$.+/ !$ +$ .+/ !$.,$$!$,1+"!$$(. $.., !,$"1-! +1" ",$!" :"!"1"!!"1".,"1$ "!# "($ !$/!"$!."! $/! ,1+"!$$.., "$+!$!-! +$-!-!//.!"! ! $, !(,$! :+!""5"1 I!!/#!$ +!$!"$!$: +" +! $( :! +$$ ,, 5!$ +!I!!$( :! /!(+!$!-! +$" +! n"I!!!(!!".!1$#!" +! +!//. !"$$$ /!(-!" +! "$!!.+1+! /" $ !1,/!" . !1!$$!" +!"$$!. + +! ."$$ $( +,$"$( /" $: + +!$$. ! ,!"1 ,!"!!# " ( ! +! $"5!"I!!.%*%$,$! .! ! +! 1 .!#,!$ +!/!$+/!1 + ."$$ $(/!$!. "$ "%7:"!. "$n" " +!/!$+/!1$!. "$ +!1$$,#!" %4-$!. "$ $,,""1 +!$ !!/!$!" "1((!!" !$("(,!".!(-%4'4+! "$$/.!$$$.-/! !";.!:+!! +! $1/+!1 "$ -" $ !$#,!$(-I!!"./!!;-"!n";.! +! . !1!$( !$$1"!,1+"!$$!"1 +$!" +!!$ ( $ !$"H$(! .., !,1+"!$$ +!,1+"!$$(. + !!$ ( ! +!"#!1! ! !-"!( +!."!, 5!" +!$ !$

PAGE 176

%'7 : .' +!$ "!# "-! +, 5!$ +! "$ $ . ($ " !# "( +! /" $I-!!.., !$ +!-"-,--; -,-" -!"#,!$( +!!!# " "!.+1.!! !-"! +!$ " !# "(!.+1.! +!$!#,!$!.-/! +!"!1+"1;-!"" -"-,(" +!$ "!# "(!.+.! +!1/+$( +!!$ ( !$+:"" +!(:"1$!. "($;$ !$ .+1/+ ".,!$2=,$ -!" (. ((#!!$("(,!".!%4-)4-@4-?4"'4-+!=,$ -!" (. $!.., !,$"1 +!n.., ! ,1+"!$$(. $ .-/, !(+!$ "!# "( +!/" $+!,1+"!$$(. $! .! ! +!=,$ -!" (. $,$"1 +!!0, "$" +!,$"1 "!.+"1!" ,1+"!$$ %4-+!1/+$$$+: +!=,$ -!" (. $ + .!$/ " $ !$ "-.., !,1+"!$$#,!$+!($ 1/+$$+:$ : "!$ .!$/""1 +! "=,$ -!" (. $(;/$,! ";/$,!( %*B-! !B $ ,. ,!+!!$ + +!1!$(( +!1/+! +!!$ + -!$" +#!",-!$(,1+"!$$" +!$!!. "$

PAGE 177

%'2 -/!$ ( $$(:$" r1,!GB% 6 )$J*+&' : $).'' +$$!!!$ ( $$(:$" r1,!GB) 6 )$J*-,,.''' : $).''#,$'

PAGE 178

%'A /B.4!$ ( $$(:$" r1,!GB@ 6 )$J*4n&*%' : $).''#,$' <.4$"#!!$ ( $$(:$" r1,!GB? 6 )$J*2K%': ,,' : $).''#,$'

PAGE 179

%'& /$!$ ( $$(:$" r1,!GB' 6 )$J*5,,&'' : $).''#,$' ,-! "!$ ( $$(:$" r1,!GB7 6 )$J*6$;' : $).''#,$'

PAGE 180

%7* !G + $$,--( +!!$ ( #,!$ +!$;$ !$!$.!#! " +!#!1! #,!$ ;,J+$(' $).''H$'#,$' : . : . ':)#,$' +!!$ ( #,!$( +!#!$;$ !$!#!1!+!#!1! ( +!!$ ( #,!$$ +!"//! !.+$ ! ! !-"!("#!1!#,!: /,.!"!0, ! ( +!:" "!//! +!$ !$+!!$, $!$(:$ & ,,.''n&*%K%': ,,,,&'$; )( ' #,$' ' #,$' ' #,$' ' #,$' ' #,$' ' #,$' :):,$' : **%**%**%**%**%**%**% ; **)**)**)**)**)*%***@ = **'*%***'*%**)**)**%) G *%**)**%**@'*@**@**)@ > *%' *@* *%' *'* *'* *?* *@@ @ *@* *'* *@* *2' %** *'* *'7 N *?* *2' *?* %** )** *2' *AA B *?' %** *?' )** @** %** %@) A *'* )** *'* @** ?** )** )** : )** B %** B @** )**

PAGE 181

%7% -/( : +#!1!#,!$!$$+:"" r1,!GB2 )$J*8& ':): $).''#,$' +!! +!#,!$//! !,"""1(( +!1/+" +! !. "$!. "$:+!!-!$" +#!,1+"!$$#,!$+! #,!$ "!$ !!. "$$+:/!( n" +!$!!. "$ +!,1+"!$$( . $.., ! $!"(!:"-!$,!-!" $!$1"(." :! +" +!#,! (*2( ;/$,!+!!(! +!/( -!..!/ ! /. "!$

PAGE 182

nnrrnnnn n nrr r nrnnrnnnr n r!nrn rn!!nnn!rnn "nrrrn#$!n nnnrn%nr&nn !rn%r'nrnrnr nrnrnnn'rn%"rnr nn"rrrnnr&

PAGE 183

# (')$rrnnnn n*& r nrnnrnnnr n r!nrn rn!!nnn!rnn "nrrrn#$!n nnnrn%nrrn+n'r&& $n"nrrnnrn,$! rnnrnrnrn&

PAGE 184

%7? <.4$"#!( : +#!1!#,!$!$$+:"" r1,!GB& 6 )$J*+1K%': ,, ':): $).''#,$ ' +!n.., !#,!$1!"!(: +!!0,#!" ,1+"!$$= ,$ -!" #,!$.., !(-:"-!$,!#,!$"-$ !#!!. ": + +!?4"' 4-!$("(,!".!#,!$$+:! +!!$ ( :+!".-/! +!(!

PAGE 185

%7' /$( : +#!1!#,!$!$$+:"" r1,!GB%* 6 )$J*++,,&' ':): $).''#,$' +!n.., !#,!$1!"!(: +!!0,#!" ,1+"!$$=,$ -!" #,!$.., !(-:"-!$,!#,!$"-$ !#!!. ": + +!?4"' 4-!$("(,!".!#,!$$+:! +!!$ ( +!.!"$. !" +!!$ $!( +! $ !:+!!!!# !,1+"!$$(. $!". !" +!n"(!: " +! $ !$"-(!:" ++#!$1"(." ,1+"!$$" +!:!$ !. "$ :+.+$4!!$, ( +!(!$ !"+!##!1! !!$. ! " +!:!$ $!( +!$ !

PAGE 186

%77 ,-! "( : +#!1!#,!$!$$+:"" r1,!GB%% 6 )$J*+-$; ':): $).''# ,$' n"1!"! +!)4-"@4-!$("(,!".!+#! +!!$ ( $ +!$ !$ : + +!?4-"'4-!$("(,!".!!"1$":.+!! :!!"$ !$K"" -$ !. "!;.!/ ( +!$, +!!. "$

PAGE 187

%72 4!$( : +#!1!#,!$!$$+:"" r1,!GB%) )$J*+4; ' ':): $).''#, $' +!4!$$ !+$.-" "( +, ,/!$ +!:!$ "( !$ ! !$" +!!$ "$, +!. "$n"1!"! +!n,1+"!$$(. $ " ( +! (! .,#!$/4!$" +!n " +!" +"$, +!. "$!!$ , ( +! ,"::+.+,"$(-" + $, +-!$" +#!,1+"!$$(. (-" !. "$$ !$#,!$( +!$, +!"!$ !!. "$!$ 1"(." :! +" +!,1+"!$$(. (;/$,!$$!!"" +!(!$ !$ !$ +!(! !$+1+!,1+"!$$"(!$ !!$

PAGE 188

%7A !( : +#!1!#,!$!$$+:"" r1,!GB%@ )$J*+2, ,, ':): $).''#,$ ' +!!$ !$." "$.-" "( +, ,/!$"( !$ !!$ : +4!" .+ ". !%*4+!" +:!$ +!!$$-!.! "! :!!" +!n" +!(! : +!!# !,1+"!$$(. $". "1/!" !"" +!" + "$, +!. "$+!n,1+"!$$(. $" +!" +"$, +!. "$! !$, ( +!,"::+.+,"$" + $, ++!$ !$"$/4!$" +!$, + !. "!4!!$, (4!" .+ " +! +"$-!/! "(!$ $,".! :+ +!,1+"!$$=,$ -!" #,!$!!!# !" +!" +!. ": +#,! $.+"1 +!$, +!. "-!$" +#!,1+"!$$(. (-"!. "$ $ !$ #,!$( +!:!$ !!. "$!$1"(." :! +" +! ,1+"!$$(. ( ;/$,!$$!!"" +!(!$ !$ !$ +!(! !$+1+! ,1+"!$$" (!$ !!$

