Citation
Seismic analysis and design of cyanide leach tank foundations

Material Information

Title:
Seismic analysis and design of cyanide leach tank foundations
Creator:
Dorn, Ava
Place of Publication:
Denver, CO
Publisher:
University of Colorado Denver
Publication Date:
Language:
English

Thesis/Dissertation Information

Degree:
Master's ( Master of science)
Degree Grantor:
University of Colorado Denver
Degree Divisions:
Department of Civil Engineering, CU Denver
Degree Disciplines:
Civil engineering
Committee Chair:
Chang, Nien-Yin
Committee Members:
Li, Chengyu
Durham, Stephan

Record Information

Source Institution:
University of Colorado Denver
Holding Location:
Auraria Library
Rights Management:
Copyright Ava Dorn. Permission granted to University of Colorado Denver to digitize and display this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.

Downloads

This item has the following downloads:


Full Text
SEISMIC ANALYSIS AND DESIGN OF CYANIDE LEACH TANK
FOUNDATIONS
by
Ava Dorn
B.S., University of Colorado, Denver 1991
A thesis submitted to the University of Colorado, Denver in partial fullfillment of the requirements for the degree of Master of Science Civil Engineering 2009


This thesis for the Master of Science degree by Ava Dorn
has been approved by

Nien-Yin Chang
Chengyu Li
Date


Ava Dorn (M.S. Civil Engineering)
Seismic Analysis and Design of Cyanide Leach Tank Foundations Thesis directed by Professor Nien-Yin Chang
ABSTRACT
Since drilled pier design varies by vicinity and software preference, it is valuable to evaluate the outcome of different approaches depending on the reliability of one’s information, available construction methods, and project costs.
This project required the analysis and design of drilled shafts in a high seismic zone in a remote part of southern Mexico. Loads were generated using IBC 2003, ASCE 7-05, and AWWA D100-05 and compared with loads generated using Mexican codes. The drilled shafts were first designed for axial capacity using four methods: Colorado Department of Transportation (CDOT), "Soils Report & Essentials of Soil Mechanics and Foundations", 3rd Edition, by David F. McCarthy, and the FHWA ASD and LRFD methods in Publication No. FHWA-IF-99-025 "Drilled Shafts: Construction Procedures and Design Methods", and the results compared.
The lateral capacity was analyzed using L-Pile and PSI. The former is commercially available and the later, PSI, was created by doctoral candidate Hien Nghiem of the University of Colorado, Denver. One percent and five percent reinforcing were used on a single fixed and pinned head pile, then analyzed and compared. The pile cap design and time history analysis was then performed using STAAD.


While this situation came to light in a consulting engineering firm, and parallels the consulting project, it is not a consulting project and neither the author nor the committee are responsible for the design.
This abstract accurately represents the content of the candidates's thesis. I recommend its publication.
Signed


ACKNOWLEDGEMENTS
The author would like to thank Dr. Nien-Yin Chang for his tireless support, encouragement, and humor in the face of many obstacles, Dr. Chengyu Li for his invaluable input and Dr. Stephen Durham for his advice. Special thanks go to doctoral candidate Hien Nghiem for constant help and support using his program and locating seismic data. And my employer, Nick Lynn for his support, and my coworkers for their contributions.


TABLE OF CONTENTS
Figures...............................................................x
Table ................................................................xii
Chapter
1. Introduction.........................................................1
1.1 Background...........................................................1
1.2 Objective............................................................4
1.3 Scope................................................................6
1.4 Engineering Significance.............................................7
2. Soil Parameters from Soils Report....................................8
3. Seismic Design Method & Parameters..................................10
3.1 Code Review.........................................................10
3.1.1 American Codes...................................................10
3.1.1.1 IBC 2003........................................................10
3.1.1.2 ASCE 7-05.......................................................11
3.1.1.3 AWWAD100-05.....................................................12
3.1.2 Mexican Codes....................................................13
3.1.2.1 Sismicidad en el Estado de Oaxaca 1990-2000.....................13
3.1.2.2 Manual de la Comision Federal de Electricidad (C.F.E.)..........16
3.1.2.3 Norma N-PRY-CAR-6-01-oo5/ol de la Secretaria De
Communicaciones y Transportes (S.C.T.)..........................16
3.1.2.4 Regamento de Construction para el Estado de Oaxaca..............16
3.1.2.5 Normas Tecnicas Complementarias para Diseno por Sismo...........16
vi


3.2 Design Decisions from Codes..............................................20
4. Review of Drilled Pier Design Methods......................................21
4.1 Introduction of Alternative Axial Capacity Design Methods................22
4.2 Theory of CDOT Method for Axial Capacity.................................23
4.2.1 Input, CDOT Method.....................................................24
4.2.2 Analysis Results, CDOT Method..........................................24
4.2.3 Discussion of Analysis Results........................................ 24
4.3 Design Using Soils Report & Essentials of Soil Mechanics and Foundations,
3rd Edition, by David F. McCarthy, for Axial Capacity...................25
4.3.1 Input, McCarthy Method.................................................26
4.3.2 Analysis Results, McCarthy Method......................................27
4.3.3 Discussion of Analysis Results.........................................27
4.4 Design Using FHWA, ASD Method for Axial Capacity.........................28
4.4.1 Input, FHWA, ASD Method................................................35
4.4.2 Analysis Results, FHWA, ASD Method.....................................35
4.4.3 Discussion of Analysis Results.........................................35
4.5 Design Using FHWA, LRFD Method for Axial Capacity........................36
4.5.1 Input, FHWA, LRFD Method...............................................39
4.5.2 Analysis Results, FHWA, LRFD Method....................................40
4.5.3 Discussion of Analysis Results.........................................40
4.6 Comparison of Axial Design Alternatives..................................40
5. Design Based on Lateral Deformation........................................44
5.1 Introduction.............................................................44
5.2 L-Pile Analysis..........................................................45
5.2.1 Thoretical Background..................................................45
5.2.2 Input, Fixed at Pile Cap...............................................54
5.2.2.1 Analysis Results: Fixed Head, 1% Reinforcing..........................55
5.2.2.2 Analysis Results: Fixed Head, 5% Reinforcing..........................56
vii


5.2.2.3 Discussion of Analysis Results.......................................56
5.2.3 Input, Pinned at Pile Cap............................................57
5.2.3.1 Analysis Results: Pinned Head, 1 % Reinforcing.......................57
5.2.3.2 Analysis Results: Pinned Head, 5% Reinforcing........................58
5.2.3.3 Discussion of Analysis Results.......................................59
5.3 PSI Analysis.........................................................59
5.3.1 Thoretical Background.................................................60
5.3.2 Input, Fixed at Pile Cap..............................................63
5.3.2.1 Analysis Results: Fixed Head, 1% Reinforcing.........................63
5.3.2.2 Analysis Results: Fixed Head, 5% Reinforcing.........................63
5.3.2.3 Discussion of Analysis Results.......................................64
5.3.3 Input, Pinned at Pile Cap............................................64
5.3.3.1 Analysis Results: Pinned Head, 1% Reinforcing........................64
5.3.3.2 Analysis Results: Pinned Head, 5% Reinforcing........................64
5.3.3.3 Discussion of Analysis Results.......................................65
5.4 Comparison of alternatives..............................................65
6. Settlement Analysis......................................................69
6.1 Simple Method............................................................69
6.2 Normalized Load Transfer Method.........................................70
6.3 Analysis Results........................................................73
6.4 Discussion of Anlysis Results...........................................73
7. Caisson Cap Design Using STAAD...........................................74
7.1 Introduction.............................................................74
7.2 Model Input.............................................................74
7.3 Load Cases..............................................................76
7.4 Time History Analysis...................................................76
7.6 Results.................................................................80
8. Summary, Conclusions, and Recommendations................................85
viii


8.1 Summary..................................................................85
8.2 Conclusions.............................................................86
8.3 Recommendations.........................................................86
Appendix
A. Soils Report.............................................................88
B. AWWA-05 Calculations.....................................................125
C. CDOT Method Calculations.................................................134
D. Soils Report Calculations................................................138
E. FHWA ASD Method Calculations.............................................143
F. FH WA LRFD Method Calculations...........................................149
G. L-Pile Calculations, Fixed Head, 1% Reinforcing..........................154
H. L-Pile Calculations, Fixed Head, 5% Reinforcing..........................163
I. L-Pile Calculations, Pinned Head, 1% Reinforcing.........................197
J. L-Pile Calculations, Pinned Head, 5% Reinforcing.........................211
K. PSI Calculations, Fixed Head.............................................230
L. PSI Calculations, Pinned Head............................................235
M. Settlement Analysis Calculations.........................................240
N. HBColumn Output..........................................................243
O. STAAD Results............................................................245
P. Time History Information.................................................254
Q. Cap Design Calculations..................................................261
Bibliography.................................................................264
IX


LIST OF FIGURES
Figure
1.1 Project Location in Oaxaca, Mexico...................................2
1.2 General Layout of El Aguila Mill Showing Leach Tank Foundation
Location............................................................3
1.3 Mexico Seismic Hazard Map Peak Ground Acceleration (m/s ) with 10%
Probability of Exceedance in 50 Years .............................4
1.4 California Seismic Hazard Map Peak Ground Acceleration (m/s ) with
10% Probability of Exceedance in 50 Years..........................5
1.5 Seismic Plates in Oaxaca Mexico......................................6
3.1 Oaxaca Faults.......................................................14
3.2 OaxacaSeismic Regions...............................................15
4.1 Correlation Between a and su /pa ...................................31
5.1 Distributionon Unit Stresses Against a Pile Before and After Lateral
Deflection...........................................................46
5.2 Pile Loads..........................................................47
5.3 Resultant Load-Moment Curve.........................................47
5.4 Beam-Column Element (after Hetenyi, 1946)...........................49
5.5.1 Form of the Solution of Differential Equations for Beam Column
Analysis...........................................................50
5.6 Representation of Deflected Pile for Finite Difference .............53
5.7 PSI Finite Element Types............................................59
5.8 Mohr-Coulomb Failure Criteria.......................................62
7.1 STAAD Model of Pile Cap and Fixed Supports.........................75
7.2 STAAD Model of Tank, Slurry, and Agitator..........................76
x


7.3 AWWA Seismic Overturning Moment as Modeled in STAAD ...........76
7.4 Location of Time History Seismic Events............................79
7.5 La Union, Mexico Accelogram of Michoacan 9/19/1985 Event...........79
7.6 Caleta De Campos Accelogram of Michoacan 9/19/1985 Event ..........80
7.7 Las Vigas, Mexico Accelogram of Guerrero 9/14/1995 Event ..........80
7.8 Las Vigas, Mexico Accelogram of Guerrero 3/13/1996 Event ..........80
7.9 U= 1.2D + E, AWWA (Static) Seismic Max Top Principal Stress........83
7.10 Load Case U = 1.2D +E (including time history) Max Top
Principal Stress...................................................83
7.11 Caisson Layout and Reinforcing.....................................84
xi


LIST OF TABLES
Table
3.1 Comision Federal de Electricidad Seismic Coefficients......................15
3.2 Reduction Values, Q .......................................................18
4.1 Comparison of Axial Design Alternatives.....................................32
5.1 Comparison of alternatives..................................................65
6.1 Normalized Load Transfer Relations for Side Resistance, Cohesive Soil.....71
6.2 Normalized Load Transfer Relations for Base Resistance, Cohesive Soil....72
7.1 Time History Data Summary..................................................78
7.2 Summary of Support Reactions, Shears, Moments and Stresses.................82
xii


1. Introduction
The El Aguila gold mine is currently the richest vein in the world. Its ore processing mill is located at 16.57° latitude north, and 96.03° longitude west, located in southern Mexico. It is on a mountain top in the central part of the state of Oaxaca, approximately 117km southeast of the state capital of Oaxaca (Figure 1.1). The high seismic zone is comparable to southern California. Cyanide is one of the most common chemicals used in the process of leaching the gold, silver, copper, etc, from the ore. In this case, 11m (36 feet) diameter by 1 lm (36 feet) tall tanks of cyanide solution are used in the beginning of the extraction process. While it is required to have concrete containment for 110% of the largest tank, underlain with HDPE, there are six of these tanks, stepped down at 0.5 m intervals, as shown in Figure 1.2. As engineers dedicated to the public safety, we have to make sure that in a catastrophic event everything downhill and downstream is not polluted. Therefore, the foundation has to be designed so that the after a seismic event, the tanks are still standing in tact.
1.1 Background
Tank foundations usually consist of a concrete ring to distribute the bearing pressure of the tank wall, with either a concrete slab inside the ring, or sand covered with asphalt. However, in this situation we have very large tanks, with a high center of gravity and a large mass, coupled with high seismic accelerations. This creates a load exceeding the allowable bearing pressure of the soil.
1


Additionally, the foundation has to be rigid enough to transfer the loads to the soil
in a seismic event to prevent rupture of the tank.
MEXICO
TABAS(
Tehuantepec
PROJECT LOCATION
Figure 1.1 Project Location in Oaxaca, Mexico
Comparing the USGS NEHRP maps of Mexico, Figure 1.3, with California, Figure 1.4, it can be seen that this is a seismic zone is equal to some of the areas of California just outside of the shows this outside of faults. El Aguila is located in the regions where peak ground accelerations range from 0.49g to 0.57g.
2



Figure 1.2 General Layout of El Aguila Mill Showing Leach Tank Foundation Location


• 9
Figure 1.3 Mexico Seismic Hazard Map Peak Ground Acceleration (m/s ) with 10% Probability of Exceedance in 50 Year
The area is dominated by the subduction of the Cocos Plate under the North American Plate, which has generated more than twenty M>7 earthquakes this century past (Figure 1.5). In contrast, only a few major intraplate earthquakes have occurred during the same time frame.
1.2 Objective
Drilled pier design methods vary by vicinity. In a high seismic region, the design is controlled by lateral deflections instead of bearing. Comparing the results of different design methods and analysis software is intended to yield the most cost effective design, while meeting both American and Mexican seismic design
4


Figure 1.4
2
California Seismic Hazard Map Peak Ground Acceleration (m/s ) with 10% Probability of Exceedance in 50 Year
5


1 ocaii/acwo dr lo* Stsmrrt mis import antes en Mexico
22*
Figure 1.5 Seismic Plates in Oaxaca Mexico
requirements. The appropriate construction methods must also be available in the remote, possibly unsophisticated area.
1.3 Scope
This thesis covers the design of the drilled piers and pier cap that one cyanide tank will be sitting on. Loading shall be according to the IBC 2003, ASCE-7, and AWWA D100-05. The soils report will be analyzed for appropriate design parameters. Loads will be checked against the Mexican codes to ensure conformance to their codes. Then axial capacity of the drilled piers will be designed using four approaches: CDOT's method, the book "Soils Report & Essentials of Soil Mechanics and Foundations", 3rd Edition, by David F. McCarthy, and the FHWA ASD and LRFD methods in Publication No. FHWA-
6


IF-99-025 "Drilled Shafts: Construction Procedures and Design Methods". One settlement analysis will be performed. Then drilled piers will be designed for lateral capacity using LPile and PSI. LPile is based on beam equations and has changed little in twenty years, but is broadly used in industry. PSI uses 3D finite elements and takes advantage of modem computing power. Both fixed head and pinned head conditions with 1% and 5% reinforcing, will be analyzed by each program and the results compared. Then the pile cap will then be designed using STAAD. first with static seismic loads, with a time history seismic analysis. The results of the different methods for axial, lateral and seismic loads will be compared, and recommendations made.
1.4 Engineering Significance
This will allow the comparison of four drilled shaft design methods based on axial capacity to see if one method is substantially better or more economical. The comparison of eight designs based on lateral capacity, using two different software programs will determine if there is much difference between programs, and if a modem 3D analysis can improve on existing methods. Mexican and American seismic codes will be compared, and static and dynamic (time history) seismic analysis results will be compared.
As engineers go into other countries, they must know what assumptions are being made in design and construction so that they can take appropriate measures in design and specifications to get the anticipated results. These concepts will be discussed.
7


2. Soil Parameters from Soils Report
The soils report, “Infome De Studio Geotecnico” dated October 2007 by Grupo Corporativo JABEY S.A. de C.V., in Appendix A, is problematic. Since the gradation has only 25% passing the 200 sieve, the soil is labeled an SC, but gave it was given both a cohesion value, although extremely low, and an internal angle of friction, also very low, that is characteristic of a cohesionless soil, but all three borings have blow counts above refusal (50 blows per foot) at a relatively shallow level. The longest boring is only 3 m (10 ft.) deep, the others are 1.2 m (four feet) deep and 1.8 m (5 feet) will be scraped off for the site work. Even though they borings are not at the depth required for caissons, a preliminary design will enable a basis how much the client will save in foundation costs if more money is spent for geotechnical engineering (the client retained the geotechnical services in this case).
The format for allowable bearing pressures is for spread footings, and the Terzaghi equation for allowable soil bearing pressures is used incorrectly. Terzaghi’s equation for ultimate bearing pressure, quit, is
quit = cNc + 0.5ByiNy + y2DfNq Eqn. 2.1
where the values of Nc, Ny, and Nq, are taken from a curve table based on the internal angle of friction, B and Df are the width and depth of the footing, respectively. While they give the values used for Nc, Ny, and Nq, which are acceptable for the given They arrive at the allowable bearing stress, qadm by applying a safety factor to only the first term, cNc. The correct way is to calculate quit, substract the weight of the soil above the footing, and divide the whole result by the factor of safety.
8


Secondly, the safety factor is only 1.5, when a factor of 2.5 or 3 is recommended (McCarthy, 1988, p. 375).
Our conclusion was that the soil is a clay, and that geotechnical report had taken a very conservative approach in treating it as a cohesionless soil. The bearing pressures given for the location of the cyanide tanks, S-2 and S-3 (borings 2 and 3) are 26.7 ton/m2 (5.47 ksf) at 0.60m depth, and 54.0 ton/nT (11.0 ksf) at 1.20m depth.
Finally, since the pictures in the geotechnical report show a rope, tripod and team of people to raise the 140 pound hammer, the blow count could be low if they rope was not released simultaneously, resulting in an off center drop. The method gives rise to the concern of what type of equipment is available, and must be ascertained in the design development.
For seismic criteria, the geotechnical report lists values for c, ao, Ta, Tb, and r, without definitions, but refers to two different Mexican documents. These variables and references had to be researched.
9


3. Seismic Design Method & Parameters
The geotechnical report gave us values to satisfy the Mexican code, but our contract requires conformance to the IBC. Therefore, careful comparisons were made to come up with values to use in the American codes. The results were then verified using a time history analysis, which is promoted in codes of both countries.
3.1 Code Review
3.1.1 American Codes
3.1.1.1 IBC 2003
IBC 2003 was used because the project started before the 2006 code was available. IBC section 1615.1 instructs the designer to go to ground acceleration maps from which the variables Ss and Si come from. However, these maps only include the United States and its territories, and no maps of Mexico with these parameters could be found. In order to proceed with the design, some correlations are made from the comparison of published USGS maps. From Figure 1.3 “Mexico Seismic Hazard Map Peak Ground Acceleration (m/s ) with 10% Probability of Exceedance in 50 years”, the El Aguila mine is in the 49%g or 4.8
'y
m/s area. On Figure 1.4 “California Seismic Hazard Map Peak Ground Acceleration (%g) with 10% Probability of Exceedance in 50 years”, the areas with 48%g are right outside of faults. Going to the maps provided by IBC, a value of 150%g was used for Ss, and 60%g for Sj. Section 1615.1.1 then directs the designer to the site class table 1615.1.1, but says that where 30m of site specific data is not available, to use Site Class D. So even though our blow
10


counts, N>50, and we could have used Site Class C for soft rock and stiff soil, we are forced to use higher factors because of the quality of the soils report.
IBC section 1615.1.4 forward requires the determination of the fundamental period, T, and directs the designer to ASCE-7.
3.1.1.2 ASCE 7-05
Table 1-1 of ASCE7 designates Occupancy Categories. Occupancy Category II includes “All . . . structures except those listed in Occupancy Categories I, III, and IV”. Occupancy Category III encompases “structures, not included in Occupancy Category IV . . . containing sufficient quantities of toxic or explosive substances to be dangerous to the public if released.” Thus, it is determined that 6 huge tanks of cyanide would be in Category III.
Section 11.4.1 through 11.4.4 of ASCE7 is the same as the previously mentioned sections of the IBC. Chapter 15, sections 15.1.1 through 15.4.1 give minimums for design, which includes the seismic accelerations in Chapter 11, and direct the engineer to the AWWA D100, AWWA D103, and API 650. Section 15.7 Tanks and Vessels specifies the use of API 650 for industrial tanks. However, the latest edition of the API 650 is 1998. the latest version of the AWWA D103 is 1997, which does not use the seismic accelerations in the IBC 2003 or the ASCE 7-05. The AWWA D100 was updated in 2005 to include the same seismic accelerations as ASCE7 and IBC 2003. Further, it was found that the AWWA D100 is the more conservative than the API 650. This is because water tanks are vital to service communities, and tend to be on hill tops within these communities. Such a failure would be catastrophic in both property damage and loss of life. In contrast, industrial tanks are often in a concrete containment area, usually far
11


away from communities, and do not pose a threat to many lives. Therefore, it was concluded that using the AWWA D100-05 was adequate.
3.1.1.3 AWWA D100-05
The AWWA (American Water Works Association) essentially copies the procedure from 1BC 2003 and ASCE7-05 to get the variables Si, Ss, Fa, Fv, U, Sdi, Sds, Saj, Tc, Tl and Ts. However, it gives specific instruction in calculating the natural fundamental period of different tank structures, and state that ground supported tanks have a very small period that is taken to be zero (13.5.1). They add in a Seismic Importance Factor Ie, Table 24. that is used to increase the accelerations. It is determined that this is a Group II usage, which is important to the public welfare after a seismic event for it to not rupture. Therefore, Ie, = 1.25.
AWWA gives specific procedures on how to calculate the invective and convective forces and moments. Tanks are divided into two groups: those with diameter/height greater than 1.33, and those less than 1.33. There are then separate sets of equations to calculate Wj, the invective force, Xj, the moment arm of Wj; Wc, the convective (sloshing) force, and Xc, the moment arm of the convective force. Then the equation for the moment at the bottom of the shell, Ms is given in foot- lbs:
Ms = {[Ai(WsXs + WrH + WjXi)]2 + (ACWCXC)2}1/2 Eqn. 3.1
where Ws is the weight of the shell, and Wr is the weight of the roof. Notice that Wj and Wc, are functions of the weight of the contents, which is not included by itself in the equation. Equations are given specifically for when a pile foundation is used. Instead of X,, Xjmf is used, and instead of Xc, Xcmf, is used to calculate the moment at the top of the piles, Mmf:
Mmf = {[A,(WSXS + WrH + WiXimf)]2 + (AcWcX^f)2}172 Eqn. 3.2
12


Eqn. 3.2
AWWA then gives the equation for the design shear force in pounds:
Vf = {[Aj(Ws + Wr + Wi)]2 + (AcWc)2}1/2
To account for vertical accelerations:
Av = 0.14Sds Eqn. 3.3
Vallow = (Ws + Wr + W|+ Wc)(l-0.4Av)tan 30 Eqn. 3.4
If this is less than Vf, and the difference is used to calculate bolts required to carry the shear. Otherwise gravity is deemed sufficient to carry the shear.
The rest of the calculations are in Appendix B. It yields the following values to be used in design:
Shear, Vf = 2285 kips
Seismic overturning moment at top of piles, Mmf = 36,030 kip-ft
3.1.2 Mexican Codes
Page 13 of the soils report "Infome de Estudio Geotecnico" refers to Manual de la Comision Federal de Electricidad (C.F.E.), and Norma N-PRY-CAR-6-01-oo5/ol de la Secretaria De Communicaciones y Transposes (S.C.T.), and lists the variables ao, c, Ta(s), Tb(s), and r. Researching these documents and the significance of these values yielded additional information.
13


3.1.2.1 Sismicidad en el Estado de Oaxaca 1990-2000
This is the seismic code for the state of Oaxaca, that was provided to the consultant by the client. It provides a map of known faults reproduced in Figure
Figure 3.1 Oaxaca Faults
3.1 that shows El Aguila sitting between some known faults. Article 235 shows the seismic regions for the state, shown in Figure 3.2. Article 236 of this document refers to the seismic coefficient C for the horizontal shear force, and the Comision Federal de Electricidad that classifies types of construction, and gives a table of values to use for different seismic zones and soil types shown in Table 3.1, below. It can be seen that the value for C given in the soils report was
14


taken from seismic zone C, soil type I. Article 236 also refers to the Complementary Technical Norms.
Figure 3.2 Oaxaca Seismic Regions
Table 3.1 Comision Federal de Electricidad Seismic Coefficients
ZONA SISMICA DEL ESTADO TIPO DE SUELO COEFICIENTE SISMICO
1 0.14
B II 0.30
III 0.36
1 0.36
C II 0.64
III [T5T"
1 0.50
D II 0.86
III 0.86
5


3.1.2.2 Manual de la Comision Federal de Electricidad (C.F.E.)
This document was found only to provide the table given in the Sismicidad en el Estado de Oaxaca 1990-2000, reproduced in Table 3.1.
3.1.2.3 Norma N-PRY-CAR-6-01-oo5/ol de la Secretaria De Communicaciones y Transportes (S.C.T.)
This document, referred to in the soils report adopted AASHTO Standards for bridge loads and clearances, but did not give any seismic information.
3.1.2.4 Regamento de Construction para el Estado de Oaxaca
In “Titulo Quinto Normas de Seguridad Estructural” (Title 5 Rules for Structural Safety) of this document, Article 252 defines the soil types described in the Table
3.1 provided in Sismicidad en el Estado de Oaxaca 1990-2000 and Manual de la Comision Federal de Electricidad (C.F.E.). Soil Type I consists of rock and firm soil, Type II consists of sands and some clay with overall depth to bedrock less than 20 m, and Type III consists of clays and soils with significant overall depth. The geotechnical report used Type I soil, which is consistent with the high blow counts encountered.
3.1.2.5 Normas Tecnieas Complementarias para Diseno por Sismo
The Normas Tecnieas Complementarias was referred to in the Sismicidad en el Estado de Oaxaca 1990-2000. Instead of tediously translating it, a document was found in English titled "Seismic Code Evaluation. Mexico" by Jorge Gutierrez that evaluates the seismic code requirements. Gutierrez starts out stating that the
16


purpose of the Norm is to ensure no major structural failures or loss of life for the maximum probable earthquake (Gutrierrez, 2003. p. 1).While this code is mainly for Mexico City, other districts adopt it, with modifications to the seismic coefficients (Gutrierrez, 2003, p. 1).
Occupancy and Importance consist of two groups. Group A are structures whose failure would result in a lot of deaths due to high economic losses or toxicity. These are assigned an Importance Factor of 1.5. All other structures are Group B, with Importance Factor of 1.0 (Gutrierrez, 2003, p. 4). While there are no structure types explicitly defined, there are several types mentioned in relation to the Reduction Factor, Q, discussed later (Gutrierrez, 2003, p. 4):
• Frame systems
• Flat slab systems
• Wall systems
• Braced frame systems
• Prefabricated concrete systems
• Dual systems, combining the above
There are also regular and irregular structures in plan and elevation. Though there are 11 criteria (Gutrierrez, 2003, p. 4), a round slab with a symmetric pattern of piles is so very obviously regular, this will not be discussed further. There are also redundancy requirements (Gutrierrez, 2003, p. 4) such that if any component contributes more than 35% of the total strength, its strength will be 80% of the corresponding nominal value (Gutrierrez, 2003, p. 4).
Section 4.1 of Gutrierrez and Section 3 of the Normas define the values given in the soils report, a<,(=0.19g), c (=0.36g), Ta(s) (=0.20), Tb(s) (= 0.60), and r (=1/2) in relation to the Elastic Design Spectra for horizontal accelerations. The designer must have T, the natural fundamental frequency of the structure. The horizontal acceleration response spectra, a, in terms of g, is then deteremined by:
17


Eqn. 3.5 Eqn. 3.6 Eqn. 3.7
a = ao + (c - ao )(T/Ta) for T < Ta a = for Ta < T < Tb a = qc for T > Tb
Using T = 0, to be consistent with AWWA, then a = a*, =0.19. Vertical accelerations and displacements are not considered (Gutrierrez, 2003, p. 4).
For the design spectra, a Reduction Factor Q’ is us used for calculation of lateral seismic forces for Static and Mode Superposition Methods (Gutrierrez, 2003, p.
6):
Q' = Q for T unknown or T > Ta Eqn. 3.8
Q’ = 1 + (T/Ta)(Q-l) for T < Ta Eqn. 3.9
Where Q is summarized in Table 3.2:
Table 3.2 Reduction Values, Q
Q Requirements
4 a. Frame or dual structural types of steel, concrete, or steel-concrete composites with frames able to resist 50% of acting seismic force. b. Dual structural types with masonry walls if the structure without them is able to resist 80% of total lateral forces. c. Minimum lateral strength on any story is within 35% of the total average. d. If steel braced frames are present, they must be eccentrically braced. e. Elements and components designed for high ductility.
3 a. Previous (Q=4) conditions b, d and e are satisfied, but either conditions a or c are not (in any story). b. Concentric steel braced frames designed for high ductility.
2 a. Frame, wall or dual structural types of steel, concrete, steel-concrete composites or masonry not satisfying any of the requirements for previous (Q=3 or 4) conditions. b. Prefabricated concrete buildings. c. Some types of timber or steel buildings according to their specific norms.
18


1.5 a. Wall structural types with hollow masonry walls. b. Timber frame buildings.
1 Buildings with other structural materials and without technical justification for higher values.
Since T = 0, then Q’ = 1 in this design.
A simplified analysis and design procedure is available where
• 75% of the vertical loads are supported by symmetrically distributed walls braced by horizontal slabs with enough strength and stiffness.
• Plan length to width ratio is less than 2.
• Height is less than 13m, with height to minimum width ratio is less than
1.5.
This allows the Static Method Procedures to be used (Gutrierrez, 2003, p. 8). In this method, horizontal displacements, torsion and overturning moments are not considered. It is only necessary to check that each story have enough strength to resist the horizontal shear at that story.
This method starts out with:
Vo/Wo = c/Q!> a^ Eqn. 3.10
Where:
Vo = the base shear force
Wo = the total weight of the structure
c, Q’, and ao are as previously defined
This yields Vo = 0.36Wo. From the AWWA calculations, the weight of the shell, fittings, floor, agitator assembly, and contents is 3220 kips. The demand shear, Vo = 1159 kips. If considered a Group A structure with an importance factor of
1.5, the design shear would be 1739 kips, which is still less than half the base shear calculated by AWWA. They do not prescribe additional seismic moments, relying on engineering judgment to apply the moment resultant from the shears on
19


each floor. However, the absence of an additional seismic moment leads to an even larger disparity in design requirements between the Mexican and American code requirements.
Soil structure interaction is considered in soft soil conditions (Gutrierrez, 2003, p. 9), which is not applicable in this site. Acceleration Time Histories (4.3) is promoted for non-linear analysis, and can be registered, simulated or a combination of both, and can be used for non linear dynamic analysis but four independent time histories must be used, and must be compatible with other criteria of the Norm (Gutrierrez, 2003, p, 6).
3.2 Design Decisions from Codes
Since the AW WAD 100-05 code is specific for this situation, and covers the design requirements of both countries, contractual requirements, and our engineering obligations, the values obtained by its procedure will be used. They are reiterated here for convenience:
Dead Load (Tank and Components)= 145.07 kips Tank Contents = 2956 kips Horizontal Wind Force = 42.81 kips Wind Overturning = 793.70 kip- ft Seismic Shear, Vf = 3902 kips
Seismic overturning moment at top of piles, Mmf = 60,340 kip-ft
20


4. Review of Drilled Pier Design Methods
In low seismic areas, a drilled pier is designed based on axial capacity. According to FHWA, this also true if allowable stress design is being used: axial capacity drives the design, and then the design is checked for lateral deflection. FHWA then goes on to state that the LRFD design is usually driven by lateral deflection. However, drilled piers are popular in high seismic zones because of their high resistance to lateral loads. Therefore a high seismic loading (causing lateral deflection) can also drive the design.
The best use of the LRFD method starts with determining the variability of soils information, and requires a large amount of data to determine values. There is a simpler method to adjust to less information as discussed later, as the simpler method was the one necessitated in this case.
In order to clearly compare the difference between methods, one layout was arrived at for all the analyses. Sixteen drilled shafts total in two circles: the inside circle with an 5.49 m (18 ft) diameter, and six equally spaced caissons, and the outer diameter of 11.58 m (38 ft). A 12.19 m (42 ft) diameter cap will then cover them, which will leave a 150 mm (6 inch) edge. This will leave 0.60 m (2 ft) between the tank shell and the edge of the slab, which will facilitate anchor bolts placement and pullout design, and reinforcing details.
21


4.1 Introduction of Alternative Axial Capacity Design Methods
In all the reviewed methods, the ultimate axial load capacity for a drilled pier is calculated as the sum of the end bearing capacity and the skin friction and, for allowable stress design, dividing the sum by a factor of safety to achieve the allowable load of the pile.
FS = factor of safety
The bearing capacity and skin friction values come from vary in how they are determined. In all cases, the length of the pile used for skin friction is the shaft length minus the upper 1,8m (5 ft), minus one shaft diameter at the bottom, and minus the bell height where a bell is used. These areas are not effective in resistance due to soil disturbance.
Since each leach tank foundation is composed of several shafts, the spacing has to be considered, as to whether they act individually or a group. Shafts spaced three diameters apart, center to center, act independently, and the full values skin friction values can be used. Closer than three diameters, the strength has to be reduced linearly. The outer circle of 10 shafts have spacing on the diameter of 3.64 m (11.94 ft) which is more than three diameters. The inside six shafts are spaced at 2.87 m (9.425 ft), also more than three diameters, and the circles are
3.05 m (10 ft) apart, also more than 3 diameters. Therefore all the shafts act individually.
One common element that is stressed in all of the literature is to use local customs. However with the previously discussed problems with the geotechnical firm being Spanish speaking and not being the subconsultant of the design firm,
Qultimate Qtip Qfriction Qallowable ~ Qultimate/FS
Eqn. 4.1 Eqn. 4.2
22


the local customs are unknown. Experience has shown that different cultures have paradigms that are not easy to detect that can change the design. However, it is known that drill rigs can usually be found, even in rustic areas, with a certain amount of scouting.
4.2 Theory' of CDOT Method for Axial Capacity
Colorado has relatively shallow competent bedrock in a large portion of the state. Therefore the CDOT (Colorado Department of Transportation) method is definitely a local custom. Also, CDOT specifications and protocol provides for consistent high quality construction management to implement good construction practices. Typically CDOT, which is in the English system of units, takes the number of blow counts and divides that by two. That is then the allowable bearing pressure in kips per square foot. Ten percent of that value is then used for the skin friction value.
Thus the Equation 4.1 becomes:
Qallowable — Qtip/FS + Qfrictior/FS Eqn. 4.1
Qallowable = (N*Atip )/2 + (0. lN*Askln)/2 Atip= n * diam2 /4 Askin= n * diam*Leff
diam = diameter of the shaft being analyzed
Leff = Length of the pier minus the upper 5 ft. minus 1 diameter
Eqn. 4.4 Eqn. 4.5 Eqn. 4.6
23


4.2.1 Input, CDOT Method
Using boring B2, the maximum of 75 blow counts given in the soils report Anexo No. 3 “Resultadaos de Laboratorio” becomes 37.5 ksf (258.56 MPa) allowable bearing pressure, 3.75 ksf (25.86 MPa) skin friction.
4.2.2 Analysis Results, CDOT Method
Therefore, for a 900 mm (3 foot) diameter, 7.01 m (23 foot) long drilled pier: Axial demand 3509 kN (788.96 kips)
Axial capacity 3537 kN (795.22 kips)
Uplift demand -1362 kN (-306.25 kips)
Uplift capacity -2358 kN (-530.14 kips) as shown in Appendix C.
4.2.3 Discussion of Analysis Results
In comparing the soils report with geotechnical reports for some CDOT projects that went into the claystone bedrock, the material is similar except for moisture content, which is lower for El Aguila. The caisson capacity is what would be expected for a CDOT project. The 75 blow count might appears conservative, in light of the higher blow counts at the adjacent borings. Using a method local to the engineer does not lend itself to the unknowns in the procedures in obtaining the soil data or the differences in construction. The safety factor could be increased from two, but then one is outside the local norm, without a way of correlating this method to anything else. It is useful to compare a lean design resulting from good data and construction methods to lesser data and different methods.
24


4.3 Design Using Soils Report & Essentials of Soil Mechanics and
Foundations, 3rd Edition, by David F. McCarthy, for Axial Capacity'
The next design method to be considered is based “Essentials of Soil Mechanics
and Foundations”, 3rd Edition, by David F. McCarthy. The bearing capacity given
2
in the soils report for Boring 2 (Appendix A, p. 101) on 13, q adm = 54.0 ton/m (11 ksf) at a depth of 1.2 m. When using the values for Boring 2 on the previous page (Appendix A, p. 100) for a depth of 4.5m (15 feet) in the equation given in the soils report (Appendix A. p. 98), the allowable bearing pressure q adm =
75.23 ton/m2 (15.41 ksf). The cohesion given is 3.5 ton/m2 (0.717 ksf). On McCarthy, 1988, p. 413, the equation for end bearing is
qtip = cNc Eqn. 4.7
where c is the cohesion, and Nc is the bearing capacity factor for deep foundations, ranging between 6 and 10, but usually taken as 9c. However on (McCarthy, 1988, p. 409), the lower limit for cohesion is given lksf.
In evaluating whether to use 15.41 ksf from the soils report, or McCarthy’s 9ksf for end bearing, earlier it was determined that the geotechnical engineer was very conservative and yet authorized use of a higher value for end bearing, and so the
75.23 ton/m2 (15.41 ksf) will be used.
On page 408. McCarthy gives the skin friction as
fciay = otc Eqn. 4.8
where fC|ay is the unit adhesion or skin friction developed between clay and the pile shaft, a is the factor that relates adhesion to cohesion (or the friction ratio), and c is the cohesion. In this case a = 1, so fciay = c = 1 ksf.
25


The shaft allowable capacity is then equation 4.3. However, the value for the end bearing already has a safety factor in it, so capacity equation becomes
This design required a belled end. Therefore the diameter used to calculate AtjP is the diameter of the bell, which is 2.13 m (7 fit.). The skin friction is calculated using the diameter of the straight part of the shaft, and the belled length does not contribute to it. So Leff is reduced by the height of the bell.
Before proceeding with the design of belled or underreamed drilled shafts, shear keys (roughened shaft) were considered. Locally, belled shafts are scorned, and shear keys are more familiar. Discussions with several experienced project managers who had procured equipment in isolated areas revealed that belled shafts were not uncommon in most parts of the world. Conversely, it took considerable discussion to explain what a roughened shaft or shear keys were, and the idea was not accepted.
The spacing at the shaft tip was considered. When the load was distributed to the boundary of where the areas overlapped, and the bearing pressure calculated, it was below the allowable.
4.3.1 Input, McCarthy Method
The unit bearing capacity, qtjp , used was 0.738 MPa (15.41 ksf) with a belled caisson, and the unit skin friction used was 47.88 kPa (1 ksf).
Qallowable Qlip Qfriction/FS Qallowable — (4tip *App ) + (c*Askjn)/2
Eqn. 4.1 Eqn. 4.9
26


4.3.2 Analysis Results, McCarthy Method
Therefore, for a 900 mm (3 foot) diameter, 9.45 m (31 foot) long drilled pier, 0.6
m (2 ft) of which is belled to a diameter of 2.13 m (7 ft):
Axial demand Axial capacity Uplift demand Uplift capacity
3509 kN (788.96 kips) 3517 kN (790.67 kips) -1304 kN (-293.06 kips) -3033 kN (-681.74 kips)
as shown in Appendix D.
4.3.3 Discussion of Analysis Results
McCarthy stresses the use of local customs, which are unknown. However in evaluating other geotechnical reports from Mexico, they are surprisingly conservative. This may be an effort to protect themselves from wreckless construction methods, such as putting a building on spread footings on the edge of a poorly compacted hillside fill, not providing adequate drainage behind huge fills and retaining walls, and other things that would typically not be acceptable in the United States.
McCarthy’s approach leaves room for adjusting between good information and poor information. While it is stated that a safety factor of 3 or higher should be used depending on the information available, it also states not to be overly conservative. Since refusal is N=50, and the soils report has N in the 90’s, the designer considers the value of cohesion used in calculating the shear friction to be extremely low, and the bearing pressure to be conservative enough without increasing the factor of safety.
27


4.4 Design Using FHWA ASD Method for Axial Capacity
FHWA has produced a publication “Drilled Shafts: Construction Procedures and Design Mehtods’’, Publication No. FHWA A-1F-99-025, by O’Neil & Reese, printed August 1999, based on case studies all across the United States. It contains design guidelines for using either ASD (Chapter 10) or LRFD (Chapter 11), and then go through the design process detail in the Appendix B and A respectively. This publication also delves into the effect of soil layers, construction processes, concrete properties, and drained verses undrained loading with cohesive soils.
The ASD method calculates the ultimate geotechnical resistance (O’Neil & Reese, 1999, p. 264)
Rt-Rb + Rs Eqn. 4.10
where
Rr = nominal (calculated) total ultimate resistance in compression Rb = nominal (calculated) net ultimate base resistance in compression, and Rs = nominal (calculated) ultimate side resistance (skin friction) in compression
This is unlikely to be the actual resistance, which is accounted for using appropriate factors of safety. There is also a deflection softening behavior of drilled shafts in compression, after which the base resistance and skin friction are not additive. This requires a settlement analysis to determine that the designer is in the area where the values are additive (O’Neil & Reese, 1999, p. B-2).
While the weight of the drilled shaft, W’, is not included in compression calculations, because its weight is roughly equal to the displaced soil, it is included in uplift loading, so that (O’Neil & Reese, 1999, p. B-3)
28


Rx — Rb Rs W’
Eqn. 4.11
Parameters are given for four categories of soil (O’Neil & Reese, 1999, p. B-4):
• cohesive soil, with su < 0.25 MPa (5,200 psf)
• granular soil, with Nspt < 50 blows/0.3 m
• intermediate geomaterial (IGM) cohesive, with 0.25 MPa (5,200 psf) < su < 2.5 MPa (52,000 psf) and granular, with Nspt > 50 blows/0.3 m
• rock, with su > 2.5 MPa (52,000 psf)
Values are assigned to each layer of soil, and Eqn. 4.9 becomes (O'Neil & Reese, 1999, p. B-6)
Kr = Z (/„», )^Az, + (»„ )(n ^-) Eqn. 4.12
where
fmax i ~ unit side friction in layer i, which depends on the geomaterial
properties, depth and roughness of the borehole. It is them multiplied by the circumference of the shaft, and the thickness of the layer,
Zj = thickness of layer i,
qmax = net unit base resistance, which depends on the geomaterial properties, and is multiplied by the base area.
The complete theoretical bearing capacity equation for a bearing surface, in this case the base of the drilled shaft, is Equation 4.12. It assumes the geomaterial is homogenous, isotropic, non-strain softening, and is not rock. It requires modification for drilled shafts in granular geomaterials, where the excavation can change some of the soil parameters (O’Neil & Reese, 1999, p. B-7).
qmax = CscCdcCicNcC + ^sqQqQq(Nq-1) a‘vb + 0.5B£sY Qy Qy Nyy‘b Eqn. 4.13
29


Nc, Nq, Ny = bearing capacity factors for infinitely long footings at the ground surface, and depend upon the angle of internal friction and the rigidity of the soil,
Cjk = correction coefficients to account for the shape (j = s), depth (j = d) and inclination of the load (j = i),for the respective bearing capacity factors above,
a‘vb = ambient vertical effective stress in the soil mass (total vertical stress minus pore water pressure in the soil, if any), discounting any stresses induced due to installing the shaft, at the tip elevation, y‘b = effective unit weight of the soil below the base of the drilled shaft, which is the total unit weight of the soil to a depth of 1.5 diameters below the base, and above the piezometric surface. If the tip is below the piezometric surface the buoyant unit weight is used, c = average cohesion of the soil in the vicinity of the base elevation.
If the soil below the base is substantially softer than the soil surrounding the base, punching failure needs to be checked. It also needs to be determined whether the loading of the drilled shaft will produce undrained or drained pore water pressure conditions at the shaft tip. It is conservative to a assume undrained conditions at the caisson tip is in cohesive soils. As drained conditions effectively make the soil stronger, it is ordinarily only assumed for free draining granular soils for loading cases other than impact and seismic loading. However, in heavily overconsolidated cohesive geomaterials, the the shearing component of the applied load can cause dialation of the base material. This then is resisted by the generation of negative pore water pressures (suction), which dissipate and can result in a reduction in shear strength and consequently in bearing resistance (O’Neil & Reese, 1999, p. B-8).
30


For undrained design, FHWA gives a figure to derive the undrained shear strength (cohesion), su, from either unconsolidated, undrained (UU) triaxial compression tests or consolidated undrained (CU) triaxial compression tests (O'Neil & Reese, 1999, p. B-9). There is no data from these tests recorded in the geotechnical report. It is not known how the cohesion or internal angle of friction was derived, but 21° is very low. The average blow count of 27 and 75 is 51, puts it in the range of an intermediate geomaterial by FHWA, and a hard clay by McCarthy (pg 238). The soils report gave a value for cohesion of 3.5 tonnes/ m (0.66ksl), again extremely conservative. The average value of su for a very hard clay is 144 to 239 kPa (3000 to 5000 psf). the average of 192 kPa (4000 psf) is used for design. This puts the foundation soil in the category of cohesive soil from the four FHWA soils categories.
With these design decisions, Equation 4.12 can be simplified for the specific case of undrained analysis in cohesive soil. The internal angle of friction of the soil, cp, is taken as zero since no change in the shear strength occurs during loading. That makes Nq = 1 (Nq -1=0) and NY = 0. It is assumed that the soil reaction on the base of the shaft is parallel to the shaft and the length of the shaft is greater than three diameters, so that ^ScCdcCicNc = Nc* can be determined by assuming that base failure occurs in the soil by the expansion of a aspherical cavity against the surrounding elastic soil mass. This makes Equation 4.12 simplify to (O’Neil & Reese, 1999, p. B-12)
qmax Nc* Su Eqn. 4.14
where
Nc* = 1.33(ln/r + 1) Eqn. 4.15
Ir ~ Es/3 su or cp = 0 Eqn. 4.16
Ir = rigidity index
Es = Youngs modulus of the soil in undrained loading
31


If Es =is not measured, a table is provided to correlate Nc*. su. and Es/3 su. If However, if the base soil has su > 96kPa (2000 psf), then
Omax — 9 su Eqn. 4.17
can be used with “sufficient accuracy” according to FHWA.
The next task is to determine the side resistance, Rs. Few studies have been made of side shearing resistance along drilled shafts. Most of the information available is a result of relating side resistance measured in loadings tests to basic soil properties and stress states. For cohesive soils, the undrained resistance is developed. It should be noted that in calculating Rs the seasonal moisture change can affect the skin friction (Isenhower, et al, 2006, p. 327). But in this study there is a concrete slab around the foundations which will limit those variations.
Drilling the shaft remolds the soil at the face, reducing the in-situ strength. The exposed soil can swell, relieving stress, and further weakening the soil. Though the fluid pressure, and later the lateral pressure, from the concrete may reconsolidate the soil to some extent. The soil can also absorb water from the concrete, which may further reduce the shear friction. All these factors make it difficult to detennine the actual ultimate shear resistance is available when the caisson goes into service. However, it is customary to estimate fmax in cohesive soils by relating it to some measurable soil strength parameter or stress state (O'Neil & Reese, 1999, p. B-27). The most frequently used factor is su, adjusted for the construction disturbances mentioned by the factor a as follows:
fmax = asu Eqn. 4.18
These correlations have been developed by carefully measuring su, in UU tests or converting other tests to UU results, and then conducting load test on drilled shafts and measuring fmax along the shaft. A vast library of case histories for
32


caissons in cohesive soils was researched, and the values ol shafts greater than
0.7m (2.3 ft) and less than 1,83m (6.0 ft), and lengths greater than 7m (23 ft), and su> 50kPa (0.5 tsf) were plotted, as shown in Figure 4.1. The resultant trend line yielded the Equations 4.18 and 4.19 below. These equations assume the first 1,5m (5 ft) have zero skin friction, and the bottom 1 diameter has zero skin friction. These values correlate with other studies, and can be used when site specific data is unavailable. In these equations, pa is the atmospheric pressure
100.5 kPa (2100 psf) (O'Neil & Reese, 1999. p. B-28).
sjp
Figure 4.1 Correlation Between a and su /p.
a
a = 0.55 for su/pa < 1.5, and Eqn. 4.19
d = 0.55 -0.1(su/pa- 1.5) for 1.5 33


This yields su /pa = 1.905, a = 0.511 and fmax - 2.04 ksf (97.68 kPa). While this works for normally consolidated materials, it may be unconservative for overconsolidated materials.
In combined axial and lateral loading loading, the lateral deflection will reduce the value of fmax along part of the shaft because of the permanent gap left between the soil and the caisson. This is especially true in seismic situations. An approximate approach to the problem is to compute the lateral deflected shape under combined factored axial and factored lateral loads. Studies show that in stiff clay, soil around piles behaved elastically as long as the lateral deflection did not exceed 0.001 diameters (O'Neil & Reese, 1999, p. B-55).
While this not a code requirement, certainly under normal loads, such as wind, one would want to check this. However, for seismic, the structure doesn’t need to be usable after the event, it only needs to stay in tact enough that the tank doesn’t rupture in a seismic event. Therefore, under wind load of 189.5 kN (42.8 kips)/
16 caissons is less than 13 kN (3 kips) per caisson. As discussed in chapter 5 on lateral deformation, one of the TPile loadings with 5% reinforcement is a horizontal load of 16.68 kN (3.75kips) which produced a deflection of 0.006 mm (0.0003 inches) at the head of the pile, showing elastic behavior under normal loads. Under the extreme event (seismic) it is 7.4 mm (0.292 inch), which is acceptable to prevent tank rupture for a single event.
34


4.4.1 Input, FHWA, ASD Method
All calculations for a soil with cohesion is based on the undrained shear strength. It was determined that the the average value of su = 192 kPa (4000 psf) was conservative and should be used for design. The unit bearing pressure qmax = 9su on the belled end, and the unit skin friction 97.86 kPa (2.044 ksf). A safety factor FS = 2.
4.4.2 Analysis Results, FHWA, ASD Method
Therefore, for a 900 mm (3 foot) diameter, 6.40 m (21 foot) long drilled pier, 0.6 m (2 ft) of which is belled to a diameter of 2.13 m (7 ft):
Axial demand 3509 kN (788.95 kips)
Axial capacity 3551 kN (798.32 kips)
Uplift demand -1350 kN (-303.66 kips)
Uplift capacity -5969 kN (-1342 kips) as shown in Appendix E.
4.4.3 Discussion of Analysis Results
FHWA has spent the money to acquire a huge data base of material that is cross-correlated and has made available more resources to utilitze the information one has available. However, the fundamental property, the undrained shear strength, had to be conservatively approximated from experience, and for a material that has a blow count over refusal, is probably actually an intermediate geomaterial, and not a cohesive soil. While FHWA suggests safety factors ranging from 1.7 to
3.5 (page 239), it is based on construction practices and assumes that the fundamental design information is good. Like McCarthy, they caution against
35


overconservative design. Therefore, this design uses a safety factor of 2 because the undrained shear strength is very low, and it is the same used for the McCarthy method.
4.5 Design Using FHWA, LRFD Method for Axial Capacity
The LRFD method, detailed in Appendix A of their publication, directs the creation of characterization domains, i.e. plotting the pertinent qualities so that they can be grouped accordingly. From the plot, a trend line is created, and the COVw , or coefficient of variation, is calculated. This is based on the sampling interval and distance from the trend line the data point falls. The result can lead to more borings or a regrouping of the borings, or using lower reliability values (O’Neil & Reese, 1999, p. A-l).
All borings spaced farther than 15m (50 ft) (O’Neil & Reese, 1999, p. A-4) are considered horizontally uncorrelated. The relevant data for their design method is the undrained shear strength, su, as discussed earlier. The three borings in geotechnical report are 58m and 24m apart, and are therefore, horizontally uncorrelated. While plotting the N values show a definite vertical correlation, as shown in the Appendix F, it isn’t the value required, and there are not enough data points to create a meaningful COVw. Therefore, they recommend that when this criteria cannot be met, that either conservative values of the design parameters should be chosen or the resistance factor be reduced or the factor of safety be increased (O’Neil & Reese, 1999, p. A-10). As discussed previously, the value of undrained shear strength, the main design parameter used is considered very conservative.
In LRFD, the general equation for the design of axially loaded drilled shafts is
36


riSyiQj < I())iRj Eqn. 4.21
where the nSyiQi is the demand, and L^Rj is the capacity (O’Neil & Reese, 1999, p. 240), and
p = ductility/redundancy/operational importance factor (0.95 to 1.05)
Yi = load factor for load component i Qi = nominal load value for load component i i = resistance factor for resistance component i Rj = nominal value of resistance component i Currently, LRFD for drilled shaft foundations assumes that if a drilled shaft fails, the structure will be in a failure state (O'Neil & Reese, 1999, p. A-16). However, for highly redundant drilled shaft groups p could be taken as 0.95, but is usually taken as 1.00 or 1.05 (O’Neil & Reese, 1999, p. A-17). Qi has been calculated by the AWWA method shown in Appendix B and discussed earlier. The load factors, yi depend upon the limit states that are being analyzed, and FHWA uses the AASHTO limit states.
AASHTO has a table of 12 limit states ( load combinations), with various load combinations within each one. Some of the variables have set load factors for a given limit state, and some have variable load factors are denoted by yp The value for yp is listed in a second table and provides a maximum and minimum value to test for. Since this is all transportation related, a lot of the limit states can be eliminated, and since the leach tank foundations basically have dead load, wind and seismic, the elimination of variables leads to some redundancy:
STRENGTH I is for normal use of the structure without wind.
STRENGTH II is for an extra heavy permit vehicle and does not apply.
37


STRENGTH III is for normal use with the structure exposed to winds over
90km/hr (55 mph). The design wind for this project is 160 km/hr (lOOmph).
STRENGTH IV is for a high dead to live ratio. The tank contents is considered dead load because it is present most of the time, but the input only falls a
0.30m to the liquid level maintained by the outflow, and the agitator circulates the liquid vertically. Live load in the AASHTO sense does not apply.
STRENGTH V is for normal use and a wind velocity of 90km/hr (55 mph), which does not apply.
EXTREME EVENT I is seismic.
EXTREME EVENT II is for ice flows, vessel impact, and vehicular impact. This structure is surrounded by a containment wall and other structures, and cannot be hit by a vehicle. This load case does not apply.
SERVICE I is for normal operational use of the bridge with a 90km/hr (55 mph) wind, and all loads taken at their nominal values. It is used for settlement calculations and and crack width control in concrete reinforced structures.
SERVICE II is for steel structures only, and does not apply to the foundation.
SERVICE III is for prestressed concrete in tension only, and does not apply.
SERVICE IV is for tension in prestressed concrete substructures only and does not apply.
FATIGUE is for the combination of loads relating to repetitive gravitational vehicular live loads, and does not apply.
This leaves four load cases as shown in equations 4.22 through 4.25. The check
uplift, two STRENGTH III cases are included, one with the tank full like all the
other load cases, and one with the tank empty. The load calculations are in
Appendix F. As expected, seismic controls for both axial compression, and uplift.
STRENGTH I = t\ [ypDC ] Eqn. 4.22
38


STRENGTH III = 7] [ypDC + 1 4WS ] = EXTREME EVENT I - ri [ypDC + 1 OEQ ] = SERVICE I = r| [1 .ODC + 0.3WS ] =
Eqn. 4.23 Eqn. 4.24 Eqn. 4.25
DC = Dead Load WS = Wind on structure EQ = Earthquake load
The other part of Eqn. 4.21 is the capacity side. Although the nominal resistances are calculated the same way, instead of dividing by a safety factor, the resistances are multiplied by a resistance factor, (j). These resistance factors have been statistically calibrated from a huge data base and presented in a table (O'Neil & Reese, 1999, p. A-21), and reproduced in Appendix F. It can be seen that a very high resistance factor can be used if there has actually been load tests at the site, and a much lower one elsewhere. In this case, since the undrained shear resistance, su, is very conservative, the resistance factors will be as suggested in the table.
4.5.1 Input, FHWA, LRFD Method
The values used in the Equation 4.21 are as follow:
T] = 1.00
YP = 1.25 maximum, 0.9 minimum
(j) = 0.65 Compression, skin friction
<)> = 0.55 Compression, base
(j) = 0.50 Uplift, skin friction su= 192 kPa (4000 psf) fmax = 85-1 kPa (1778 psf)
39


cjmax = 9su = 1723.7 kPa (36 5sf)
The complete calculations are in Appendix F.
4.5.2 Analysis Results, FHWA, LRFD Method
Extreme Event I, seismic was the controlling demand, as expected. Therefore, for a 900 mm (3 foot) diameter, 5.18 m (17 foot) long drilled pier, 0.6 m (2 ft) of
which is belled to a diameter of 2.13 m (7 ft):
Axial demand Axial capacity Uplift demand Uplift capacity
3764.1 kN (846.2 kips)
3779.4 kN (849.65 kips) -1572.9 kN (-353.60 kips) -3067.0 kN (-689.5 kips)
4.5.3 Discussion of Analysis Results
Since the resistance factors ranging from 0.55 to 0.65 would equate to safety factors of 1.81 to 1.53, respectively, it is not surprising that the resultant is a shorter drilled shaft. Since the seismic load controls, and because it just needs to remain standing, and because the LRFD design approach is that the shaft cannot fail or else the structure will fail, this is an economical way to go. Additionally, the clay at the head that may deform permanently in a seismic event will only have to last once. This would not be true for dynamic loads on machinery that is expected to last 25-50 years.
4.6 Comparison of Axial Design Alternatives
In preliminary iterations, the common pile layout of 16 shafts was determined. This way. the difference between the designs was more readily apparent.
40


3899 kips/ 244 kips per caisson 60,220k-ft 788.96 kips -353.60 kips
The results are summarized in Table 4.1:
Seismic Lateral Force Seismic Overturning Moment Maximum Bearing Demand (single shaft) Maximum Uplift Demand (single shaft)
Table 4.1 Comparison of Axial Design Alternatives
DESIGN METHOD
CDOT McCarthy FHWA, ASD FHWA, LRFD
SI US SI US SI US SI US
Total Length, m (feet) 7.01 23 9.45 31 6.40 21 5.18 17
Unit End Bearing, kPa (ksf) 1795.5 37.5 737.8 15.41 861.8 18 948.0 19.8
Total End Bearing, kN (kips) 1179.2 265.1 2636.5 592.7 3080.4 692.5 3339.5 762.0
Unit Skin Friction, kPa (ksf) 179.6 3.75 47.9 1 48.9 1.022 63.6 1.33
Total Skin Friction, kN (kips) 2358.0 530.1 880.4 197.9 471.3 106.0 390.1 87.7
Bell Diameter, m (feet) — 2.13 7 2.13 7 2.13 7
Bell Height, m (feet) .... 0.61 2 0.61 2 0.61 2
Total Capacity 3537.2 795.2 3516.9 790.6 3551.7 798.5 3779.7 849.7
%End Bearing 33% 75% 87% 90%
% Skin Friction 67% 25% 13% 10%
FHWA LRFD has the shortest belled columns, with the ASD design second, followed by CDOT’s straight column design, and finally the McCarthy method. While all have similar capacities,CDOT has a high amount of strength in skin friction because it is assuming a rock socket. It was stated earlier that FHWA’s method for cohesive soil was used, not for an IGM. The difference in assumptions with FHWA and McCarthy methods produce essentially end bearing shafts.
CDOT has a very well developed local protocol from the geotechnical testing through design and construction specifications and construction management. Therefore, assumptions can be made in their process that may not be true
41


everywhere. While the design assumptions could be very applicable to this sight, the difference in construction management and techniques makes this unconservative.
Conversely, local customs in foreign countries can be surprising. The FHWA method is based off of a much larger national database. This includes a wide variety of soil conditions, construction practices and construction management practices, as well as various seismic conditions, and other significant lateral loads. They assume the designer has enormous amounts of soils data but also provide guidelines to adjust to different circumstances. Also, their document was just on drilled pier foundations, giving them opportunity to elaborate fine points.
The McCarthy method is based off the soils report, which as noted earlier, leaves much to be desired. Both FHWA and McCarthy stress the use of local custom. When one sees the type of construction in Mexico, which would not be allowed in the US, it could be surmised that the conservatism in the soils report is due to the lower construction standards in the area. Also, the McCarthy publication is more general, being one chapter of a book covering a wide variety of geotechnical issues.
When considering these parameters, the FHWA LRFD method for axial capacity design is the method of choice for the following reasons:
1. As previously mentioned, the blow counts indicate the material is better than what the geotechnical report recommended, and closer to the FHWA’s IGM than the cohesive soil values used in design. The purpose of the study is a preliminary design to justify the request for the client to spend more on geotechnical information.
42


2. The LRFD design method translates into a safety factor above 1.5, which should be adequate for the structure to survive the controlling (seismic) load.
3. The undrained, unconsolidated shear strength was used.
4. The caissons are covered with a cap surrounded by a concrete slab, which will reduce seasonal fluctuations in moisture content.
5. We are not taking into account the soil structure interaction.
6. In looking at the data for major earthquakes in the region, it appears a major event occurs every 10-20 years, and the plant is only expected to be in operation 10 years. Plus, a major seismic event just hit the area February 12, 2008 (Ms = 6.6).
7. The construction specification can be written to take out some of the uncertainty, by prequalifying contractors, and a qualified geotechnical engineer on site during the drilling of the caissons.
The FF1WA method is considered duly conservative without being overconservative. Therefore, the axial design will be for a 0.9 m (3ft) diameter shaft of 4.90 m (16 feet), and another 0.60 m (2 feet) that will be underreamed to finish at a 2.15 m (7 ft) diameter shaft, for a total length will be 5.2 m (17 feet) based on axial load.
The soil will be modeled as a clay with undrained shear strength, su = 192 kPa (4000 psf).
43


5. Design Based on Lateral Deformation
While starting with the 5.5 m (18 feet) necessary for the axial load, the lateral load controlled the design, which is typical in high seismic zones. The length was increased until fixity could be reached, as exhibited where the deflection goes from positive to negative and back to positive. There is some discretion used as to how much is really required. Once consideration is, as mentioned previously, that a stiff clay is only considered elastic at deformations below 0.001 diameters.
5.1 Introduction
The analysis of single piles started out as a pile in elastic soil using standard beam analysis by Terzaghi (1955), built on earlier work, in which he suggested values of subgrade moduli to be used with qualifications (Arrellaga et al, 2004 p. 2-9). A simple analysis was proposed in the mid 1960's consisting of a rigid pile with plastic soil. The soil is modeled as opposing distributed loads (Arrellaga et al, 2004 p. 2-12). The location of where the direction changes is based on the equilibrium of the pile.
A rigid pile with springs to model the soil was developed for the design of piles supporting transmission towers in the 80’s. A spring at the tip responds to the tip rotation, and one to respond to the tip deflection, a pair to respond to vertical movement of the pile faces, and a pair perpendicular to the shaft to model deflection. Even though the model was developed with a series of experiments on short piles, it did not allow for independent determination of the curves that give the forces as a function of the movement (Arrellaga et al, 2004 p. 2-12). That
44


meant that all the soil resistance values had to be found by experiment. The model
was not used extensively.
The p-y model is used by FHWA and LPILE (Lymon C. Reese co-authored both) and has proved to be versatile and has been used accurately predict pile behavior. It lends itself to finite analysis, finite difference, varying cross sections and material stiffnesses. It was made possible in the 50’s with the advent of the computer that could solve fourth order differential equations, and the remote reading strain gauge to obtain soil-response (p-y) curves from experiment (Arrellaga et al, 2004 p. 2-14). While it was first developed by the petroleum industry for offshore platforms which were subjected to high lateral loads from wind and waves, the method was extended for other uses, and research continues today (Arrellaga et al, 2004 p. 2-15).
A brief overview of the theory will be shown here, and the in depth discussion left for Reese’s documents.
5.2 L-PILE Analysis
5.2.1 Theoretical Background
The definition of p and y has varied in use. The definitions used in L-Pile, as discussed here will be used in this document. When a pile is installed vertically, it has a uniform stress distribution as shown in Figure 5.1 (a). When it deflects a distance y, the distribution of unit stresses will be similar to that shown in Figure
5.1 (b). The integration of the unit stresses result in the quantity p, which acts opposite in direction to y (Arrellaga et al, 2004 p. 2-15).
45


Although the soil is treated as a series of discrete resistances, full-scale tests has proven the continuum effect to be satisfied. The p-y curves derived from full scale tests in different soils and have been found to predict within reasonable limits the response of a pile whose head is free to rotate or is fixed against rotation. They have also been used to predict the response of piles where only the pile head movement was recorded with reasonable to excellent results (Arrellaga et al, 2004 p. 2-17).
(a) (b)
Figure 5.1 Distributionon Unit Stresses Against a Pile Before and After Lateral Deflection.
The general procedure is to start with a trial pile geometry, and soil with known characteristics. The from the design loads, resultant unfactored load cases are found, Pt for a lateral load, Q, for the axial load, and moment M are acting at the pile head, as shown in Figure 5.2. A curve can be plotted that will show the maximum bending moment at some point along the pile as a function of the loading, as shown in Figure 5.3 (Arrellaga et al, 2004 p. 2-17). The ultimate bending moment, Mult, for that section and load combination, which is the failure loading, can then be plotted. The failure loading can be found by finding where a plastic hinge would form anywhere along the pile length. The failure loading is
46


then divided by a global factor of safety to find the allowable loading. The allowable loading is then compared to the design loading to see if the selected pile was satisfactory (Arrellaga et al, 2004 p. 2-19).
Loading Failure Loading
Allowable
Loading
Maximum Bending Moment Figure 5.2 Pile Loads. Figure 5.3 Resultant Load-Moment Curve.
As shown in Figure 5.3, the bending moment is a nonlinear function of load. Therefore, the use of allowable bending stresses for most load groups is inappropriate and unsafe (Arrellaga et al, 2004 p. 2-19). (However, this high seismic zone it doesn't matter. As shown, the dead and wind loads are dwarfed by the seismic load cases, which has a factor of 1.0.)
The next step is to solve for the deflection of the pile under the allowable loading (Arrellaga et al, 2004 p. 2-19). Since this the allowable deflection is dictated by situation, and not a design code, the deflection of the pile at failure must be calculated. This requires stresses beyond the linear-elastic range, and requires the structural section and the flexural rigidity (Arrellaga et al, 2004 p. 2-21).
The buckling of a pile can be studied similarly. A pile of defined geometry is subjected to lateral load Pt and axial load Q. The lateral load is held constant and
Q
p,
$ *
' _L $
47


the axial load is increased in increments. The deflection yt at the top of the pile is plotted with respect to the axial load, and a value of axial load will be approached at which the pile-head deflection will increase without limit. That is the buckling load (Arrellaga et al, 2004 p. 2-21).
Reese discusses the analytical approach to several different typical design situations. The important demonstrations are that basic statics still holds true. If a caisson has different loads in orthogonal directions, an analysis of the forces and moments in each direction can be performed, and the results added algebraically. Also, for a structure on piles with a cap, the normal method of calculating the maximum bearing pressure and the maximum uplift would be performed, and the results put into the analysis. Also the connection between the piles and the cap must be determined, if the pile heads are free to rotate, or completely fixed.
The derivation of the differential equations starts with the solution of the beam columns given by Hetenyi (1946). Referring, to Figure 5.4. assume that a bar on an elastic foundation is subjected not only to the vertical loading, V, but also a pair of horizontal compressive forces Q acting at the center of gravity of the end cross-sections of the bar. If an infinitely small unloaded element, bounded by two verticals a distance dx apart, is cut out of this bar, the equilibrium of moments (ignoring second-order terms) yields Equation 5.1 (Arrellaga et al, 2004 p. 2-33).
(M + c/M) - M + Qdy - Vv dividing by dx
cTM + Q dy - Vv = 0 Eqn. 5.2
dx dx
Differentiating with respect to x yields Eqn. 5.3 (Arrellaga et al, 2004 p. 2-34)
/M + Q/y-afVv^O Eqn. 5.3
dx2 dx2 dx
48


X
Figure 5.4 Beam-Column Element (after Hetenyi, 1946).
Substituting the following identities into Equation 5.3 yields Equation 5.4 where
Es is the secant modulus of the soil-response curve (Arrellaga et al, 2004 p. 2-35).
= El dj/ , dVY = p, p = -Esy dx2 dx4 dx
El d*y +QflPg + Esy = 0 Eqn. 5.4
dx4 dx2
The direction of the shearing force is shown in Figure 5.4. The shearing force in
the plane normal to the deflection line can be written as
Vn = Vv cos S - Q sin S Eqn. 5.5
Because S is usually small, we may assume the small angle relation ships: cos S
= 1, and Sin S = tan S = dy/dx. Equation 5.5 becomes
Vn = Vv-Q<£/ Eqn. 5.6
dx
where dy/dx is equal to the rotation S (Arrellaga et al. 2004 p. 2-35).
49


It is also convenient to allow a distributed force W per unit of length along the
upper portion of a pile. The differential equation then becomes Equation 5.7
El d1 y +Q^-p + W=:0 Eqn. 5.7
dx4 dx2
(Arrellaga et al, 2004 p. 2-36):where Q = axial load,
y = lateral deflection of the pile at a point x along the length of the pile, p = soil reaction per unit length,
El = flexural rigidity, and W = distributed load along the length of the pile
Other beam formulas that are needed to analyze piles under axial load are:
El + Q dx = Vv dx3 dx
Elcfy/dx2 = M dy/ dx = S
Eqn. 5.8
Eqn. 5.9 Eqn. 5.10
Figure 5.5 Form of the Solution of Differential Equations for Beam Column Analysis.
50


where:
V = the shear in the pile,
M = bending moment in the pile, and S = slope of the elastic curve defined by the axis of the pile.
It can be seen that these are standard statics equations from Figure 5.5, differentiating each time to go from deflection, to slope, to moment, to shear, to load. These assumptions made to get the differential equations (Arrellaga et al, 2004 p. 2-38):
1. The pile is straight and has a uniform cross section,
2. The pile has a longitudinal plane of symmetry; loads and reactions lie in that plane.
3. The pile material is homogenous.
4. The proportional limit of the pile material is not exceeded.
5. The modulus of elasticity of the pile material is the same in tension and compression.
6. Transverse deflections of the pile are small.
7. The pile is not subjected to dynamic loading.
8. Deflections due to shearing stresses are small.
Making this differential equation even simpler yields two important results: 1) the resulting equations demonstrate several factors that are common to any solution, revealing the nature of the problem, and 2) the closed-form solution allows for a check of the accuracy of the numerical solutions given later (Arrellaga et al, 2004 p. 2-39). These will only be generalized here.
51


Assume that no axial load is applied, that the stiffness El is constant with depth, that the soil modulus Es is constant with depth and equal to a. Use the identity in Equation 5.11 to substitute into the differential equation, and it reduces to Equation 5.12.
(34 = ja_=JEs Eqn. 5.11
4EI 4EI
dty + 4 Py =0 Eqn. 5.12
dx4
The solution to Eq. 5.12 may be directly written as (Arrellaga et al, 2004 p. 2-39): y = e^x (Ci cosPx + C2 sinPx) + e^x (C3 cosPx + C4 sinPx) Eqn. 5.13
The coefficients are evaluated for different boundary conditions, and the equations to solve for the variables y, S, M, V, and p are obtained (Arrellaga et al, 2004 p. 2-42). This enable the solution for numerous problems encountered in practice.
Solving Equation 5.13 in finite difference form requires iteration, ie, a computer program, but allows the following refinements (Arrellaga et al, 2004 p. 2-46):
1. The effect of the axial load on deflection and bending moment can be considered, and problems of pile buckling can be solved.
2. The bending stiffness El of the pile can be varied along the length of the pile.
3. The soil modulus Es can vary with pile deflection and with distance along the pile.
4. Soil displacements around the pile due to slope movements or seepage forces can be taken into account.
The derivative terms are replaced by algebraic expressions, and the pile is divided into little increments of length h, as shown by the following equations and Figure
5.6.
52


Figure 5.6 Representation of Deflected Pile for Finite Difference
= Vm-7 - 4 y,„_/ + 6 ym - 4ym+ / + v„,+7 dx4 h4
d3v = -ym.? + 2 ym./ - 2ym+/ + ym+? dx3 2I?~
d2V = Vm./ - 2 y„ + Vm+/
<7r2 2/?2
= Vm-/ + Vm+;
£& 2h
Substituting these equations into Eqn. 5 .7 and collecting terms, Rm = EmIm (flexural rigidity of pile at point m) and k,„ = Eim results in (Arrellaga et al, 2004 p. 2-47)
ym-2^m-l + ym-l (-2Rm-l - 2Rm + Q/T ) + ym (Rm-i + 4Rm + Rm+/ - 2Qhr + kmhH2) +
ym+I (-2Rm - 2Rm+; + Qh2) + ym+2^m+i^h4 = 0 Eqn. 5.14
53