PAGE 189

%7& !"( : +#!1!#,!$!$$+:"" r1,!GB%? )$J*+5", ':): $).'' % +!!"$ !." "$.-" "( +, ,/!$"(!$ ! !$ +!!$$-!.! "! :!!" +!n" +!(! " +!!$ ! !. "$ :!#!$ !$(! +$$1"(." ,1+"!$$" +!:!$ "$, +:!$ !. "$ +! +!!!$-! !!$ +!$!!$!" +!#(!$ !, B,/n $" .! :+ $." , "1 +$,1+"!$$!!# !" +!" +!. ": +#,!$.+"1 +!$, +!. "

PAGE 190

%2* , =:' ) r +$ /!($ , +!1$5!$."$! "r +!-! +$ ! !0, ! +! $! ".!$/""11$5!-,$ !($,((.!" $ 5!1 + $ $-."/,.! $! + $" 1!!",1+ /!(+! +1 " !1!$$"$-! +$$,.+$$ "!# ", 1!("!#!$!$4!: +!!$, $I!!!.--!"$1$$5!$!" +! +$1: $,$!( +! "!$, $!/ !" +!$!. "#!$/ ( +$$ , +!! "1$ (@-! !$@*-! !$"'*-! !$:!!!#!:! ! !-"! +!1$5!! ((!. (" +!,1+"!$$r. +!1$:!!//! +!-/$ !,$"1 +!$ "!# " -! +: + +!#!1!#,!$, 5!"!.+( +!$!1$+!!$, $( +$$ ,! $+:"" r1,!GB%7 r1,!GB%2 " r1,!GB%A )$J*+6& '4 ' ):): $).''%

PAGE 191

%2% )$J*+8& '41 ' ):): $).''% )$J*+9& '51 ' ):) : $).''%

PAGE 192

%2) +!1$:!!$//! +!<.4$"#!$ !,$"1 +!$ "!# " -! +: + +!#!1!#,!$, 5!"!.+( +!$!1$+!!$, $( +$$ , ! $+:"" r1,!GB%7 r1,!GB%2 " r1,!GB%A )$J*+7K%': ,, '4 ' ):) : $).''%

PAGE 193

%2@ )$J*-1& '41 ' ):): $).''% )$J*-+& '+11 ' ):) : $).''% $ +!1$5!$".!$! +!,1+"!$$r. ".!$!$!" +! ( +!$! : $ !$ +!1$5!,$!I!!//!$ ! +!/// !$5!

PAGE 194

%2? 'n,&. +!r$ !/!! +-!$,!$ +!$/!( +!"!! :!!" /" $ I-!!$,$! ," +$"$$I-!! 4!$ +! /" $" +! $$1"!1".., !$ +!-"-,--;-,-"-!"#,!$( +!!!# " "!.+.!I!!,$!$ +!-!"!!# "#,!(!.+.! ! !-"! +!$/! (+!"!1+"1.!$,$"1.""$!-B."!. "$ + +!$ , +, +!$ "$( +"!1+ !. "$I!!,$!$ +!-;-,-#,!( +$!1!" $ .%*%$,$! , ! +!#,!$(-I-!! +!/!1 + ."$$ $(/!$!. "$"%7:"!. "$" +!/ "( +!1 #!$ +!!$,,""1 +!$ !" +!!$("(,!".!(-%4'4-+! " $$ /.!$$$.-/! !";.!:+!! +!#!$(-I!!"./ !!;-"! n";.! +!. !1!$( !$$1"!,1+"!$$!"1 +$!" +! !$ ( $ !$"-H$(!.., !,1+"!$$ +!=,$ -!" (. $:!! ! !-"! "!-! +$!"!$ ( $ !$" -H$ #,!$ +!,1+"!$$r. + !!$ ( ! +!"#!1! ! !"!( +!."!, 5! $ !$ +!1/+$( +!!$ ( !$+:"" +!(:"1$!. "((#!$ !$ .+ 1/+".,!$ +!=,$ -!" (. ((#!!$("(,!".!%4-)4-@4-?4"'4-+!=,$ -!" (. $!.., !,$"1 +!n.., !,1 +"!$$r. .-/, !(+!$ "!# "( +!/" $+!,1+"!$$(. $ ! .! ! +!=,$ -!" (. $,$"1 +!!0, "$" +!,$"1"!.+ "1!" ,1+"!$$ %4-+!1/+$$$+: +!=,$ -!" (. $ + .!$/" +! $ !$"-.., !,1+"!$$r. +!($ 1/+ $$+:$ :"!$

PAGE 195

%2' .!$/""1 +! "=,$ -!" (. $(;/$,! ";/$,!( %*B-! !B $ ,. ,! -/!$ ( $$$+:"" r1,!GB)) )$J*--&' 'n,&$).''% +!!$ + +!1!$(( +!1/+! +!!$ + -!$ " +#!",-!$(,1+"!$$" +!$!!. "$

PAGE 196

%27 +$$!!!$ ( !$$+:"" r1,!GB)@ 6 )$J*-4,,.''' 'n,&$).''% /B.4!$ ( !$$+:"" r1,!GB)? 6 )$J*-2n&*%' 'n,&$).''%

PAGE 197

%22 <.4$"#!!$ ( !$$+:"" r1,!GB)' 6 )$J*-5K%': ,,' 'n,&$).''% /$!$ ( !$$+:"" r1,!GB)7 6 )$J*-6,,&'' 'n,&$).''%

PAGE 198

%2A !G $$,--( +!!$ ( #,!$ +!(#!$ !$!$.!#! " +!#!1! #,!$+!5!". !$ +!. !1"-/. " +!( ;,J-$(' $).''H$'#,$' ' n,& . 'n,&. ':)#,$' +!!$ ( #,!$( +!#!(#!$ !$!#!1!+!#!1! ( +!!$ ( #,!$$ +!"//! !.+$ ! ! !-"!("#!1!#,!:/ ,.!"!0, ! ( +!:" "!//! +!$ !$+!!$, $!$(:$ & ,,.''n&*%K%': ,,,,&' )( ' #,$' ' #,$' ' #,$' ' #,$' ' #,$' :)#,$' : **%7***7**%7***7***7**%* ; **77*%****77*@****@**%%) = *%***)***)***)***%%2*%7@ G *)***?***@***@***))'*)A' > *@** *'** *?** *?** *@** *@A* @ *?** *7** *'** *'** *?** *?A* N *'** *2** *&** %*** *'** *2)* B *2'* *2'* %*** %*** *2'* *A'* A %*** %*** )*** %*** %*** %)** : )*** )*** B B B )***

PAGE 199

%2& -/( : +#!1!#,!$!$$+:"" r1,!GB)2 6 )$J*-8& ' 'n,&$).''% +!#,!$( +!r$ !/!! +!#!$" !# " +$$!!( : +#!1!#,!$!$$+:"" r1,!GB)A

PAGE 200

%A* )$J*-9,,.'' ':) 'n,&$).' '% +!#,!$( +!r$ !/!! +!#!$" !# " : +$1+ !$$,1+"!$$(. #,!$

PAGE 201

%A% /B.4( : +#!1!#,!$!$$+:"" r1,!GB)& 6 )$J*-7n&*% ':) 'n,&$).' '% +!#!1!#,!$-#! +!,1+"!$$(. $,/."$!: +=,$ -!" #,!$$1"(." #!%*K +!#,!,$!(;/$,!" +!