With this equation boundary conditions can be tested, and from it five applications often found in practice (Arrellaga et al, 2004 p. 2-49):
1. Lateral load at head. Pt and moment at head, Mt> are known, such as a support for an overhead sign.
2. Pt and rotation of the head, St. are known, such as a foundation with a pile embedded in the concrete.
3. When a pile extends out of the ground and becomes part of a frame, a free-body can be cut at the bottom of the frame’s joint. A moment is applied to the frame at the joint, and the rotation is computed. The moment divided by the rotation calculated by M/St is the rotational restraint provided by the superstructure and is one boundary condition, and Pt is the second boundary condition.
4. Deflection, yt, at the head and moment, Mt, at the head are known such as a bridge abutment with a fixed head.
5. Deflection, yt, at the head and and rotation of the head, St, are known, such as a pinned connection, where the values come from a structure analysis.
Lpile was first made available in 1987, and is now widely used in industry. Given two knowns it utilizes finite difference version of beam equations to solve for unknowns. It is two dimensional.
5.2.2 Input, Fixed at Pile Cap
Two analyses were run for the fixed head condition: 1% reinforcing, and 5% reinforcing. All the files were set up for the program to generate the p-y curves,
100 pile increments, with a maximum number of interations of 100. The maximum deflection tolerance for convergence 1x10-5 in. The maximum
54


allowable deflection is 100 inches, which means the concrete and steel reinforcing
would fail, since those parameters are checked by the program.
Three points are used to define the pile: The first at the head, the second at 28 ft deep, both having the same properties. The third and last one is at the tip, which is the larger section, and LPile will linearly interpolate between the two. The moment of inertia is the transformed moment of inertia, to account for the 1% steel and 5% steel. The modulus of elasticity is for 4000 psi concrete, where Ec = 57,000(f c)°5. The pile head is assumed to be 0.6 m (2ft) underground. This is because the cap will be 0.9 m (3ft) deep, with 0.3 m (1 ft) above ground.
Since the soils report shows a top layer much softer than where they stopped, the soil is modeled as two layers. Both are stiff clays without free water, with the effective unit weight of 0.0694 pounds per cubic inch (120 pcf). The top layer is given a cohesion of 13.89 psi (2000 psf), and the strain £50 is .005.
The analysis is for cyclic loading. To model a fixed head condition, the lateral load of 244.75 kips and a slope of 0, and the axial load is 846 kips. For the 5% fixed cased, four additional load cases were input: the first using the STRENGTH III loads, and the other three increments of lateral load were used up to 244.75 kips, in order to see if there was a uniform trend. All of the output and graphs are supplied in Appendix G through J.
5.2.2.1 Analysis Results: Fixed Head, 1 % Reinforcing
Even though the head is fixed, the pile head shows a deflection of 8 mm (0.32 inches). However, the deflection diagram is perpendicular to the horizontal at the head, which is what is expected for a fixed head deflection diagram. The pile
55


shows about three meters (10 ft) at the bottom where the deflection goes from positive to negative and back to positive, with very small values, indicating that it achieved fixity. The deformations do not reduce to .001 diameters until 4.5m (14.7 ft) below the top. Since 2.5 m (8 ft) of skin friction was used in axial load resistance, it is reasonable to add at least that amount below the point where the lateral defonnations are reduced to .001 diameters.
The maximum moment of 1956 kNm (1443 kip-ft), is at the head, which is expected, reverses, and there is no moment at the tip, which correlates with the zero deflection.
5.2.2.2 Analysis Results: Fixed Head, 5% Reinforcing
As discussed earlier, the STRENGTH III load is very small relative to the design load, and consequently shows little deflection or moment for the normal anticipated dead and wind loads. The EXTREME EVENT I (seismic) maximum pile head deflection is 7mm (0.29 inches), and the maximum moment is 1988 kNm (1466 ft-kips). Again the deflection and moment output shows fixity and has curves indicative of a fixed pile under the seismic load, with a length of little deflection and zero moment at the tip. Additionally, the incrementally increasing load cases show a uniform trend in moment, and indicating the column has not buckled and the soil has not failed.
5.2.2.3 Discussion of Analysis Results
Both the 5% and 1% reinforcing show the system working, with little difference in the ultimate pile moment. Inputting the resultant maximum moment, axial load and reinforcement into a program (HB Column) that plots the column interaction
56


diagram shows the moment of the 1% reinforcing is outside of the curve, which means the pile will fail in bending. However, the 5% reinforcing was within the curve and is a viable option.
5.2.3 Input, Pinned at Pile Cap
The initial loading conditions are different to reflect a pinned head: The shear and axial loads are the same, but the moment is zero, since a free head does not carry moment. Otherwise the input is the same length, soil properties and transformed moments of inertia for the pile are the same for the respective cases, Again, the 5% option included the STRENGTH III load case, and the incremental increases in horizontal load to the full EXTREME EVENT I load case.
5.2.3.1 Analysis Results: Pinned Head, 1% Reinforcing
The pile head shows a deflection of 37mm (1.47 inches), and maximum moment of 2108 kNm (1555 kip-ft) is reached about 3.3 m (11 ft) below the head. The lateral deflection is not reduced below .OOldiameters until 5.1 m (16.75 ft) from the head, with 3.4 m (11.2 ft) of fixity. The moments go to zero rather abruptly, and the soil resistance is rather high at the tip. The pile deflection and moment graphs are typical of a free head condition.
5.2.3.2 Analysis Results: Pinned Head, 5% Reinforcing
The pile head shows a deflection of 34 mm (1.32 inches). The maximum moment of 2134 kNm (1574 k-ft) occurs about the same distance from the top of the pile. The lateral deflection is not reduced below .OOldiameters until 5.2 m (17.1 ft) from the head, with 3.3 m (10.8 ft) of fixity. The moment diagram of the
57


increasing loads shows how the reverse curvature moves down towards the tip. The form of the moment and deflection curves is typical of a free head condition and shows a substantial length at the bottom with zero deflection, indicating fixity.
5.2.3.3 Discussion of Analysis Results
The difference in LPile between the two reinforcing scenarios is in the stiffness of the pile, which is slight. Therefore the difference in deflection and moment between the two is slight, and the stiffer member takes more moment and therefore has more deflection. Again, since the column interaction diagram is looking at the stress in the steel, it shows that the 1% reinforcing falls outside the curve while the more heavily reinforced column can take much more load and had a different interaction diagram that falls within the curve, indicating the load is within its capacity. However, from a practical standpoint, deflections as large as given here indicate failure of the column regardless of the interaction diagram.
5.3 PSI Analysis
PSI (Pile Soil Interaction) is a 3-D nonlinear finite element program for analyzing single piles under vertical, lateral, torsional and combined loads created by doctoral candidate Hein Nghiem at the University of Colorado, Denver (Nghiem, 2009). The pile-soil system is modeled as an assemblage of solid elements. Concrete (circular or square) piles, steel pipe or H piles can be modeled. The reinforcing steel in the concrete piles is modeled as a nonlinear bar element; concrete as an elastic Mohr-Coulomb, or Cap model material; soils are modeled as elastic, Mohr-Coulomb, Hyperbolic, Modified Cam-Clay, Ramberg-Osgood. or Cap-model materials (Chang, 2007). The pile-soil interface is modeled by
58


interface elements with Mohr-Coulomb or Hyperbolic models. The analysis results for either static or dynamic loads include the translational and rotational displacements of the pile, internal stresses of the pile, deformation, stresses, axial force in nonlinear bar elements (reinforcing), p-y and t-z curve at any depth along a pile, and shear and moment distribution along the length of a pile. The stiffness of equivalent spring for the pile-soil system can be formulated from the analysis results.
A finite element mesh is automatically generated after the geometry input. The soil and pile elements can be a cube eight or 20 nodes, or a wedge of six or 15 nodes. For modeling the interface elements, an eight or 16 node element can be chosen. The bar elements have two nodes. The elements are shown in Figure 5.7.
Figure 5.7 PSI Finite Element Types
PSI performs an iterative solution process for nonlinear analyses. In this method, the stiffness of the system is assembled one time and does not change during the iteration. This can save the calculation time for the structure with large number of degrees of freedom. There are two convergence criteria, displacement and
59


balanced load. The PSI solver stops running if both convergence criteria are not satisfied when the number of iterations reach the maximum value.
5.3.1 Theoretical Background
The associated flow rule is used in the lelasto-plasticity model to simplify the incremental plasticity computational process and decrease CPU time. According to the classical theory of plasticity, the total strain can be decomposed into the elastic part and plastic part when stress sate reaches the yield surface (Chang, 2008):
{de} = {dee}+{dep} Eqn. 5.15
{r/s6} = {c/s}- {fifep} Eqn. 5.16
Hooke’s law relates the stress and elastic strain increments as follows:
{do} = [Ee]{r/se} Eqn. 5.17
{do} = [Ee]( {t/s}- {dep}) Eqn. 5.18
In general, the plastic strain increment is written as:
dg)
{dep}=X\
do
Eqn. 5.19
where A, is a scalar plastic multiplier that can be calculated by Forward Euler’s method or Backward Euler’s method, Smith and Griffiths (1997) and g is the plastic potential function (Chang, 2008). According to Forward Euler’s method:
Substitue Eqn. 5.20 and Eqn. 5.19 into Eqn. 5.18
Eqn. 5.20
60


Eqn. 5.21
{5a} =
kl-r
[ec
1
da
1
6a
[e*
'll
da _
da j
[r]
11
+ h
According to BackwardEuler's method:
f(o)
A
r 9/i [£*] [M+/,
_ da l da j
Substitute Eqn. 5.22 and Eqn. 5.19 into Eqn.5.18
{a fdE‘\ I 3? \da
1 1 |tS> 1 1 £']{ 3d da j + h
Eqn. 5.22
Eqn. 5.23
Where/is the yield function and g is the plastic potential function, h denotes the hardening parameter that equals zero for perfectly plastic materials and constant for an elasto-plastic material with a linear hardening model (Chang, 2008).
While PSI is capable of six different models determined by the user, only the Mohr-Coulomb Model is discussed here. It is the first failure criterion which considered the effects of stresses on soil strength. The failure occurs when the state of stresses at any point in the material satisfies the equation below, Chen and Mizuno (1990):
|r| + a Xax\(p - c = 0 Eqn. 5.24
where (p and c denote the friction angle and cohesion respectively. The Mohr-Coulomb criterion can be written in terms of principle stress components as following, Chen and Mizuno (1990):
Vi (o] - (7j) = -Vi (<7/ + aj) sin

61


The full Mohr-Coulomb (MC) yield criterion takes the form of a hexagonal cone in principal stress space as shown in Figure 5.8 . The invariant form of this criterion shown as, Smith and Griffiths (1997):
sin d sin

Eqn. 5.26

02
*-03
Figure 5.8 Mohr-Coulomb Failure Criteria
In addition to the yield functions, the potential function, the same form as the yield function, is defined for Mohr-Coulomb model by replacing friction angle (p with dilation angle yj in the yield function and the plastic potential function is given as (Chang, 2008):
The dilatancy angle, y/, is required to model positive plastic volumetric strain increments as actually observed in dense soils. In reality, soil can sustain none or small tensile stress. This behavior can be specified as tension cut-off. The functions of tension cut-off are:
Eqn. 5.27
fi= 03-T-, &= o2-T; /4=0y-T
Eqn. 5.28
62


where T is the maximum tensile stress. For these three yield functions, an associated flow rule is adopted. The MC material parameters include cohesion c, angle of internal friction, (p, and dilatancy angle, y/ (Chang, 2008).
5.3.2 Input, Fixed at Pile Cap
PSI uses the following input for all cases:
L = 10.668m Length D = 0.9m Diameter
E = 49050 kN/m2 Soil modulus (Budhu, 2000, p. 560)
Cu = 191.52 kN Cohesion (p = 40° Internal angle of friction
NSPt=45 Number of blows in upper layer
Nspt=75 Number of blows in lower layer
Only half the pile was modeled, for computational efficiency, and lateral load was divided in half and distributed among the nodes. For the fixed head, the axial load could not be input because it would cause the top of the head to rotate, which would not model things correctly. The output and graphs are shown in Appendix K and L.
5.3.2.1 Analysis Results: Fixed Head, 1% Reinforcing
The maximum bending moment is 1671.00 kNm (1232.46 k-ft) and the maximum deflection is 14.2 mm (0.56 in). Even though this shaft was modeled as 0.668 m (about 2 feet) longer, the deflection became negative, but did not achieve fixity.
63


S.3.2.2 Analysis Results: Fixed Head, 5% Reinforcing
The maximum bending moment is 2020.9 kNm (1490.54 k-ft), and the maximum deflection is 12.5mm (0.493 in). Again, this shaft did not achieve fixity.
5.3.2.3 Discussion of Analysis Results
The deflection and moment curves plot as expected for a fixed-head pile, and the stiffer pile has more moment and deflection. However, neither the 1% reinforced nor the 5% reinforced show that they attained fixity. While the deflections and moments are reasonable, the failure to attain fixity and much larger deflections could be interpreted that the soil will fail under seismic loading, with a tendency for the pile to rotate more. The values are significantly higher for the 5% reinforced, which is to be expected more than the slight difference in reinforcing in LPile.
5.3.3 Input, Pinned at Pile Cap
The soil and pile parameter input is the same as for fixed discussed previously, except for the difference in boundary conditions where the moment at the top is zero, by definition, the slope is unknown, and the horizontal force is known.
5.3.3.1 Analysis Results: Pinned Head, 1% Reinforcing
The maximum bending moment is 1017 kNm (750.1 k-ft), and the maximum deflection is 18.9 mm (0.744 in). Again, fixity was not achieved.
64


5.33.2 Analysis Results: Pinned Head, 5% Reinforcing
The maximum bending moment is 1080.5 kNm (796.93 k-ft), and the maximum deflection is 18.2 mm (0.715 in), and fixity was not achieved.
53.3.3 Discussion of Analysis Results
The deflection and moment curves plot as expected for a free-head pile, and the stiffer pile has more moment and less deflection, but not as great a difference as one would expect. Neither the 1% reinforced nor the 5% reinforced attained fixity, the moments are extremely low and should be higher than the fixed piles, not half as much.
5.4 Comparison of alternatives
Table 5.1 Comparison of alternatives
1% Reinforcing Lpile PSI Fixed Difference 5% Reinforcing, Lpile PSI Fixed Difference
Moment kNm 1956.40 1671.00 17.08% 1,987.86 2020.90 -1.64%
k-ft 1442.97 1232.46 17.08% 1466.17 1490.54 -1.64%
Deflection m 0.0082 0.0142 -42.52% 0.0074 0.012523 -40.84%
in 0.322 0.560 -42.52% 0.2917 0.493 -40.84%
1% Reinforcing, Lpile PSI Pinned Difference 5% Reinforcing, Lpile PSI 3inned Difference
Moment kNm 2,107.62 1017.00 107.24% 2,133.83 1080.50 97.49%
k-ft 1,554.50 750.10 107.24% 1573.833 796.93 97.49%
Deflection m 0.0372 0.0189 97.07% 0.0336 0.018164 84.94%
in 1.466 0.744 97.07% 1.3225 0.715 84.94%
65


As seen in Table 5.1, PS1 and LPile agree favorably for fixed head moments in both the 1% reinforced and 5% reinforced models. The greater reinforcing takes more load with less deflection, and the deflections are in an acceptable range; since it is a small number the percentage difference is very high. It should be noted that the fixed head moments are close, without axial load applied in PSI. It shows that the P-delta effects are negligible.
Unfortunately, the pinned head connections vary by a factor of two between the two programs, in moment and deflection. While LPile, as expected, had moments and deflection higher than its fixed counterpart, PSI had higher deflection and much lower moments than its fixed counterpart. This demonstrates the pile’s tendency to rotate rather than bend. While both LPile and PSI need to prove which one is correct for this condition and with regards to fixity, the conclusion of the author is that this a borderline case and really doesn’t work.
A practical consideration is how can a 0.9m diameter pile can actually be pinned, as the wider surface and reinforcing diameter limits rotation. In this situation, a pinned connection is prohibitive because the deflection of the pile head is prohibitive, potentially causing a catastrophic rupture of the tanks. In this case it will be easier to design for the fixed head condition.
Since there is little difference between the soil response curves with the different reinforcing amounts, the maximum moment will be used in design, and the reinforcing adjusted as necessary, i.e., 5% reinforcing is so large that it creates detailing and construction problems. Iterations of HBColumn show 3% reinforcing can accept the factored moments. This can be obtained by 12 bundles of 2-# 10 (24 bars total) at equal spacing. This will leave 128 mm (5.05 inch) spacing between bundles. Since development length cannot be achieved, the
66


spiral cage will be extended into the cap to anchor the piles and achieve a fixed condition.
Something harder to quantify is exactly how much the project could have saved in foundation costs with a quality geotechnical report. The lateral analysis is based on deflection. If the caissons are in rock, the shear of the concrete could have carried the shear, and the shaft would not deflect. Therefore the extra length to achieve fixity would not have been required. Also, the CDOT design that assumes rock sockets would have had even higher values. The underream would not be necessary, so easily, 30% could have been saved by using a 23 foot straight shaft instead of a 30’ underreamed shaft.
67


6. Settlement Analysis
Settlement analysis is calculated according to FHWA Appendix C (O'Neil & Reese, 1999), and are presented in their entirety in Appendix M. The settlement based on the simple method is calculated, then the settlement is calculated by the normalized load transfer method, and then the settlement adjusted and the load transfer method reiterated until the load agrees with the service load.
6.1 Simple Method
This analysis is based on the work of Vesic (1977), and is based on the working load range of soils based on general descriptions of the soil, and basic drilled shaft properties.
The total settlement of the drilled shaft is estimated by adding the elastic shortening due to load, the settlement due to the load transferred to the sides, and the settlement from load transferred to the base (O’Neil & Reese, 1999, p. C-2).
WT = Wc + Wbb + wbs wc= L/(AE)*(Qh - 0.5Qms)
Wbb Cp(Qmt/E3base Qmax)
wbs = [0.93 + 0.16*(L/Bshaft)° 5]*Cp(Qms/L*qmax)
Qmb — Qh " Qms
where
wy = settlement of the head of the drilled shaft, wc = elastic compression of the drilled shaft.
Wbb = settlement of the base due to the load transferred to the base.
68


WbS= settlement of the base due to the load transferred to the soil along the sides. Qh = Qtd = Service Load applied to the head of the shaft.
Qms = Rs (mobilized) = estimated load mobilized in side resistance when Qh is applied.
L = length of caisson A = cross sectional area
E = Ec (Ac + nAs) = the effective Young’s Modulus of the shaft, n = modular ratio Es /Ec
Cp = 0.03 for stiff clay, and is a variable provided by FHWA For this analysis, Qmb is estimated to be 20% of the service load.
6.2 Normalized Load Transfer Method
This method begins with a test to see if the shaft is rigid or flexible. The flexibility is calculated by Sr = (L/B) x (ESOj|/E), where ESOii, the Young’s Modulus of the soil is estimated, and E, L and B have been previously defined. The method presented here is only for cohesive soils, not for cohesionless soils, IGM’s, or rock (O’Neil & Reese, 1999, p. C-9).
If SR < 0.010, the shaft can be assumed to be rigid, and the base and sides are assumed to settle equally. In the graphs below, the settlement/diameter of shaft is wr /B, and the settlement/diameter of base is wx /Bbase (O’Neil & Reese, 1999, p. C-9).
In this case, Sr >0.010, and the shaft is flexible. Therefore, the compression of the shaft under load, and the settlement of the column are not equal (O'Neil & Reese, 1999, p. C-9). The settlement due to elastic compression of the shaft is
69


8S = k QtdL/AE
ws = wt - 0.5 §s settlement of the shaft wb = wt-5s settlement of the base
The settlement/diameter of shaft is then calculated as a percent, and the settlement/diameter of base is calculated as a percent. Figure 6.1 is entered from the bottom, and with the calculated ratio, and the Side Load Transfer/Ultimate Side Load Transfer is taken from the graph (Rsd/R.s)- Then the equation solved for Rsd, and is the value calculated for caisson capacity earlier. The same procedure is done with Figure 6.2 using the settlement/diameter of base to get the End Bearing. Red. Rsd and R»d are then summed to get Rjd, the total load transferred. It should equal Qtd. If it does not, the value of wj is increased or decreased and the calculations reiterated until Rid - Qtd. The value of that settlement has to be acceptable to the design engineer (O'Neil & Reese, 1999, p. C-9).
70


Settlement
‘ f
Diameter of Shaft
Figure 6.1 Normalized Load Transfer Relations for Side Resistance, Cohesive Soil
71


Figure 6.2 Normalized Load Transfer Relations for Base Resistance, Cohesive Soil
6.3 Analysis Results
This procedure resulted in a service settlement of 4.3 mm (0.17 inches), between 1/8 and % inch.
72


6.4 Discussion of Anlaysis Results
This settlement is entirely acceptable for a service load. The caisson cap will reduce the effect to the tank, and the steel tank can make up for small deflections.
73


7. Caisson Cap Design Using STAAD
7.1 Introduction
STAAD is used to design the caisson cap. Even though the caisson layout is circular, the cap is octagonal, which is conservative. An octagonal cap is only slightly larger than the inscribed circle and therefore weighs slightly more, and it is easier for construction detailing.
7.2 Model Input
The cap is modeled as a plate with the caissons modeled as a fixed supports at nodes. The mesh is rectangular on the octagon (Figure 7.1 and 7.2), which allows square and triangular plates. In a polar mesh members get oblong in the center, which is poor for finite element analysis. The plate model allows for uniform varying loads, as well as uniform loads. The tank is then composed of plates forming an octagonal tube, which is close enough to a cylinder for analysis. In order for the program to do a time history, it has to calculate the natural frequency of the system. Therefore, a dummy floor was constructed to put the weight of the cyanide solution on. The agitator bridge was modeled as a pair of wide flanges with the 14 kip agitator load supported at the center between them (Figure 7.2).
There are five runs. For comparison of the static to the dynamic, the AWWA shear is divided equally among the supports, and the AWWA overturning moment is then modeled as a linearly varying load acting down on one end and reversing to pull up on the other side, Figure 7.3. Then, per code, the model is run with a
74


different time history in each analysis for a total of four. For the dynamic analysis, all these loads will be shaken in the x, y, and z directions.
/j 323 8 5 6 7 1 2 3 4 324
r, 32? 22 4 16 i 13 14 15 9 10 4 11 b 12 268 325 326 327
1 27 27) 24 21 22 23 17 18 19 20 289 29
320 26 26) 26 32 29 30 31 25 26 27 28 294 29 29'
266 26 26- 26 40 37 38 39 33 34 35 36 29 29 29) 30 328
11 a 26 4 26- a 264 25< 25) 48 45 46 47 41 42 43 44 293 294 4 29< 30 30. 329
20< 20 19'. 18 17' 16< 56 53 54 55 49 50 h 51 52 253 24‘ 24 23 22* 217
20; 19 184 17) 174 16 64 61 62 63 57 58 59 60 254 24 23- 22 21) 210
20. 19 ~~ 18' ... 17* 17 16. 72 69 70 71 65 66 67 68 25 24 22 215 211
20- 194 181 181 172 16 80 77 78 79 73 74 75 76 253 24^ 231 22) 224 212
4 20: h 19 181 18 17. 4 16- 88 85 86 87 81 82 83 84 25: 24 231 22 22 h 213
2(M 191 194 18 17- 161 96 93 94 95 89 90 91 92 25) 241 23) 23) 223 214
20' 19- 191 18 17! 164 10- 10 10' 10 97 98 99 10 25! 24 235 23 223 215
201 204 192 18J 17f 16' 113 10< 114 11 10! 10 10' 10 254 24) 246 233 22- 216
34 128 284 28 27' 16? 124 4 11 k 114 ir 11' 11 11! 11 30: 30? 313 31- 31i 330
340 28: 28: 274 27: 124 12 124 12 12 12 123 12 30. 30* 4 313 'a 31) / 331
339 28. 27S 274 134 13 13- 13 124 134 131 13 305 314 311 332
33 8 284 27! 144 14 142 14 13' 13) 139 14 306 31 333
33 7 274 152 14< 154 15 14! 14) 147 14 301 334
336 l! 15' 154 15< 15- 154 155 15 335
Figure 7.1 STAAD Model of Pile Cap and Fixed Supports
75


FIXED SUPPORT
Figure 7.2 STAAD Model of Tank. Slurry, and Agitator
iminnTrm

Irnriunw

^Hiinmn

Figure 7.3 AWWA Seismic Overturning Moment as Modeled in STAAD.
76


7.3 Load Cases
Although the seismic load controls, the wind load is another group that must be considered, and therefore the ACI load groups are:
U = 1,4(D+F)
U= 1.2D + E U = 0.9D + E
The tank is typically full with concentrate fluid, and the fluid does not induce any thrust unless seismic conditions exist. Therefore, in earthquake loads, the fluid is considered part of the dead load of the system. To create an envelope, the seismic loads are added and subtracted to the dead loads, creating four seismic load cases.
7.4 Time History Analysis
Four time histories must be used in this analysis, per code. Time history data was obtained for earthquakes in the Oaxaca region at www.cosmos-eq.org. This information includes the distance between the earthquake location, where the seismograph was located, and the soil type at the station. Two of the records recommended in the seismology report, (Breitenbach & Castillo, 2008) were found and incorporated, and the other two recommendations were unavailable. Databases were searched for two more time histories based on the distance from the epicenter, magnitude of the event, geology at the station, etc. The seismology report recommended a peak ground acceleration of the maximum credible event of 0.56g. The selected time histories were scaled up to that acceleration.
Some significant events were not available or did not have the data necessary to do the time history analysis. Unfortunately one of largest events in Oaxaca, a 7.5 earthquake on September 19, 1999 required the (cost prohibitive) purchase of the
77


information. The data used is listed in Table 7.1, and the location of the events is shown in Figure 7.4. The maximum horizontal accelograms are shown in Figures
7.5 to 7.8. All of the accelograms and station information are shown in Appendix P. The biggest factor in earthquake design is the geology of the area being shaken (Algermissen,1983, Idris & Bolton, 1982), and final design should include the recommended time histories of the seismologist.
Table 7.1 Time History Data Summary
No. Earthquake Epicenter Location of Seismograph Distance, kM Date Magnitude Station Soil Type
1 Michoacan La Union, Mexico 83.9 9/19/1985 8.1 Meta- Andesite Breccia
2 Michoacan Caleta De Campos, Mexico 38.3 9/19/1985 8.1 Meta- Andesite Breccia
3 Coast of Guerrero Las Vigas, Mexico 70.8 9/14/1995 7.4 Quartz Monzonite
4 Coast of Guerrero Las Vigas, Mexico 46 3/13/1996 5.2 Quartz Monzonite
78


Figure 7.4 Location of Time History Seismic Events.
166
-166
...............,...................................... , .
1 I I
38 50 63
Figure 7.5 La Union, Mexico Accelogram of Michoacan 9/19/1985 Event
79


141
CD
CO
â– v.
u
to
CO
-V.
c
o
-141
0 10 20 30 41 51
seconds
Figure 7.6 Caleta De Campos Accelogram of Michoacan 9/19/1985 Event
Figure 7.7 Las Vigas, Mexico Accelogram of Guerrero 9/14/1995 Event
Figure 7.8 Las Vigas, Mexico Accelogram of Guerrero 3/13/1996 Event
80


STAAD computes several modes of the system. The pile cap, tank, tank contents, agitator and agitator bridge are all dead loads that are included as part of the system mass in the seismic analysis. It calculates six by default, but it was found that more were needed in some cases, so the input was set at 20. The AWWA code states ground supported tanks have a very small period and can be taken as zero, however STAAD modes ranged from 2.61s to 0.1655s.
7.6 Results
While the summary of reactions, stresses and moments for the case of the AWWA seismic loads and only the maximum time history results are shown in Tabel 7.2, and checked against the pile capacity. Appendix O has the complete STAAD results. It should be noted that while the La Union, Mexico time history of the Ms = 8.1 Michoacan earthquake produced maximum stresses for design, the Las Vigas, Mexico time history of the Ms = 5.2 Guerrero event produced just slightly lower stresses.
Because the structure is very stiff in the direction of horizontal ground motions, those time history accelerations did not add significantly (on the order of 1x10°) to the pile cap stresses. It is interesting that the axial load and uplift are less than predicted by AWWA static analysis. However, the shears and bending moments were much higher, 20% and 43%, respectively. Those values are outside of the design envelope.
The moments at the supports also show a large increase with the time history analysis. While the design head moment for the caissons were 2020.9 kNm (1490.5 kip-ft), this moment is developed by the 0.9m wide caisson, and can be distributed over another meter, at a 45 degree angle for a total of 1.9 meter for
81


336.8 kNm (248.42 k-ft). However the vertical accelerations made it much higher than expected, foot for a total of six feet 1.5 m (5 ft) to create the moment shown in Table 7.2. It can be seen in the stress diagrams, Figure 7.9 and 7.10 that the stress is distributed over the adjacent plates, and yields an anticipated stress distribution. The static design shows much higher stresses on one side, and the dynamic design yields the resultant stress in the lower left, which is the resultant of the vectors.
Table 7.2 Summary of Support Reactions, Shears, Moments and Stresses.
DESIGN METHOD Difference
FHWA, LRFD STAAD AWWA STAAD MAXIMUM with Time
CAPACITY SEISMIC TIME HISTORY History
SI US SI US SI US Analysis
Axial, kN (kips) 4359.3 980 3767.6 847 2929.2 658.5 28.6%
Uplift, kN (kips) -3514.1 -790 -2104.0 -473 -1744.6 -392.2 20.6%
Moment at Support, kNm (k-ft) 336.8 248.42 284.7 210.0 502.8 370.8 -43.4%
Vertical Shear, kPa (psi) 1385.8 201 1722.3 249.8 -19.5%
Plate Bending Moment, (k-ft/ft) 294.5 66.2 332.3 74.7 -11.4%
Principal stresses l£si) 2220.1 322 2220.1 322 0.0%
The calculations for reinforcing and shear analysis is shown in Appendix Q. The axial loads and close proximity to the edge require a cap thickness of 1,68m (5.5 ftjdesign. The required reinforcing for the moments is #10 at 150mm (6”) each way, top and bottom mats. Mexico uses American reinforcing call outs, so a # 10 is 32mm (1.27 inches) in diameter. Figure 7.11 shows the final caisson design and layout. The reinforcing for the caissons was discussed in chapter 5.
82


Figure 7.9: U = 1.2 D + E, AWWA (Static) Seismic Max Top Principal Stress.
Figure 7.10 Load Case U = 1.2D +E (including time history) Max Top Principal
Stress
83


i TANK & FOUNDATION
11MCN LEACH TANK CAISSON PLAN
SCALE: 1:40M
Figure 7.11 Caisson Layout and Reinforcing
12 PAIR OF 2-/10. BUNDLED {24 TOTAL)
#4 SPIRAL 9 75mm PITCH WITH 1.5 EXTRA TURNS AT ENDS MUST USE MECHANICAL SPLICE
9000 CAISSON SHAFT
21300 CAISSON UNDERREAM (BELL)
SCALE: 1:20M
GOLD RESOURCE CORP EL AGUtA PROJECT

STRUCTURAL - CONCRETE 11M CN LEACH TANK FOUNDATION CAISSONS
THIS (MAMMG MS n>f.P4«t> p> 11WTIK, AIL Of IK HfWMAllOH CON1AMO 1MWCN 1$ IK MOffHW Of LTVTtK AMO NO KPHOOUCtKlN CAH BE MX WTNWT


8. Summary, Conclusions, and Recommendations
8.1 Summary
The design of a critical structure in Mexico started with a geotechnical report that did not have the desired design information and referred to Mexican design codes. Since the contract requires that both American and Mexican codes be met, quite a bit of research ensued. It was found that the American codes are very uniform in their approach to seismicity, yet the designer can benefit from an industry specific code. Also, there is a great variation among Mexican codes, and generally yield lower design requirements. However, the American and Mexican codes are unified in using a Time History Analysis, which is the most comprehensive approach and should be used for critical structures, as it can result in larger shears and bending moments than a static analysis.
Several caisson design methods are available, and the comparison of the CDOT method, the McCarthy method and FHWA ASD and LRFD methods allowed compensation for unknowns in construction methods and design parameters without being overconservative. Likewise, the comparison of lateral capacities with two different programs shows the variation among approaches, allowing the designer to make better choices.
8.2 Conclusions
1. A good geotechnical report can save 30% in foundation construction costs, as discussed at the end of chapter 5.
85


2. CODES:
a. As mentioned, the American codes are more comprehensive and stringent in their approach to seismic design, yet the industry specific code still yielded valuable design information. They are united with the Mexican codes in using Time Histories in an analysis program that can help ensure both codes are met.
b. The Mexican codes are more general in approach and resultant loads are substantially less than those generated by American Codes.
c. Both countries suggest using time history analysis for seismic design.
d. Neither give good parameters of when a time history analysis should be required.
3. Four axial caisson design methods were compared, CDOT, McCarthy, FHWA ASD and FHWA FRFD. FHWA. givess specific modifications for a wide variety of geotechnical and construction parameters to determine a design that is sufficient without being over conservative. FRFD takes advantage of the databases collected over the years to further refine those considerations in the resistance factor and by quantifying sources of error.
4. Between the two lateral analysis programs, Fpile and PSI, PSI is much more powerful and lends itself to more difficult situations that are not orthogonal, however both camps need to test what really happens with high lateral loads.
5. A settlement analysis allows a back check of the design to uncover any deficiencies.
6. A time history analysis is valuable tool to check for the sufficiency of seismic designs.
86


8.3 Recommendations
Areas of further research are as follows:
1. Requirements should be set in the codes as to when time history analysis is required.
2. There should be some type of international data base of geotechnical standards of other countries and their assumptions, and how they differ from American assumptions. As previously mentioned, Mexican geotechnical recommendations appear very conservative, even though they use American test standards. If the recommendations are lowered due to construction technique, what are those assumptions.
3. LPile and PSI need to prove what really happens to piles subjected to high lateral loads.
4. Continued development of PSI, including a manual with recommendations of parameters to use in different situations .
5. Perform a soil-structure analysis.
87


APPENDIX A. SOILS REPORT
88


Full Text

PAGE 1

SEISMIC ANALYS IS AND D ESIGN OF CYANIDE LEACH T A K FOUN D ATIO S by AvaDom B.S., Un i versity of Co l orado , Denver 1991 A thesis su bmi tted to t h e University of Co l orado , Denver in prui i a l fullfillment of the requir e ment s for t h e d eg r ee of Maste r of Science Civi l Engineering 2009

PAGE 2

This thesis for the Master of Science degree by AvaDorn has been approved by ienYin Chang Chengyu Li Stephan Durham Date I

PAGE 3

J ) Ava Dorn (M.S. Civil Engineering) Seismic Analysis and Design of Cyanide Leach Tank Foundations Thesis directed by Professor NienYin Chang ABSTRACT Since drilled pier design varies by vicinity and software preference, it is valuable to evaluate the outcome of different approaches depending on the reliability of one's information , available construction methods , and project costs. This project required the analysis and design of drilled shafts in a high seismic zone in a remote part of southern Mexico. Loads were generated usin g IBC 2003, ASCE 7-05 , and A WW A Dl 00-05 and compared with loads g enerated using Mexican codes . The drilled shafts were first designed for axial capacity using four methods: Colorado Department of Transportation (CDOT) , "Soils Report & Essentials of Soil Mechanics and Foundations" , 3rd Edition , by David F . McCm1hy, and the FHWA ASD and LRFD methods in Publication No. FHW A IF-99-025 "Drilled Shafts: Construction Procedures and Design Methods" , and the results compared. The l ateral capacity was ana l yzed using L-Pile and PSI. The fonner is commercially available and the later, PSI, was created by doctora l candidate Hien Nghiem of the University of Colorado , Denver. One percent and five percent reinforcing were used on a single fixed and pinned head pile , then analyzed and compared. The pile cap design and time history analysis was then performed using STAAD.

PAGE 4

While this situation came to light in a consulting engineering firm , and parallels the consulting project , it is not a consulting project and neither the author nor the committee are responsible for the design. This abstract accurately represents the content of the candidates's thesis . I recommend its publication .

PAGE 5

ACKNOWLEDGEMENTS The author would like to thank Dr. NienYin Chang for his tireless support, encouragement , and humor in the face of many obstacles , Dr. Chengyu Li for his invaluable input and Dr. Stephen Durham for his advice. Special thanks go to doctoral candidate Hien Nghiem for constant help and support using his progran1 and locating seismic data. And my employer , Nick Lynn for his support, and my coworkers for their contributions.