PAGE 202

%A) <.4$"#!( : +#!1!#,!$!$$+:"" r1,!GB@* 6 )$J*41K%': ,, ':) 'n,&$).' '% +!#,!$( +!r$ !/!! +!#!$" !# "

PAGE 203

%A@ /$( : +#!1!#,!$!$$+:"" r1,!GB@% 6 )$J*4+,,&' ':) 'n,&$).''%

PAGE 204

%A? ,-! "( : +#!1!#,!$!$$+:"" r1,!GB@) 6 )$J*4-$; ':) 'n,&$). ''%

PAGE 205

%A' 4!$( : +#!1!#,!$!$$+:"" r1,!GB@@ 6 )$J*44; ' ':) 'n$).''%

PAGE 206

%A7 !( : +#!1!#,!$!$$+:"" r1,!GB@? 6 )$J*42, ,, ' 'n,&$).''%

PAGE 207

%A2 !"( : +#!1!#,!$!$$+:"" r1,!GB@' 6 )$J*45", ' 'n,&$).''%

PAGE 208

%AA %n,&. +!!."!/!! +.., !$ +! !(.+"1!( +!$/! " +! $$1"!1(+!"!1+"1.!$,$"1.""$!-B." !. "$ + +!$ , +, +!$ "$( +"!1+ !. "$+!!."!/!." !" (!$: +$1"(." .+"1!$"$/!$,.+$ +!!1!(,"1$ " !!$+$ -! ++$!!",$!"1!-/+1."+1."$$83!"5!)**?9 .%*%$,$! , ! +!#,!$(-I-!! +!/!1 + ."$$ $(/!$!. "$"%7:"!. "$" +!/ "( +!1 #!$ +!!$,,""1 +!$ !" +!!$("(,!".!(-%4'4-+! " $$ /.!$$$.-/! !";.!:+!! +!#!$(-I!!"./ !!;-"! n";.! +!. !1!$( !$$1"!,1+"!$$!"1 +$! " +!!$ ( $ !$"-H$(!.., !,1+"!$$ +!=,$ -!" (. $:!! ! !-"! "!-! +$!"!$ ( $ !$" -H$ #,!$ +!,1+"!$$r. + !!$ ( ! +!"#!1! ! !"!( +!."!, 5! $ !$ +!1/+$( +!!$ ( !$+:"" +!(:"1$!. "((#!$ !$ .+ 1/+".,!$ +!=,$ -!" (. ((#!!$("(,!".!%4-)4-@4-?4"'4-+!=,$ -!" (. $!.., !,$"1 +!n.., !,1 +"!$$r. .-/, !(+!$ "!# "( +!/" $+!,1+"!$$(. $ ! .! ! +!=,$ -!" (. $,$"1 +!!0, "$" +!,$"1"!.+ "1!" ,1+"!$$ %4-+!1/+$$$+: +!=,$ -!" (. $ + .!$/" +! $ !$"-.., !,1+"!$$r. +!($ 1/+ $$+:$ :"!$ .!$/""1 +! "=,$ -!" (. $(;/$,! ";/$,!(

PAGE 209

%A& %*B-! !B $ ,. ,!+!!$ + +!1!$( ( +!1/+! +!!$ + -!$" +#!",-!$(,1+"!$$" +!$!!. "$ -/!$ ( #,!$!$$+:"" r1,!GB@7 6 )$J*46&' %n,&$).''%

PAGE 210

%&* +$$!!!$ ( #,!$!$$+:"" r1,!GB@2 6 )$J*48,,.''' %n,&$).''% /B.4!$ ( #,!$!$$+:"" r1,!GB@A 6 )$J*49n&*%' %n,&$).''%

PAGE 211

%&% <.4$"#!!$ ( #,!$!$$+:"" r1,!GB@& 6 )$J*47K%': ,,' %n,&$).''% /$!$ ( #,!$!$$+:"" r1,!GB?* 6 )$J*21,,&'' %n,&$).''%

PAGE 212

%&) !:$$,--( +!!$ ( #,!$ +!(#!$ !$!$.! #!" +! #!1!#,!$ ;,J4$(' $).''H$'#,$'% n,& . %n,&. ':)#,$' +!!$ ( #,!$( +!#!(#!$ !$!#!1!+!#! 1!( +!!$ ( #,!$$ +!"//! !.+$ ! ! !-"!("#!1!#,!:/ ,.!"!0, ! ( +!:" "!//! +!$ !$+!!$, $!$(:$ -/( : +#!1!#,!$!$$+:"" r1,!GB?% 6 & ,,.''n&*%K%': ,,,,&':) )( ' ' ' ' ' #,$' : **%7***7**%7***7***7**%* ; **77*@****77*@****@**%') = *%***)***)***)***%%2*%7@ G *)***@***@***@***))'*)7' > *@** *?** *?** *?** *@** *@7* @ *?***'***'***'***?***?7* N *'**%****7**%****'***2)* B **** %*** *2** %*** *2'* *A7@ A **** %*** %*** %*** %*** %*** : ************************

PAGE 213

%&@ )$J*2+& '%n,&$).''% +!!$, $( +!!."!/!! +!$"!# " ! +"r$ !/!! +#,!$!;.!/ (%4-n:+!! +!$+"!$$( +!.!"":!$ $" ./ ,!+!#,!$"!$ !!. "$$+:/! (

PAGE 214

%&? +$$!!( : +#!1!#,!$!$$+:"" r1,!GB?) 6 )$J*2-,,.'' ':)%n,&$).' '% +!!$, $( +!!."!/!! +!$r$ ! /! ! +

PAGE 215

%&' /B.4( : +#!1!#,!$!$$+:"" r1,!GB?@ 6 )$J*24n&*% ':)%n,&$).'' % +!!$, $( +!!."!/!! +!$+!r$ !/! ! +

PAGE 216

%&7 <.4$"#!( : +#!1!#,!$!$$+:"" r1,!GB?? 6 )$J*22K%': ,, ':)%n,&$).' '% +!!$, $( +!!."!/!! +!-$ !" . +!r $ ! /!! +

PAGE 217

%&2 /$( : +#!1!#,!$!$$+:"" r1,!GB?' 6 )$J*25,,&' ':)%n,&$).''% +!!$, $( +!!."!/!! +!-$ !" . +!r $ ! /!! +

PAGE 218

%&A ,-! "( : +#!1!#,!$!$$+:"" r1,!GB?7 6 )$J*26$; ':)%n,&$). ''% +!!."!/!#!1!#,!$.,$! +!$+ !!$("(,! ".! ! +1+!+!?4-"'4-!$("(,!".!$+:! !( $: + +!$ !$ " -:"

PAGE 219

%&& 4!$( : +#!1!#,!$!$$+:"" r1,!GB?2 6 )$J*28; ' ':)%n$).''%

PAGE 220

)** !( : +#!1!#,!$!$$+:"" r1,!GB?A 6 )$J*29, ,, '%n,&$).''% +!!$, $( +!!."!/!! +!$+!r$ !/! ! +

PAGE 221

)*% !"( : +#!1!#,!$!$$+:"" r1,!GB?& 6 )$J*27", '%n,&$).''% +!!$, $( +!!."!/!! +!$+!r$ !/! ! +

PAGE 222

)*) ; +!"!; $!. ".-"!$ +!!$, $( +! +!!$ ,!$,$"1 +! " !# "! +r$ !/!! +"!."!/!! +( +!" "! $ !$".-/!$ +$!n.., !,1+"!$$=,$ -!" (. # ,!$( +!@B4!("(,!".! +!(!:" !0,#!" ,1+"!$$=,$ -!" (. # ,!$+!$! $!. "$." " !$(!.+$ !$+:"1.-/$"( +!n. ., !,1+"!$$ (. $.-/! :"(!!#!,1+"!$$#,!$(-$ !$:4 +!"!1 #! #,!$". ! + +!n#,!$!!:$ !$#,!$" +!1 /+$(:"1 +! !$ +! +!!n-! +,1+"!$$(. $!$+:""1: +:"(! !#! ,1+"!$$#,!$(-$ !$"-H$!$!.+:4"1: + ,1+"!$$(. $(;/$,!";/$,!

PAGE 223

)*@ ;,J2& & '$( .'' ' , :#,$' )$J*51&; & ' % '' @$ := 'n,& r@= : r@= %n,&r@ = L ;/ 'n,&r@='' = L ;/: r@= ''= L ;/%n,&r@='' r@= *7@*22*A**A'%&)@@**7'*2&*A'*A&)*)2@) *2@*2A*A)*A22%)%2*2&*2&*A7*&**A%@ *AA*A)*&**&'B2)2 *AA*A@*A?*&@B'B?7*A@*A%*A)*A&B@B)2 *A?*A%*A@*&*B?B%7%***A@*A&*&)B%&B%)BA%*%*&@*&A%*)BAB@%*&**A&*&'%**B%'%%*A)*AA*&@*&22%)%7*27*A)*A7*&*A%)%2*7A*27*27*A)%%%*%A*77*27*27*A@%'%?)@*7?*2&*A%*A7)*)@)&

PAGE 224

)*? ;,J5,,.'' & '$( .' '' , :#,$' )$J*5+,,.''; & ' % '' @$ := 'n ,&r@= : r@ = %n,& r@= L ;/ 'n ,&r@= ''= L ;/: r@= ''= L ;/%n,&r@='' r@= %*%%*@%*7*&&)'B)*A'*A&*&2*A7?%)% *2@*A?*A7*A%%?%2%**27*A@*A%*2&&7? *22*A7*A&*A)%%%'2 *&@*&%*&A*AAB)'B7*&)*&'%*)*&)?%%% *&?*A&*&2*A7B'?B&*&'*&A%*@*&7@&%*&@*&&%*)*&'2&)*&**&2%*)*&?2%)'*A)*A'*A'*A)@?**2&*A@*2&*2&'B%**A**A)*2?*2A@BAB@*A?*A'*A@*A*%B)B?%*@*&A*&'*&?B'B2B&

PAGE 225

)*' ;,J6n&*% & '$( .'' ' , :#,$' )$J*5-n&*%; & ' % ''@$ := 'n ,&r@= : r@= %n,&r@= L ;/ ' n,&r@=''= L ;/: r@=''= L ;/%n,&r@=''r@= %*)*&@*&%*&)B%*B%%B%%%*@*&7*&?*&?B2B%*B& *&7%*)*&7*&&7*?*&@*&A*&'*&77@@ *&%*&?*&)*&)@%) *&%*&@*&)*&)@%%*&'%*'*&&%*)%*?2 *&'%*@*&'*&&2*?*&?%*%*&?*&&A%'*&2*&2*&'*&7*B@B)*&A%*?*&2%*)7B%?*&7%*'*&A%*?&)A*&A%*2*&&%*'A*7%*2%*'*&A%*@B)B&B?%*'%*7*&A%*)%B2B@%*)*&7*&?*&?B7BABA

PAGE 226

)*7 ;,J8K%': ,, & '$( .' '' , :#,$' )$J*54K%': ,,; & ' % ''@$ :45 'n,&r@= : r@= %n,&r@45L ;/ 'n ,&r@=''= L ;/: r@=''= L ;/%n,&r@=''r@= %***&'*&A*&7%%*%*@%*@%*?%*)*&7*&2*&2*AA*A)*&**A'*A'*A'*&?*AA*A)*A**A&*A@*A@*AA*&'*&%*A2*&A*&7%**n*&@*&A*&2%***&?*&2*&2*&A ) ) @ *AA*&A%***&&%%%@%)*A'*&2*&2*&&%@%@%'*A2*&7*&A*&2%*%)%%*&7*&A%***&&@?@*&&*A'*&?*A2B%'B'B%@*&'*AA*&'*&*B2%B'

PAGE 227

)*2 ;,J9,,&' & '$( .'' ' , :#,$' )$J*52,,&'; & ' % ''@$ :45 'n,&r@= : r@= %n,&r@45L ;/ 'n,&r@=''= L ;/: r@=''= L ;/%n,&r@=''r@= *&A%*@%*@%*%'7?%%%%*7%*2%*?B'B?B2 *&2*&2*&2*&7B%*B%*2&*A&*A7*A&%)&%@ *7&*&?*&?*&@@*@*)& *7A*&%*&**&*)&)A)&*2)*A'*A)*A7%7%)%2 *2%*&%*&**&%)7)?)7*72*&**AA*&% )& )A @% *7&*A'*A@*A7)%%&)%*A)*A&*AA*A&&A&%*%%*@%*'%*@@'@%*2%*@%*?%*@B?B@B?*A&%*?%*7%*)%7%A%?*&'%*?%*?%*@&&A*&%%*@%*?%*@%@%?%@

PAGE 228

)*A ;,J7$; & '$( .' '' , :#,$' )$J*55$;; & ' % ''@$ :45 'n,&r@= : r@= %n,&r@45L ;/ 'n,&r@=''= L ;/ : r@ =''= L ;/%n,&r@=''r@= *A%*&%*&)%**%)%@)%*A@*&%*&**&2&A%' *AA*&%*&)*&A@?%**&@*&%*&'%*@B))%* *A?*A&*A?*&@7*%* *A&*A&*&%*&&*%%%*&@*&%*&)*&&B)B%2 *A&*&)*&'%*)@7%@*&%*&**A7*&' B% B7 ? *&@*&)*&'%*%B%%A*2&*A&*A**A&%@)%@*7A*&%*A&*&'@*)2@?*7@*&)*&2%*)@A?)?A*2A*&)*&?*&&%7%A)@*AA*&)*&)*&&?'%%*&?*&)*&'%*)B@*A

PAGE 229

)*& ;,J+1; ' & '$( .' '' , :#,$' )$J*56; '; & ' % ''@$ :45 'n,&r@= : r@= %n,&r@45L ;/ 'n,&r@=''= L ;/: r@=''= L ;/ %n ,&r@=''r@= *7%*72*A7*2%*77*7&*A&*2)*7'*7&*&@*2@ 7 @7 %% *7'*2**&2*2@7@A%) *7%*A%%%@*A7)&7%@? *2@*2@%***27*@%'*A7*7&*&'*2@B)%%*B%7 *A%*2**&?*2?B%'%'B&*A**7&*&)*2@B%'%?B&*A)*7&*&%*2@B%2%%B%)*A?*2**A&*2?B%A'B%)*A?*2?*&2*2&B%)%?B2*22*A'%%?*AA&@A%@*'&*27%*A*2&)''&)&*7?*2?*&2*22%'?%%A*7?*7&*&%*2)A@'%@

PAGE 230

)%* ;,J++, ,, & '$( .' '' , :#,$' )$J*58, ,,; & ' % ''@$ :45 'n,&r@= : r@= %n,&r@45L ;/ 'n,&r@=''= L ;/: r@=''= L ;/%n,&r@=''r@= *7**A?*2%*22*AA*2%*2&rrrrrr*2%*A&*2?*A**&%*A&*22*A%*A**A?*2%*22*7@*A%*7A*2?*7**A2*2%*2A*'&*A&*2)*2&n*''*A2*2%*2A ?' )' @? *'7*A@*7&*2'@&)%@**7**A)*7&*27@)%')?*2)*2&*2)*27%**7*A&*A'*27*2&B'B%'B%%*A&*&)*A)*A??B2B'*2A*A2*27*A*%%B@)*2**A?*2)*22%&@%*

PAGE 231

)%% ;,J+-", & '$( .'' ' , :#,$' )$J*59",; & ' % ''@$ :45 'n,&r@= : r@= %n,&r@45L ;/ 'n,&r@=''= L ;/: r@=''= L ;/%n,&r@=''r@= *A?*&7*&@*&)%@&&*A'*&?*&@*&%%%&2 *A7*&@*&?*&*A&'*A'*&)*&@*A&AA? *A'*&@*&**&*%*77 *22*A&*A7*A7%'%%%%*2)*&)*&)*&*)?)?)) *7A*A&*A&*A7)7)2)@*72*&%*&%*A2@*@%)2*7A*&@*&?*A&@%@))7*7@*&@*&@*AA@A@A@@*7&*&@*&**&*@*)A)2*2@*&?*&?*&*)')')%*27*&A*&7*&?)')@)%*A%*&2*&'*&)%2%'%@*A)*&%*A&*AA%*A7

PAGE 232

)%) +!n#,!$(!.+!$("(,!".!(!.+( +! +!!-! +$! .-/ ! +!$ !$(!!#!#,!$$$+:""!G +4 +!@B4-!( "(,!".!+$ +!!$ ( $ !$ " +!%4-+$ +!/!$ ( ". "1 + " !("(,!".!(%4--" !0, !!/!$!" +!$,(.!,1+"!$$$ ,,""1 $

PAGE 233

)%@ ;,J+4 %/#,$'%.,$ %& '' , :#,$' ,(' '. +r@4 5 -r@= 4r@4 5 2r@4 5 5r@4 5 -/ " !# " %%%%%%%%%* -/ r$ ! /! %*&%*%*& -/ !." !/! %7%7%'%'%? +$$!! " !# " %A&AAA +$$!! r$ ! /! %@7'AA +$$!! !." !/! %*??%*%* /B.4 " !# " A@?%*%* /B.4 r$ ! /! %''7AA /B.4 !." !/! %@?'&& <.4$"#! " !# " %?22?? <.4$"#! r$ ! /! %722%)%) <.4$"#! !." !/! %722&& /$ " !# " %2%?%@%)%) /$ r$ ! /! %2%'%?%@%@ /$ !." !/! %2%'%?%@%@ ,-! " " !# " %?&&A2 ,-! " r$ ! /! %722%)%) ,-! " !." !/! &&&&& 4!$ " !# " @%)&)A)7)7 4!$ r$ ! /! %7%?%@%)%) 4!$ !." !/! %2%'%?%)%) ! " !# " %)%)%)%?%@ ! r$ ! /! )?)))))%)% ! !." !/! %2%7%2%2%2 !" " !# " %?&&A2 !" r$ ! /! %&%'%?%@%@ !" !." !/! %A%?%@%@%@ %'7%%@%%*%%2%%2 L ;/r@=''= #!1!((!!".! !$! +$

PAGE 234

)%? n"! .-/! +! +!!-! +$,$! !.+(""!$ !$ +!((!!".! ! :!!" +!n-! +"$ !$,1+"!$$(. #,!$!!#!:!( !.+$ !+! #!1!( +!((!!".!$(-!.+( +!%7!. "$ !.+$ !/,.!$ $#!1!(!.+-! +(-%%O#!1!(!."!/!! +%%7O#!1 ! (!."!/!! + %@O#!1!((!!".!( +! "!# " ! + )$J*57 %' : . ' )$J*61 %' 'n,&. '