PAGE 6

TABLE OF CONTENTS F i g ures .......... ... . ...... . . . .... . .... . ...... . ............ ....... .... . .... . ...... . ....... . .... . . ....... .................... . x Tab l e ....... ... ...... ..... .... ............... . . ............... . .... . . ......... ....... . ......................... .......... xii Chapter 1. Introduction . .............. . ......... ......... . .... . ........... ............. . . .... . . . .............. . ........ . ..... ..... 1 1.1 Background .... . .......... ................ . ............. . . . .... . . ....... ................. . ....... . . ..... . . . ...... . . . 1 1.2 Objective .... ..... ............ .. ...... ..... .... .............. . . . ........... .... .... ..... ....... ........ .... . .......... 4 1.3 Scope ...................... ....... . ...... . ....... .. .................... ........ .................. .... ............ ....... 6 1.4 Engineering Significance . ........ ......... . .... . ...................... . ................. ...... ............. . ? 2. Soil Parameters from Soils Report ........ ....... ..... . . ................... . ............... ............... 8 3. Seismic Design Method & Parameters ..................... ........ . ............. . ......... . . ......... .1 0 3.1 Code Review .................... ..................... . ....... .............. . . .... ....... . .......................... 10 3 .1.1 American Codes . .... ..... . . ............... .... ................... . ....... . .......... . . ..... ..... ........... . . . 1 0 3.1.1.1 IBC 2003 ..... ... ......... . ... .............. .... ...... . .......... . .......... ............... .... ........... ....... 10 3.1.1.2 ASCE 7-05 . ...... . .... ........... ...... .......... . . ............................... ........... ...... .......... . 11 3 . 1 .1.3 AWWA D100-05 ..... . . ........ . ................ . . .... . . . ......... . .... ................ .. ... . ........... .. 12 3 .1.2 Me x ican Codes ............................ ....... . . .... .... . .............. . . ....... ............ . . ............. 13 3 .1.2.1 Sismicidad en el Estado de Oaxaca 1990-2000 ...... .... .................................. 13 3.1.2.2 Manual de la Comision Federal de Electric idad (C. F.E.) . .......... ....... . . ......... 16 3.1.2.3 Norma N-PRY-CAR-6-01-oo5 /o1 de la Secretaria De Communicaciones y Transportes (S.C.T.) ... ........... . ..... . . ..... ......... . .... . ....... 16 3 .1.2.4 Regamento de Construction para e l Estado de Oaxaca ......... . ... ...... .......... . . .16 3.1.2.5 Normas Tecnicas Complementarias para Diseno por Sismo ....................... .16 V l

PAGE 7

3.2 Design Decisions from Codes .... ...... . . . .... .... ....... . .............. . ............ . .................... 20 4. Review of Drill ed Pier Design Met h ods ................. . ................. . ....................... . . . . 21 4.1 Introduction of Alternative Axial Capacity Design Methods . . .......... .. ....... . ....... 22 4.2 T h eory ofCDOT Method for Axia l Capacity . . . ............... ......... . ..... ........ ....... . .... 23 4 .2.1 Input, C DO T Method .......... . . . . ..... ....... ... . . . . . . . . ........ . .......... . ........... . ....... ........ ... 24 4.2.2 Analys i s Results, CDOT Metho d .... ............................ ......... ......... . .... .... . . . . .... . 24 4.2.3 Discussion of Ana l ysis Results ........... .......... ... .......... ........................ . ........... . . 24 4.3 Design Using Soils Report & Esse ntials of Soil Mechan i cs and Foundations, 3rd Edit ion , by David F. McCarthy, for Axia l Capacity .................. .......... . ..... . 25 4.3.1 Input, McCarthy Method ........ .......... . . . ..... ................... ....... ..... ... ... .... . . . .... . ...... 26 4.3.2 Ana lysi s Results, McCarthy Method ......... . ..... ..... ............... ..... . .......... ............ 27 4.3.3 Discussion of Ana l ys i s Results ........................ ................. . . . . . .... . . .................... 27 4.4 Design Using FHWA, ASD Method for Axia l Capacity ..... . . .................. . .......... 28 4.4.1 Input, FHWA , ASD Method .... ............... . . . ..... ...... . . ......... . ........... .................... 35 4.4.2 Analys i s Results, FHWA, ASD Method .... ...... . . ............. ................... . ......... ... 35 4.4.3 Discussion of Ana lysi s Results .............. ..... ............. .... ..... .... .... . ........... . . ...... ... 35 4.5 Design Using FHWA, LRFD Me th o d for Axia l Capacity . . ..... . . ..... ............... .... 36 4.5.1 Inp ut , FHWA, LRF D Method ................ . . . .................. . ........................ ...... ..... . 39 4.5.2 Ana l ys i s Results, FHWA, LRFD Method . . .......... ........ ........... ......... . ... ...... .... .40 4.5.3 Discussion of Ana l ysis R esults ....... ........ ..................... ........ . . . ......... ............... .40 4.6 Compar i son of Axia l D es ign Alternatives ... .......... ....... . . ..... . ..... ...................... . . .40 5. Design Based on Latera l Deformation ............. ................ . . . . . . ..... .................. . . . ,. . . . .44 5.1 Introduction ... ... .... . .... . . ..... . . ........ . . ...... ....... ...... ... ....................... . ...... ............ . . . .... 44 5 . 2 L-Pile Analysis .................. . . . . . ..... . ...................... .... ....... . ..... ............ .................... 45 5.2.1 Thoretical B ackgro und ............. ............. ............ ................................. . ..... . . ... .. .45 5.2.2 Input, Fixed at Pile Cap ........ ..... . ............ . . . . . ................ . . . . . . . ............. ..... . .... ..... . 54 5.2.2.1 Analys i s Results: Fixed Hea d , 1 % Reinforcing .. ... ........ .. .. .. .. ................. . .... 55 5 . 2 . 2.2 Ana l ysis R esults : F i xed Head, 5% Reinforcing . . ..... ............. . .... .... . ......... ... . 56 Vll

PAGE 8

5 . 2.2.3 Discussion of Analysis Results .................. . .... . ............. ............. . . ...... . .... ...... 56 5 . 2.3 Input , Pinned at Pile Cap .............................. . ............ ... .... ................ .... . . ......... 51 5.2.3.1 Analysis Results : Pinned Head, 1% Reinforcing ........ ............... ...... ...... . ... . . 57 5.2 . 3.2 Analysis Results: Pinned Head , 5% Reinforcing ...... ......... .... . ..... ..... . ... ...... . 58 5.2.3.3 Discussion of Analysis Results ...... . ..... .... ....................... . ............................. 59 5.3 PSI Analysis ........ ....... . . . ... . ......................... . . . . . ................. . ..... ......... ...... . ............. 59 5 . 3 .1 Thoretica l Backgrow1 d ....... .... . ....... .... ........ . ....... . . . .... . . . ... . ....... . . . ........ . ............ . 60 5.3.2 Input , Fixed at Pile Cap .... .... ...... . ..... . ........ . . ..... ..... .... ............. . ........................ 63 5.3.2.1 Analysis Results: Fixed Head , 1 % Reinforcing ........... . ......... ........ ....... ....... 63 5.3 .2 .2 Analysis Results: Fixed Head , 5% Reinforcing ........................................... 63 5.3.2 . 3 Discussion of Analysis Results ....... . ................. ...................... .... ...... .... . .... ... 64 5.3.3 Input , Pitmed at Pile Cap ...... .................. ..... . ........................................... . .... ... 64 5.3 .3.1 Analysis Results: Pinned Head , 1% Reinforcing .............................. . . .... ..... 64 5.3 . 3.2 Analysis Results: Pinned Head , 5% Reinforcing .......... . .... . ...................... ... 64 5 . 3.3.3 Discussion of Analysis Results ........................ . ......... . ..... . ...... .... ................ . . 65 5.4 Comparison of alternatives . . ...... . . . ...... .... .......... . ............... . ......... . ....................... 65 6. Settlement Ana l ysis ............... . .......... . ............ ...... .............. . .............. . .......... . ....... . 69 6.1 Simple Method ........ . ........................................................................................ ... 69 6.2 Normalized Load Transfer Method ....... . ................. ..... . . ........... . . . ...... . ............... 70 6.3 Analysis Resu l ts . . . . . ......... .............. . .............. . . . .... . . . . . ............... . ......................... . . 73 6.4 Discussion of Anlysis Results ...... . ............................................................. . ....... . 73 7 . Ca i sson Cap Design Using STAAD ........................................................... ..... ..... 74 7.1 Introduction .... .......... ... ............ . . . ..... ............................... . .............................. . .... . 74 7.2 Model Input. ............. . ....... . ...... . ....... . ....... . .... . ........ . . . .... . .... . ................................. 74 7.3 Load Cases .... ........... . ............... . . ..... .... . .................. .... ....... . ............. . . . ..... . . . ...... .. 76 7 . 4 Time History Analysis ...................... . . ..... .... ,. ......... . . . ................. . . . . . . . ................ .. 76 7 . 6 Results .... . ........... ........ .... ... ...... . ..... .... . . . . .... ..... . . .......... . . ....................................... 80 8. Summary , Conclusions, an d Recommendations . . .............. . .... ............................. . 85 Vlll

PAGE 9

8.1 Summary .................... ........................................... ............ .... .... ....... ................... 8 5 8.2 Conclusions ......... .... ........... ........ .......... .............. ..... . ...... ......... ...... ......... ............. 86 8.3 Recornmendations ................... .............. ............. ... ...... .......... ....................... . ...... 86 Appendix A. Soils R eport ................. . .......... . ................................................... .......................... 88 B . A WWA-05 Calculations ......................... ....... . .... ............... .... . . ................. . ......... 125 C. CDO T Method Calculations .... .................. .... .................... .... .... .... .... .... ........ ...... 134 D. Soils Report Calculations ................... .............. ...................... ..................... ........ . 1 3 8 E . FHWA ASD Method Calculations ...... ................................................................ 143 F. FHWA LRFD Method Calculations . o ...... o .. ................ ...... o.o .... ......... o .... ............ o.149 G. L-Pile Calcu l ations, Fixed Head , 1 % Reinforcing ........ . .......... ...... ............ .... ...... 154 H. L-Pile Calcu l ations, Fixed Head , 5% Reinforcing ........ o .... o .......... o ................ o ..... 163 I. L-Pil e Calcu lati ons, Pinned Head , 1 % Reinforcing ...... . o ........ .... ............. o ........... 197 1. L-Pile Calcu l ations, Pinned H ea d , 5 % Reinforcing .............. oooooooooooooooooooooooooooooo.211 K . PSI Calculations , Fixed Head 0000 00 00000 00 000000000 00 00 00 00 00000 00 0000000 00 00 00 00 00 00 0000 00 00 00 00 00 00 00 000230 L. PSI Calcu l ations, Pinned Head 000000000000000000o0000000000000000000000000000000000000000000 0000000000000235 M. Settl eme nt Analysis Calculations 00 00.00 oooo• 000 0000 00.00 000 00 00.00 .. 00 000.00 00 0000 oo•. 00 00 00 .... 0000 00 00240 HBColurnn Output OoOOOO ...... oooo . . oo .... oo.ooooooooOOOOoOOOOOOOOoOOOOOOOOOOOOOOOOoOOoOOOOOOOOOoooOoOoOooo . . .... 243 0 0 ST AAD Results oooo .. ooooooooooooooooooooooo•oooooooooooooooooooOOooOOoooooooOoOooooOOooOoooOOo ooooooooo.245 P. Time His tory Information ... 0 ... 0 ......... 0 ...... 0 . ... .. 0 . . ........ ..... 0 .... .... .... . . . 0 . ............. . . . . . . 254 Q o Cap Design Ca lculationsoo ... oo . ....... oo.oooo ....... OOooOooooOoooOOOOOOOOOOOOOOOOOOOOoOOoOOOOOOoOOOOOo0000000261 Bibliography oooo oo ooooo oo ooo o l X

PAGE 10

LIST OF FIGURES Figure 1.1 Proj ec t Location in Oaxaca , Mexico . .... . ...... . ....................... . ..... . ... ........ ... ...... 2 1.2 Genera l Layo ut of E l Ag uil a Mill Showing Leac h Tank Fo und at i on Location .......................... . . . ........ . ......... . . ........ ........ . . ....... ........ ............. . ........ . . 3 1.3 Mexico Seismic Hazard Map Peak Ground Acce l e rati on (m/s2 ) with I 0% Pr obabi lit y ofExceedance in 50 Years . ............. . . . ......... . . ..... ..... .......... . ...... . . .4 1.4 California Seismic Hazard Map Peak Ground Acce ler at ion (m/s2 ) wi th 10% Probabi l i ty of Excee d ance in 50 Years . . . ....................... . . . ......... . ....... ..... 5 1.5 Seismic P l a t es in Oaxaca Mexico .... ........................... . ........... . .................... ... 6 3.1 OaxacaFaul t s ......... . . .............................................. . ........ ....................... ....... l4 3.2 OaxacaSeismic Regions . . . ............. . ................ . ....... . ..................... . . . ............. 15 4.1 Con-elation B etween a and Su / p a .......................... . . ............... . . . . ............ ... . . . 3 1 5 . 1 Dist ributionon Uni t Stresses Aga in s t a Pile Before a nd Afte r Lateral Defl ection . . . ............................................ ....... . ........................... . . ........ . ..... . . .... 46 5.2 Pil e Loa d s ...... . . . ........... . ........ . .......... . . . . .... .... ..... ....... ..... . ............. ............ . . .... 47 5.3 R esu ltant Load-Moment Curve ................... . . . ...... . . ..... . . ....... . . ........ . ... ........ .47 5.4 B eam Co lumn Eleme nt (after Hetenyi, 1946) ... . ......... . ....... . . . ........ ............. .49 5.5.1 Form of the Solution of Di fferentia l Equations for B eam Co lumn Analysis . .......................... .... ..... ..... ............... ....... .................. .. ....... ..... . . ....... 50 5.6 Repr esen tation of D e flected Pile for F init e Di ffe renc e .... .................. . . . .... . . 53 5.7 PSI Finite E lem en t Ty pes . .... .............. ......... . ........... . ..... ............ ........ ........... 59 5.8 Mohr Coulomb Fai lure Criteria ............. . . .... .... ............................................. 62 7.1 STAAD Model ofPil e Cap an d Fixed Supports .......... . .......... .... .... .............. 75 7.2 STAAD Model of Tank, Sluny, and Agitator. ............ . ....... . ............ ........ .... 76 X

PAGE 11

7.3 A WW A Seismic Overturning Moment as Modeled in ST AAD ................ . 76 7.4 Location of Time History Seismic Events . . ........................ ..... ............. ....... 79 7 . 5 La Union, Mexico Acce l ogram ofMichoacan 911911985 Eve nt ........ ......... 79 7.6 Caleta De Campos Acce l ogram ofMichoacan 911911985 Eve nt .. .............. 80 7.7 Las Vigas, Mexico Accelogram of Guerrero 9/14/1995 Eve nt ........... . .. ..... 80 7.8 Las Vigas, Mexico Acce l ogram of Guerrero 3/13/1996 Eve nt ........ ........... 80 7.9 U = 1.2 D + E, A WWA (Static) Seismic Max Top Principal Stress ............ 83 7.10 Load Case U = 1.2D + E (including time history) Max Top Principal Stress ........... .............. . ............ .......... ........ . ............. . ..... . ...... ..... .... . 83 7 .11 Caisson Layout and Reinfor c in g .... .. ........ ........... . ............... .. .. ...... .... .... ........ 84 XI

PAGE 12

LIST OF TABLES 3.1 Comision Federal de E l ectricidad Se i smic Coefficients .... ................... . ........... 15 3.2 Reduction Values , Q ................. ... .. ....... . . ...... . .................................................. 18 4.1 Comparison of Axial Design Alternat i ves ...... ..... ...... . ..................... . ....... ........ . 32 5.1 Comparison of alternatives ..... ....... ....... ................ ...... ...... . ....................... ........ 65 6 . 1 ormalized Load Transfer Relations for Side Resistanc e , Cohesive Soil. ....... 71 6.2 Normalized Load Transfer Relations for Base Resistance , Cohesive Soil ...... 72 7.1 Time History Data Summary . . ..... .............. . ...................... . ....... ..... ................... 78 7.2 Summary of Support Reactions , Shears, Moments and Stresses ... . ...... . ......... . 82 Xll

PAGE 13

1. Introduction TheEl Aguila gold mine is currently the r ich est vein in the world. Its ore processing mill is located at 16.57 latitude north, and 96.03 longitude west , located in southern Mexico. It is on a mountain top in the central part of the state of Oaxaca , approximately 117km southeast of the state capital of Oaxaca (Figure 1.1). The high seismic zone is comparable to southern California . Cyanide is one of the most common chemicals used in the process of leaching the gold , silver, copper , etc , from the ore. In this case , 11m (36 feet) diameter by 11m (36 feet) tall tanks of cyanide solution are used in the beginning of the extraction process. While it is required to have concrete containment for 110% of the largest tank , underlain with HDPE , there are six of these tanks , stepped down at 0.5 m intervals , as shown in Figure 1.2. As engineers dedicated to the public safety , we have to make sure that in a catastrophic event everything downhill and downstream is not polluted. Therefore , the foundation has to be designed so that the after a seismic event, the tanks are still standing in tact. 1.1 Background Tank foundations usually consist of a concrete ring to distribute the bearing pressure of the tank wall , with either a concrete slab inside the ring , or sand covered with asphalt. However , in this situation we have very large tanks, with a high center of gravity and a lar ge mass , coupled with high seismic accelerations . This creates a load exceeding the allowab l e bearing pressure of the soil. 1

PAGE 14

Additionally , the foundation has to be rigid enough to transfer the loads to the soil in a seismic event to prevent rupture of the tank. ' \ \ \ \ ' \ \ \ \ \ \ \ \ \ \ Figure 1.1 Project Location in Oaxaca , Mexico ------. __ P R OJ ECT L OCATION Comparing the USGS NEHRP maps of Mexico , Figure 1 . 3 , with California, Figure 1.4 , it can be seen that this is a seismic zone is equal to some of the areas of California just outside of the shows thjs outside of faults. E l Aguila i s located in the regions where peak ground accelerations range from 0.49g to 0.57g. 2

PAGE 15

Figure 1.2 General Layout of El Aguila Mill Showing Leach Tank Foundation Location

PAGE 16

Figure 1.3 Mexico Seismic Hazard Map Peak Ground Acceleration (m / s2 ) with 10% Probability ofExceedance in 50 Year The area is dominated by the subduction of the Cocos Plate under the orth American Plate , which has generated more than twenty M > 7 earthquakes this century past (Figure 1.5) . In contrast, only a few major intraplate earthquakes have occurred during the san1e time frame. 1.2 Obj ective Drilled pier design methods vary by vicinity. In a high seismic region , the design is controlled by lateral deflections instead of bearing. Comparing the results of different design methods and analysis software is intended to yield the most cost effective design, while meeting both American and Mexican seismic design 4

PAGE 17

-124' -122 ' -120 ' -118 ' -116 ' -114 ' I I %g 180 100 80 40 ' 60 40 30 25 20 38' 15 10 9 8 7 36 ' 6 5 4 3 2 34' 1 0 -124 ' -122 ' -120 ' -118 ' -116' Figure 1.4 California Seismic Hazard Map Peak Ground Accelerat i on (m/s2 ) with 10% Probabil i ty of Exceedance in 50 Year 5

PAGE 18

Loc:•tiud&o d t lo• ' ios ,.b lmporUnfes •• • t hi
PAGE 19

IF -99 025 "Drilled Shafts: Construction Procedures and Design Methods". One settlement analysis will be performed. Then drilled piers will be desigried for lateral capacity using LPile and PSI. LPile is based on beam equations and has changed little in twenty years , but is broadly used in industry. PSI uses 3D finite elements and takes advantage of modem computing power. Both fixed head and pinned head conditions with I% and 5% reinforcing, will be analyzed by each program and the results compared. Then the pile cap will then be design e d using ST AAD, first with static seismic loads , with a time history seismic analysis. The results of the different methods for axial , lateral and seismic loads will be compared , and recommendations made. 1.4 Engineering Significance This will allow the comparison of four drilled shaft design methods based on axial capacity to see if one method is substantially better or more economical. The comparison of eight designs based on lateral capacity, using two different software programs will detemline if there is much difference between programs , and if a modem 3D analysis can improve on existing methods. Mexican and American seismic codes will be compared , and static and dynamic (time history) seismic analysis results will be compared. As engineers go into other countries , they must know what assumptions are being made in design and construction so that they can take appropriate measures in design and specifications to get the anticipated resu lts. These concepts will be discussed. 7

PAGE 20

2 . Soil Parameters from Soils Report The soils report, " Infome De Studio Geotecnico" dated October 2007 by Grupo Corporativo JABEY S.A. de C.V. , in Appendix A, is problematic. Since the gradation has only 25% passing the 200 sieve, the soil is labeled an SC, but gave it was given both a cohesion value , although extremely low , and an int ernal angle of friction , also ve ry low , that is characteristic of a cohesionless soil, but all three borings have blow counts above refusal (50 blows per foot) at a relativel y sha llow level. The longest boring is only 3m (10ft.) deep , the others are 1.2 m (four feet) de e p and 1.8 m (5 feet) will be scraped off for the site work. Eve n thou gh they borings are not at the depth required for caissons, a preliminary design will e nable a basis how much the client will save in foundation costs if more money is spent for ge otechnical engineering (the client retained the geotechnical se rvice s in this case). The format for allowable bearing pressures is for spread footings, and the Terzaghi equation for allowab l e soil bearing pre ss ures is used inconectly . Terzaghi 's equation for ultimate bearing pressure , quit, i s quit= c c + 0.5Byi y + Y2DtN q Eq n . 2.1 whe r e the values ofNc, Ny, and Nq, are taken from a curve table based on the internal angle of friction, B and Dr are the width and depth of the footing, respectively . While they give the values used for Nc, Ny, and Nq, which are acceptable for the given $, there are no direct shear test results for $ . They arrive at the allowable bearing stress, qadm by applying a safety factor to only the fust term , c c The correct way is to calculate quit, substract the weight of the soil above the footing , and divide the whole result by the factor of safety . 8

PAGE 21

Secondly , the safety factor is only 1.5 , when a factor of 2.5 or 3 is recommended (McCarthy , 1988 , p . 375). Our conclusion was that the soil is a clay , and that geotechnical report had taken a very conservative approach in treating it as a cohesionless soil. The bearing pressures given for the location of the cyanide tanks, S-2 and S-3 (borings 2 and 3) are 26.7 ton/m2 (5.47 ksf) at 0.60m depth , and 54.0 ton/m2 (11.0 ksf) at 1.20m depth. Finally , since the pictures in the geotechnical r e port show a rope , tripod and team of people to raise the 140 pound hammer , the blow count could be low if they rope was not released simultaneously , resulting in an off center drop. The method gives rise to the concern of what type of equipment is available , and must be ascertained in the design development. For seismic criteria , the geotechnic a l report lists v alues for c , ao, Ta , Tb , and r , without definitions , but refers to two different Mexican documents. These variables and references had to be researched. 9

PAGE 22

3. Seismic Design Method & Parameters The geotechnica l report g a ve us va lu es to satisfy the Mexican code , but our contract requires conformance to the IBC. Therefore , careful comparisons were made to come up with va lues to use in the American codes . The results were then ve rified usin g a time hi s tory analysis, which is promoted in codes of both countries . 3.1 Code Review 3.1.1 American Codes 3.1.1.1 IBC 2003 IBC 2003 was used because the project started before the 2006 code was available. IBC sec tion 1615.1 instructs the desi g ner to go to gro und acceleration maps from whic h the variables S s and S 1 come from. However , these maps only include the United States and its territories , and no maps of Mex ico with these parameters could be found. In order to proceed with the desi g n , some correlations are made from the comparison of published USGS maps. From Figure 1.3 " Mexico Seismic Hazard Map Peak Ground Acceleration (rn!s2 ) with 10% Probability ofExceedance in 50 years", the El Aguila mine is in the 49 %g or 4.8 rn!s2 area. On Figure 1.4 " California Seismic Hazard Map Peak Ground Acceleration (%g) with 10% Probability of Exceedance in 50 years ", the areas wit h 48 %g are right outside of faults. Going to the maps provided by IBC , a value of 150 %g was used for S5 , and 60%g for S1 • Section 1615.1.1 then directs the designer to the site class table 1615.1.1 , but says that where 30m of site specific data is not available , to use Site Class D. So even though our blow 10

PAGE 23

counts , N > 50, and we could have used Site Class C for soft rock and stiff soil , we are forced to use higher factors because of the quality of the soils report. IBC section 1615 . 1.4 forward requires the determination of the fundamental period, T , and directs the designer to ASCE-7. 3 . 1.1.2 ASCE 7-05 Table 1-1 of ASCE7 designates Occupancy Categories . Occupancy Category II includes " All ... structures except those listed in Occupancy Categories I , III, and IV" . Occupancy Category III encompases " structures, not included in Occupancy Category IV . . . containing sufficient quantities of toxic or explosive substances to be dangerous to the public if released. " Thus , it is determined that 6 hug e tanks of cyanide would be in Cate g ory III. Section 11.4.1 through 11.4.4 of ASCE7 is the same as the previously mentioned sections ofthe IBC . Chapter 15, sections 15.1.1 through 15.4.1 give minimums for design , which includes the seismic accelerations in Chapter 11, and direct the engineer to the AWWA D100 , AWWA D103 , and API 650. Section 15.7 Tanks and Vessels specifies the use of API 650 for industrial tanks. However, the latest edition of the API 650 is 1998 , the latest version of the A WW A D 103 is 1997 , which does not use the seismic accelerations in the IBC 2003 or the ASCE 7 -05. The A WW A D 100 was updated in 2005 to include the same seismic accelerations as ASCE7 and IBC 2003 . Further , it was found that the AWWA D100 is the more conservative than the API 650. This is because water tanks are vital to service communities , and tend to be on hill tops within these communities. Such a failure would be catastrophic in both propert y damage and loss of life. In contrast , industrial tanks are often in a concrete containment area , usually far 11

PAGE 24

away from communities , and do not pose a threat to many lives . Therefore, it was concluded that using the A WW A D 100-05 was adequate. 3.1.1.3 A WW A Dl00-05 The A WW A (American Water Works Association) essentially copies the procedure from IBC 2003 and ASCE7-05 to get the variables S1, Ss, F a , Fv, U , Sdlo Sds , Sai, Tc , T Land T5 • However , it gives specific instruction in calculating the natural fundamental period of different tank structures , and state that ground supported tanks have a very small period that is taken to be zero (13 . 5.1) . They add in a Seismic Importance Factor 1[, Tab l e 24 , that is used to increase the accelerations. It is determined that this is a Group II usage, which is important to the public welfare after a seismic event for it to not rupture. Therefore, I E,= 1.25. A WW A gives specific procedures on how to calculate the invective and convective forces and moments. Tanks are divided into two groups: those with diameter/height greater than 1.33 , and those l ess than 1.33. There are then separate sets of equations to calculate Wi, the invective force , Xi, the moment arm of Wi; W c, the convective (sloshing) force, and Xc, the moment arm of the convective force. Then the equation for the moment at the bottom of the shell , M s is given in footlbs: M s = { [Ai(W s X s + WrH + WiXi)f + (A c W c X c/}1 1 2 Eqn . 3.1 where W s is the weight ofthe shell , and Wr is the weight of the roof. Notice that Wi and W c, are functions of the weight of the contents , which is not included by itself in the equation. Equations are given specifically for when a pile foundation is used. Instead of Xi, Ximf is used , and instead of Xc, X cmf, is used to calculate the moment at the top of the piles , Mmr : Mmr= {[Ai(W s X s + WrH + WiXimr)f + (A c W c Xcmr/} 1 1 2 Eqn. 3.2 12

PAGE 25

A WWA then gives the equation for the design shear force in pounds: Vr = {[Ai(W s + Wr + Wi)]2 + (A c W ci}112 To account for vertical accelerations: Av = 0.14Sds Yallo w = (W s + Wr + Wi+ Wc)(1-0.4Av)tan 30 Eqn. 3.2 Eqn. 3.3 Eqn. 3.4 Ifthis is less than V r, and the difference is used to calculate bolts required to carry the shear. Otherwise grav it y is deemed sufficient to caiTy the shear. The rest of the calculations are in Appendix B. It yields the following values to be used in design: Shear , V r = 2285 kips Seismic overturning moment at top of piles , Mmr = 36 , 030 kip-ft 3.1.2 Mexican Codes Page 13 ofthe soi l s report "Infome de Estudio Geotecnico" refers to Manual de la Comision Federa l de Electric idad (C.F.E.), and Nom1a N-PRY-CAR-6-01-ooS /ol de I a Secretaria De Communicaciones y Transportes (S.C . T.) , and lists the variab le s ao, c , Ta(s), Tb(s) , and r. Researching these documents and the significance of these values y i e lded add itional information. 13

PAGE 26

3 . 1.2 . 1 Sism i ci dad en e l Esta d o de Oaxaca 1990-2000 This is the seismic code for the state of Oaxaca , that was provided to the consultant by the client. It provides a map of known faults reproduced in F igure 'IJ \ /? ,...... -",; -::::-_ ' .-:'\-'/ -= ---Figure 3 . 1 Oaxaca Faults 3.1 that shows El Aguila sitting between some known faults. Article 235 shows the seismic re g ions for the state , shown in Figure 3.2. Article 236 of this document refers to the seismic coefficient C for the horizontal shear force , and the Comision Federal de Electricidad that classifie s types of construction, and gives a table of values to use for diffe rent seismic zones and soil types shown in Table 3.1, below . It can be seen that the value for C given in the soils report was 14

PAGE 27

taken from seismic zone C , soi l type I. Article 236 a lso refers to the Compl ementary Technica l Nom1s. Figure 3.2 Oaxaca Seismic Regions Table 3 . 1 Comision Federa l d e E l ectricidad Seismic Coe f fic i ents ZONA SiSMICA Ofl TIPO OE SUELO COEFICIENTE SISMICO EST ADO I 0 .14 B II 0.30 Ill 0 .36 0.36 c II 0.64 n r 0 .64 ..... .. -------I 0 .50 D II 0 .86 Ill 0.86 15

PAGE 28

3.1.2.2 Manual de Ia Comision Federal de Electricidad (C.F.E.) This document was found only to provide the table given in the Sismicidad en el Estado de Oaxaca 1990200 0 , reproduced in Table 3.1. 3.1.2.3 Norma N-PRY-CAR-6-01-ooS/ol de Ia Secretaria De Communicaciones y Transportes (S.C.T.) This document , referred to in the soils report adopted AASHTO Standards for bridge loads and clearances , but did not g ive any seismic information. 3.1.2.4 Regamento de Construction para el Estado de Oaxaca In "Titulo Quinto Normas de Seguridad Es tructural " (Title 5 Rules for Structural Safety) of this document , Article 252 defines the soi l types described in the Tab l e 3.1 provided in S i smicidad en e l Estado de Oaxaca 1990-2000 and Manual de Ia Comision Federa l de E lectricidad (C.F.E.) . Soil Type I consists of rock and firm soil, Type II consists of san ds and so me clay with overall d ept h to bedrock less than 20 m , and Type III consists of clays and soils with significant overall depth. The geotechnical report used Type I soil , which is consistent with the hig h blow counts encountered. 3 .1.2.5 Normas Tecnicas Complementarias para Diseno por Sismo The Normas Tecnicas Complementarias was referred to in the Sismicidad en el Estado de Oaxaca 1990-2000. Instead of tediously translating it , a document was found in English titled "Seismic Code Eval uati on , Mexico" b y Jorge Gutierrez that eva lu ates the seismic code requirements. Gutierrez starts out stating that the 16

PAGE 29

purpose of the Nonn is to ens ure no major structura l fai lur es or loss of life for the maximum probable earthquake (Gutrienez, 2003 , p. l). While thi s code is mainly for Mexico C i ty , other districts adopt it , w ith modifications to the se i smic coefficients (Gutr ienez, 2003 , p. 1 ) . Occupanc y and Importance co n sist of two group s . Group A are st ruc tures whose fai lure would result in a lot of death s due to high e conomic losses or to x icity. These a r e ass igned an Importance Factor of 1.5 . All other structures are Group B , with Imp ortance Factor of 1.0 (Gutrierrez , 2003 , p. 4). While there are no s tructur e types explicitly defined , there a r e severa l types mentioned in relation to the R eduction Factor, Q , discussed later (Gutrienez, 2003 , p . 4): • Frame systems • F lat s lab systems • Wall systems • Braced frame systems • Prefabricated concrete systems • Dual systems , combinin g the above T h ere are also regular and inegular str u ctures in p lan and elevation . Thou g h there are 11 criteria (G utrienez, 2003 , p. 4) , a round slab wit h a s y mmetr ic pattern of piles i s so very obviously regular , this w ill n ot be discussed furt h er. There are also redundancy r eq uir emen t s (Gutrienez, 2003 , p. 4) such that i f any compone nt contributes more than 35% of the tota l stre n gth , its stre n gth will be 80 % of t he conespondin g nominal value (Gutrienez , 2003 , p. 4). Section 4.1 of Gutrienez and Section 3 of the Normas d efine the va lue s given in the so il s report , ao ( = 0.19g) , c ( = 0.36g) , Ta(s) ( = 0.20) Tb(s) (= 0.60) , and r ( =112) in r e lation to the Elastic D es ig n Spectra for hori zo ntal accelerations. The designer must ha ve T , the natural fundamental freq uenc y of the st ructure. The horizontal acce ler ation response spectra , a , in tem1s of g , is the n deteremined by: 17

PAGE 30

a= ao+ (cao)(T / Ta) forT< Ta a = for Ta T Tb a = qc for T > Tb Eqn. 3.5 Eqn. 3 . 6 E qn. 3.7 Using T = 0 , to be consistent with A WW A, then a = ao = 0.19. Vertical accelerations and displacements are not considered (Gutrierre z, 2 003 , p. 4 ) . For the design spectra , a Reduction Factor Q ' i s us used for calculation of lateral seismic forces for Static and Mode Superposition Methods (GutrieiTez , 2003 , p. 6): Q ' = Q forT unknown or T 2: Ta Q ' = 1 + (T / Ta)(Q-1) forT< Ta Where Q is summarized in Table 3 . 2: E qn. 3.8 E qn. 3.9 Tab l e 3.2 Reduction Values , Q Q Requirements 4 a . Frame or dual structural types of steel , concrete , or steelconcrete composites with frames able to resist 50 % of acting seismic force. b.Dual structural types with masonr y walls i f the structur e without them is able to resist 80 % of total lateral forces . c.Minimum lateral strength on any story is within 35% of the total average. d.If steel braced frames are present , they must be eccentrically braced. e.Elements and components designed for high ductility. 3 a.Previous (Q = 4) conditions b , d and e are satisfied , but either conditions a or c are not (in any story). b.Concentric steel braced frames designed for high ductility. 2 a. Frame, wall or dual structural types of steel , concrete , steelconcrete composites or masonry not satisfying any of the requirements for previous (Q = 3 or 4) conditions . b.Prefabricated concrete buildings. c.Some types of timber or steel buildings according to their specific norms. 18

PAGE 31

1.5 a. Wall structural t ypes with hollo w masonry wa lls. b. Timber frame buildin gs. 1 Buildin gs with other structu ral materials and witho ut technical justification for hi ghe r valu es . Since T = 0 , then Q' = 1 in this de sign . A simplified analysis and design procedure is availab l e where • 75% of the vertical loads are supported by sy mmetrically distributed walls brac ed by horizontal s labs with enough strength and stiffness . • Plan length to width ratio is less than 2. • Height is les s than 13m , with height to minimum width ratio i s less than 1.5. This allows the Static Method Pro cedures to be used (Gutrierrez , 2003 , p. 8). In this method , horizontal disp l acements, torsion and overturning moments are not considered. It is on l y necessary to check that each story ha ve enough strengt h to resist the hori zo ntal shear at that story. This method s tarts out with: Vo / Wo = c / Q '?:. ao Where: Vo = the base shear force Wo = the total weight of t h e structure c, Q', and ao are as previously defined Eqn . 3.10 This yields Vo = 0.36Wo. From the AWWA calculations, the weig ht of the she ll , fittings, floor, agitator assembly, and contents is 3220 kips. The demand shear, Vo = 1159 kips . If considered a Group A structure with an importance factor of 1.5, the d esign shear would be 1739 kips , which is still less than half the base shear calculated b y A WW A. They do not prescribe additi onal seismic moments , relying on engineering judgment to apply the moment resultant from the shears on 19

PAGE 32

each floor. However , the absence of an additional seism ic moment lead s to an even lar ger disparity in design requirements between the Mexican and American code requirements. Soil structure interaction is considered in soft soil conditions (Gutr ierrez, 2003, p. 9), which is not applicable in this site. Acce ler ation Time Histories (4.3) is promoted for non-linear analysis , and can be registered , simulated or a combination of both , and can be used for non linear dynamic analysis but four independent time histories must be used, and must be compatible with other criteria of the orm (Gutrierrez, 2003, p 6). 3 . 2 Design Decisions from Codes Since the A WW AD 100-05 code is specific for this situation , and covers the desi g n requirements of both countries , contractual requirements, and our engineering obligations , the values obtained b y its procedure will be used. They are reiterated here for convenience: Dead Load (Tank and Components) = 145.07 kips Tank Contents = 2956 kips Horizontal Wind Force= 42.81 kips Wind Overturning = 793.70 kip-ft Seismic Shear , Vr = 3902 kips Seismic overturning moment at top of piles , Mmr = 60,340 kip-ft 20

PAGE 33

4. Review of Drilled Pier Design Methods In low seismic areas , a drilled pier is designed based on axial capacity. Accor din g to FHW A, this also true if allowable stress design is b eing used: ax ial capacity drives the design , and then the design is checked for lateral deflection . FHW A then goes on to state that the LRFD design i s usually driven by l atera l deflection. However , drilled piers are popular in high seismic zones because of their high resistance to lateral loads. Therefore a high seismic loading (ca using lateral deflection) can also drive the desi gn. The best use of the LRFD method starts w ith determining the variability of soils information , and requires a lar ge amount of data to determine values. There i s a simp ler method to adjust to le ss information as discussed later , as the simp l er method was the one necessitated in this case. In order to clearly compare the difference b etween methods , one layout was arr i ve d at for all the analyses. Sixteen drilled shafts total in two circles: the inside circle with an 5.49 m (18 ft) diameter , and s i x equally spaced caissons , and the outer diamet er of 11.58 m (38ft). A 12.19 m (42ft) dian1eter cap will then cover them , which will lea ve a 150 mm (6 inch) edge. This will l eave 0 . 60 m (2ft) between the tank shell and the edge of the slab , whic h will faci litate anchor bolts placement and pullout design, and reinforcing details. 2 1