PAGE 235

)%' )$J*6+ %' %n,&. ' ,"!$ " +!((!!".!$! :!!" +!n#,!$"$ !$ :.--"! !-!" $ (!.+$ !!."$!!: +!(!!".! +!$,(.!,1+"!$$#,! $r$ $$ !$ + !. !"!1!!$(: !$.$ $ !$ + ! : +"@*4-( +!.!" !."$$ !$$,,"!!$ + !$1"(." //, ! (!$ $1! .,$ !$( !!$ +!n.., !#,!$!."$$ !" !$$(!. "$( +!$ ! + !" +!.$ r!;-/! +!:!$ !!. "$( +!-/$ !. !" +!:!$ .$ "!$ !!. "$( +!/B.4$ !. !" +!!$ .$ ! !$$ +" +!(! !#!$,(.!,1+"!$$#,!$,$ ! +$.--" r%'$% $ $+:$ +!n#,!$"!. "$ + (.!: !",!( +!.$ $ !$" !G%'$+:$ +!n#,!$"!. "$ + ." "(!$ !!$"1 !!" !;

PAGE 236

)%7 ;,J+2 %/#,$'&'' , :#,$'/ . % '% ) ,$

PAGE 237

)%2 ;,J+5 %/#,$'&'' , :#,$'/ . % '/ .'' "$&,A n""!(( !#!/n$!-! + + ."!,$! /!. +!,1 +"!$$: + #,!$ + !."$$ !" !$$"!(!!".! (!:" -;-,#,!(-!.+ $ ,$!#!:! .! !"!"#!/!( +! +!!-! +$+!!$, (!. +$ !!$ (:$6

PAGE 238

)%A )$J*6-A $$).''%'& )$J*64A $$).''%',,.''

PAGE 239

)%& )$J*62A $$).''%'n&*%

PAGE 240

))* )$J*65A $$).''%'K%': ,, )$J*66A $$).''%',,&'

PAGE 241

))% )$J*68A $$).''%'$; )$J*69A $$).''%'; '

PAGE 242

))) )$J*67A $$).''%', ,, )$J*81A $$).''%'",

PAGE 243

n rr nnrnnrnrr rrr rnrn rnrrnr nnrrn rn rrr nrnrnnnr nnr rrrnrrrrnr nrrr nrr!" #$%n! nn!$ &$'()* nrnr r n! nrnnrrr!" #$%r rnr nrr rrnr&$ '()*nnrn rnrnr nrr nrnrnrn!r rn nnrn nr+n, nrnn +-".nrn !nrrrn rnrr rnrn!nr ! nrnrnr r!r rn" ('n/0 nrnr rrrnrnn !r1rr rrrn! rrrnrn n! rnnnrr, "rnrr rrnnrrn

PAGE 244

))? $!"-! +$,$! .., !,1+"!$$,$!: + , " /. ,$! " ":"!"1"!!"1$,.+$-! +$$!"$ "!# "$ # !((!!" -! +1 +!n.., !$,(.!,1+"!$$#,! $:!! .-/! ,1+"!$$#,!$! !-"!(-:" ,""! !$ "1"(!.!. !:" +!:" ,""! !$ "1".,!$ :$ !$ !$ !".--!.:" ,""!+! (!.!. !:" ".,!$:" .!. !"!"+!!$! .+:4 8"!)**?9":" "!(-:"$ "$. ! / $ + :$ .-/!""5!":$$ !$8$ !$! )*%*9"" +!$ ,:$ .-/! !-8-"3,/)*%29 +$!$!.+/=!. +$..-/$+!",-!( +"1$ + +#!" ! !"$ ,! !(!+$$ ,!;/"$ +!.,!" !$!.+!;-""1((! !" /!$(n " +:((!!" /!$($,(.!,1+"!$$-! +$."!//! +$! /!$ (n +$$ ,.-/!$ +!n.., !,1+"!$$(-((!!" /!$ (n +! :"!"1"!!$,$!((!!" !$("(,!".!$!" +!$,,""1 ! "n+#!" (,""$ ,!$ + "./ !((!!" !$("(,!".!r"" !,(,$"1=,$ "!-! + !$ !,1+"!$$ +$!$!.+8!$!.+!9$,11!$ $!"#! /"1 +!! -! +$(!$ "1,1+"!$$"! .., !,1+"!$$#,!$ + . "!$(! ,$!(!$1" %,$' ' +$$ ,$+:$$ "1.! "! :!!"n.., !,1+"!$ $(. $$ +!// :""1",1+"!$$(. $!#!(-(!.!. ! :" +! +!!$!#! /!$(n /!$ + +#!!!",$! ! !"!,1+"!$$

PAGE 245

))' (. $!.+ /!!"$ $!( ((!!" -! +$(! !-""1 ,1+"!$$ "$/ $ $ .-! +$$,.+$$ "!# ""($ ! $/!"$$ $+: +!-$ /-$"11!!-!" +!(!:" $$!!" +!((!!".!$" +!n.., !,1+"!$$(. $./! (! !#!,1+"!$$(. $ +!11!$ ((!!".!$!:+!!(!! #!#,!$!!: 2;/$,!" +!n#,!$ !" !+1+! +" +!$ !$(!! #! #,!$+!$!((!!".!$$+,!."$!!..!/ !$ +!.,!" $ "!$" :!$1"!$ ,$!,1+"!$$(. $ + !1! ! +" +$!: !.! "1: + ;/$,! !"$(!,$!n!$, $$(! -1"., !! +!n .., !,1+"!$$(. $$! +$$ , +!,1+"!$$(. $( +!!-! +$ ."!!"#!/!,$"1 +!-;-,-#,!(!.+( +! +!!-! +$ $(!!$ ! +!,1+"!$$$,,""1$ !/#!,1+"!$$#,!$($ !$: +"%*4-( +!.!"!".!$!: +:"!. "$(."1 +!.!"".,"1!-4$6 %+!0, ( +! ".,!$ .-/! !"!$$:+!" +! :$.0,! " +!# ( +! ((!$ +!-$ .-/! ! $! , $ +! -!( +$$ , +!!$ #!:!#! +$ $, .!$ !.-"1-!"-!,0, ,$+/!(! $#!(--" . =,$. "$, !$" /.".,! !!$"$+,!" +!!( !$ " .-/! !(!$: ++!##!1! " !!$n $ /. !; !"$ +!=,$. "H$,"!$" +!!(!."" !,$!($ !$. !"! +!,"!$( +!.," ".#! $#!( +!!" ! " ".,!$#!1! ", +!1,/"1( +! ,-/$,"1$: +/#!-!"

PAGE 246

))7 (!#!/!!$+!!(! $$,11!$ !(!$ ,$! " !$ "1,1+"!$$ )+!(!:".., !,1+"!$$(. $$$!!"" +!4!$,-! " "!"$ !$"!$((!$ !!$!$1"(." +1+! +"2 .!#,!$(;/$,!+!$!,1+"!$$r. $!" !(!. !" +! n-! +$:!#!$".! +!#,!$!$1"(." !$$ + " +! .! +!n#,!$-!."$!!,$!(,"/. .!$1" @"!$ ""1 +!/// !!("(,!".!$"!.!$$(! ! -""1 +! ,1+"!$$(. ,$"1n +!!$, $( +$$ ,". ! + +!-$ .., !!("(,!".! $ @4$ !$: +1!!$(: !"! +!$ !. !: +"'B)'4-( +!$ ! +!n.., !#,!$ !"!!$$.-/! (!:" .+!%4-!("(,!".!#,!$:!!-$ :$+1+! +" +!(!!#!#,!$". "1/!""1$!#!"$1!$*'4-" +#!$1("-/. $$,11!$ !" +!2:+!! +!/!$!".!(1!/!""1$"! +!$ !:,!0,! +!!$1"! ".!$! +!,1+"!$$. !1(-;/$,! ;/$,! "'' ;,$%'r +!!!/$$!$,.!$(! + ."!." , ! +!n "!$ ! ! +!$( :!"-!"1-! +$"!$,.!(!$! ! :+!" +! :$.!. !-!( +! ,$!" +$$ , +n "(! :" .!. ! !$.4 )***-4"1 +!$! %2!$+!1! +:$

PAGE 247

))2 , 5! #$,!#!:.+"1!$" +!$ !! :!!":+!" +!(!:" "n :!!.!. !"!;+,$ #!-!$,!$:!! 4!" 0," ( +!.+"1!$ " +!$,.!(!$" +!-! +$,$! !$ ! +!,1+"!$$".! +$ $ ,H$(.,$:$" !" + ".,!.-" "(/!".," "$,, "!$ +!-! +$/!$!" !" +$$ ,-"!//.! +! ! " /!$,$!" +$ $ ,"" //.!",""$,,"$! "1$+!!!$ "+!!" !$ $$. !: +:" .!. !" +!(!"".,!"$ ,-!" ""."$ $ !".!$ "# "$"-.-! !1-! +$"."#! "1 +!.!. !:"" $, (.! ,1+"!$$!"1 +$ n&&$ '$$'%. +!!!$!#!!$ + +$:4.,!(, +!"#!$ 1 !" !#!/! %,!" +!/.!$$,$!" +$$ ,$ -!."$,-"1"##"1.! "1 1!n-!$: +.-/!;$( :!","""1.-/!;"$$( +! <,$ +!/.!$$($!.+"1(n ."! -!."$,-"1 "( !" : +, /$ #!!$, $ !(n $1"1 !, 5! /. ."1!"1"!!$"! !-""1:"=,$ -!" (. $ +! /.!$$"!!$ !, !$ + +!n $!$..!$$!",1+"!$$( . $ .., !,$"1"1 ++ :$ +!,$! "/, +!$ !" !( "(,!".!+$$!"(.!-:+$ !$M 6nn'nnnn!n nn#nnn 6!nnn!nnn!nnn nnnn!n#nnnn # nnnnO8-"3,/)*%29

PAGE 248

))A )+!(! ". !$$1"(." ,1+"!$$"!$ + !+!# #!1! ! : +!"$!(!$ $: +,1+"!$$r. + !:!!:#! ;/$,!,1+"!$$r. "$ ,.,!.-/! !: + !$ : + !!$,$"1n " """"B "-! +1 .., !,1+"!$$ @ "$ ,!$",""$,,"$ !$.,!.-/! ! #! ( +! -! +$,$!" +$$ ,// !$: +-!!"$!$/.!,1 +"!$$ !!-!" $ ?"!."-."$$( +!((!!".!$".$ "!$( + ."1" $ ,. ,!.,!"$1+ (,","!$ ""1 +!.$ ((!!".!! :!! " ;/$,!":""1

PAGE 249

nrn n !"# $%!"& nnrn '(#!%n%n )n!n!'*'+,r-+,. n/!#+r,0(-n /!#& 1"22n!#2%n2!3 245%rr'+r. n/!#+r67%89:n( & (;+r6 nrnnnnnrn r n '(#;9"n"" !%'%!"'!% %""%n#& nnnrrnn nr n?!"@:n!nA# +r6(%?< !&1"22!<22(%2 n"4:# *+'+r. )n#'/@)r+B!& rn 'rr.'6r-.r )n#'Cr6n!n%# ;8'D5r, rnrr%n&rnnnnnn r'n(n )'n*+nrn$r +nn+nn n )%n!

PAGE 250

)@* !$!.+$ $+-!" !/ !/ ( +!"#"-!" , !: +$"" ,$8)**'9M-/$"! :!!"r! "-!$",""! N ,"+"<8%&2%9M",""!! !-" "( +!,1+"!$$!"1 +$ r,". "( +!r! .+" +!,1+"!$$!"$ (+!!B-!"$",1+"!$$!-!" $N *n?!n0n0n '7@2F7?) 8)*%29M"(!+. !5 "NX+ /6DD:::.//:".-D1$D :"B /(!B.+. !5 "Y8!/2)*%79 ""1"!!"1"I, ;/! $8)*%29M!,.!"1$ $" $4$ +,1+",""!!$ "1NX+ /6DD:::.//:".-D1$D!,.!B."1B.$ $B$4$B +,1+B:"B ,""!$B !$ "1Y8#%A)*%29 #!"/ 8%&7*9M "!(! !-""1!$1"">!. !$N *(? Pn! A78'9@&F7A%* !#!$"$8%&A%9M+! ,. ,!( "1"$N 0nnn(6+6* (nnn/?nn /!? !($!"8%&A29M"!"E"!+. !$ .$N .*9 ?nnr# 8!.+".!-",-%ABA29 $"8)*%'9M !" !! !-" "$("!$1",(.!,1+"!$$ !((.!" 35$"1!1/+.n"("$ !-$!"1N .!n ('n!n $"", 5r8)*%'9M,(.!,1+"!$$"n $((!. ""/!!6 !"1$"1nN n(n0nn'; :> $"", 58)*%79M-/$"(,(.!,1+"!$$$$!$$-!" $"1n //"1!.+"1 r!!$,!-!" $N G*n*/ /3 "1"!!"1.!".!$ " 898%&&@9M "1"$" +! -$/+! . ,"!N8n !-,-!A)*)7 +-!"-!" $ 9 "#"-!" !. "1!".8)**A9M!$,(.!$!H$,!NB?'?DB*A B **% n8)*%)9M.%*%(!$4 /#".! ,!" "( :!N "#"-!" $ !-$!$!.+n"$ , ! n8)*%79M., ! $ .$N X+ /6DD!$4 /.1$.-D!"D.-/D%*@D $D B-"1!-!" B ;D.., !B$ $ .$+ -Y8<,"?)*%29 r"1"8%&&)9M!"-.,1+"!$$!"1 +6! ": +,1+"!$$ !-!" $N P/?nn6*n ?%8%F@9

PAGE 251

)@% ??&F?7* r"! 8)**?9M//. "(!:n"$ ,@$!.""! , +!.! ((!. " +!.4<" ,(.!,1+"!$$N 6nP+3 nnn ?%8)9@)&F@@' r"4!""8)**29M+. !5"1!1",#r",(.! ,1+"!$$ : +"!$!: +//"11 /1/+. N P 7n+nn %%)8r)9r*)*)' "!8)**?9Mr,B.!n"#!$ 1 "(,1+"!$$!"1 +$" -1!"!,$!""-/$"("!. "!$("$ "r:!1-!$N!;$!.+"#!$ 1! +8)*%79M1! +-/n" !" "/ N X+ /$6DD:::11!.-D! +DY8. %)*%79 1! +8)*%29M1! +$ N X+ /$6DD! +11!.-D:!Db)2&A%'?'?&BA)'@'?A?7A**)@%2'A?*&7'&'?A@'*+* *Y8,1@*)*%29 1!/$8)*%29M+$$!!rNX+ /$6DD:::11!.-D-/$ Db@A&A%77B &')&@*AA&2&72&-D Sc@-%c%!@Y8<,)?)*%29 1!/$8)*%29M/B.4rNX+ /$6DD:::11!.-D-/$D /.!D/B .4RrDb)'&%?&*&%BA*@*AA@?@2@A@-D Sc@-%c%!@c?-'c@-?c%$*;AA&*)'@7)%6*;!?)?(7@!!&)7cA-)c@)'&*)@%7Ac?BA*)'*@)2%Y8<,)?)*%29 1!/$8)*%2.9M<.4$"#!rN X+ /$6DD:::11!.-D-/$D/.!D<.4$"#!RrDb@*@?')A?BA)***77@?22AA@-D Sc@-%c%!@c?-'c@-?c%$*;AA!'2%7(%.!(!6*;.?.2@A&7(..2!)cA-)c@@*@@)%A@Ac?BA%7''7'%Y8<,)?)*%29 1!/$8)*%29M/$r1+ r. +". !1,!n$">N X+ /$6DD:::11!.-D-/$D/.!D/$Rr1+ Rr. Db@2&@72*7?B 2'?2)*2)@''7-D Sc@-%c%!@c?-'c@-?c%$*;A&&7A'&!?!.(!(6*;&%!7?%*2(&7.7!cA-)c@@2&@72*))c?B2'?7&AA@7Y8<,)?)*%29 1!/$8)*%2!9M,-! "N X+ /$6DD:::11!.-D-/$D/.!D,-! "RDb@?7?%'*)%B2&%*?2A)'%A'7)-D Sc@-)c%!@c?%c?-'c@-?c%$*;A&!2.AA.?(6*;&)*A7A)!!(A7A@cA-)c@@?7%A)%&&c?B2&**A7?)?Y8<,)?)*%29 --""4!8%&&A9M!"-.,1+"!$$("!$!#!("$!# "$N
PAGE 252

)@) --"! 8)*%)9M,1+"!$$!"1 +!$ ""1 "$!. $,$"1 "!n N nn* "$!"r>8%&&@9M,(.!,1+"!$$!"1 +$N *+nnr# -!$<8)**%9 /rn "r".$,/!:4 ,1+ "", +!$8%&279 /8nnRD* 6 <+"!W"$4!"< ,$$""!!8%&A*9M",""! ,( +!!"!$$,!r.!$. "1" 1!,/$(:B$!,"1$N P/?nn6 *n 78@F?9)*2F))' n:"8)**A9M,((!"-.$"""1"!!"1N P/ ?nn6*n 3!"5!8)**?9M+!((!. ($ !!$, ""r$ !!." ! "-/,"!"!# #!$N "76 A8%9A@F%%% 3""3-5:8%&A79M!"-.,1+"!$$#!"n"+-1!"!,$ ,",(.!N
PAGE 253