PAGE 34

4.1 Introduction of Alte rnative Axial Capacity Design Met hod s In all the reviewed methods, the ultimate axial load capacity for a drilled pier is calculated as the sum of the end bearing capacity and the skin friction and , for allowa bl e stress design , dividing the sum by a factor of safety to achieve the allowable load of the pile. Qultim a t e = Otip + Qfri ction Oallowab l e = Qultim ate/FS FS = fac tor of safety Eqn . 4.1 Eqn. 4.2 The bearing capacity and sk in friction va lu es come from vary in how th ey are determined. In all cases , the l e ngth of the pile used for skin frictio n is the shaft length minus the upper 1 . 8m (5 ft) , minus one shaft diameter at the bott om, and minus the bell hei ght where a bell is used. These areas are not effect i ve in resistance due to soil disturbance. Since each leach tank foundation is composed of severa l shafts , the spacing has to be considered , as to whethe r th ey act individually or a g roup . Shafts space d three diameters apart, center to center, act independently , and the full values skin friction values can be used . Closer than three diameters , the strength has to be reduced linearl y . The outer circ l e of 10 s haft s have s pacin g on th e diam eter of 3.64 m (11.94 ft) which is more than three diam e t ers. The inside six shafts are s paced at 2.87 m (9.425 ft) , a lso more than three diameters , and the circles are 3.05 m (10ft) apart , a lso more than 3 diameters. Therefore all the s h afts act indiv idu ally. One common element that is stressed in all of the literature is to u se loc al customs. However with the previously discussed problems w ith the geotechni cal firm bein g Spanish speaking an d not bein g the subconsu l tant of the de sign firm, 22

PAGE 35

the local customs are unknown. Experience has shown that different cultures have paradigms that are not easy to detect that can change the design. However, it is known that drill ri gs can usually be found, even in rustic areas, with a certain amount of scouting. 4 . 2 Theory of CDOT Method for Axial Capacity Colorado has relatively shallow competent bedrock in a lar ge portion of the state. Therefore the CDOT (Colorado Department ofTranspotiation) method is definitely a local custom. Also, CDOT s pecifications and protocol provides for consistent hi g h quality construction management to implement goo d construction practices. Typically CDOT, which is in the English system of units, takes the number of blow counts and divide s that b y two. That is then the allowable bearing pressure in kips per square foot. Ten percent of that value is then used for the skin friction value. Thus the Eq uation 4.1 becomes: Qallowable = Qtip/FS + Qfrictio n /FS Qallowable = (N* Atip ) /2 + (0.1 * Askin)/2 A1ip = n * diam2 / 4 A skin = 7t * diam * Lerr diam =diameter of the shaft being analyzed Lerr = Length of the pier minus the upper 5 ft. minus 1 diameter 23 Eqn. 4.1 E qn. 4.4 Eqn. 4.5 Eqn. 4.6

PAGE 36

4.2.1 Input, CDOT Method Using boring B2, the maximum of 75 blow counts given in the soi ls report Anexo o. 3 "Resultadaos de Laboratorio " becomes 37 . 5 ksf (258.56 MPa) allowable bearing pressure, 3.75 ksf (25.86 MPa) ski n friction. 4 . 2.2 Analysis Results, CDOT Method Therefore, for a 900 mrn (3 foot) diameter , 7.01 m (23 foot) long drilled pier: Axial demand 3509 kN (788.96 kips) Axial capacity Uplift demand Uplift capacity 3537 kN (795 . 22 kips) -1362 kN (-306.25 kips) -2358 kN ( 530.14 kips) as shown in Appendix C. 4.2 . 3 Discussion of Analys i s Results In comparing the soils report with geotechnical reports for some CDOT projects that went into the claystone bedrock, the material is similar except for moisture conten t , whic h is lower for E l Aguila. The caisson capacity is what would be expected for a CDOT project. The 75 blow count might appears conservative , in light of the higher blow counts at the adjacent borings. Using a method local to the engineer does not lend itse l f to the unknowns in the procedures in obtaining the soi l data or the differences in construction. The safety factor could be increased from two, but then one is outside the local norm, without a way of correlating this method to anything else. It is useful to compare a lean design resulting from goo d data and construction methods to lesser data and different methods. 24

PAGE 37

4.3 Design Using Soils Report & Essentials of S oil Mechanics and Foundations, 3rd Edition, by David F. McCarthy, for Axial Capacity The next design method to be considered is b ased "Essentials of Soil Mechanics and Foundations" , 3rd Edition, by David F. McCarthy. The bearing capacity given in the soils report for Boring 2 (Appendix A, p. 101) on 13, q adm = 54.0 ton/m2 (11 ksf) at a depth of 1.2 m. When using the values for Boring 2 on the previous page (Appendix A, p. 100) for a depth of 4.5m (15 feet) in the eq uation g iven in the soi l s report (Appendix A , p. 98) , the allowable bearing pressure q adm = 75.23 ton/m2 (15.41 ksf) . The cohesion g i ven is 3.5 ton/m2 (0.717 ksf). On McCarthy , 1988 , p. 413, the equation for end bearing is qtip = cNc Eqn . 4 . 7 where c is the cohesion , and Nc is the bearing capacity factor for deep foundations, ranging between 6 and 10, but usually taken as 9c. However on (McCarthy, 1988, p. 409) , the lo wer limit for cohesion is given 1 ksf. In eva lu ating whether to use 15.41 ksf from the s oils report , or McCarthy's 9ksf for end bearing, earlier it was determined that the geotechnical engineer was very conservative and yet authorized use of a higher value for end bearing , and so the 75.23 ton/m2 (15.41 ksf) will be used. On page 408 , McCarthy gives the skin friction as fclay = ac Eqn . 4.8 where fc1ay is the unit adhesion or skin friction developed between clay and the pile shaft, a is the factor that relates adhesion to cohesion (or the friction ratio), and c is the cohesion. In this case a = 1, so fclay = c = 1 ksf. 25

PAGE 38

The shaft allowab l e capacity is th en equation 4.3. However , the va lue for the end bearing a lr ea d y has a safety factor in it , so capacity e qu ation b eco m es Q allo w able = Qtip + Qfriction/FS Q allo w able = ( qtip *A tip ) + ( C * Askin)/2 Eqn. 4.1 Eqn . 4.9 T hi s desi gn required a b e lled end . The refore th e diameter u se d to calculate Atip i s the diam eter of th e bell , w hich is 2.13 m (7ft.). T h e skin friction is calculated usin g the diameter of the stra i ght part of the s h aft , and the belled length does not contribute to it. So Leff is reduced by the h e i ght of the b e ll. Before proceeding w ith the d esign of b elle d or undeneamed drilled shafts , shea r keys (roughened s ha ft) were considered. Locally , belled shafts are scorned , and s he a r ke ys are more fam iliar . Di scuss ion s with severa l experienced proj ect managers who had procured e quipment in isolated areas revealed that b elled shafts were not uncommon in mo st parts of the wo rld. Conversely, it took considerable disc u ss i on to explain what a roughened s h aft or shear keys were, and the idea was not accep ted. The s pacin g at the shaft tip was considered. When the load was distributed to the boundar y of w her e th e areas overlapped , and the b ea rin g pressure calculated , it was b elow the allowable. 4.3.1 Input, McCarthy Method The unit bearing capacity, q1ip, us e d was 0 .73 8 MPa (15.41 ksf) with a belled caisson, and the unit skin friction used was 47.88 kPa (1 ksf). 26

PAGE 39

4.3.2 Analysis Results, McCarthy Method Therefore, for a 900 mm (3 foot) diameter , 9.45 m (31 foot) long drilled pier, 0.6 m (2ft) ofwhich is b e lled to a diam ete r of2.13 m (7ft): Axial demand 3509 kN (788.96 kips) Axial capacity 3517 kN (790.67 kips) Uplift demand -1304 kN (-293.06 kips ) Uplift capacity 3033 kN (-681.74 kips) as shown in Appendix D. 4.3.3 Discussion of Analysis Results McCarthy stresses the use of local customs, which are unknown. Howe ve r in eva luatin g other geo technical reports from Me xico, the y are surpris in g l y conservative. This may be an effort to protect themselves from wreckless construction methods , such as putting a buildin g on spread footings on the edge of a poorly compacted hillside fill, n ot providing adeq uate draina ge behind hu ge fills and retainin g walls, and other thin gs that would typically not be acceptable in the U nited States. McCarthy's approach leaves room for adjusting between good information and poor information . While it is stated that a safety factor of 3 or higher should be used depending on the information available, it also states not to be overly conservative. Since refusal is N=50, and the soils report has N in the 90's, the designer considers the value of cohesion used in calculating the shear friction to be extremely low , and the bearing pressure to be conservati ve enough without increasing the factor of safety. 27

PAGE 40

4.4 D es i g n Us i ng FHW A ASD Method for Axial Capacity FHW A has produced a publication " Drilled Shafts: Construction Procedures and Design Mehtods" , Publication No. FHWA A-IF-99-025, by O'Neil & R eese, printed August 1999 , based on case studies all across the United States. It contains design guidelines for usin g either ASD (Chapter 1 0) or LRFD (C hapter 11 ) , and then go throu g h the desi gn process det ail in the Appendix B and A respectively. This publication also delves into the effec t of soil layers , construction processes , concrete properties , and drained verses undrained loadin g with cohesive soils . The ASD method calculates the ultimate geo technical re s istance ( O 'Neil & R eese, 1999 ,p.264) RT=R s + R s Eqn.4.10 where R T =nominal (calculated) total ultimate resistance in compre ssio n R s = nominal (calculated) net ultimate bas e resistance in compression , and R s = nominal (calculated) ultimate side resistance (skin f riction) in compressiOn This is unlikely to be the actual re s i stance, which is accounted for using appropriate factors of safety . There is also a deflection softening behavi or of drilled shafts in compression , after which the ba se resistance and skin friction are not additive . This requires a settlement analysis to determine that the de signer is in the area where the val ue s are additive (O'Neil & Reese , 1999 , p. B-2). While the weight of the drilled shaft , W', is not included in compression calculations , because its weight is roughly equal to the displaced soil , it is included in uplift loading , so that (0' eil & Ree se, 1999 , p. B3) 2 8

PAGE 41

R r = R s + R s + W ' Eqn. 4 .11 Parameters are given for four categories of soil (O ' Neil & Reese , 1999 , p. B-4): • cohesive soil , with Su < 0.25 MPa (5 200 psf) • granular soil , with NsPT < 50 blows / 0.3 m • intermediate geomaterial (IGM) cohesive , with 0.25 MPa (5, 200 psf) < Su < 2.5 MPa (52 , 000 psf) and granular , with NsPT > 50 blows / 0.3 m • rock , with Su > 2.5 MPa (52 , 000 psf) Values are assigned to each la yer of soi l , and Eqn. 4.9 becomes (0' eil & Reese , 1999 , p. B-6) Eqn . 4.12 where fmax i = unit side friction in l ayer i , which depends on the geomaterial properties , depth and roughness of the borehole. It is them multiplied by the circumference ofthe shaft , and the thickness ofthe layer , Zi = thickness of layer i , qmax = net unit base resistance , which depends on the geomaterial properties , and i s multiplied by the base area. The complete theoretical bearing capacity equation for a bearing surface , in this case the base of the drilled shaft , is Equation 4.12. It assumes the geomaterial is homogenous , isotropic , non-strain softening , and is not rock. It requires modification for drilled shafts in granular geomaterials , where the excavation can change some ofthe soil parameters (O ' Neil & Reese , 1999, p. B-7). Eqn . 4.13 29

PAGE 42

Nc, q, Ny = bearin g capacit y factors for infinitely long footings at the ground surface , and depend upon the angle of internal friction and the rigidity of the soil , Sjk = correction coefficients to account for the shape (j = s), depth (j = d) and inclination of the load (j = i),for the respective bearing capacity factors above, cr' vb = ambient vertical effective stress in the soil mass (tota l vertical stress minus pore water pressure in the soil, if any) , discounting any stresses induced due to installing the shaft , at the tip elevation , y\ = effective unit weig ht of the soil below the base of the drilled shaft, which is the total unit weig ht of the soil to a depth of 1.5 diameters below the base , and above the piezometric surface. If the tip is below the piezometric surface the buo yant unit weight is u sed. c = average cohesion of the soil in the vicinity of the base e l evation. If the soil below the base is s ub stantially softer than the soil surrou ndin g the base , punching failure needs to be checked. It also needs to be det erm ined whether the loading of the drilled shaft will produce undrained or drained pore water pressure conditions at the shaft tip. It is conservative to a ass ume undrained conditions at the caisson tip is in cohesive soi ls. As drained conditions effectively make the soil stronger , it is ordinarily only assumed for free draining gran ular soils for loading cases other than impact and seism ic lo ading. However , in hea vily overconsolidated cohesive geomaterials , the the shearing component of the app lied load can cause dialation of the base material. This then is resisted b y the generation of negative pore water pressures (suction), which dissipate and can result in a reduction in shear s tr ength and consequently in bearing resistance (0' eil & Reese , 1999 , p. B-8). 30

PAGE 43

For undrained design, FHWA gives a figure to derive the undrained shear strengt h (cohesion), Su, from either unconsolidated , undrained (UU) triaxial compression tests or consolidated undrained (CU) triaxial compression tests (O'Neil & Reese , 1999 , p . B-9). There is no data from these tests recorded in the geotechnical report. It is not known how the cohesion or internal angle of friction was derived , but 21 is very low. The average blow count of27 and 75 is 51, puts it in the range of an intermediate geoma terial by FHW A , and a hard clay by McCarthy (pg 238). The soils report gave a value for cohesion of3.5 tonne s/ m2 (0.66ksf), again extremely conservative. The average value of Su for a very hard clay is 144 to 239 kPa (3000 to 5000 psf) , the average of 192 kPa ( 4000 psf) is used for design. This puts the foundation soil in the category of cohesive soi l from the four FHW A soils categories. With these design decisions , Equation 4.12 can be simplified for the specific case of undrained ana l ysis in cohesive soil. The internal ang l e of friction of the soil ,
PAGE 44

If E s = is not measured , a table is provided to correlate Nc * , Su, and Es/3 Su. If However , if the base soil has Su 2: 96kPa (2000 psf) , then qmax = 9 Su Eqn. 4.17 can be used with "s ufficient accuracy" according to FHWA. The next task is to determine the side resistance , R5 . Few studies have been made of side shearing resistance along drilled shafts. Most of the information available is a result of relating side resistance measured in loadings t ests to basic soil properties and stress states . For cohesive soils , the undrained resistance is developed. It should be noted that in calcu l ating R s the seasonal moisture change can affect the s kin friction (Isenhower , et al, 2006, p. 327) . But in this study there is a concrete sla b around the foundations which will limit those variations. Drilling the shaft remold the soil at the face, reducing the in-situ strength. The exposed soil can swell, relieving stress, and further weakening the soil. Though the fluid pressure, and later the lateral pressure , from the concrete may reconsolidate the soil to some extent. The soil can a l so absorb water from the concrete, which may further reduce the shear friction . All these factors make it difficult to detennine the actua l ultimate shear resistance is availab l e when the caisson goes into service. However , it is customary to estimate fmax in cohesive soi l s by relating it to some measurable soil strength parameter or stress state (O'Neil & Reese , 1999 , p . B-27). The most frequently used factor is Su , adjusted for the construction disturbances mentioned by the factor a as follows : nax = a Su Eqn. 4.18 These correlations have been developed by carefully measuring Su, in UU tests or converting other tests to UU results and then conducting load test on drilled shafts and measuring fmax along the shaft. A vast library of case histories for 32

PAGE 45

caisso n s in cohesive soils was researched , and the values of shafts greater than 0 . 7m (2.3 ft) and less than 1.83m (6.0 ft) , and lengt h s greater than 7m (23ft), and Su 2::. 50kPa (0.5 tsf) were plotted, as shown in Figure 4.1. The resultant trend lin e yielded the Equations 4.18 and 4.19 below . These equations assume the first 1.5m (5 ft) have zero skin friction , and the bottom !diameter has zero skin frictio n . These va lu es correlate with other studies , and can be used when site spec i fic data is unavailable. In these equations , P a is the atmospheric pressure 100.5 kPa (2100 psf) (0' ei l & Reese , 1999 , p. B-28). 1.0 0.8 0.6 a 0.4 0.2 0.0 0.0 • 1.0 2.0 F i g ure 4.1 Corre l ation Between a and Su / p a a = 0.55 for Su / p a :S 1.5, and 3.0 a = 0.55 -0.1 ( Su / p a -1.5) for 1.5 :S Su / p a :S 2.5 33 4.0 5.0 Eqn. 4.19 Eqn. 4.20

PAGE 46

This yields Su / p a = 1.905 , a = 0.511 and fmax = 2.04 ksf (97.68 kPa). While this works for normally consolidated materials , it may be unconservative for overconsolidated materials. In combined axial and lateral loadin g loading, the lateral deflection will reduce the value of nax along part of the shaft because of the permanent ga p left between the soil and the caisson. This is especially true in se ismic situations. An approximate approach to the probl em is to compute the lateral deflected shape under combined factored axial and factored lateral loads. Studies show that in stiff clay , soil around piles behaved elastically as long as the lateral deflection did not exceed 0.001diameters (O ' Neil & Reese , 1999 , p. B-55). While this not a code requirement , certainly und er normal loads , such as wind , one would want to check this. However , for seismic, the structure doesn ' t need to be usable after the event, it only needs to stay in tact enough that the tank doesn ' t rupture in a seis mic event. Therefore, under wind load of 189.5 kN (42.8 kips) / 16 caissons is less than 13 kN (3 kips) per caisson. As discu sse d in chapter 5 on lateral deformation , one ofthe LPil e loadings with 5% reinforcement is a horizontal load of 16.68 kN (3.75kips) which produced a deflection of0.006 mm (0.0003 inches) at the head of the pile, showing elastic behavior under normal loads . Under the extreme event (seismic) it is 7.4 mm (0.292 inch) , which is acceptable to prevent tank rupture for a single event. 34

PAGE 47

4.4.1 Input, FHW A, ASD Method All calculations for a soil with cohesion is based on the undrained shear strength. It was determin e d that the the average value of Su = 192 kPa ( 4000 psf) was conservative and should be used for design. The unit bearin g pressure qmax = 9su on the belled end, and the unit skin friction 97.86 kPa (2.044 ksf). A safety factor FS =2. 4.4 . 2 Analysis Results, FHW A, ASD Method Therefore, for a 900 rnrn (3 foot) diameter , 6.40 m (21 foot ) lon g drilled pier, 0.6 m (2ft) of which is belled to a diameter of2.13 m (7ft): Axial d e mand 3509 kN (788.95 kips ) Axial capacity Uplift d e mand Uplift capacity 3551 kN (79 8.32 kips) -1350 kN (-303.66 kips) -5969 kN (-1342 kips) as shown in Appendix E. 4.4 . 3 Discussion of Analysis Results FHW A has spent the money to acquire a huge data base of material that is cross correlated and has made available more resources to utilitze the information one has available . However , the fundamental property , the undrained shear strength , h a d to be conservatively approximated from ex perience , and for a material that has a blow count over refusal, is probably actually an intermediate geomaterial , and not a cohesive soil. While FHW A suggests safety factors ranging from 1 . 7 to 3.5 (page 239) , it is based on construction practices and assumes that the fundamental design information is good. Like McCarthy , they caution against 35

PAGE 48

overconservative design. Therefore , this design uses a safety factor of 2 because the undrained shear strength is very low , and it is the same used for the McCarthy method. 4.5 Design Using FHW A, LRFD Method for Axial Capacity The LRFD method , detailed in Appendix A of their publication , directs the creation of characterization domains , i.e. p lotting the pertinent qua l ities so that they can be grouped accordingly. From the plot, a trend line is created, and the COY w , or coefficient of variation , is calculated. This is based on the sampling interval and distance from the trend line the data point falls. The result can lead to more borings or a regrouping of the borings , or using lower reliability values (O'Neil & Reese , 1999 , p. A -1). All borings spaced farther than 15m (50ft) (O ' Neil & Reese , 1999 , p. A-4) are considered horizontally uncorrelated. The relevant data for their design method is the undrained shear strength , Su, as discussed earlier. The three borings in geotechnical report are 58m and 24m apart , and are therefore , horizontally uncorrelated. While plotting theN values show a definite vertical correlation , as shown in the Appendix F, it isn ' t the value required, and there are not enough data points to create a meaningful COY w Therefore , they recommend that when this criteria cannot be met, that either conservative values ofthe design parameters should be chosen or the resistance factor be reduced or the factor of safety be increased (O ' Neil & Reese , 1999 , p. A 10). As discussed previously, the value of undrained shear strength, the main design paran1eter used is considered very conservative. In LRFD , the general equation for the design of axially loaded drilled shafts is 36

PAGE 49

Eqn . 4.21 where the 11L'YiQi is the demand, and 2:$iRi is the capacity (O ' Neil & Reese, 1999 , p. 240) , and 11 = ductility / redtmdancy / operational importance factor (0.95 to 1.05) 'Yi = load factor for load component i Qi = nomina l l oad value for load component i $i = resistance factor for resistance component i Ri = nominal value of resistance component i Currently, LRFD for drilled shaft fotmdations assumes that if a drilled shaft fails, the structure will be in a failure state (O'Neil & Ree e, 1999 , p. A-16). However , for highly redundant drilled shaft groups 11 could be taken as 0.95, but is usually taken as 1.00 or 1.05 (0' eil & Reese , 1999 , p. A-17). Qi has been calculated by the A WWA method shown in Appendix Band discussed earlier. The load factors, 'Yi depend upon the limit states that are being analyzed , and FHW A uses the AASHTO limit states. AASHTO has a table of 12 l imit states (load combinations) , with var i ous load combinations within each one. Some of the variables have set load factors for a given l imit state , and some have variable load factors are denoted by 'YP. The value for 'YP is listed in a second table and provides a maximum and minimum value to test for. Since this is a ll transportation related , a l ot of the li mit states can be eliminated , and since the leach tank fotmdations basically have dead load, wind and seismic, the elimination of variables l eads to some redtmdancy : STRENGTH I is for norma l u se of the str u c t ure without wind. STRENGTH II is for an extra heavy permit vehicle and does not apply. 37

PAGE 50

STRENGTH III is for norma l use with the structure exposed to winds over 90krnlhr (55 mph). The desi gn wind for this project is 160 km / hr (I OOmph). STRENGTH IV is for a high dead to live ratio. The tank contents is considered dead load because it i s present most of the time , but the input only falls a 0.30m to the liquid level m aintained b y the outflow , and the agitator circulates the liquid vertically . Live load in the AASHTO sense does not apply. STRENGTH V is for normal use and a wind velocity of 90krnlhr (55 mph) , which doe s not apply. EXTREME EVENT I is seismic. EXTREME EVENT II is for ice flows, vessel impact, and vehicu lar impact. This structure is surrounded by a containment wall and other structures , and cannot be hit b y a vehic le. This load case does not apply. SERVICE I i s for normal operational use of the bridge with a 90km/hr (55 mph) wind , and all load s taken at their nominal va lues . It i s used for settlement calculations and and crack width control in concrete reinforced structures. SERVICE II is for stee l structures only, and doe s not apply to the foundation . SERVICE III is for prestressed concrete in tension only , and does not apply. SERVICE IV i s for tension in prestressed concrete su bstructure s only and does not apply. FATIGUE is for the combination ofloads relating to repetitive g ravitational vehicular live loads , and does not apply. This l eaves four load cases as shown in equations 4.22 throu gh 4.25. The check uplift , two STRENGTH III cases are included, one with the tank full like all the other load cases, and one with the tank empty. The load calculations are in Appendix F. As expected, se ismic controls for both axial compression, and uplift. STRE GTH I = 11 ['YpDC] Eqn. 4.22 38

PAGE 51

STRENGTH III = T1 [ypDC + 1.4WS] = EXTREME EVENT I = T1 [ypDC + 1 .0EQ] = SERVICE I = T1 [1. 0DC + 0 .3WS] = DC = Dead Load WS = Wind on structure EQ = Earthquake load Eqn. 4.23 Eqn. 4.24 Eqn. 4.25 The other part ofEqn. 4.21 is the capacity side. Although the nom in a l resistances are calculated the same way, inste ad of dividing by a safety factor, the r esistances are mu l tiplied by a resistance factor, These resistance factors have been sta tistically calibrated from a huge data base and presented in a tab l e (0' eil & Reese, 1999 , p. A-21) , and reproduced in Appendix F . It can be seen that a very high resistance factor can be used if there has actually been load tests at the site, and a much lower one elsewhere . In this case , since the undrained shear res i stance, su is very conservat ive, the resistance factors will be as suggested in the table. 4.5.1 Input, FHWA, LRFD Method The va lu es u se d in the Eq uation 4 .21 are as follow: 11 = 1.00 'YP = 1.25 maximum , 0.9 minimum 0.65 Compression, skin frict i on 0.55 Compression, base 0.50 Uplift, skin friction Su = 192 kPa ( 4000 psf) fmax = 85.1 kPa (1778 psf) 39

PAGE 52

qmax = 9su = 1723 . 7 kPa (36 5sf) The complete calculations are in Appendix F. 4.5.2 Analysis Results , FHW A, LRFD Method Extreme Event I , seismic was the contro llin g demand , as expected. Therefore , for a 900 mm (3 foot) diameter , 5.18 m (17 foot) long drilled pier , 0.6 m (2ft) of which i s belled to a diameter of 2.13 m (7ft): Axial demand 3764. 1 kN (846.2 kips) Axial capacity 3779.4 kN (849.65 kips) Uplift demand -1572 . 9 kN ( 353.60 kips) U pli ft capacity -3067.0 kN (-689.5 kips) 4.5.3 Discussion of Analysis Re s ults Since th e resistance factors ranging from 0.55 to 0.65 would equate to safety factors of 1.81 to 1.53, respectively , it i s not surprising that the resultant is a s horter drill ed s h aft. Since the seismic loa d controls , an d because it just needs to remai n standing , and because the LRFD design approach is that the s h aft cannot fai l or else the structure will fail , this is an economical way to go . Additionally , the cla y at the head that may d eform permanently in a se i smic eve nt will on l y have to l ast once. This would not be true for dynamic lo ads on machinery that is expected to last 25-50 years . 4.6 Comparison of Axia l Design Alternatives In preliminary it erat ion s , th e common pil e la yout of 16 s h afts was d e termin e d. This way , the difference b etween the designs was more readily apparent. 40

PAGE 53

Seismic Lateral Force 3899 kips / 244 kips per caisson Seismic Overturning Moment 60 , 220k-ft Maximwn Bearing Demand (single shaft) 788.96 kips Maximwn Uplift Demand (single shaft) -353.60 kips The results are summarized in Table 4.1: Tab l e 4 . 1 Comparison of Axial Design Alternatives DESI G N METHOD COOT McCarthy FHWA, ASD FHWA, LRFD S l us S l us Sl us Sl us Total Length, m (feet) 7.01 23 9 .45 31 6.40 21 5 .18 17 Unit End kPa (ks D 1795. 5 37. 5 737. 8 15.41 861.8 18 948. 0 19.8 Total End Bearing, kN (kips ) 1179. 2 265. 1 2636. 5 592.7 3080. 4 692. 5 3389. 5 762. 0 Unit Skin Friction, kPa (ksQ 179. 6 3 .75 47. 9 1 48. 9 1 .022 63.6 1 .33 Total Skin Friction, kN (kips) 2358. 0 530. 1 880.4 197.9 471. 3 106. 0 390. 1 87. 7 Bell Diameter, rn (feet) ----2.13 7 2 .13 7 2 .13 7 Bell Hei!1ht, rn (feet) ---0 .61 2 0 .61 2 0 .61 2 Total Capacity 3537. 2 795. 2 3516. 9 790.6 3551. 7 798. 5 3779.7 849. 7 %End Bearing 33% 75% 87% 90% %Skin Friction 67% 25% 13% 10% FHW A LRFD has the shortest belled columns, with the ASD design second , followed by CDOT's straight co l umn design, and finally the McCarthy method. While all have similar capacities,CDOT has a high amount of strength in skin friction because it is assuming a rock socket. It was stated earlier that FHW A's method for cohesive soil was used, not for an IGM. The difference in asswnptions with FHW A and McCarthy methods produce essentially end bearing shafts. CDOT has a very well developed local protocol from the geotechnical testing through design and construction specifications and construction management. Therefore , asswnptions can be made in their process that may not be true 41

PAGE 54

everywhere. While the design assumptions could be very applicable to this sight , the difference in construction management and techniques makes this unconservative. Conversely , local customs in foreign countries can be surprising. The FHWA method is based off of a much larger national database. This includes a wide variety of soil cond iti ons , construction practices and construction management practices , as well as various seismic conditions , and other significant lateral loads. They assume the designer has enormous amounts of soils data but also provide guidelines to adjust to different circumstances. Also , their document was just on drilled pier foundations, giving them opportunity to elaborate fine points. The McCarthy method is based off the soi l s report, which as noted earlier , leaves much to be desired. Both FHW A and McCarthy stress the use of local custom. When one sees the type of construction in Mexico , which would not be allowed in the US, it could be surmised that the conservatism in the soils report is due to the lower construction standards in the area. Also , the McCarthy publication is more general , being one chapter of a book covering a wide variety of geotechnical lSSUeS. When considering these parameters , the FHW A LRFD method for axial capacity design i s the method of choice for the following reasons: 1. As previously mentioned, the blow counts indicate the material is better than what the geotechnical report recommended , and closer to the FHWA ' s IGM than the cohesive soil values used in design. The purpose of the study is a preliminary design to justify the request for the client to spend more on geotechnical information. 42

PAGE 55

2. The LRFD desi gn method translates into a safety factor above 1.5 , which s hould be adequate for the structme to smvive the controlling (se ismic ) load. 3. The undrained , unconsolidated s h ear s trength was us ed. 4 . The caissons are covered with a cap surrounded by a concrete s lab , whi ch will reduce seaso nal fluctuations in moisture content. 5. We are not takin g into account the soil structure interaction. 6. In lo oking at the data for major earthquakes in the re g ion , it appears a major event occurs every 102 0 years , and the plant is only expected to be in operation 10 years. Plus , a major seismic event just hit the area February 1 2, 2 008 (Ms = 6.6). 7. The construction s p ec ification ca n b e written to take out some ofthe uncertainty, b y prequali fyi n g contractors , and a qualified geotec hnic al engineer on s it e during the drillin g of the caissons. The FHWA method i s considered duly conservative without being overconservative. Therefore, the ax i a l de s ig n will be for a 0.9 m (3ft) diameter s haft of 4.90 m (16 feet) , and another 0 . 60 m (2 feet) that will be underr ean1e d to finish at a 2.15 m (7ft) diameter shaft , for a total len gt h will be 5.2 m (17 feet) based on axia l lo a d . The soil will be mod eled as a clay with undrain ed s h ear s tr ength , Su = 192 kPa (4000 psf). 43

PAGE 56

5. Design Based on Latera l Deformation While starting with the 5. 5 m (18 feet) nece ssary for the axial l oad, the lateral load controlled the design, wh ich is typical in hig h seismic zones. The len gth was increased until fixity could be reached , as exhibited where the deflection goes from pos itive to negative and back to positive. There is some disc retion used as to how much is really required. Onc e consideration is, as mention e d pre vious ly, that a stiff clay is only considered elastic at d eformations below 0.001 diameters. 5.1 Introduction The analysi s of single piles started out as a pile in elastic soil using standard beam analysis by Terzaghi (1955) , built on earlier work in which he suggested va lu es of subgrade moduli to be u se d with qualifications (Arre llaga et al, 2004 p . 2-9). A s imple analysis was proposed in the mid 1960 ' s consisting of a ri g id pile with plastic soil. The soil is modeled as opposing distributed loads (Arrellaga e t al, 2004 p. 2-12). The location of where the dir ection changes is based on the equilibrium of the pile. A rigid pile with springs to model the soil was de ve loped for the design of piles supporting transmission towers in the 80's. A spring at the tip responds to the tip rotation , and one to respond to the tip defl ec tion , a pair to re spo nd to vertical movement of the pile faces , and a pair perpendicular to the shaft to mod e l deflection. Eve n though the model was developed with a series of experiments on short piles , it did not allow for independent determination of the curves that give the forces as a function of the movement (Arrellaga et al, 2004 p . 2-12). That 44

PAGE 57

meant that all the soil resistance values had to be found by experiment. The model was not used extensively. The p-y model is used by FHWA and LPILE (Lymon C. Reese co-authored both) and has proved to be versatile and has been used accurately predict pile behavior. It lends itself to finite analysis, finite difference , varying cross sections and material stiffnesses. It was made possible in the SO' s with the advent of the computer that could solve fourth order differential equations , and the remote reading strain gauge to obtain soil-response (p-y) curves from experiment (Arrellaga eta!, 2004 p. 2-14). While it was first developed by the petroleum industry for offshore platforms which were subjected to high lateral loads from wind and waves , the method was extended for other uses , and research continues today (Anellaga et al, 2004 p. 2 15). A brief overview of the theory will be shown here , and the in depth discussion left for Reese ' s documents. 5 . 2 L-PILE Analysis 5.2 . 1 Theoretica l Background The definition ofp andy has varied in use. The definitions used in L-Pile , as discussed here will be used in this document. When a pile is installed vertically , it has a uniform stress distribution as shown in Figure 5.1 (a). When it deflects a distance y , the distribution of unit stresses will be similar to that shown in Figure 5.1 (b). The integration of the unit stresses result in the quantity p , which acts opposite in direction to y (Arrellaga et al, 2004 p. 2-15). 45

PAGE 58

Although the soil is treated as a series of discrete resistances , full scale tests has proven the continuum effect to be satisfied. The p-y curves derived from full scale tests in different soils and have been found to predict within reasonable limits the response of a pile whose head is free to rotate or is fixed against rotation. They have also been used to predict the response of piles where only the pile head movement was recorded with reasonable to excellent results (Anellaga et a!, 2004 p . 2-17) . p l y J (a) (b) Fig u re 5.1 Distributionon Unit Stresses Against a Pile Before and After Lateral Deflection . The general procedure is to start with a trial pile geometry , and soil with known characteristics. The from the design loads , resultant unfactored load cases are found, Pt for a lateral load , Q , for the axial load , and moment M are acting at the pile head, as shown in Figure 5.2. A curve can be plotted that will show the maximum bending moment at some point along the pile as a function of the loading, as shown in Figure 5.3 (Anellaga et al, 2004 p. 2-17). The ultimate bending moment , Mult , for that section and load combination , which is the failure loading , can then be plotted. The failure loading can be found by finding where a plastic hinge would form anywhere along the pile length. The failure loading is 46

PAGE 59

then divided by a g l obal factor of safety to find the allowable loading . The allowable loading is then compared to the design loading to see if the selected pile was satisfactory (Arrellaga et a!, 2004 p. 2 19). a Allowable Loading Load ing Failure Loading Maximum Bending M o ment Figure 5 . 2 Pile Loads. Figure 5 . 3 Resultant Load-Moment Curve. As shown in Figure 5.3, the bending moment is a nonlinear function ofload. Therefore, the use of allowable bending stresses for most load groups is inappropriate and unsafe (Arrellaga et al, 2004 p. 2 19). (However , this high seismic zone it doesn ' t matter. As shown, the dead and wind loads are dwarfed by the seismic load cases , which has a factor of 1.0 . ) The next step is to solve for the deflection of the pile under the allowable loading (Arrellaga et al, 2004 p. 2-19). Since this the allowable deflection is dictated by situation, and not a design code , the deflection of the pile at failure mu st be calculated . This requires stresses beyond the linear elastic range, and requires the structural section and the flexural rigidity (Arrellaga et al, 2004 p. 2-21 ). The buckling of a pile can be studied similar ly. A pile of defined geometry is subjected to lateral load P1 and axial load Q. The latera l load is held constant and 47

PAGE 60

the axial load is increased in increments. The deflection y1 at the top of the pile is plotted with respect to the axial load , and a value of axial load will be approached at which the pile-head deflection will increase without limit. That is the buckling load (Arrellaga et al, 2004 p. 2-21 ) . Reese discusses the analytical approach to several different typical design situations. The important demonstrations are that basic statics still holds true. If a caisson has different loads in orthogonal directions , an analysis of the forces and moments in each direction can be performed , and the results added algebraically. Also , for a structure on piles with a cap , the normal method of calculating the maximum bearing pressure and the maximum uplift would be performed , and the results put into the analysis. Also the c01mection between the piles and the cap must be determined , if the pile heads are free to rotate , or completely fixed. The derivation of the di f ferential equations starts with the solution of the beam columns given by Hetenyi (1946). Referring , to Figure 5.4 , assume that a bar on an elastic foundation is subjected not only to the vertical loading , V , but also a pair of horizontal compressive forces Q acting at the center of gravity of the end cross-sections of the bar. If an infinitely small unloaded element , bounded by two verticals a distance dx apart , is cut out of this bar , th e equilibrium of moments (ignoring second-order terms) yields Equation 5.1 (Arrellaga et al , 2004 p. 2-33). (M + dM) M + Qdy-V vdx = 0 dividing by dx dx dx Eqn. 5.1 Eqn. 5 . 2 Differentiating with respect to x yields Eqn. 5.3 (Arrellaga et al , 2004 p. 2-34) cfM + Q cfv dV v = 0 Eqn. 5.3 dx2 dx2 dx 48