)@@ )*%29 $ !$! 8)*%*9M:=!. #! "5!n" !"$ $ ! $(-,(.! "/!!$!# "$N *nnn &%%77'F%7A% ! "8%&7'9M+!!-/+."!..1"(.".!(,# !/$ $", +!"5"N P7n 2@%F@A "#!!r .!"! !:$"+-/$"" !1-! 8)**@9M! "$+/! :!!" +!!"-.,1+"!$$! "1 + " +!,1+"!$$!"$ "$!$(:,1+"!$$!"$ CN ?!n 8n @)?&F)72 .+! 8%&&@9M,-!.-, "(r:(!,"!;$!.+,"1 1!-, "N P/?nn6 *n ?78?29?''F?7* $8%&''9Mr:",1+", $N "*(? 8%)*9@2@F@&A $"! 8)*%)9M-/$"(r!"r,B.! !4! $$,!$ +!n!$!.+!" !N *"(S?6(nnn*!n9n ?nn; :; "!", .$"/.!-"$ "8)*%29M"$!# "("!1N X+ /$6DD:::1."$1#D:::D4B%)D/"!D +!-%(+ -Y8<,%))*%29 "!1/+..! 8)*%79M$((!. N X+ /$6DD:::" "1!1/+.1D!"../!D.$B!((!. DY8@* )*%29 1! 8)*%%9Mn-/#"1 +!""#"-!" "1+B!"$ !$ "!$ ""1"/+1",(.!,1+"!$$6 ,""13"1N rn.#0 %*%'&F2? 4,$!8%&'*9M:$(r:",1+/!$N8)*%79M"B$! " NX+ /$6DD:::".."1#D B ..!$$D"B$!B$ "B Y8@*)*%29 ,<+"$"8)**@9 0nn?n/ !(-".!( ; !,"1$ ! !4<"!-4<8%&2A9M"B,""! ,(!"#!0,!N! !$"8%&&29M",""!#, "(! +$($ "1,(.! ,1+"!$$!"1 + n",$ r. !$N *n?!n @%8%9?'F'2 !"r!8)*%%9M$ "1,(.!,1+"!$$(!!$ $!." ,$"1 +1"$ ".!!1!$$"N 7n @&8297)@F7)7 !"r!8)*%)9M;/!-!" #, "(!!$ B$!

PAGE 254

)@? ,(.!,1+"!$$$ !$N 7nnn A8%9)))F))A / ">!#J!48)*%@9M"$$(,(.!,1+"!$$" +!#! 1!" !B"$!" +!!".!!N7*%&2F)*? !! 8)**&9 8nnn .:!:4 !! 8)*%)9 n8'8? !"11!!""1 -(""!. ., !!58)*%?9M"!:.F.+ 89,1$ "!;(0," ("1 +!! B -!"$""$./!$ ,. ,.-/!; N rn? /"1! ! +!"$@*8%9%A%F%&) ".! ""#!$ 8)*%79M"$ "",,!".!N 0n.!n X+ /$6DD:::/".! "!,Dd$$D..!e:!D "$ "+ Y8@*)*%29 In8)*%29MInr!!"/!",.!!1/+.n"("$ !-N X+ /6DD:::01$1D!"D$ !DY8@%)*%29 ,/.+8%&&)9M1"1 "",1+,(.!$N
PAGE 255

)@' !"1<8%&&)9M/ "1 +!#!"/ ,1+"!$$$$(. "N P /?nn6*n $!#!?%8%9@'2F@7A ,"! 8)*%?9MnB$!,(.!,1+"!$$#, "" +!""""1 $ !n-/#! +!""#"-!" B$ ,",+"+"N .# (n ,"! 8)*%'9M!"1B//"1//.+(r"!B.! , >!" " #, ""1+!"$ !$N A6n(nnn.#(n

PAGE 256

nnrrrnnnrr rrrnrr rr rrrnrnr nnrrnnrr rr nr !n"# $ %&'rr()nn "*+,rnnn" -*.()rrr/r0nn1$2%%%%r2$34564 43&55'2&r22&%%%%'( 777rrn8 rr rnnr r 99999999999999999999999999999999999999999999999 999999999999999999999999999999999999999999999999999 999999999999999999 ((:((;n(r(n&? &?6&?3 ((*r(r(@rr nnr ((*r 99999999999999999999999999999999999999999999999 999999999999999999999999999999999999999999999999999 999999999999999999 rrr$ r>1@@C&D&B@CDB@CrDrBB' r>1(r>r n -(-r rrn (r rrn 7771n2@B)+rn12@B)+r> nrEr

PAGE 257

)@2 f,-!(/" $"1 +!/!-! !/! #!"! " ,8-!/" $$, ".!$!$9 ,e! #!e e +! S"/(8( 8 ,9C8 %*D( 8 +! 999 f,=,$ !(,""1!" ,e! #!e e +! :+!",$"1(-! + =,$ !e ,S ,e! #!e e +! C +! ,"0,!eS%f+!,"0,!!" (!(!.+ #! .," e ! "$S*f .," !(!.+/ $$" +!(/ * -"S**fr$ "1!"!1!!$",/ 1 -;S@7**f$ "1!"!1!!$",/ 1 fn ! !,"..!8@7*!1!!$9,"1 +!/1. .+"1 +!$1"(." ." ! /$ ("1!""/"$/.!8-"-;",-S=,$ ! e ,!"/" S,!96 f,$ ."#! !1!!$ "$+!!;S"/.$8"1!C"//D%A**9S"/$"8"1!C"//D%A**9f+( ." !$, .!" "!; ! " ..-!+ =,$ !e;S88;C( 8+99R8( 8.!" [*]999 =,$ !eS88C( 8+99R8( 8.!" [%]999 f+!($ !-",($ !-!" ("1!SS*6.e$ //!"8[.!" [*].!" [%]]9 .e$ //!"8[=,$ !e;=,$ ! e]9 f .+!$ +!("/" "1 +!/!-! !( +!/1".$!$ +!1!-! !("1!SS-;6.e$ //!"8[=,$ !e;=,$ ! e]9 .e$ //!"8[/e1!-[*][%][%][ *]/e1!-[*][%][%][%]]9fr$ /" " +!( $ #! .e$ //!"8[.!" [*].!" [%]]9 /e1!-//!"88,"0,!e.e$ 99 f .+!$ +!("/" "1 +!/!-! !(!.+#!".$!$ +!1!-! !(.," e ! "$O ,e! #!e e +! SS*6 .e$ //!"8[=,$ !e;=,$ ! e]9 .e$ //!"8[.!" [*].!" [%]]9 /e1!-//!"88,"0,!e.e$ 99 ,"0,!eRS%fn".!$! +!,"0,!e (!(!.+$,$!0,!" #!1!-! .e$ S[[.!" [*].!" [%] ][=,$ !e;=,$ !e]] f/" $"1 +!/!-! !( +!/ 1 + " (""1!+! !$!6.e$ //!"8[=,$ !e;=,$ ! e]9 .," e ! "$RS%f! !-"! +!",-!(." !/!" !$$ + ,"/$.! ! $5!

PAGE 258

)@Ae"!;S!"8/e1!-[*][%]9f #!$:+#! +!$-!",-!8!"1 +9( ." !/$ f! !"/ + $ !$ +!/1 1!-! #! /e1!-eS"/$8/e1!-"/ /!8[8L,"0,!eL"/$ ?98LGLLX(AL 8e"!;)99]99 ! ,"/e1!-e!( e$+/8/e1!-e, /, 96TTT+$(,". "$,$! .! !$+/!(!( +!/1 1!-! ! ,"!(+!/e1(," . " BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBB 6/-/e1!-e6=!. ! ," !/e1(,". " 6 /!/e1!-e6"/6/-, /, 6, /, / +"., "1"-!"(86D +DDr!$+/9 6 /!, /, 6 "1TTT/" S./" 89f-/ /" =!. S./89f-/ =!. (! ,!e$ S[]f$ + :+!.+ ( +!#!=!. $ fr!.+." !/$! +!;//! !$" +!=!. (,"0,!e""1!8*!"8/e1!-e9 %96 (.e/"/e1!-e[,"0,!e ][%]6 /" GS.e/[*]/" S.e/[%]/" nS,"0,!ef!$" +"1g 8/" 9/1"S./1"89f! !/ 1"=!. $!" +!(/" $ !-#!89f! +!((, ,!,$! (! ,!e$ //!"8/1"9f//!" + !$ (#!=!. $ .//r! ,!$e-"1!-!" 8(! ,!e$ , /, 9 f ! +!/11!-! $+/!(! e$+/8/e189T6h h/!"$+/T9

PAGE 259

)@& :,'' % ''& )5#,$' +!".#!$$(. "!(!$ .$$(. "/#"1 "(" "".#! +,1+, +!+$"(":$,/ !")*%@"$,$!"-"//. "$(-."$!# " $$!$$-!" (.+"1!" +! /1/+$$! !"(!Gnnn %".#!"1!$(-/!" ! !#!/!1+n" !"$ :+.+ !/!$!" $,""+1+!"$ $,,"!$

PAGE 260

)?* ;,J+5#,$':,'' % ' nnrnnrn r r nrrr rr r n rn rrrr ! r " "# rr r r r rrrrr !n rr"r r# r r r n$ rrnr nrr rrrrn n $%& %' "#( rnr) rr r r rrr!n r"r%& nrrr#r r $%& %' * ' "#+"nrnr) (rr r r rrr!n r"r)& rrr#r r ! r % ",n-.rnr) nnn $ *n n rr n r! n r+"r""rrr / r * ' *("01") $r nrnr r rnnrr r r r,rr rr rr ! r 2r % n"2r rrrr rrrr"rrrr -r )rrn r nr ! r % %-2r rrrr rrrr"rrrr -r )rrnrr .n r r / r

PAGE 261

)?% ;,J-5#,$':,'' % ' $ nnrnnrn .3" 3 /$r r "rrrr nrn rr" rrrr#rnrr r rr 4$ .33 r 0rr rr nrnrr" rr rr# r r rrr r rr / r ,3 ) 5",3 r rrrr+" rr rr#r 1rrr r r r r / r ) "-,3 /$r rr+"rr rr# rn rrrr $ nr r r $r 4$ )' (n. /$r r rr+"rrrr 4$ )% + /$r r r+"rrrr 4$ r"rnr" + r,) ( r nrr$rn r nrnn2r rr rrr"rrrr r + rnr" ( rn r n rr rr nn .nrr rrr"r rrr # rr / r r" &" ")r" r rr rrr"rr r rrnr rr rr r & %-r,3r" /n rr rrr+" rrr rrn r r rrr / r

PAGE 262

)?) && A.,)(+!n-! +1,$! /.!$$ +$ ! " ".,!$ $! "1,/1".: + +!.!" !( +!1. ! +!$ !+$ /.!$$".$$(:$ %!:/" $+/!(!:$.! !". ! +!.!" !( +!1,$"1 ;8 r! ,!$Y! !r! ,!$. ! .!" !(" 19 +$:!,$! .! ! +!-, /!"1,((! / "( +!(" 1 ) $,$! /.! +!$+/!(! +!$ !. " @+!, /!"1,((! :$,$! .! !"1$ %4/ $,,""1 +!/" $+/!(!. ! +!$ !. "$$! !""r1,!? :+!!!.+,((!$!/!$!" !((!!" . ?+!1$.! !-/ "1 +! +".!" . ,$"1 +! +"": '+!n" !$!. :$,$! .-"! +!,((!"1"$-/ (!1 +!("1$!!. "1 +!,((!"1($ " +!1 $!." !"$,! .!$/""1, /, .+$/!$+!! 7+!" 1$ !%%)'!1!!$" +! ,$"1 +! ! "/!$$"1$ +! ""1!."!"/, -",

PAGE 263

)?@ .,)($':+!n-! +1,$! /.!$$ +!$ ! ( ! +!1$$! ,/.$$ (:$2; . $4:$,$!" +!".#!$ !(! +! 1!+$ (!$!;/ ! $ !(!81+ ..4" $! Y Y!;/ Y !;/ -/9$ +! :$" +!.!. (" $-!",1+ /.!$$!((.!" A+!!.$$( :$,$! 1,/ +!$ !"."#! +!$+/!(! &+!., !r! :$ +!",$! !0, ! +!=!. n (! +!n (!( +!"!:1!$ + +$ ."!="!: + +!$ ! ! %*+!/ "$ , !! :$,$! =" +! $ ! +!1+!1:$$!!. !($ !"$,! +! :$ /.!$$!"$-! !(!.+-! %%+!! ;.! :$,$! !;/ ! ;.! ! + ."/.!$$ +!5#,!$ $,--( +$/.!$$$$+:"" +!(:1-.! !".r1 ,!GnnnB%

PAGE 264

)?? )$J*+ ). ,"%''

PAGE 265

)?' .,)($'' ((-$"(:+.+."$$ $( +,$"$(/" $ : +;"5." ! ! +!. ""/""!!# "+$ . "! /.!$$,$"1/1-$$,.+$I!!:+.+.,$ ! +! /" $ " 1! $!. "8$! ,$!%-$!. ",$!g9".! !$ !(!n"I!! /" $ ."!1!.,$ !! +!-;-,-#,!-"-,-#,!$ "!# " $!."!$/!+!(:"1$$,--( +!/.!$$6 %n-/ (!$"$#!(!$I!,(.!r)n"-/ 1;$!!. .+$!( !,$"1.$$(. " @! +$-!"-/ (!$ ?n" +! $ .$-,!$!!. +!!(!!".! ,-#!MEN " $ . /!+!"..4M., !! .$N"M#!>,!$N+!I!! $!!. "$.!!"$$+:""r1,!GnnnB)

PAGE 266

)?7 )$J*-%'.E, %' ,% %

PAGE 267

)?2 $, +!(:"1$!. "$." "$:" ,""! !$ "1 ( :$ !$ + : !! !$ !"-!#! : $, )$J*4 ".)&.'.&,:, . $,

PAGE 268

)?A )$J*2"''$&% '"''$'

PAGE 269

)?& )$J*5"''$&% '"''$'

PAGE 270

)'* )$J*6"''$&% '"''$'

PAGE 271

)'% )$J*8"''$&% '"''$ '

PAGE 272

)') .( $, )$J*9".)&.'.&,.(, . $,

PAGE 273

)'@ )$J*7",

PAGE 274

)'? )$J*+1"''$&% '"'' $'

PAGE 275

)'' )$J*++"''$&% '"'' $'

PAGE 276

)'7 )$J*+-"''$&% '"'' $'

PAGE 277

)'2 )$J*+4"''$&% '"'' $'

PAGE 278

)'A r $(& ' + +!n .!. " !$" +!(! .!. "$ !$# $!":+!" +! :$.!. !"( +!(! :+!" +!$ ,:$.-/! !+ ! +!n ".,!$ !" ($ !.!. ! "!/!( -! +!(!: " :$ .!. !#!/!(!$$!":+!" +!$ ,:$.-/! !r! ;-/! $ !$:" :$.!. !1"""1")***," )*%*-!( +!$ "$" +#!(,!.$(!#!!,"1 +$ -!""(,!.$:!!,$!: + -"-,+!!B!/!(:""5!$!" +!:"!.$# ! !.+ $ !-, 5!:" .!. !(-)**2 )*%)! J4 $+:$$ ( +!n.!. "$ !$(!.+$ !":+!" +!:" :$.!. !+!! +$ !$"-(! $.0,! +! !$! .-"!"$+:"$)**B)*%)1! +:$, 5! !#!: +!." "$ +!$ !(-:+!" +!n :$.!. !" +!/!( -!:+!" +!: " :$ .!. !;,J4,,% r%.

PAGE 279

)'& 3$;;% )$J*+2$;;% -1+20),r.1+83 $% @ @ ,.4G (,.4%%D2D)*%? ?D?D)***B?D%&D)*** -/ (-/?D)7D)*%2)***B)*%) -/AD%*D)**2)***B)*%)!)D%D)**))***B)*%)4!$r)D%*D)**A)***B)*%) +$$!! )D%D)**7 )***B)*%) ,-! "@D)@D)**%)***B)*%)/$>?D)?D)*%')***B)*%)<.4$"#!@D%2D)**2)***B)*%)/.4%D%*D)**A)***B)*%)!"G%*D@%D)**7)***B)*%)3!!$ )DAD)**A)***B)*%)

PAGE 280

)7* )$J*+5$;;% -11-0),r.1+83;3& )$J*+6& -1+10),r.-1+8 3

PAGE 281

)7% )$J*+8& -1180),r.-1+ 83%3, ,,C

PAGE 282

)7) )$J*+9, ,, -1+10),r.-1+83 )$J*+7, ,, +7770),r.-1+83 3; 'C )$J*-1; ' -1+10),r.-1+83

PAGE 283

)7@ )$J*-+; ' -1180),r.-1+83 3,,.''C )$J*--,,.'' -1+10),r.-1+83

PAGE 284

)7? )$J*-4,,.'' -1180),r.-1+83 3$;C

PAGE 285

)7' )$J*-2$; -1+10),r.-1+83 )$J*-5$; +7770),r.-1+83 )3,,&'C#

PAGE 286

)77 )$J*-6,,&' -1+10),r.-1+83 )$J*-8,,&' -1+40),r.-1+83 .3K%': ,,

PAGE 287

)72 )$J*-9K%': ,, -1+10),r.-1+83 )$J*-7K%': ,, -1180),r.-1+83 3n&*%

PAGE 288

)7A )$J*41n&*% -1+10),r.-1+83 )$J*4+n&*% -1180),r.-1+83 H3",

PAGE 289

)7& )$J*4-", -1+10),r.-1+83 )$J*44", -1160),r.-1+83