PAGE 61

Y a X y + dy a . \ P = -Es Y X Figure 5.4 Beam-Column E lem ent (a fter Heten y i , 1946). Substituting the following identities into Equation 5.3 yields Equat ion 5.4 where Es is the secant modulu s of the soil-response curve (Arrellaga et a l , 2004 p. 2-35). ctM = E I f6 , dV y = p , p = -E s Y dx2 dx4 dx Eqn. 5.4 The direction of the shea rin g force is shown in Figure 5.4. The s h ear in g force in the plane normal to the deflection line can be written as Vn = V v cos S -Q sin S Eqn. 5.5 Because S is usuall y small , we may assume the small angle relation ships: cos S = I , and SinS= tan S = dy / dx . Equation 5.5 becomes E qn. 5.6 where dy / dx is equal to the rotationS (Arre lla ga et al, 2004 p. 2-35). 49

PAGE 62

It is also convenient to allow a distributed force W per unit of length along the upper portion of a pile . The differential equation then becomes Equation 5 . 7 EifiJ! +Qfb:-p+ W = O Eqn . 5.7 dx4 dx2 (Arre lla ga et al , 2004 p. 2-36) :wh ere Q = axia l load , y =lateral deflection of the pile at a point x along the lengt h of the pile, p = soil reaction per unit length , E I = flexural ri g idity , and W = distributed load along the length of the pile Other beam formulas that are need ed to analyze piles under axial load are: Eqn.5.8 dx3 dx E I ely! dx2 = M dy / dx = s y M=EIdx2 Eq n. 5.9 Eqn. 5.10 Fig ur e 5 . 5 Form of the Solution ofDifferential E quations for Beam Column Analysis. 50

PAGE 63

where: V = the shear in the pile , M = bending moment in the pile, and S = slope of the elastic curve defmed by the axis of the pile. It can be seen that these are standard statics equations from Figure 5 . 6 , differentiating each time to go from deflection , to slope, to momen t , to shear, to load . These assumptions made to get the differential equations (Arrellaga et al, 2004 p. 2 38): 1. The pile is straight and has a uniform cross section , 2. The pile has a longitudinal plane of symmetry; l oads and reactions lie in that plane . 3. The pile material is homogenous. 4. The proportional limit ofthe pile material is not exceeded. 5. The modulus of elasticity of the pile material is the same in tension and compressiOn. 6 . Transverse deflections ofthe pile are small. 7. The pile is not subjected to dynamic loading . 8. Deflections due to shearing stresses are small. Making this differential equation even simp l er yields two important results: 1) the resulting equations demonstrate several factors that are common to any solution, revealing the nature of the problem , and 2) the closed form solution allows for a check of the accuracy of the numerical solutions given later (Anellaga et a l , 2004 p. 2-39). These will only be generalized here . 51

PAGE 64

Assume that no axial load is applied, that the stiffness EI is constant with depth , that the soil modulus E5 is constant with depth and equal to a. Use the identity in Equation 5.11 to substitute into the differential equatio n , and it reduces to E quation 5.12. R4 = a = E 1-' Eqn. 5.11 4EI 4EI 6 +4py =0 Eqn . 5.12 dx4 The solution to Eq. 5.12 may be directly written as (Arrellaga et al, 2004 p. 2-39): Eqn. 5.13 The coefficients are evaluated for different boundary conditions, and th e equations to solve for the variables y, S, M, V, and pare obtained (Arrellaga et al, 20 04 p. 2-42). This enable the solution for num ero us problems encountered in practice. Solving Equat ion 5.13 in finite differ ence form requires iteration , ie , a computer program, but allows the following refinements (Arrellaga et al, 2004 p. 2-46) : 1. The effect of the axial load on deflection and bending moment can be considered , and problems of pile bucklin g can be solved. 2. The bending stiffness EI of the pile can be varied along the length of the pile. 3. The soil modulu s E5 can vary with pile deflection and with distance along the pile. 4. Soil displacements around the pile due to slope movements or seepage forces can be taken into account. The derivative terms are replaced by algebraic expressions , and the pile is divided into little increments of length h , as shown by the following equations and Figure 5.6. 52

PAGE 65

)( Figure 5.6 Representation of Deflected Pile for Finite Differe nce r/y_ = J6n-2 + dx4 h 4 rfJ!. = J0n-2 I J0n+ 2 dx 3 2h T rfJ!. = J6n-l dx 2 2 h 2 riJ!. = I dx 2 h Substitutin g these equations into Eqn. 5 . 7 and collectin g terms , R m = Eml m (flex ur a l rigidit y of pile at point m) and k111 = Esm results in (Arrellaga eta!, 2 004 p. 2-47) Ym-2Rm-l + Ym-1 (-2Rm-l -2Rm + Qh 2 ) + Ym (Rm-1 + 4Rm + R m + l 2Qh 2 + k mhH2 ) + Ym+ l ( -2Rm-2 R m + l + Qh 2 ) + Ym+ 2 R m + IWh4 = 0 53 Eqn. 5.14

PAGE 66

With this equation boundary conditions can be tested, and from it five applications often found in practice (Arrellaga et al, 2004 p. 2-49): 1. Lateral load at head , P1 and moment at head , M1 , are known such as a support for an overhead sign. 2. P1 and rotation of the head, S1 , are known , such as a foundation with a pile embedded in the concrete . 3. When a pile extends out of the g round and becomes part of a frame , a free body can be cut at the bottom of the frame's joint. A moment is applied to the frame at the joint, and the rotation is computed. The moment divided by the rotation calculated by M/S1 is the rotational restraint pro v ided by the superstructure and is one boundary condition, and P1 is the second boundary condition . 4. Deflection , Yt. at the head and moment, M1 , at the head are known such as a brid ge abutment with a fixed h ead. 5. Deflection , Yt. at the head and and rotation of the head, St, are known , such as a pinned connection, where th e alues come from a structure anal ysis. Lpile was first made available in 1987 , and is now widely used in industry . Given two knowns it utilizes finite difference version of beam equations to solve for unknowns. It is two dimensional. 5.2.2 Input, Fixed at Pile Cap Two anal ys es were run for the fixed head condition: 1 % reinforcing , and 5% reinforcing. All the files were set up for the program to generate the p y curves , 100 pile increments , with a maximum number ofinterations of 100. The maximum deflection tolerance for convergence 1 x 10-5 in. The maximum 54

PAGE 67

allowable deflection is 100 inches , which means the concrete and steel reinforcing would fail, since those parameters are checked by the program. Three points are used to define the pile: The first at the head , the second at 28 ft deep , both having the same properties. The third and last one is at the tip , which is the larger section, and LPile will linearly int erpo late betw een the two. The moment of inertia is the transformed moment of inertia, to account for the 1% steel and 5% steel. The modulus of elasticity is for 4000 psi concrete, where Ec = 57,000(f c )0 5 . The pile head is assumed to be 0.6 m (2ft) underground . This is because the cap will be 0.9 m (3ft) deep , with 0.3 m (1 ft) above ground. Since the soils report shows a top layer much softer than where they stopped, the soil is modeled as two layers . Both are stiff clays without free water, with the effect ive unit weight of0.0694 pounds per cubic inch (120 pcf). The top layer is given a cohesion of 13.89 psi (2000 psf) , and the strain so is .005 . The analysis is for c yclic loading. To mode l a fixed head condition, the lateral load of244.75 kips and a s lope ofO, and the axial load is 846 kips. For the 5% fixed cased , four additional load cases were input: the first using the SIRE GTH III loads , and the other three increments of lateral load were used up to 244 .75 kips , in order to see ifthere was a uniform trend. All of the output and graphs are s upplied in Appendix G through J. 5 . 2 . 2 . 1 Ana l ys i s Resu lts: Fixed Head, 1% Reinforc i ng Even though the head is fixed, the pile head shows a deflection of 8 mm (0.32 inches). However, the deflection diagram is perpendicular to the horizontal at the head , which is what is expected for a fixed head deflection diagram. The pile 55

PAGE 68

shows about three meters (1 0 ft) at the bottom where the deflection goes from positive to negative and back to positive , with very small values , indicating that it achieved fixity. The deformations do not reduce to .001 diameters until4.5m (14.7 ft) below the top. Since 2.5 m (8ft) of skin friction was used in axial load resistance , it is reasonable to add at least that amount below the point where the lateral deformations are reduced to .001 diameters . The maximum moment of 1956 kNm (1443 kip-ft ), is at the head , which is expected , reverses , and there is no moment at the tip , which correlates with the z ero deflection. 5.2.2.2 Analysis Results: Fixed Head, 5% Reinforcing As discussed earlier , the TRE GTH III load is ver y small relative to the design load , and consequently shows little deflection or moment for the normal anticipated dead and wind loads. The EXTREME EVENT I ( seismic) maximum pile head deflection is 7mm (0. 29 inches) , and the maximum moment is 1988 kNm (1466 ft-kips) . A g ain the deflection and moment output shows fixit y and has curves indicative of a fixed pile under the seismic load , with a length oflittle deflection and zero moment at the tip. Additionally, the incrementally increas ing load cases show a uniform trend in moment , and indicating the column has not buckled and the soil has not failed. 5 . 2.2.3 Discussion of Analysis Results Both the 5 % and 1% reinforcing show the system working , with little difference in the ultimate pile moment. Inputting the resultant maximum moment , axial load and reinforcement into a program ( HB Column) that plots the column interaction 56

PAGE 69

diagram s h ows the moment of the 1% reinforcing is outside of the curve , w hich means the pile will fail in bending. However , the 5% reinforcing was within th e c u rve and i s a v i a bl e option . 5.2.3 Input, Pinned at Pile Cap The initial loading conditions are different to reflect a pinned h ead: The shear and ax i a l l oads are the same , but the moment i s zero , since a free head do es not carry moment. Otherwise the inp ut is the same l ength , soi l properties and tran sforme d moments of inertia for the pile are the same for the respective cases , Again , the 5% option included the STRENGTH III l oad case, an d the incremental increases in hori zonta l l oad to the full EXTREME EVE T I load case . 5 . 2.3 . 1 Analys i s Results: Pinned Head, 1% Reinforcing The pile head shows a deflection of37mm (1.47 inches) , and maximum moment of2108 kNm (1555 kip-ft) i s reached about 3.3 m (11 ft) below the head. The lateral deflection is not reduce d below .OOldiameters until5.1 m (16.75 ft) from the h ea d , w ith 3.4 m (11.2 ft) of fixity . T h e moments go to zero rather abr up t ly , and the soil res i stance is rat h e r high at the tip. The pil e deflection and moment grap h s are typica l of a free h ea d condition. 5.2 . 3.2 Anal ysis Results: Pinned Head, 5% Reinforcing The pile head shows a deflection of34 mm (1.32 inches). The maximum moment of21 3 4 kN m (1574 k-ft) occurs about the same distance from the top of the pile . T h e l a t eral d eflect ion is not reduced below .OOldiameters until 5.2 m (17.1 ft) from the head , with 3.3 m (10.8 ft) of fixity. The moment diagram of the 57

PAGE 70

increasing loads shows how the re verse curvature moves down towards the tip. The form of the moment and deflection curves i s typical of a free head condition and shows a substantial length at the bottom with zero deflection , indicatin g fixity. 5 . 2 . 3 . 3 Disc u ss i o n of Ana l ys i s Res ul ts The difference in LPile between the two reinforcing scenarios is in the stiffness of the pi l e , which i s slight. Therefore the difference in deflection and moment between the two is slight, and the stiffer member takes more moment and therefore has more deflection. Again , since the column interaction dia gram is looking at the stress in the s teel , it shows that the 1% reinforcing falls outside the curve while the more heavily reinforced column can take much more load and had a different interaction diagram that falls within the curve, indicating the load is within its capac i ty . However , from a practical standpoint, deflections as lar ge as given here indicate failure of the column regardless ofthe interaction di ag ram . 5 . 3 PSI Ana l ys i s PSI (Pile Soil Interaction) is a 3-D nonlinear finite element program for analyzing single piles under vertical, lateral, torsional and combined loads created by doctora l candidate Hein ghiem at the University of Colorado, Denver (Nghiem, 2009). The pile-soil system is modeled as an assemblage of solid elements. Concrete (circular or square) piles , stee l pipe or H piles can be modeled. The reinforcing steel in the concrete piles is modeled as a nonlin ar bar element; concrete as an elastic Mohr-Coulomb, or Cap model material ; soils are modeled as elastic, Mohr-Co u lomb , Hyperbolic , Modified Cam C lay, Ramberg Os go od , or Cap-model materials (Chang , 2007). The pile-soil interface is mode l ed by 58

PAGE 71

interface elements with Mohr-Coulomb or Hyperbolic models. The analysis results for either static or dynamic loads include the translational and rotational displacements ofthe pile , internal stresses of the pile, defonnation , stresses , axial force in nonlinear bar elements (reinforcing) , p-y and t-z curve at any depth along a pile , and shear and moment distribution along the length of a pile. The stiffness of equivalent spring for the pile-soil system can be formulated from the analysis results. A finite element mesh is automatically generated after the geometry input. The soil and pile elements can be a cube eight or 20 nodes, or a wedge of six or 15 nodes. For modeling the interface elements , an eight or 16 node element can be chosen. The bar elements have two nodes. The elements are shown in Figure 5.7. Figure 5. 7 PSI Finite Element Types PSI performs an iterative solution process for nonlinear analyses. In this method , the stiffness of the system is assembled one time and does not change during the iteration. This can save the calculation time for the structure with large number of degrees of freedom. There are two convergence criteria, displacement and 59

PAGE 72

balanced load. The PSI solver stops running if both convergence criteria are not satisfied when the number of iterations reach the maximum value. 5.3.1 Theoretical Background The assoc i ated flow rule is used in the Jelasto-plasticity model to simplify the incremental plasticity computational process and decrease CPU time. According to the classical theory of plasticity , the total strain can be decomposed into the elastic part and plastic part when stress sate reaches the yield surface (Chang, 2008): {de}= {de e } + {deP} {dee}= {de} -{deP} Eqn. 5 .15 Eqn. 5.16 Hooke's Jaw relates the stress and elastic strain increments as follows: { da} = [E e ]{ de e } {dcr} = [E e ]( {de}{deP}) In general, the plastic strain increment is written as: Eqn. 5.17 Eqn. 5.18 Eqn.5.19 where A is a scalar plastic multiplier that can be calculated by Forward Euler ' s method or Backward Euler s method, Smith and Griffiths (1997) and g is the plastic potential function (Chang, 2008). According to Forward Eu ler's method: Eqn. 5.20 Substitue Eqn. 5.20 and Eqn. 5.19 into Eqn . 5.18 60

PAGE 73

Eqn. 5.21 According to BackwardEuler ' s method: Eqn. 5.22 Substitute Eqn . 5.22 and Eqn. 5.19 into Eqn.5.18 e {acr} = [E Kdc:}[ J } a j [ E e a g +h acr acr Eqn . 5 .23 Where/is the yield function and g is the plastic potential function , h denotes the hardening parameter that equals zero for perfectly plastic materials and con s tant for an elasto-plastic material with a linear hardening model (Chang, 2008). While PSI is capab l e of six different models determined by the user , only the Mohr -C oulomb Model is discussed here. It is the first failure criterion which considered the effects of stresses on soil strength. The failure occurs when the state of stresses at any point in the material satisfies the equation below , Chen and Mizuno (1990): lrl + o-tancp -c = 0 Eqn. 5.24 where cp and c denote the friction angle and cohesion respecti ve ly. The Mohr Coulomb criterion can be written in terms of principle stress components as following , Chen and Mizuno (1990): Eqn. 5.25 61

PAGE 74

The full Mohr-Coulomb (MC) yield criterion takes the form of a hexagonal cone in principal stress space as shown in Figure 5.8 . The invariant form of this criterion shown as, Smith and Griffiths (1997): f•
PAGE 75

where Tis the maximum tensile stress. For these three yield functions , an associated flow rule is adopted. The MC material parameters include cohesion c , angle of internal friction , rp, and dilatancy angle , If! (Chang , 2008). 5.3.2 Input, Fixed at Pile Cap PSI uses the following input for all cases: L = I 0.668m Length D = 0.9m Diameter E = 49050 kN / m2 Soil modulus (Budhu, 2000, p . 560) Cu = 191.52 kN Cohesion cp = 40 Internal angle of fr iction SPT=45 umber of blows in upper la ye r Number of blows in lower layer Only half the pile was modeled , for computational effic iency, and lateral load was divided in half and distributed among the nodes. For the fixed head, the axia l load could not be input because it would cause the top of the head to rotate , which would not model things correctly. The output and grap h s are shown in Appendix K and L. 5.3.2.1 Analysis Results: Fixed Head, 1% Reinforcing The maximum bending moment is 1671.00 kNm (1232.46 k-ft) and the maximum deflection is 14.2 mm (0.56 in). Even though this shaft was modeled as 0.668 m (about 2 feet) l onger , the deflection became negative, but did not ach ie ve fixity. 63

PAGE 76

5.3.2.2 Analysis Results: Fixed Head, 5% Reinforcing The maximum bending moment is 2020.9 kNm (1490.54 k ft), and the maximum deflection is 12.5mm (0.493 in) . Again, this shaft did not achieve fix i ty. 5 . 3 . 2.3 Di scuss ion of A nalysis Results The de flection and moment curves plot as expected for a fixed-hea d pil e, and the stiffe r pile has more moment and deflectio n . However, neither the 1 % reinforced nor the 5 % reinforced show that they attained fixity . While the deflecti ons and moments are reasonable , the failure to attain fixity an d much larger deflections cou ld be interpreted that the so il will fai l und er seis mic l oading , w ith a tendency for the pile to rotate more. The values are significantly higher for the 5 % reinforced , whic h i s to be expected more than the s light difference in reinforcing in LPi le. 5 . 3.3 Input, Pinned at Pile Cap The so il and pile parameter input is the same as for fixed discussed previous ly , excep t for the difference in boundar y conditions where th e momen t at the top i s zero, b y definitio n , the slope i s unknown , and the horizontal force i s known. 5.3.3.1 Analysis Results: Pinned Head, 1% Reinforcing T h e m aximu m b e ndin g moment is 1017 kNm (750.1 k-ft ) , and the maximum deflection is 18.9 mm (0. 744 in). Again , fixity was not achieved. 64

PAGE 77

5.3.3.2 Analysis Results: Pinned Head, 5% Reinforcing The ma xim um bending moment is 1080 . 5 kNm ( 796.93 k-ft) , and the maximum deflection is 18.2 mm (0 . 715 in) , and fixity was not achieved. 5.3.3.3 Discussion of Analysis Results The defl ection and moment curve s plot as expected for a free-head pile , and the stiffer pile has more moment and less deflection , but not as g reat a differ ence as one would e x pect. Neither the 1 % reinforced nor the 5 % reinforced attained fix ity , the moments are extremely low and should be higher than the fixed piles , not half as much. 5.4 Comparison of alternatives Table 5.1 Comparison of alternati v es 1% Reinforcing , Fixed 5% Reinforcing, F ixe d Lpile PSI Difference Lpile PSI Difference -Moment kNm 1956.40 1671. 00 17.08 % 1 , 987 .86 2020 .90 1 .64% k ft 1442 .97 1232.46 17. 08% 1466.17 1490 .54 1 .64% Deflection m 0.0082 0.0142 -42. 52% 0 . 0074 0 . 012523 -4 0 . 84% in 0 .32 2 0 . 560 -42.52% 0 . 2917 0.493 -40.84% 1 % Reinforcing , Pinned 5% Reinforcing , Pinned Lpile PSI Difference Lpile PSI Difference Moment kNm 2,107 .62 1017.00 107.24% 2 , 133 .83 1080 .50 97.49% k ft 1 , 554 .50 750.10 107.24% 1573 . 833 796.93 97.49% Deflection m 0 . 0372 0 . 0189 97. 07% 0 . 0336 0 . 018164 84. 94% in 1.466 0 . 744 97. 07% 1 . 3225 0.715 84. 94% 65

PAGE 78

As seen in Table 5.1, PSI and LPile agree favorably for fixed head moments in both the 1% reinforced and 5% reinforced models. The greater reinforcing takes more lo ad with l ess deflection , and the deflections are in an acceptable range; since it is a small nwnber the percentage difference is very high. It should be noted that the fixed head moments are close, without axial load applied in PSI. It shows that the P-delta effects are negligible. Unfortunately , the pinned head connections vary by a factor of two between the two programs , in moment and deflection. While LPile , as expected , had moments and deflection higher than its fixed counterpart , PSI had higher deflection and much l ower moments than its fixed counterpart . This demonstrates the pile's tendency to rotate rather than bend. While both LPile and PSI need to prove which one is correct for this condition and with regards to fixity , the conclusion of the author is that this a borderline case and really doesn't work. A practical consideration is how can a 0.9m diameter pile can actually be pinned, as the wider surface and reinforcing diameter limjts rotation. In this situation , a pinned connection is prohibitive because the deflection of the pile head is prohibitive, potentially causing a catastrophic rupture of the tanks . In this case it will be easier to design for the fixed head condition. Since there is little difference between the soil response curves with the different reinforcing amounts , the maximum moment will be used in design , and the reinforcing adjusted as necessary, i .e., 5% reinforcing is so large that it creates detailing and construction problems. Iterations of HBColurnn show 3% reinforcing can accept the factored moments. This can be obtained by 12 bundles of 2# 1 0 (24 bars total) at equal spacing. This will leave 128 mm (5.05 inch) spacing between bundles . Since development length cannot be achieved , the 66

PAGE 79

spira l cage will be extended into the cap to anchor the piles and ach j eve a fixed condition. Something harder to quantify i s exactly how much the project could have saved in foundation costs with a quality geotechillcal report. The lateral analysis is based on deflection. If the caissons are in rock, the shear of the concrete could have carried the shear , and the shaft would not deflect. Therefore the extra length to achieve fixity would not have been required . Also , the CDOT design that assumes rock sockets wou ld have had even mgher va lu es. The underream wou ld not be necessary , so easily, 30% could have been saved by using a 23 foot straight shaft instead of a 30' underreamed shaft. 67

PAGE 80

6. Settlement Analysis Sett l ement analysis is calculated according to FHW A Appendix C (O'Neil & Reese , 1999) , and are presented in their entirety in Appendix M. The settlement based on the simple method is calculated , then the settlement is calculated b y the normaliz e d load transfer method , and then the se ttlement adjusted and the load transfer method reiterated until the load agrees with the service load. 6.1 Simple Method This analysis is based on the work ofVesic (1977) , and is base d on the working load ran ge of soi l s base d on general descriptions of the soil, and basic drilled s haft properties. The total settlement of the drilled shaft is estimated by adding the elastic s hortening due to load , the settlement due to the load transferred to the sides, and the settlement from load transferred to the base (0' eil & Reese , 1999 , p. C-2). We= LI(AE)*(Qh0.50ms) Wbb = Cp(Omt/Bbase * qmax ) Wb s = [0.93 + 0.16*(L!B shatl5J*Cp(Oms/L *qmax ) Qmb = QhOms where w r = settlement of the head of the drilled shaft. we= elastic compression of the drilled shaft. wbb = settlement of the base due to the load transferred to the base. 68

PAGE 81

wbs = settlement of the base due to the load transferred to the soil along the sides. Qh = Qro = Service Load applied to the head of the shaft. Qms = R s (mobilized) = estimated load mobilized in side resistance when Qh is applied. L = length of caisson A = cross sectional area E = Ec (A c + nA5 ) =the effective Yow1g's Modulus of the shaft. n = modular ratio E s lEe Cp = 0.03 for stiff clay , and is a variable provided by FHW A For this analysis, Qmb is estimated to be 20% of the service load . 6 . 2 Normalized Load Transfer Method This method begins with a test to see if the shaft is rigid or flexible. The flexibility is calculated b y SR = (LIB) x (EsoilE), where Esoil , the Young ' s Modu l us of the soil is estimated , and E , Land B have been previously d e fined. The method presented here is only for cohesive soils, not for cohesionle s s soils , IGM ' s , or rock (O ' Neil & Reese , 1999 , p. C-9 ) . If S R S 0.01 0 , the shaft can be assumed to be rig id , and the base and sides are assumed to settle equally. In the graphs below , the settlemen t/ diameter of shaft is W T IB , and the settlement / diameter of base is W T /Bbase (O ' Neil & Reese , 1999 , p. C-9) . In this case , S R 2:0 . 010 , and the shaft is flexible . Therefore , the compression of the shaft under load , and the settlement of the column are not equal (0' eil & Reese , 1999 , p. C-9). The settlement due to elastic compression of the shaft is 69

PAGE 82

o s = k QmLI AE ws = wr0.5 05 settlement of th e shaft Ws = w r 05 settlement of the base The settlement/diameter of shaft is then calculated as a percent , and the settlement/diameter of base is calculated as a percent. Figure 6.1 is entered from the bottom , and with the calcu lat ed ratio , and the Side Load Transfer / Ultimate Side Load Transfer is taken from the graph (Rs dfRs) . Then the equation solved for Rsd, and is the value calcu lat ed for caisson capacity earlier. The same procedure is done with Figure 6.2 using the settlement/ diam eter of base to get the End Bearing , Rsd . Rsd and Rsd are then summed to get R Td, the total lo ad transferred. It should equal Qm. If it does not , the value of w r is increased or decreased and the calculations reiterated until R r d::::: Qm. The value ofthat sett lem ent has to be acceptab l e to the design engineer (O'Neil & Reese , 1999 , p. C-9). 70

PAGE 83

1.2 1.0 -----..... ._ // .................... (I) ............. -I ................ (/) ._ c: 0.8 (I) e I (/) 1-c: "C I t1S ._ t1S 1-0 I -g _J Q) 0.6 I 0 :2 _J C/) I Q) U5 ca I E E 0 . 4 I Range of Results :J I --Trend Une I 0 .2 0 . 0 0.2 0.4 0.6 0 . 8 1.0 1.2 1.4 1 . 6 1.8 2 . 0 Settlement ------------' % Diameter of Shaft Figu r e 6 . 1 Norma li zed Loa d Transfer Relations for Side R esistance, Cohesive Soil 71

PAGE 84

Cl c -.::: a "' c .: m J "0 m c w "0 • c -w Clll E ; :;:l to 0.9 0.8 0.7 0.6 0.2 0.1 0.0 0 Range of A eaul ta . Trend Une 2 3 4 5 6 7 8 Settlement of Base , % Diameter of Bate 9 10 F i gure 6.2 orrnalized Load Transfer Relation s for Base Re sista nce , Cohesive Soil 6.3 A n a l ys i s Result s Tlus procedure r esulted in a service settlement of 4.3 mm (0.17 inc h es) , between 118 an d inch. 72

PAGE 85

6.4 Discus s ion of Anlaysis Results This settlement is entire l y acceptable for a service l oad. The caisson cap w ill reduce the effec t to the tank, an d the stee l tank can make up for small deflections. 73

PAGE 86

7 . Caisson Cap Design Using ST AAD 7.1 Introduction ST AAD is used to design the caisson cap. Even though the caisson layout is circular , the cap is octagonal, which is conservative. An octagonal cap is only slightly larger than the inscribed circle and therefore weighs slight l y more , and it is easier for construction detailing. 7.2 Model Input The cap is modeled as a plate with the caissons modeled as a fixed supports at nodes. The mesh is rectangular on the octagon (Figure 7.1 and 7.2), which allows square and triangular plates. In a polar mesh members get oblong in the center, whic h is poor for finite element analysis. The plate model allows for uniform varying loads , as well as uniform loads. The tank is then composed of plates forming an octagonal tube, which is close enough to a cylinder for analysis . In order for the program to do a time history , it has to calculate the natural frequency of the system. Therefore , a dummy floor was constructed to put the weight of the cyanide solution on. The agitator bridge was modeled as a pair of wide flanges with the 14 kip agitator load supported at the center between them (Figure 7.2). There are five runs. For comparison of the static to the dynamic, the A WWA shear is divided equally among the supports, and the A WW A overturning moment is then modeled as a linearly varying load acting down on one end and reversing to pull up on the other side , Figure 7.3. Then, per code, the model is run with a 74

PAGE 87

different time history in each analysis for a total of four. For the dynamic analysis , all these lo ads will be shaken in the x, y, an d z directions. / -323 .... _ 3 dJ 4 _._Jia" _ 32z..3_73 16: __ 9 ___ ; ____ to •.. .. ___ 32.1 .... .1.1 t8. 1 9 zo 269 268 267 32: 29. 30 3 1 25! 26 27 28 290 294 29\ 327..._ 3 1 9 26 161 263 40 37 38 39. 33_;_ 34 35 L31 2Gi 261 260 259 258 48. 4kJ 46 471 41: 292 296 299 301 30? 32.9. 2o9 _ 53 5 4 55 49 5o 51 52. m 24 202 194 s/ 601_ 234 195 187 1 E? -12 69 z!l .. _!!1 66 . . .lil _ _ 1>_8 ?.5L 2?I 2 1 9 _21J i 204 196 188 180 172 80 77 78 79 73 74 75 76 252 244 236 228 220 21Z -+-!!lii-: 205 197 189 181 173 1 6 88 85 86 87 8 1 i 82 253 2 4 5 237 229 221 213 l r-: 206 1 9 8 190 182 174 165 96 93 94 95 89 90 9 1 92.._ 254 238 230 222 214 -r--i 207 1 9 1 183 175 ill 10L_!O! 1.Ql 1QJ 97L 98 9!!_ 1(J_Q 255 I 2 4 7 m 211 22L 2 1 5 208 200 192 184 176 167 112 109 110 111 105 106 107 108 25G 248 240 23?_. 224 216 -r---t----1 --; -+ •r!lrii --+ i ,--1 1 T. / --341 __ 28J_l7! 1!!3 12.Q ___ ! 1 7 ! 1 !! 111 _ 11L_30L 3 1 r -_3r0 34 285 282 278 273 128 125 126 127 1 2 1 122 123 3 0 4 30, 313 316 33l -.---. .. _, 279 m nG m n 4 m 129 1 3 0 n1 132 3 0 5 310 332 338 280 275 144 141 142 143 137 138 139 140 306 311 333 '---. -. r----+-...,___,_,_' n1 276 152 u s 1 5 0 1 51 14s 146 147 3 0 7 '6 336 1 6 0 157 158 159 15J 1 5 4 155 156 5 Figure 7.1 STAAD Model of Pile Cap and Fixed Supports 75

PAGE 88

SUPPORT SELF WEIGHT I AGITATOR I 14 :;IPS f< / 1 SELF WEIGHT / 1rCA.ISSON CAP I SELF WEIGHT ,' \. ,__CAISSONS MODELED AS FIXED SUPPORT Figure 7.2 STAA D Mode l ofTank, Slurry, and Agitator Figure 7.3 A WW A Seism ic Overturning Moment as Modeled in ST AAD . 76

PAGE 89

7.3 Load Cases Although the seismic load controls , the wind l oad is another group that must be consi d ered, and therefore the ACI load groups are: U = 1.4(D +F) U = 1.2D + E U =0.9D+E The tank is typically full with concentrate fluid , and the fluid does not induce any thrust unless seismic conditions exist. Therefore, in earthquake loads , the fluid is considered part of the dead load of the system . To create an envelope, the seismic loads are added and subtracted to the dead l oads, creating four seismic load cases. 7.4 Time History Analysis Four time histories must be used in this analysis, per code. Time histor y data was obta ined for earthquakes in the Oaxaca region at www.cosmos-eq .org. This information includes the distance between the earthquake location , where the se ismograph was located , and the soi l type at the station. Two of the records recommended in the seismology report , (Breitenbach & Castillo , 2008) were found and incorporated , and the other two recommendations were unavailable . Databases were searched for two more time historie s based on the distance from the epicenter , ma g nitude of the event , geo logy at the station , etc. The seismology report recommended a peak ground acceleration of the maximum credible event of 0 . 56g. The selected time histories were scaled up to that acce l eration. Some significant events were not available or did not have the data necessary to do the time history analysis. Unfortunately one of largest events in Oaxaca, a 7.5 earthq u ake on September 19, 1999 required the (cost prohibitive) purchase of the 77

PAGE 90

information. The data used is listed in Table 7.1, and the location ofthe events is shown in Figure 7.4. The maximum horizontal accelograms are shown in Figures 7.5 to 7.8. All of the accelograms and station information are shown in Appendix P. The biggest factor in earthquake design is the geology of the area being shaken (A l germissen , l983 , ldris & Bolton , 1982) , and final design should include the recommended time histories of the seismo lo gist. Table 7.1 Time History Data Summary Earthquake Location of Distance, Station No . Epicente r Seismograph kM Date Magnitude Soil Type MetaLa Union , Andesite 1 M ichoac an Mexico 83 . 9 9/19/1985 8 . 1 B reccia Caleta De MetaCampos , Andesite 2 Michoacan Mexico 38.3 9/19/1985 8.1 Breccia Coast of Las Vigas, Quartz 3 Guerrero Mexico 70 . 8 9/14/1995 7.4 Monzonite Coast of Las Vigas , Quartz 4 Guerrero Mexico 46 3/13/1996 5 . 2 Monzon ite 78

PAGE 91

Figure 7.4 Location of Time History Seismic E vents. 166 (.) 11) (.? ' (.) 11) (.? ' s: (.) 166 0 13 25 seconds 38 EL AQClLA PROJECT OAXACA, MEXI 0 50 63 Figure 7 . 5 La Union , Mexico Accelogram of Michoacan 9 /19/ 1985 Event 79

PAGE 92

141 CJ II) (.? ' CJ II) (.? ' :1: CJ -141 0 1 0 20 seconds 30 41 51 Figure 7.6 Caleta D e Campos Accelogram of Michoacan 911911985 Event 7 9 CJ II) (.? ' CJ II) (.? ' :1: CJ -79 0 8 16 seconds 2 5 33 41 Figure 7.7 Las Vigas , Mexico Acce l ogram of Guerrero 911411995 Event 289 CJ II) (.? ' CJ II) ' :1: CJ -289 0 5 10 second s 15 2 0 25 Figure 7.8 Las Vi gas , Mexico Accelogram of Guerrero 3/13/1996 Event 80

PAGE 93

ST AAD computes several modes of the system. The pile cap , tank , tank contents , agitator and agitator bridge are all dead loads that are included as part of the system mass in the seismic analysis. It ca l culates six by default, but it was found that more were needed in some cases , so the input was set at 20. The A WWA code states ground supported tanks have a very small period and can be taken as zero , however STAAD modes ranged from 2.61s to 0 . 1655s. 7.6 Results While the swnmary of reactions , stresses and moments for the case of the A WW A seismic loads and only the maximum time history results are shown in Tabel 7.2 , and checked against the pile capacity , Appendix 0 has the complete ST AAD results. It should be noted that while the La Union , Mexico time history of the Ms = 8.1 Michoacan earthquake produced maximum stresses for design , the Las Vigas, Mexico time history of the Ms = 5.2 Guerrero event produced just slightly lower stresses. Because the structure is very stiff in the direction of horizontal ground motions, those time hjstory accelerations did not add significantly (on the order of 1 x 1 o -5 ) to the pile cap stresses. It is interesting that the axial load and uplift are less than predicted by A WW A static analysis. However , the shears and bending moments were much rugher , 20 % and 43% , respectively. Those values are outside of the design envelope. The moments at the supports also show a large increase with the time history analysis. Whjle the design head moment for the caissons were 2020.9 kNm (1490.5 kip-ft) , tills moment is developed by the 0 . 9m wide caisson , and can be distributed over another meter , at a 45 degree angle for a total of 1.9 meter for 81

PAGE 94

336.8 kNm (248.42 k-ft). However the vertical acce l erations made it much higher than expected. foot for a total of six feet 1.5 m (5 ft) to create the moment shown in Table 7 .2. It can be seen in the stress diagrams , Figure 7.9 and 7.10 that the stress is distributed over the adjacent plates , and y ields an anticipated stress distribution . The static design shows much highe r stresses on one side, and the d y namic design yields the resultant stress in the lower left , which is the resultant of the vectors. Tab l e 7.2 Summary of Support Reactions , Shears , Moments and Stresses. DESIGN METHOD Difference FHWA, LRFD ST.AAD AWWA STMD MAXIMUM with Time CAPACITY SEISMIC TIME H ISTORY His tor y Sl us S l us Sl us Analysis Axial , kN (kips) 4359. 3 980 3767. 6 8 4 7 2929. 2 658. 5 28.6% Uplift, kN (kips) -3514 . 1 -790 -2104. 0 -473 -17 44.6 -392. 2 20.6% Moment at Support, kNm (k-ft) 336. 8 248.42 284. 7 210. 0 502. 8 370. 8 -43. 4 % Vertical Shear, kPa (psi) 1385 8 201 1722 . 3 249. 8 -19.5% Plate Bending Moment, (k-ft/ft) 294. 5 66. 2 332. 3 74. 7 1 1 . 4 % Principal stresses (psi) 2220. 1 322 2220. 1 322 0 . 0 % The calculations for reinforcing and shear analysis is shown in Appendix Q . The axia l loads and close proximity to the edge require a cap thickness of 1.68m (5.5 ft)design. The required reinforcin g for the moments is # 1 0 at 150mm (6") each way, top and bottom mats. Mexico use s American reinforcing call outs, so a# 10 is 32mm (1.27 inches) in diameter. Figure 7.11 shows the final caisson des i gn and layout. The reinforcing for the caissons was discussed in chapter 5. 82

PAGE 95

Max Top (Prin• Stress) p s i I < = 12. 2 3 1 . 5 150. 9 1702 189. 6 1109 128 0148 0167 0186 0206 0225 0 2 4 5 264 0283 303 > = 322 Figure 7.9 : U = 1.2 D + E , AWWA (Static) Sei s mic Max T o p Principal Stre s s . Figure 7.10 Load Case U = 1.2D +E (including time hi s tory ) Max Top Princip a l Stress 83

PAGE 96

L I I 5800 OUTER CAISSON CIRCLE / ' (y-\ I ' I \ I ' / ' / 900f sHAn 21300 CAJSSON UNDERREAM (.BEtt.t -;( ( 0"' I I \ I .... --.... /: ___ ,./ 1/ ', I /' ', / .. i'Q \ ' ( rY\ \ .. J ' I I \ I ' / . ' / ..... ___ ,. I ..... ___ ,.. 11M CN LEACH TANK CAISSON PLAN SCALE: 1 :40M Figure 7.11 Caisson Layout and Reinforcing -----12 PAIR Of 2-, BUNDLED {24 TOTAL) / / I I I I I I I \ / ' ' lr'r---i---14 SPIRAL 0 75mm PITCH WITH 15 EXTRA TURNS AT ENDS MUST USE MECHANICAL SPLICE ', / 9000 CAISSON SHAn CAISSON UNDERREAM SECTION C) {BELL) SCALE: 1: 20M 001.0 RESOURCE CORP EL AGUIA PROJECT STRUCTURAL CONCRETE 11M CN LEACU TAN!< FOUNDATION CAISSONS IYNIJ!!I( INCCRPORA TED

PAGE 97

8. Summary, Conclusions, and Recommendations 8 . 1 Summary The design of a critical structure in Mexico started with a geotechnical report that did not have the desired design information and referred to Mexican design codes. Since the contract requires that both American and Mexican codes be met, quite a bit of res earc h ensued. It was found that the American codes are very uniform in their approach to seismicity, yet the desi g ner can benefit from an industr y spe cific code. Also, there is a grea t variation among Mexican codes, and generally yield lower design requirements. Howe ve r , the American and M ex ican codes are unified in using a Time History Analysis , which is the most comprehensive approach and should be used for critical structures, as it can result in l arger shears and bending moments than a static analysis. Several caisson design methods are available , and the comparison of the CDOT method , the McCarthy method and FHW A ASD and LRFD methods allowed compensation for unknowns in construction methods and design paran1eter s witho ut being overconservative. Likewise, the comparison of lateral capacities with two different programs shows the variation among approaches, allowing the designer to make better choices. 8.2 Conclusions 1. A good geotechnical report can save 30% in foundation construction costs , as discussed at the end of chapter 5. 85

PAGE 98

2. CODES: a. As mentioned , the American codes are more comprehensive and stringent in their approach to seismic design, yet the industry specific code still yielded valuabl e design information . They are united with the Mexican codes in using Time Histories in an analysis program that can help ensure both codes are met. b. The Mexican codes are more genera l in approach and resultant loads are substantially less than those generated by American Codes. c. Both countries suggest usin g time histo ry ana l ysis for seismic design. d. Neither g i ve good parameters of when a time history analysis should be required. 3. Four axial caisson design methods were compared, CDOT, McCarthy , FHWA ASD and FHWA LRFD. FHW A. givess specific modifications for a wide variety of geotechnica l and construction parameters to determine a design that is sufficient without bein g over conservative. LRFD takes advantage of the databases collected over the years to further refine those considerations in the resistance factor and by quantifying sources of error. 4. Between the two lateral analysis programs, Lpile and PSI , PSI is much more powerful and lends itself to more difficult situations that are not orthogonal , however both camps need to test what really happens with hig h lateral loads. 5. A settlement analysis allows a back check of the de sign to uncover any deficiencies. 6. A time history analysis is valuable tool to check for the sufficiency of seismic designs. 86

PAGE 99

8 . 3 Recommendations Areas of further research are as follows: 1 . Requirements should be set in the codes as to when time history analysis is required. 2. There should be some type of international data base of geote clmic al standards of other countries and their assumptions, and how they differ from American assumptions. As previously mentioned , Mexican geo technical recommendations appear very conservative, even though they use American test standards. If the recommendations are lowered du e to construction technique, what are those assumptions. 3. LPile and PSI need to prove what really happens to piles s ubjected to high lateral loads. 4. Continued deve l opment of PSI , including a manua l with recommendations of parameters to use in different situations . 5. Perform a soi l -structure analysi s . 87

PAGE 100

APPENDIX A . SOILS REPORT 88

PAGE 101

l lf/A:-1-: t-N 11 ' ' .+ Hiitl.. :1 r ttt-U.MC'l / ' PROYECTO EL AGU ILA SAN .JOSE llf.: GRAClA.NE.JA P A OE MADERO,YAUTEJ>f.C,OAX. OCTUBRE 2007 ('aJJc N'' 1 011 Cui. L a Sanhl Ma All'.ompa. Oax . C I' 712::!0 ld 51{116 7-t \cl. 0 4 4 (,151.5.47. 02.59 E-m ail gp<>c(lrporativu_i;lbc y:lryHhoo.c.."C'm.m.\ 89

PAGE 102

CONTENIDO 1. -lNTRODUCCION 2. EXPLORACION Y MUESTREO 3. ENSA YES DE LA BORA TO RIO 4. ESTRATIGRAFIA 5. ANALISIS Y DISENO GEOTECNlCO 6 . CONCLUCIONES Y RECOMENDAClONES 7 . BIBLIOGRAFIA ANEXOS : A EXO No . I UUICACIO DEL PREDIO ANEXO No.2 UBICAC!ON D EL SONDEO ANEXO o.3 RESULTADOS DEL L A BORA TORI O ANEXO No.4 P E RFI L ESTRAT!G RJ\F!C O Y GRAFICAS DE PENETRACION ESTA ' DAR ANEXO o.S fNFORE FOTOG RAFICO. Calle' Zeu s No . 101I l.a OdiS<..it. Ma 1\tzompa. Oax (' J• i 1120 J el. 5 .:::!:0. lb.74 Ccl . 044 951.:5. 47.02 <)9 E-rn.:.til PI.lCUipOrativo _jabeyw ,ynh,>O. com. m x 90

PAGE 103

1.0 lNTROOUCCION. 1.1. Antecedentes. El presente informe, correspon dc al 'Est udio Gcotecnico ' , para dctcrminar la propiedades mecanicas, fisicas e hidraulicas d e l suhsuelo, para obte ner Ia capacidad de carga, para la cimentacion de Maquinaria y Equipos , del ben0fi io en el proyecto '.EL AGUILA " . uhicado en Ia poblaci6n de San Jo se de Ncjapa, Yautepec, Oax., como se muestra en el anexo el anexo No. I "Ubicaci de cimentacicm. so n los que a cont inuaci 6n se enlistan: l .Detenninaci6n de Ia estratigrafia y propiedades del subsuclo, emplcando para e l equipo de Penetraci6n Estandar. 2.La cjecuci6n de pruebas indices de clasificaci6n y correlaciones necesarias para deterrninar la s propied ades mccanica<; del su b suelo 3 . Calculo de I a Capacidad de Carga Admisiblc o de trahajo para efectos de diseiio. 4.Rcalizar Ia> conclusiones y recomendaciones de construcci6n pertinentes de acuerdo aJ tipo de cimiento pr op ucsto . Calle 7cus No. 1011 Col. Ut Od io,ea.. " a nta Ma Atzo mpa. Oax . ( P . Tel. 5 . 10 lo.74 Ccl. 044 951.5.47 . 02 . 59 F.-m"il gpoc orporntr'o 9 1

PAGE 104

1.3 caractcristica general d e l prcdio. l.L PROYECTO FI AGliiL.'\ . . sc l()caliza cnla Poblacibn de . an Jo . c de Orncia. Municipio d1: cjapa de Madero . Distrito de nutcpcc. ubicada en Ia dl'nomin ada rcg.ion: Sierra Sur. en cl cstad o de Oaxaca . La topogratia de la tona -,e locali1. a el PROYtCro EJ, A(ilJII A .. cs plano. 1.4 Geologia de Ia Zona. l..ru. cxistcn en In mna en estud it' . m tkl tipo ig.n.:as cctrusi, as del ccnotoico y tercia rio . rocas del Prcdmbrico son ma antig.ua.-<. dutan de aproxinUtdamcnte 600 millone. de aiios. se ubican al sur de Ia emidad con una direccit'ln oest c-sureste. son principalmeme mctam(lrficas y cuhren cl 25.5% de Ia superficie estatal: las rocas del Pakozoico (375 mitlon s de oiios) aharcan 1 1 .6{,. son de origcn rnctamc;rficn c igm:u,. intrush as. I . as unidadt s canogratica.<> ma., grandcs est an en Ia porci6n norte : orien tal. colindando con el estado d;: el Pcriodo de Ia Era dd 1esozoico con ma)or cobcnum cs d Crctacico ( 135 de ailos) con 14.3%. p o r de tipo sedimentario mctami>rlico. dispcrs os en tod c l estado. concentrados sobre todo en Ia zona hacia el non: o tr as unidades aha rcan pertcnl'ccn a Ia 1 : ra del Mes o7oico. se locali7 . an al sur. cemro y noroeste de Ia l'ntidad . Las del Triasico Jur:1sico (200 milloncs dl' ai1n. J se situ an al y norc ste. son scdirnentariie.} euhn.:n 3.9%. en el Pcriod o Jurasico (I RO rnilloncs de a1ios) g.cn.::rahncn te sedimentarias. su ubrimicnto cs de 0 . 9%. principalc:. allorami.:ntos est:in l ocalizados al occidcnte. cerca del limite con cl cstado de Gucrrcru . otra unidad se encuentra en el extremo opucsto d.: Ia cntidad. colindando con Ia parte sur del estado de Veracrut-l Ia, e. \ h:u .. '" l 4. ()I L:l IIJ1-.r:u. \o.,.ud.a 'l.t \lll'mpa c la\ C P -11:0 fd "...:!' td ILl .: lma11 Yr-'"'-"•rpnr.ttt\C• .. \.L"(•Jn.IO\ 92

PAGE 105

fl Pcriodo Terciario. cuhre 25. 0% del tcrritorio e$tatal. compucsto por rocas ign.:a cxtrushas datan aproximndament.: de 63 millone . de aiios. e distribu)cn en Ia parte central ;. none del cstadt'. algunos unidadcs co l indan con Jo. de Puchla
PAGE 106

2.0 EXPLORACJON Y MUESTREO 2.1 Traba j o de campo. Con Ia iinalidad de dctcrminar las cara tensllcas fhica'>. mccanicas c hidniulicas del su\1sudo de cirncntaci6n. sc pn>gramaron 'n de los Sondcos ... En todo;, los sondcos st: cfc tuo Ia cxplorucion con cquipo manual de pcnetra ion esuindar. Durante Ia exp l ora iim. se nbtuvicron mucstras de tipo altcrado. en cada uno d<" lo; estrm,•s encontrados. dcstacandosc que en H da I;; profundidad cxplorada (3.00 m.) no sc dctccto el 'hd de Ag.uas ( I .A. F.) . Ll Mct odo de Pcnctmci6n Es t anda r que sc cmpko. consistc en hi ncar un trenetromctrol. acop3do a una tubcria . a golpes dados por un nmrtinctc cilindrico de 63 . 5 Kg . de peso ( 140 Iibras) , 4uc se deja cacr lihrcmcn tc dc sde una altura de 76 em . (30 contando cl numero de gol pe. nt.-ccsario para logra una pcn
PAGE 107

3.0 ENSA YES DE LABORATORIO 3.1 Propi<'dades indices. De uno d e los <.:stralos encontrados. o htuv icron mu\:stras de tipo altcrado. las <.:uales f ueron transportada s al lalxlr a t orio. en dondc con Ia final i dad de dekr minarlcs sus propiedadcs i ndi ces. se somcticr o n a pru e h as siguicntcs: , Amilis i s Ciranulnmetrico via seca ,, Analisis Gmnul ometrico \ia llttmcda . > Pe::;os espcclfi c os > l ; imites de Consi st encia de Attcrhcrg > Angulo de friccibn inte m a (infcrido) > llumcdac.J natural > Clasificac ii>n Petrogralica S.ll.C. L os resultados de dich os cnsayes de ohscrvan en c l ancxo No.3 . IIJJ. I (t•l I J "\U ' P01fM. O:.t.\ Cl' lr! 11 "\l 1 -m.n l 95

PAGE 108

4.0 ESTRATIGRAF I A. D e acucrdo a Ia cla<>ificaci6n visual y a l tacto. y a los resultados obtcnidos en lo s en . ayes de laboratorio reali7.a dos a todas y cada una de muestra:; obtcnidas. se prcsenta Ia siguicn te estratigrafia: Sondco , o.J (Be ring 3) En este sond eo. de una profundidad de 0 . 00 m. a 0.60 m. encontro un estr:lto de una grava arcillosa (GCl. de color amarillo. poco ht"uneda de consistencia suave, a conti n uaci6n d e 0.60 m, a 3 . 00 m. (tmixima rrofundidad c pl o r ada limiiada porIa cxist enci a de mea en e s ta zona). se cm:(>ntr 6 un cstrato de arena arc i llosa (SC). po o humeda. dccon!>istcncia dura a muy dura oonforme se p rofu ndizo I a exploraci6n . Sondeo No.2 (Bering 2) En este sondco. d e una profundidad de 0.00 m. 3 0.60 m. se cncontr 6 un estrato de una grava arcillosn (CC). de col.)r amarillo. pm:o humeda de con s istcncia s uave. a conti nua ci6n de 0.60 111. a 1 . 80 m . (maxima profimd idad cx plor ada limiLada por Ia cxiste ncia d e ro a en t'Sia 7 .0na) , s e cncontr6 un I!Stmlo de arena arcillosa (SC). poco hurneda. dura a rnuy dura con forme se profundizo Ia exploracion . Sondeo No.3 (Boring I ) E n este sondco. de una profundi d ad de 0 . 00 m, a 0 .60 m. sc encnnt r o un cstrato de de media a baja c mpres ibilidad (CL), de color amarillo. poco h tnneda de consistencia suuve. a continuaci6n de 0.60 m. a 3.00 m . (mitxi ma profun d ida d cxpl o rada limi t ada por Ia existc nci a de roca en csla zona ) . . e encontri1 un estrato de a r ena a r cillosa (SC). po o humtda. de consistcncia dum a mu) dura conforme profun di w I a ex pl orac i 6n. t .tile l.!th ,,, Iff I-I ( ol. I a MH \II'UIOJ'Id.. f 1;!\ ( r ld ('c:f (l..t4 96

PAGE 109

jj . .... .. c , Cabe destacar que en toda I a prnfundidad cxplorada no se detecto el nin: l de aguas freinicas (N. J\.F.) . A s imismo Ia profundidad en cada zona donde sc realizo Ia cxp l oracion s e Yio limitada porIa cxistencia de roca. \ otlk/"-u \i\1 101 -I <<)I J d (;.JJ-..c.J "'i.;.nl;l !l,.b '\tmmp4. ()a.\ ._I' ... 1:::'0 ld fl-H frtmul 97

PAGE 110

5.0 ANA LI S J S Y OISE-0 GEOTECNI C O 5 . 1 Clil cul o d e I a capacida d d e ca r ga. De a cucrdo a las caractcri s ticas li s icas y mccanicas del subsuelo cnc o ntradas en Ia zona de estudio. las cuale presentaron caractcristica s cohesivofriccivnantes. por lo cual cl calculo de Ia capacidad de carga haec dett"rminnrlo con ]a tt"oria del l>r. Karl Von Terzag.hi. para cimiento sup.::rticial y por fallu local, para pam losa de cirncntaci6n dadas las carac t eristicas de las cstructurus a c imentar. pam lo cual. cl autor nos da Ia s iguicntc exprcsi6n . qadm. = CNc + y Df Nq + 0.4 y BN y F.S En dondc : q adm. = capacidad de carga udmisibk ode trahaju wn/rn2. F.S. = factor Sl' scg.uridad Angulo de fricci<)n intcma. (
PAGE 111

Dada Ia rc s i s t.encia observada en los c s tratos de cada zona c plorada, se obs ervaron dos zonas para el calculo de Ia copocidad de c a rga. y t:n las cuak.'S se dctcrmin o est a la s cual c on : A) Sondeo I ( 13ori ng 3) Par a csta wna sc rca l izn d dkulo por falla g eneral. para una profundidad de dcsplante de 0 . 60 m. y los pur:imetros de disc1io son : Tenemn s : $ = 1 7 0 . C = 5 . 5 ton l m2 . Y 1.8 0 ton!m 3. Df"' 0.60 n1. B = 4 .0m. 14.82 Nq = 5 .60 Ny'3.50 Sustituycndo : q adm = 43.0 ton / m2. El cual s e pucuc cmpl enr dircctamentc para cfcctos d e dis efio. dcb ido a que ya s c encucntra afcct.ado ror el fact0r sc scg,ur idad . I!JI I La .'\t• '\tmpA. l P "'122tJ l•i -J ("d .$i_H2 f-111<-ul }.:f'C)lt•l"f"4-W.J1l\O_I;Ih._)-a-\ ,lhoc)l:lHnOI'\ II 99

PAGE 112

Bl Sondt:o 2 y 3 (noring 2 y I ) Para . . c considcraron dos profundidade . de de 0.60 m. ydel.20m . 1.-Para una pn,fundidad de 0.60 m. ) una losa de 6 . 0 m. de a ncho . cl ca.lculo se realizo por liilla local y los par:imctros son : $ =210. C = 3 . 5 ton /m:!. y = 1.80 ton ! m3 . Dl'= 0.60 m . B 6.0 m. Nc = I 3.84 :-Jq = 4.78 Ny 2 .)0 Sustituyendo : q adm = 26 .7 0 t o n /ml. 2.Para una profundidad de I .20 m. y una losa de 6 .0m, de ancho. cl calculo se rcalizo por falla gcn.::ral empleando los rnismos para metros que cl sondeo 1. De lo cual tcncmos: q adm = 26. 7 0 ton /m2. Los cuales sc pueden emplcar dircctamentc para cfectos de diseiio. debido a que ya sc c n cu.::ntran afCc t ados por d lactor se seg ur idad. ('alk/t'll'-\ol• IOi 1 l\tl l..s (Mt:-l'iL.-,.n,t.t \.1., '\tt••mp>t (J,t.\ ('.P .. 12:?U I cl ;;, ::n lt-.J { .. O J.t •t'i I II ... t•:: 'lil1 I ... 'OfJ)OrJfi\.(' .J..If\c \ -u m' 100

PAGE 113

El resumen sc ohscrva en Ia tabl a siguicmc: to•lm'. S-1 (Boring 3) 0.60 43.0 5-2 y S-3 (Boring i y 1) _ _ _ 0.60 26.7 1.20 54.0 Para cfcctos d.: diseno sismicos. de acucnlo al Manual de Ia Comi ion Federal de Elcc tricidad (C. I . E . ) y Ja Nomw N-PRY -CAR-6-01-oo) / o I deJa Sccrctaria De Comunicacion..:s y Trnnsportcs (S.C .T.). cl prcdiu en cstudio. sc localiza en Ia Zona "C. tipo de suclo I. para l o cualcs los coclicientcl-o son: . O o = 0.19 . c (11( .. l Ta (s) = 0 .20 lb (s) 0.60 r I ! 2 I Il l A I (11ll,t \vouqx• . {),1\ ll' .,12.20 1:1 '20ih'-4 Cd -n1<.1il 1.1 101

PAGE 114

6.0 CO, CLUSIO, ES Y KECOMENOACIONL. b1 Ia cst r atig.rafia amcriurmemc descrita. a I a visi ta at sitio de cstudio at calcul o d.: Ia capacidad de carga. se h icicmn las cnnsideracioncs compkmcntarias que pennitieron llcgar a las cone l usiom:s y n ;:comen d ac ionc s que sc meneionan a .contin uaci on. ) :J las cualcs debc suj ct a r sc Ia cimcntacion de I a cslructura para g.aranti/.ar Ia estabilidad de Ia mismas . I.I , a soluci6n m as ad, cuada pard re so lver ciment acto n es lnsa corrida de cime ntacit'm dadas l as caractcristicas de Ia' a (maq uinaria y c quipo ) 2. Par a cl calculo de Ia capacidatl de carga sc idcntificaron dos zonas : a) ondeo 1 (Boring I) l' ara una profundidad de desp l alllc Df= 0.60 m. y Un ancho de lu losa minim o de 4 . 0 m. tcn cmos .q adm = 43 . 0 ton / m2 M isma que sc pu edcn cmplcar directamcntc para efectns de dise iin. dado que ya se cncu..:nt ra n afecta d os por d fac tor s e scgu r idad. b) . . o n deos 2 y 3 (Boring 2 y 3). P a ra z.una s , e con:idcraron do s profi.tndida d cs d..: desplante: I . Pam una profundidad dt; dcsplanlc Df= 0 . 60 y una losa d e o . O m. de: ancho minimo lcncmo.: q adm = 26.70 ton / m2 Calle 1...'1.1.-:. t'-.P 101I ( ul. l.1t O,h"it'h \ t a AttnOlJ'l. fl11\... { P ld'2(;Ji, .. 4 ld. 1 H 4 <,Jo;l '\ J ... .4.1 J-11ll'l
PAGE 115

II.Para una prufundidad de dcsplantc de Df1 . 20 rn. y una Josa d..: 6 . 0 m. de an ho minimn. tcncmns : q adm = 54.0 Ton /m2 Mi.smas que se pucden ..:mplear para disciio. dad<' que ya sc cncucntran af<:ctados por cl factor de seg.uridad . 3.-LHs excavaciones s c podnin rcalizar en vcnicalcs sin prohlcmas de derrumh..: s y sc no ckjarlus muchn ti..:mpo expuestas a Ia intemp..:ric . 4 . El nsc ntamicnto potencialmente esperado ser:i alrededor de 1.8 em , para el centro y de 1.1 em. para Ia csquina para Ia Zona del s,,ndco I (Boring 3 ). P ara Ia t .ona del sondco 2 y 3 (Boring 2 yl). tcncmos para una profundidad de dcsplante Df= 0.60 em. tencmos : 2.5 em . Para d cent ro y 1.5 em. para Ia esquina y para Df= 1 . 20. tcne mos: 1 . 6 para cl centro y 0.9 para Ia esquina. Mismo qu..: ocurrin1n duranrc Ia ewpa d..: construcci6n. 5.Las Los:r de cimcntaci6n propuestas dcber:in disci'iarsc con dcntclloncs para evitar dcsli7.amiento s posiblcs durante s u opcraci6n . 6 .Para lograr un concrcrn dcnso e impem1cahlc. cs recorncndablc cmplear una pr oporcion an:nafg. r ava en peso = I. 7.F inalmcnto.:. cualquicr problema de inesrabilidad no en cste cstud io. y que pudicra prcsentarse durante Ia const rucc'bn de Ia o.:structura. se recnmicnda resolverse oportun amcn t e con Ia intc '\' en cion del labormorio. \ . . /'__.. , <1., . :.:: . lng.. Jose A rrona Robl es 103

PAGE 116

HIBL!O IRAFiA CRI :. PO Villalaz, Carlos Mccanica de suelos y cirn'-'lltucioncs Slgunda rcimprt'Sion, 42• Edic i 6n Ediwrial l . imusn Mexico 1993. -JUAREZ Badillo. Eulal i o Rico RodrigucL', Alfonso Mecanica de suclos, Tomo I Fundamcnto d e Mec:inica de suelos Dl!cimo n :imprc.s i o n. 32 • Edicion Edito r ial l . imusa Mexico J -.JUAREZ Badillo . Eula lio Rico K odriguc7. Alfon o Mecanica d > udos, Tomo 2 l'coria y aplicac i 6n de Ia mcc:inica de D ccirno scxta rcimprc s i 6 n . 2g• Edicion Ed i toria l Limusa . M exico !998 ln stitu to Nacional d e E.$tadistica Gcogralia e info rmali cn INEGI Situaci6n tisica y car actcrist ica s de l medio am hicntc 1998 ln stituto Nac ional d e Esta d istica Gt:o!:,'Tllfia c infonninica lNEGI Carta Geo16gic a !99!'! ln stiruto acio n al de Estadistica Geogralla c ln f o rmitti a !NJ::(i l Cuademo Muni cipal Edieion 2001 t ((•ll.a (1.1'\. CP ... I cl 2o I fl. 74 l d {l-14 o: "I I -rmtl l j;1lx"; .tJ 104 lh

PAGE 117

ANEXOS l <:lit' t>.,;u 101-I t ut In (h.h.'\;.'1L '\MU \1a ( ),L\.. ( I' "'I I r.:L 2{1. lb ( ,,;! ll44 I f -m1t1l lPIIl.mx 105

PAGE 118

A , EXO No.1 UBIC CION DEL PREDIO ( '"'tu HH-I Ct•l !..1 tlt!!-.ca '.mlu \-t,a. \1/J...lfllPrl. o:1\ ( J> 1 d In "'.1 t. d \M4 S'J I -m.ul yttx; ., Ct)tn.rn\ 106

PAGE 119

ANEXO No.2 UBICAC16N DE SONOEOS _] BORI CS L • I _ l:1ik /.:1.1!-)'.;(, Ill I-I Ct•l l..t M.t \IJ'Omp:t. ( ''' l I' I d "2fJ ff, -.J llJ o4.J :*i r' (125'1 I maJ J!JW-o .. 1:11"-'::' a -." 107

PAGE 120

LHffiSH ANEXONo.s "RESULTADOS DE LABORATORIO" Prolongacton de Ylgul no.t21 Fra. San Jos e La Non-. Oaxac1. Ou, C . P 68120 Tel. I01 SO t02 27. 51 693 08 ......,.u dtrl@'tmtamn .eom 108

PAGE 121

LRffiSR ENSAYES DE LABORATORIO foBRA CONSTRUCCION DE MINA "EL AGUILA" ANEXO : 1 SAN JOSE DE GRACIA , NEJAPA DE MADERO , YAUTEPEC . HOJA 113 OM. CLAVE-.SIN fsoucno : GRUPO JABEY S.A. DE C.V . ENSAYES 2587-2590 ESTVDIO DE MECANICA 01: SUELOS PARA LA LA CIMENT ACION DE LA F . CE RECIBO : 11:1-07 ESTRVCTVRA . F . CE INFORME : 18-0c-.07 IDENTIFICACION No , DE ENSAYE 2587 2588 2590 No. DE SONDEO I 1 I 1 No DE MUESTRA I 2 3 • PROFUNDID ... D I DE: 0 .00 ObO 1 . 20 1.80 M . I A : 0.60 1 2 0 180 240 CARACTERISTICAS DEL MATERIAL TAM ANO MAXIMO 3-I " 1112 • v2 ')'.QUE PASA L A MALLA No 4 47 61 5 6 79 ')'.QUE P A S A LA MAL.LA No. 40 24 30 JJ 46 %QUE PASA L A MA LL A No. 200 15 20 2 1 35 LIQUIOO "4 45 3 8 42 44 NDICE PLASTICO ')'. 19 ,. 17 18 ICONTIVICCION LTNE"'L "4 866 5 27 69 797 !'ESO ESPEC!FICO SECOY SUELTO KE./M'. jPESO ESPEC!FrCO SECO DR WGA R KG/ M3 HUME:>A D NATURA L % 29 70 83 14. 2 jC!.ASrFrCACION S . U . C . S . (;<; sc 5C 5C ' OBSERVACIONES : 'OS RESULTADOS QUE SE REPORT AN A M UESTRJIS DE ITPO 'ALTER ADO'. OBTENTD A 5 EN a SUBSUELO DEL SONDEO No. 1 NOT AS: EL 0 .00 EST A REFERIDO AL NIVEL DE TERRENO O E sP A LM ADO. NOSE DETECTO EL NIVEL D E AGUAS FRcATI C A S IN A.F.) EN TOOA LA PROFU N DIDAO EXPLORADA Pn>longactO
PAGE 122

LHffiSH ENSA YES DE LABORA TO RIO ... , CONSTRUCCION DE M IN4 "EL AGUILA" ANEXO: I p..oc..LIZACI6N' SAN JOSE DE GRACIA, NEJAPA DE WADERO YAUTEPEC. HOJA 2/3 01\X a.AVE ' SIN !so=rro, GRUPO JABEY S . A , DE C . V . E NSAY ES 2591-2593 DE MECANICA DE SUELOS P ARA CIMENTACION DE LA F . DE RECIBO. llOct..07 STRUCTUR A . F DE INFORME: 18-0ct-07 IDENTIFICACION No. DE ENSAYE Z591 Z59Z 2593 No DE SONDEO z z z No. DE MUESTRA I z 3 IPR.OFUNDIDAD I oc:: 000 060 I 20 M . I A : 0 .60 I ZO 180 CARACTERISTICAS DEL MATERIAL T AMANO MAXIMO Z liZ • 1/4" 3/4 • . IJ. QUE P ASA L A MALLA No. 4 4! 66 65 1. QUE PASA LA MALLA No. 40 Z4 38 38 '7. QUE PASA LA MALLA No. 200 16 Zl Z6 LIQUIDO '7. 42 36 42 J.NDICE PlASTICO '7. 18 IZ 16 ONTIMCCION LINE"L 'l'. 8 •I 445 696 r'50 ESI'fCIFICO SECOY SUEL TO KG/M . jPI:SO ESPECIFICO SECO DEL LUG" R KG/M3. HVMEDAD NA TVRAL '7. 16 105 117 S . U C . S 6C sc sc pBSERV ACION E S : OS RESVL TADOS QUE SE REPOR7AN CORREsPONDEN A MUESTRAS DE 7IPO "Al TERADO", OS'ONID A S I. TIVAMENTE E EL SUSSVELO DEL SONDfO No 2 N OT AS : El. 0 . 00 EST A R E FCRIDO "L NT VEL DE TERRENO DEOJ'All.\ADO . NO SE DCTECT6 EL NIVEL DE AGUAS FREA TICAS (N A F ) EN TOOA LA PROi'UNDIDAD EXPLORADA ProlongJclon de Yag>ll no.122 fillet. San Jou La Nona. Oauu., On .. C P 68120 Tel (01 9511 SO 601 27 S 1 693 0! o-mad : d!fa mlamsa com 110

PAGE 123

LHffiSH ENSA YES DE LA BORA TORIO -081lA ' CONSTRUCCION DE LAMINA "EL AGUILA " ANEXO ' I LOCAL.IZACI6N : SAN J O SE DE GRACIA . NEJAPA DE MADERO . YAUTEPEC , HOJA 3 / 3 OAA CLAVE' SJN SOUCITO : GRUPO JABEY !>.A. DE C . V . ENSAYES 2594-2598 ESTVDIO DE MECANICA DE SUELO S PARA LA CIMENT ACION D E L A F . t>E RECI80 : ttOd07 EST!!UC'TVRA . F . t>E INFORME: 18-0::: t a; IDENTIFICACION No. DE t:N!> A YE 2594 2595 1 596 2597 No. DE SONDEO 3 3 3 3 3 .No. DE MUESTRA ! 2 3 4 5 PROFUNDIDAD I DE: 000 060 1.10 180 Z Tel (01 951) SO 6G2 27 693 0 8 e-m.l•l dlfa@tmlamn.com 111

PAGE 124

LHffiSH ANEXO No.4 "PERFIL ESTRA TIGRAFICO Y GRAFICAS DE PENETRACI6N ESTANDAR" ProlongatiOn de Yagul no 122 Frace San u Nor1<1. Oauca On C . P 68120 Tel {01 9S1i SO 60217 51 o-m• d 112

PAGE 125

vJ SJ•B1 0 .30 M . 0.30 M . oc O.()() M . 0 .60M . UOM . tlOM UOM . 1.80 U . o to 10 ,o 4 0 so 2AO M . 0 10 lO 10 40 10 .... SIMBOLOGiA C APA VE
PAGE 126

REGISTRO DE EXPLORACI6N 081111: "H SONC>EO: I ESTU OIO: [) OE l . A REVrs"i'(iN C.l'MENTACION Of LA ESTRUCTVRA •.. FECHA< 9 de dt. Z007 PERFOAIST SANCHEZ RU1Z SUPERVISOR : IN6 VICTOR '""lll:L VILLALOBOS ARAGON EQUIPO: MANUAL. [) I'NET1lACION E 5 T TIPO DE MUESTREO A.L'l[CMDO DAD ( M ) PENETllACION ESTANI>AR L0t-!61TVO !NO ICE DE C AI.IDAD No.MUEST A '1. f'PA6 CLASifiCACJON DE CAMPO DF. . . l5 30 1 5 PEPFORADA ( M ) M MAY A 10CM P QD 000 0 30 DESPAI.MF 1 000 ObO 060 060 100 3 " 1'()(0 '"'VM(DA COMPACTA, OE ro.OQAOJO 2 060 1.20 6 ..0 25 060 041 70 I " .. ..... llGLLOSA POCO tt.JMt:OJ'. CC!.Y/'ACTA, bE 3 120 1110 33 45 zo 0/)() 0 4; 76 11/2" AQ!NA POCO ..J.to\EbA CONJ'A(T" Of COLOQ ROJO • 1110 240 20 90 041 0 4 1 102 1/2 ' ........ I'QCO f-iL'-b A M V'I COW.-..CT!t, DE COLOR O O J O OIISERVACIONES: • El Nr\fEL 0 00 . ESTA Al "'!VEL DE TERRlNO NOS OElE.ClOE.l NtVE.l Of AGUA.S F"REAtiCAS (N A F ) EN TOOA. LA PROFUNOtOAO O . PLORADA

PAGE 127

1)1! i.iEClNi61>E IIUII.O$PNIA LA IIEVW3N bE LA aMENrOJiti&ll>f LA U1RIJC'I\JRA INt . YfCiCii MANIJ. AiAiC5N !qUD'O: 0.60 100 zvz• 1 1 7 0.60 042 U 4 ' uo uo II 71 0 .44 IM' li.-Lt.OO, I!ITAIIEI'PIIIIOALNIYEI.DETEIIMNOOESPAUIADO . 110 II! I!LNML DEAOIJASFRSA'Ili:AS (N .. V . I EN 1t10A LA PI!Of.IIHI:IIIW> UPLORAOA.

PAGE 128

REGISTRO DE EXPLORACION LRmSR ••••,...torte M wt•t•tl•l•• • • •• • , MINA "fl .(SUTLA" S ONCE O ' a EST\JDIO ' DE MECANICA !> SUELOS ,_RA LA REVISION DE LA CIMfNT ACION DE LA LOC.4UZ.4CION ' B I FECHA ' 9 de Oc1'ubr.e de ?007 P ERFORIST A ' HikrO!l RlJiZ SUPERVISOR . IN6 VICTOR MANUI'L VIllALOBOS ARAGON EQUIPO' MANU A DE FENET!lACI6N ESTANCAR TIPO CE MUESTREO ot\lTHMDO No . MVESTA PROF UNO TOAD( .. , ) 'E'lETRACION ESTANCAll L6 93 3/ 8 . ARfNA AllOU.OSA ...UMfOA MIN COII.PACT A , C>E COL.OA C Aff 4 180 2 40 40 85 55 060 0 53 BB J/8. POCO HtJ,Y .fDA "'"" ACT A ()f COl()Q AMAAlllO 5 140 300 37 95 0 3 7 050 135 1/4 " ADf,.,IA "'QClU.OSA POCO """ CO/#! ACTA , CJE COLOR .AMARIU.O Cl.AI\0 015RVACI0Nf$ , • El Nr.ltl DOO ESTA REfE.RIOOAl Of TERRE NO DESPALMADO ' NOSE OETECTO El Nti/El OE AGUAS ( N A. F.) EN T OO.A. LA PROrUNOfOAO E.XPLORAOA

PAGE 129

LAffiSA ANEXONo.s "INFO ME FOIOGRAFICO" Prolongaaon dt Y2gu1 no 121 Frxc. San Jose La liON Oauca , Oaa., C . P 5&1:10 Tot. (01 951) 50 602 27 51 693 08 &-mall' d11a
PAGE 130

LRffiSR MtNo\ "B. AGUILA" SAH Dt V.AUff.Pt:e. O.U. lA8eV SA Of C.V Proionet:. San Jose L.l Nona Onac:a , On C P 68120 ttl (01 95\ i 50 60217 S\ 693 08 IW!I•ol com 118

PAGE 131

LAffiSA labotllorlo de m•terfales a . • de c. v t.WHA."a.i.GUIL.A" SAN iO'i Of: CAAOA. NEJAtl" YAlll 'fOEC. OAA. Prolongacion d Yag I no 122 Frace San J
PAGE 132

LHffiSH lAN Ol MA.OA. Na.tQA OE w.DEAQ, 't'AUTEPEC. OAX. CAIJPO Jtt.IE'V SA. Of C.Y Prolof19ael0n ck Y89"' no.122 friCc . San Jo L• Nom . Ouata, Ou .. C . P 63120 Tei.{01 951) SO 6()2 27. 51 693 OS !Mnlil . dora@\mlan>u.com 120 UtVDto Dl Mld.HICADI IUil.OS SONOEO I &JTUDIODI MICANJCADI IIIWl.OJ MUESTRA SONOEO I

PAGE 133

LRffiSR l.tboratorio de m.atorlales. • a de c v 0E CAA""' NE1APA Of MAOEAO. VAL1'rEPK. OAX.. CHUPO IAI)f;Y ot C.V. ProlonglciOn de Y)I!Ul no.122 Frocc. San Jose La Nona, Oaxaa. Ou .. C . P 61120 Tel. (01 951) SO 602 27 S1 691 oa o-maJI d1ra@tmlarnsa.co m 1 2 1 111ft. OJ ARMADOY MONTADOOEL EQU I PO SONOEO 2 &JTUDIODI SOLO I HINCADO DEL MUESTREADOR SONOEO 2

PAGE 134

LHffiSH laboratorio de-mate1lal•a • • dec: v . ._..!"ffi.U ACUILA lAN JOS( Of-CAAOA NEIAPA IX M..6oORO. YAI.Il'EPEC. OAX. Cl.u>o .lA8EV u.. Of C.ll. ProiQn
PAGE 135

LHffiSH laboratorio de s . a c v , ProlongaCIOn de Fc&:c. San Jose La Norla. Ouxa. O.u _ C.P. 68120 Tel. (01 951)50 602 27, $1 693 as e-mail: dira@tmlamn.com 123

PAGE 136

LRffiSR lat!oratorto de matefiales s 11. cte c . v t.tiH4 U AGa.A SAN ;oil: Of CRMlA. NFJN)A DE ltAA.DfAO. VAUTEP!C. Ot\X.. P rok>f19acl00 de YlllJul no.122 Frace San JC>$4 Ll Nom , Oauu, Oax, C . P . 6a120 Tol 101 951) 50 602 27, 51 &93 GS e-mail: dira@tmlamu .com 1 2 4 QTUDIODI MlcA.HICADI IUD.OJ MUESTRA. SONDEO 3

PAGE 137

APPENDIXB. AWWADl00-05 CALCULATIO S 125

PAGE 138

AWWA D100-05 LOADS ON 11m DIAMETER CN TANK Cylindrical Shell Ref: AWWA 0100-05 Determine Pla t e Thickness Eqn 3-40 D : = 36 Nomina l T ank Diameter i n Ft G : = 1.33C Specific Gravity hp : = 35 Liquid He i ght in Ft Fy : = 36 0 0( psi s = 1500 ( Allowab l e Design Stress in PSI from page 21, Tables 4 & 5 E : = .75 Joint Eff i ciency from Tab l e 15 tb : = 0.5C Thickness of bottom annulus , i nches H = 36.C Tank He i ght in ft L : = Feet , Annulus length , dependent on anchor cha i r des i gn t .--2.6-hpDG Min . shell thi ckness requ i red in i nches sE t = 0.387 AWWA gives a minimum shell thicknes , but does not increase for corros ion, although they say one should . We are us ing 1 /16th i nch for corros i on . l t =-+ t t = 0.45 1 6 Result: Use 0 . 6250 inch t : = 0 .625( II a Wind Load Ref AWWA 0100-05 Eqn. 3-1 Wind Load on the shell Cf = 1.0 G u s t : = 1 1 : =1.1 5 Kz : = l.OS v = 100 Drag Coef from Table 2 Defined in section 3 . 1.4 W ind importance factor From Table 3 , Exposure C Wind Speed in MPH qz : = 0 . 00256Kz Tvl q z = 32.09 P w : = q z GustC f P w = 32.09 Veloc ity pressure , Eqn . 3 2 Wind Pressure on the shell in psf , Eqn . 3 1 > 30Cf therefore okay Wind Load on the Roof--NO ROOF-but agitator bridge will be 27" tall (675mm ) Cd = 1.0 Drag Coef fr om Table 2 126

PAGE 139

Pwr: = 30C d ( 1 2 Pwr = 3 0 Wind Pressure on the roof in psf II b Wind Overturning Moments hr : = 2.25 F : = DH-Pw F =4.159104 M : =_!:! F 2 M = 7.486105 Mw:=M Wind Force on shell in lb Overturning Moment on shell in ft-lb Roof Height in ft , in this case , agitator bridge D hr Fr :=-Pwr 2 MR : = ( H M R = 4 . 5114 Mo : = M +MR Mo = 7 .9 37105 Fw : =Fr+ F Fr = 103 Wind Force on roof in l b Overturning Moment on roof in ft lb Combined Overturning Moment due to wind in ft lb Fw = 4 . n 104 II c Resisting Moment Wr = 1400( Weight of roof in lb , in this case , agitator bridge W s : = 1.05-rc D H-__!_-49 0 Ws = 1.09105 Wei ght of shell & appurtenances in lb 12 Wf : = TC ( D + 2 L )2 J.tb -49 0 2 12 Wf = 2 .097104 Weight of Floor in lb Wft : = IOOC Weight of fittings in lb Wtot = Wr + Ws + Wf + Wft Wtot = 1.521 105 D Mr = (Wr + Ws + Wf + Wft) Res i sting Moment in ft l b 2 127

PAGE 140

Mr= 2 .6JJJ06 2 Rm: = Mr 3 Rm = 1. 7 41 I 06 2/3 of the Resisting Moment Mo = 7 .937105 Conclusion : The 2/3 of the resisting moment (2/3 Rm) is >the Combined Overturning Moment (Mo) therefore , anchors are not required for wind load . Ill Seismic Forces Ref AWWA 0100-05 The Technical Memorandum dated March 27 , 2008 titled " Seism ic Hazard Study El Aguila ProjectOaxaca Mexico " gives the values of Ss and S1 to comply with AWWA 13. 2 . 3 I = 1.25 Sl = 0 .75( Ss : = 2.0 Fa : = 1.2 Fv : = 1.5 u 2 3 T i : = 0 Tl = 12 K : = 1.5 Table 24 of AWWA uses 1=1, ASCE 7 uses 1=1. 25 For seismic use Group I 13. 2.4 S ite Class D because soil properties are not known in suff i c i ent detai l (down to 1OOft) Table 26 Table 27 S m s : = Fa Ss Sml : =FvSl 13 . 2 . 7.3 Sms = 2.4 Sml=I.J25 Eqn. 13-5 in units of a fraction of g Eqn. 13-6 i n units of a fraction of g Sds =USms Sds = 1.6 Eqn. 137 in units of a fraction of g Sd l : =USml Sdl= 0.75 Eqn.13-8inunitsofafractionofg From 13.5 . 1 , Ti is very small and assumed zero for ground supported tanks From figure 19, using the worst areas of California Ts : = Sdl Ts = 0.469 Section 13 . 2 . 7.3 . 1 Sds Sa i : = Sd s Since 0 < = Ti <= Ts, then use Eqn. 13-9 ,.--------D Tc : = 2TC 3.6 &32.2-tanh (3.68Tc = 3.466 in seconds , Eqn . 13-22 From section13 . 2 . 7 . 3 . 2 Sac = K Sdl Eqn. 13-12 in units of a fraction of g Tc Sac = 0.325 Sds = 1.6 Since Sac
PAGE 141

Ill a A i : = Sds R c := 1.5 Horizontal design accelerations AWWA 0100-05 , Section 13. 2.9.2 A i = 1.6 From Table 28 I Ac =sac--1.4-Rc Ac = 0 .193 Eqn . 13 18 in units of a fract i on of g Ill b Design Overturning Moment at bottom of tank shell Eqn 13-23 D = 1.029 Ratio is less than 1. 333 , therefore use Eqn . 13 25 & 13-29 hp Wt : =49GhpD2 Weight of Tank Contents , lbs Eqn 13-2 7 Wt = 2 . 956 I 06 Wi : = ( 1.00.218 Wt Eqn . 13-25 Wi = 2 .29:1 I 06 D ( hp) We : = 0 . 230 tanh 3.67-W t hp D Eqn . 13-26 We= 6.982 I 05 H Xs :=-Feet , Section 13 . 5.2 . 1 2 X i : = ( 0.5 0.094 hp or 0/H< 1 . 33 , Eqn . 13-29 Xi= 14.116 feet , Eqn . 13-29 I cosh ( 3.67 1 Xc: = hp 3.67s inh ( 3.67 Eqn. 13 30 Xc = 25.729 Ms =J(Ai(WsXs + WrH + Wi X i)/ + (AcWc Xc)2 1 29

PAGE 142

Ms = 5.58j I 07 ft-lbs , By 13 . 5 . 2 . 1 this is the overturning moment at the bottom of the shell due to the horizontal design accelerations , both the impulsive and convective components . Ill c Design shear and overturning moment at the top of the foundation AWWA D100-05 13.5.3.1 tan30 = 0.5Ti Eqn. 13-31 Vf=3.902106 Design shear at the top ofthe foundation due to horizontal desi g n acce leration , in pounds Av : =0.14Sds Av = 0.224 Vertical design accelertion Section 13 . 5.4 . 3 Va l low = ( Ws + Wr + Wi +We)( I 0.4 Av)tan 30 Eqn . 13-57 Val low= 1.636 I 06 in pounds Vf > Vallow , therefore anchor bolts will have to carry the shear force Vnet Ynet := VfYnet = 2.264 I 06 Wtank : =Wr+ Ws + Wf+ Wft + Wt Wtank = 3.10 J 1 o6 Weight of tank and contents , lbs Ill d Seismic Design Requirements AWWA D100-05 13.3.2.2 Design Overturning Moment at top of foundation for tanks supported on pile cap foundations Ximf=(o.s for D/H< 1 . 33, Eqn . 13-34 Ximf= 15.34 feet Xcmf: = cos h (3.67 1 .937 1 hp hp . ( hp) 3.67-0-sm h 3.670 Eqn . 13-35 1 3 0

PAGE 143

Xc m f = 26 . 248 Mmf =J(Ai(WsXs + WrH+ W i Xim1))2 + (Ac WcXcmf)2 Mmf= 6.034107 ft-lbs , By 13. 5 . 3 . 2 . 2 this is the overturning moment at the top of the foundation for tanks supported by pile cap foundations and includes the effects of varying bottom pressures. Ill e Seismic Design Requirements AWWA 0100-05 13.5.4 Resistance to Overturning 13.5.4.1 Overturning ratio J must be less than 1 .54; the annulus width used as a resisting force i s 3 . 5 % of D wrs Wr rcD Roof load acting on the shell in pounds/foot of shell Ws wt :=-+w rs rcD wt = 1.071• J(f wLl = .. f y. h p G wL I = 5 .11)103 Weight of tank shell & portion of the roof , in lbs/ft. Since the weight of the agi tator and bridge is in the Wft variable , and since it will be equally d i stributed by the bottom of the shell , the AWWA equation is modified to include this weight Resisting weight of tank contents in lbs/ft of shell e ir e . Eqn . 13-37 wL : = if(wLJ:":I.28-hpD G , wLl, 1.28-hpDG) wl =< 1.28HDG wL = 2 . 14.'1103 Ms overturning ratio , Eqn . 13-36 .----------2 D (wt ( 1 0.4Av) + wL) J = 13. 785 > 1.54 , therefore mechanical anchoring is required 131

PAGE 144

Ill f Seismic Design Requirements Shell stresses 13.5.4.2 . 2 AWWA 0100-05 13.5.4 Longitudinal compression stress accord ing to section 13 . 5.4 . 2 . 2 I ts = t--1 6 Radius : = . 5 0 12 ts = 0.563 inch crc:=[wt(l+ 0.4Av) + 1.273Ms] 1 Eqn.13-39 d 12ts crc = 8.30:1103 psi, stress at bottom of tank R a diu s = 2 1 6 Radius in inches t --= 0.002894 Radiu s For Class 2 Materials , CHECK t!Radius < (t!R)c = .0035372 , the following equation can be used : FL. = 1 7.5-105 (t . -) [ I + 50000 (t . -)2 ] Rad1us Rad1us Equat ion 3-11 FL = 7.18:1 103 cre = 1.333 FL Eqn. 1348 , allowable compressive stress cre = 9575.496 CHECK cre > crc Hoop shell tens ion: Hydrodynamic sei smic hoop tensile stresses . sect ion 13.5.4 . 2 . 3 : Y : = 35. C feet Nh = 2 . 6-G Y.D Nh = 4.357 I 03 i : = l.39AiGd i = 3 . 83:1103 Hydrostat i c hoop tensile force , lbs/in . Eqn . 13 45 Impulsive hoop tensile force , lbs/in Eqn. 13-46 Convective hoop tensil e force , lbs/in.: c = 0.98AcGdcosh cos h ( 3.6& 1 32

PAGE 145

c = 1 8.222 2 J c + (NhAvr Eqn . 13-42 Hydrodynam i c hoop t s tensi l e stress , psi CYS = 7.033-103 crd e m and : = crs + ( crd e m an d = 1.4 n I 04 psi , Section 13.5.4 . 2 . 3 crallow : = s El.3 3 Allowable stress , 13. 5.4 . 2.4 crallow = I .496 I 04 CHECK crdemand < crallow? 133

PAGE 146

APPENDIX C. CDOT METHOD CALCULATIONS 134

PAGE 147

COOT METHOD OFCAISSON DESIGN FOR 11m DIAMETER TANK D = 36 Nominal Tank D iameter i n Ft G = 1.33C Specific Gravity hp : = 3 5 Liquid Height in Ft Fy : = 3600C psi s = 1 5 00( Allowable Design Stress in PSI from page 21, Tables 4 & 5 E = .75 Joint Efficiency from Table 15 tb : = 0.5C Thickness of bottom annulus , inches H = 36.C Tank Height in ft L : = Feet , Annulus length , dependent on anchor chair des i gn t = 0.625( Tank shell thickness , in. Fws = 4159( Wind shear force on shell , lbs Mws = 74860< W i nd overturn i ng moment on shell , lb-ft . Fwr = 121.: Wind shear force on roof ( agitator bri dge) , lbs. Mwr . = 4511( W i nd overturning moment on roof (ag i tator bridge) , lb-ft . W r : = 1 400( Weight of agitator bridge , lb Ws = I 09 10< Weight of shell , lb Wf = 2097C Weight of f l oor , lb Wft : = 1 OOC Weight of f i ttings , lb Wt : = 295600< Weight of tank contents , lbs . Vf = 390200< Seismic shear , lbs . Mmf = 60340001 Se i smic overturning moment, ft . -l bs . Mr = 2611 OO< Resisting moment of tank self weight Number of caissons outer rin 10 D i ameter= 38 ft. Number of caissons inner rin 6 inner Diameter= 18 ft. Center caisson 0 Descrie # h b fac t or Area Y. Ay l o Ad2 36 4 1 .00 1 1 4 . 0000 1 1 . 1 7 44 .671 7 0 .00 498 .89 72 4 1 .00 1 1 4 . 0000 18.07 72.2803 0 .00 1306 .11 180 1 1 .00 1 1 1 . 0000 0 .00 0 . 0000 0 .00 0 .00 0 1 1 .00 1 1 1 . 0000 0 .00 0 . 0000 0 .00 0 .00 0 2 1 .00 1 1 2 . 0000 0 .00 0 . 0000 0 .00 0 .00 60 4 1 .00 1 1 4 . 0000 7 .79 31. 1769 0 .00 243 .00 SUM 16 16. 0000 148 . 1289 0 . 0000 2048 .00 Ybar 9.258 INA= 2048.00 Check foundation for seismic OT & shear: STANDARD SLAB ON CAISSONS USING Nblow/2 FOR ALLOWABLE BEARING (C OOT): Nblow = 75 Number of blow counts from S2-B2 boring , October 2007 soils report 135

PAGE 148

Number of caissons Diameter of caisson Ncai s : = 16 Dcais : = 3.0 Lca i s : = 23 D co ut = 38 Assumed length of ca i sson in feet. Limit from FHWA is 30Dcais Diameter of outer caisson circle out : = 1 0 Dcin . = 18 Nin : = 6 Tea is : = Number of caissons in outer circle diameter of inner caisson circle Number of caissons in inner circle ft4 Moment of interia of caisson circle from spreadsheet Pile cap parameters : S1abdia : = 40.C Slab diameter Ts1ab : = 3.0 Thickness of slab , ft Ca i sson properties: Cross sectional Area : Acais : = n:. ( Dc;is r Ccai s : = n:Dca i s Acais = 7.069 square feet Circumference: Weight of the caisson in pounds Wcais : = (Acais Lcais) (Ncais 1 50) Pile cap properties: Cca i s = 9.425 feet Wca i s = 4.4115 Area : Slabarea n: S 1 a bdia2 4 Slabarea = 1.257 l 03 square feet Weight: Wslab : = Slaba rea Ts l ab Wslab = J 05 lbs . Caissons have to be 3 d i ameters center to center clear , or the strength is reduced proportionally . n:Dcout Spacout :=---Spacout = 11.938 feet o ut C . Spaco ut apout .=----=---Ca p out 3Dca i s n:Dc in Spacin .---Nin C . . _ Spacin apm .---3 Dcais Dcout Dcin Spabet . 2 Weighted Average: S pacin = 9.425 feet Cap in . _ Spabet Ca p bet 3Dca i s 1.32 1.047 Ca p b et %c ap 2 cais J. Ill %cap Therefore , use 100 % of the lateral and skin friction , %Cap : = l.OC 136 1 . 166

PAGE 149

COOT uses an allowable bearing pressure of Nblow/2 and a skin friction of 10% of the allowable bearing pressure . Allowable bearing pressure: B II Nb l ow a ow .---2 Skin friction : Bskin = 0 . 1 Ballov. Bskin = 3. 75 k s f Ballow = 37.5 ksf Reducedforclosespacing: Bskin =%CapBskin Bskin = 3 .75 ksf Total Weight of Tank , Contents , and Foundation Slab : Wtotal : = Wr + Ws + Wf + Wft + Wt + Wsl ab Wtota l = 3.667' I 06 pounds Section Modulus of Caisson ring founda tion (I calculated separately) : S m = 107.789 COOT axial caisson demand : B ( Wtotal Mm prmax = --+ I 1000 Bpn n ax = 788 . 955 kips demand Nca i s Sm Caisson capacity , assuming top 5 feet and bottom Ocais is disturbed & can't be used for shear friction: Capacity : = Acais Ballow + Cca is(Lcais D cais 5) Bskin Capac ity 795 . 21t kips Capacity greater than demand: OK COOT caisson axial uplift demand: B . . _ ( Wtotal + Wcais Mm I prmm . ----cais Sm 1000 Bprmin 306.24' ksf COOT caisson axial uplift capacity: Uplift _ Capac ity = Cca i s( L ca i s Dcais 5) B skin Uplift_ Capacity = 530.144 kips ( Negative sign is for uplift) Uplift Capacity greater than required. OK HORIZONTAL SHEAR ON CAISSONS: Vf= 3.902 106 Seismic shear echoed from section lllc, in pounds If the pier caps extend 0 . 5 above ground , 1 . 5 feet will be below ground , for an earth load of about 60 lbs/ft., or 20001bs ie small in comparisen to seismic horizontal force . Vcais Vf Vca i s = 2.4 39105 lbs per caisson cais 137

PAGE 150

APPENDIX D. MCCARTHY METHOD CALCULATIONS 138

PAGE 151

ESSENTIALS OF SOIL MECHANICS AND FOUNDATIONS, 3RD EDITION, BY DAVID F. MCCARTHY 0 : = 36 Nominal Tank Diameter i n Ft G = 1.33C Specific Gravity hp = 35 Liquid Height in Ft Fy = 3600( psi s = 1500( Allowable Design Stress in PSI from page 21, Tables 4 & 5 E = .75 Joint Efficiency from Table 15 tb = 0.5C Thickness of bottom annulus , inches H = 36.C Tank Height in ft L : = 0.083 : Feet , Annulus length, dependent on anchor chair design t : = 0 . 625( Tank shell thickness , in. Fws : = 4159( Wind shear force on shell, lbs Mws : = 74860( Wind overturning moment on shell , lb-ft . Fwr = 1 2 1 : Wind shear force on roof (agita tor bridge) , lbs . Mwr = 451 IC Wind overturning moment on roof (agitator bridge) , lb-ft . Wr = 1 400( Weight of agitator br idge , lb Ws : = 1 0910( Weight of shell , lb Wf = 2097( Weight of floor , lb Wft : = 1 ooc Weight of fittings , lb Wt = 295600< Weight of tank contents , lbs . Vf = 390200< Seismic shear , lbs . Mmf: = 6034000< Seismic overturning moment , ft.-lbs . Mr : = 2611 OO< Resisting moment of tank self weight Check foundation for seismic OT & shear: cais : = 1 6 Dcais : = 3.0 Lcais : = 31 Belldiam: = 7 Bellh : = 2 Dcout : = 38 out : = 10 Dcin = 18 in : = 6 lcais = Number of caissons Diameter of caissons in feet Assumed length of caisson in feet Diameter of bell or unde rre amed drilled piers Height of bell , feet Diameter of outer caisson circle Number of caissons in outer circle diameter of inne r caisson circle Number of caissons in inne r circle tt4 Moment of interia of caisson circle from spreadsheet Pile cap parameters : S labdia = 40.C Slab diameter Tslab = 3.0 Thickness of slab , ft 139

PAGE 152

Ca i sson propert ie s : Cross sectional Area: Acais : = 11 ( Dc2ais r Acais = 7.069 square feet Abell Abell =38.465 square feet Circumference : Ccais = 11Dcais Ccais = 9.425 feet Wei ght of the ca isson in pounds Wcais =[Acais(Lcais Bellh)+ Acais;AbellBellh l ( cais150) Wcais =6.69105 Pile cap properties : Area : Sl b 11Siabdia2 a area . = ----4 Slabarea = I .257' 103 square feet Weight: Wslab = Slabarea-Tslab I 50 Wslab = 5.655' 105 lbs . Ca i ssons have to be 3 d iam eters clear center to center or the strength i s reduced proportionally . 11 Dcout Spacout :=---Spacout = 11.938 feet No u t C . Spacout a pout . = -'---3Dcai s Capout = I .326 ratio . 11Dcin Spacm :=--Spacin = 9.425 feet in C . . Spacin apm .=--'---3Dcais Capin = 1.047 ratio S b . Dcout Dcin pa et . = -----Cap bet : = Spa bet 3 Dcai s Capbet = I . l I l ratio 2 Wei ghted Average : 0 1 . _ Capout ;ocap . ---'--------'------'----cai s %cap 1.166 2 cais Therefore , use 100% of the lateral and skin fr iction, %Cap : = I.OC From soils report dated October 2007 , at containment area cohesion = 0 .71 'i ksf From " Essent i als of Soil Mechanics and Foundations " by David F . McCarthy 3rd Ed. pg. 413 : McCarthy , pg. 409 Fig 14 25 lower limit of cohesion =1 ksf: cohesion : = I .0 ksf Assume allowable end bear ing pressure of Ballow = 9 cohesion Ballow = 9 ksf But from soils report : Ballow= I 5.4 I ksf Therefore us e value from from soils report . Skin friction Bskin = cohesion 1 40

PAGE 153

Reduction for close spac ing: B s kin : =cohesi o n %Cap Bskin = 1 ksf Total Weight of Tank , Contents , and Foundation Slab : Wto t a l : = Wr + Ws + W f + Wft + W t + W slab Wto t a l = 3.66 1 106 pounds Section Modu l us of Caisson ring foundat ion ( I calcu l ated separate l y): S m = 107.789 ASD axial caisson demand : Bprmax:= (Wtotal + Mm Ncai s S m I 000 Bprmax= 788 .955 k ips, demand McCarthy pg 413 & 416 recommends app l ying a safety factor of at l east 2 to the end bearing component i f using 9c . But value from soils report i s being used , which already has a safety factor appl i ed. Ca i sson capac i ty , assu ming top 5 feet and bottom Dca i s is d i sturbed & can ' t be used for shear friction : Capacity = A b e llBallow+Ccai s(Lca i s B e llh -Dcais5)Bskin Capacity = 790.666 kips Capacity greater than demand: OK ASD caisson axial uplift demand : 8 . -(W total +Wcais M m I prmm---cais S m 1000 Bprmin = -293.057 kips ( negat i ve s ign shows uplift ) ASD caisson ax ial capac ity: U pli ft _Capacity = Ccais(Lca i s Dcai s -Bellh 5) Bskin+ (Abe ll Acai s)Ballo\-\ U pli ft _Capacity =681.739 kips Uplift Capacity greater than required. OK CHECK BEARING PRESSURE WHERE INFLUENCE ZONE OVERLAPS : At 4 Diameters , the caissons do not interact , but with 6 foot diameter bells , there are onl y 2 ' clear between the bells . D i ameter of bell influence area B e llln fdiam = 8 Ainfl A infl = 5 0.24 square feet 1 4 1

PAGE 154

Bear ing pressure at the boundry of overlapping areas : B I Bprmax B I 1 5 704 k f pr . ---pr = . s A intl Check bearing pressure 1 foot down : Bearing pressure
PAGE 155

APPENDIX E . FHWA ASD METHOD CALCULATIONS 143

PAGE 156

FHWA CAISSON DESIGN FOR 11m DIAMETER TANK D = 36 Nomina l Tank Diamete r in Ft G = 1.33C Specific G r av ity hp = 35 Liquid Heigh t i n Ft Fy : = 36 00C psi s : = 1500C Allowable Design Stress i n PSI from page 21, Tables 4 & 5 E = .75 Jo i nt Efficiency from Table 1 5 tb = 0 .5C Thickness of bottom annulus , inches H : = 36.C Tank Hei ght in ft L : = Feet , Annulus length , dependent on anchor chair design t : = 0.625C Tank shell thickness , in. Fws :=4 1 59( Wind shea r force on shell , lbs Mws := 74860( Wind ove rt urning moment on shell , lb-ft . Fwr : = 1 2 1 : Wind shear force on roof ( agitator br i dge ) , lbs . Mwr := 4511C Wind overturning moment on roof (agitator bridge ) , lbft . W r : = 1400C Weight of agitator br i dge , lb Ws := 1 0910( Weight of shell , lb Wf : = 2097( Weight of f l oor , lb Wft : = I ooc Weight of f i tt i ngs , lb Wt : = 29 5600! Weight of tank contents , lbs . Vf = 39 0 200! Seismic shear , lbs. Mmf:= 6 0 34000 1 Seismic overturning moment , ft.-lbs . M r : = 261100! Resisting moment of tank self weight Check foundation for seismic OT & shear: ASSUME STANDARD RINGWALL ON CAISSONS FOR FHWA DESIGN (PUBLICATION No. FHWA-IF-99-025 , Chapter 11 ) , 1 . The bor i ngs S1-B3 and S2-B2 are g i ven d i fferent soi l val ues . Bor i ngs S2-B2 and S3 -B1 are horizontally i solated . 2. The so ils report class ifi es the SC soil ( w ith 25 % f i nes ) as a clay by g i ving it cohesion and by 21 degrees . This is conservat ive. Now that we have est ab l ished this as a clay , the b l ow counts w ill be used : For boring S2-B2 which i s closest to the l each tank locat ion, the average of ( 2 7 + 75)/2 = 51==> VERY HARD CLAY = = > range of su i s 3000 5000 psf . Therefore : su = 4000 psf = 2 . 0 tsf Therefore it is a cohesive soil accord ing to the FHWA classification (su < 2 . 5 tsf). 3 . No further tests can be done , there i s only one known soil type , and the propert i es available fall i nto the categories given by FHWA. 144

PAGE 157

4 . B . The parameter su will be the primary design parameter . 5 . Since seismic overturning is what controls the design , the undrained condition is used , per Appendix B page 9 . 6. We can write the construct ion specifications as necessary . 7 . The design will be made according to ASD . 8 . The design moment and lateral force have been calculated and are echoed above. 9 . A global factor of safety is chosen as 2 . This is because A) based on the soil gradat ion, blow counts , and Atterberg limits , the design parameters are already quite conservative . B) This is for se ism i c design , and a seismic event is only likely to occur once in the 10 year expected life of the plant. 10 . Since the des ign is ASD , it is assumed the axial loads will control ( as opposed to the lateral). 11. The top 5 feet of the drilled shaft is not included in the skin friction calculation to account for disturbance during drilling and seasonal moisture change . 12. Length of caisson is greater than 3 shaft diameters , and less than 30. 13. The bell height and one diameter is excluded from contributing to the skin fr i ction of the drilled shaft . 14. The Nom i nal Ultima te Axial Resistance is calculated using the following design i nformat ion: ca i s = 16 Fs = 2 Dcai s = 3.0 Lcai s =2 1 B e lldi a m:= 7 Bellh = 2 D co ut = 38 out = 1 0 D cin =18 in = 6 I ca i s = 196/ Number of caissons Safety Factor Diameter of caissons in feet Assumed length of caisson in feet Diameter of bell or underreamed drilled piers Height of bell , feet Diameter of outer caisson circle Number of caissons in outer circle diameter of inner caisson circle Number of caissons in inner circle ft4 Moment of interia of cai sson c i rcle from spreadsheet Pile cap parameters : S1abdia := 40.C Slab diameter Ts l a b := 3.0 Thickness of slab , ft 145

PAGE 158

Caisson properties: Cross sectional Area: Acais : = rc ( 2 Acai s = 7.069 square feet Abell = 3.14 ( Abell = 38.465 square feet Circumference : Ccais = rc Dcais Cca i s = 9.425 feet Weight of the caisson i n pounds Wcais := [ Aca i s (LcaisBell h ) + Acais Bellh J-c caisl50) Wcais = 4.48& 1 05 Pile cap properties : Area : Slabarea rc Siabdia2 4 Slabarea = 1.257103 square feet Weight: Ws l ab . = S l abarea Tsl ab 1 50 Wslab = 5.65:1 I 05 lbs . Caissons have to be 3 diameters clear center to center or the strength is reduced proportionally . rcDcout Spacout : = ---Spacout = 11.938 feet Nout C . Spaco ut apo ut . =----'-----3Dca i s Capout = 1.326 ratio Spacin rcDcin Spacin = 9.425 feet Ni n C . . Spacin apm .=-----'----3Dcais D co ut Dcin Spabet .-2 Weighted Average : Ca pin = 1.047 ratio _ Sp a bet Capbet ---3Dcais Capbet = 1. I I I ratio o / ._CapoutNout + CapinNin+ Capbet ca i s ,ocap . % ca p 1. 166 2 cais Therefore , use 100% of the lateral and skin friction , %Cap = l.OC Base Resistance for Compression Loading , qmax for cohesive soil with su greater than 1 tsf from FHWA , equation 11.1: As previously stated, the value s u = 400C psf qmax = 9su psf Rbn : = A bellqmax Rbn = 1.3 8:1 I 06 p o und s Skin friction , FHWA equation 11.16 fmax = asu. where a varies from 0 .55 and 0.45 fo su/pa between 1.5 and 2 . 5 , additionally the %avai lable capacity , %Cap is used: pa : = 21 OC psf 146

PAGE 159

= 1.905 pa a :=0 . 511 fmax: =%Cap as u fmax = 2.044 psf Rsn 5 Bellh Dcai s) Rsn Nominal Ultimate Axial Resistance , k ips Rtn = Rsn + Rbn R t n 1.597 k ips 1 000 16. Allowable Load is calculated for ASD design : Rtn Rall o w :=-R a llow = 798 .32kips Fs Total Weight of Tank , Contents , and Foundation Slab : 2 .119 pounds Wtotal = Wr + Ws + Wf + W ft + W t + W s l a b Wtot a l = 3 .667 I 06 pounds Section Modulus of Caisson ring foundat i on ( I calculated separate l y ) : Sm o ( ; ) S m = 107.789 ASD axial ca i sson demand : Bprmax: = --+--( W t o t a l M m I B p r max= 788.955 kips cai s Sm 1000 ASD caisson capacity , echoed from above : R a il ow 798.32 k ips Capacity greater than demand: OK ASD caisson ax i a l uplift de m and : B . . _ ( Wto t a l + Wcais M m 1 prmm --\ cais Sm I 000 Bprmin 3 03.6 kips (negative sign shows uplift) ASD caisson axial capacity : . . Rsn A b e ll -Acais Up1Ift _Capac1ty :=--+ qmax 1000 1000 Uplift _Capacity = 1.342 x103 k ips Uplift Capacity greater than demand. OK CHECK BEARING PRESSURE WHERE INFLUENCE ZONE OVERLAPS : At 4 Diameters , the caissons do not interact , but with 6 foot diameter bells , there are only 2 ' clea r between the bells . Diameter of bell influence a r ea 147

PAGE 160

Belllnfdiam = 8 Ainfl = 3. 1 4 ( A infl = 50.24 square feet Bearing pressure at the boundry of over l apping areas : Bpri = Bprmax Bprl = 1 6. 1 63 ksf Ainfl Check bearing pressure 1 foot down : 2*Bearing pressure < capacity ( 15.44 ksf ) ? Diameter of bell i nfluence area Belllnfdiam = I 0 Ainfl A infl =78.5 square feet Bearing pressure at the 1' below overlapping areas : Bprl = Bprmax Bpri = I 0.344 ksf Ainfl By i nspection 2 * Bprl < 15.44 ksf OK HORIZONTAL SHEAR ON CAISSONS : Vf= 3 .902106 Seismic shear echoed from section above , in pounds . If the pier caps extend 0 . 5 above ground , 1.5 feet wil l be below ground , for an earth load of about 60 l bs/ft . , or 20001bs ie small in comparison to seismic hor i zon tal force . Vcais : = Vca i s = 2.439105 lbs per ca isso n cais 148

PAGE 161

APPE DIX F. FHW A LRFD METHOD CALCULATIONS 149

PAGE 162

FHWA LRFD AX I AL CAISSON CALCULATIONS: Table F.l Approximate Elevations of Blow Counts from Soils Report Plot of SPT tests 81 N 82 N 83 Existing Grade 1169 . 5 1169 1169.5 Top of bore -0.30 1169.20 1168.70 1169.20 0 .60 1168 .90 11 1168.40 27 1168 .90 40 1 .20 1168 . 30 62 1167 .80 75 1168 .30 45 -1.80 1167.70 85 1167.20 1167 . 70 90 -2.40 1167 . 10 95 1167 .10 -3.00 1166 .50 A ll B orin g s 1 170 1 1 69 . 5 1169 . " 1 1 68 . 5 • . . • . .. 1 1 67 . 5 . 1167 +61 aB2 •63 1 1 66 . 5 1166 0 10 20 30 40 50 60 70 80 90 100 N blows Figure F.l Plot of Blow Counts from Soils Report 150

PAGE 163

FromAW'WA loads Weiqht of aoitator bridqe & aoitatc Wei ght o f shel l Weight of floor Weight of fitting s W eight of con tents Wind on She I I Wei ght of Ca p/Sia b W ind on agitator bridge Seism ic Total DC AKial Kips 14. 00 109 . 10 20.97 1 . 00 2956.00 565 50 3666.57 L atera I Shea r lv1om ent l
PAGE 164

Caisson Properties Ncais = 16 Dcais = 3 Lcais = 17 Num ber of caissons D i ameter of caissons in feet Assumed length of caisson in feet Belldiam = 7 Bellh = 2 D i ameter of bell or underreamed dr i lled p iers Hei ght of bell , feet Dcout = 38 Nout = 10 Dcin = 18 Nin = 6 Diameter of outer caisson circle of caissons in outer circle diameter of inner caisson circle Numbe r of caissons in inner circle lcaiss = 2048 ft4 Moment of interia of caisson c i rcle from s p readsheet Pile cap parameters: Slabdia = 40 Tslab = 3 Calculated Properties Slab diameter Thi c k ness of slab , ft Acais = 7 .069 Sq . ft. Abell = 38. 485 Sq . ft. Ccais = 9.425 Ft. W ca i s = 363796 lb Slabarea= 1257 Sq . ft. W e i ght of Caissons Pile Cap Area W s lab = 565487 lb Sm = lcais /( Dcout/2 ) = P ile cap weight 107.789 Caisson Capacity Com pression , side cj)cs = 0 .65 Compression . b ase cj)cb = 0 .55 Uplift cj)us = 0 .50 %Capacity ( s kin} 1 .00 su = 4000 psf qmax = 9su = 36000 psf a.= 0 .511 fmax = %Cap'"a.*su = 2044 psf Rbn = Abell*qmax = 1385 kips Rsn = Ccais*fmax* ( Lcais-5 Bellh Dcais ) = 134 .85 k ips Axial Compression Capacity 1:cj)iRi = cbqmax(Abell-Acais) = 67.4 622 . 0 .5 kips 152

PAGE 165

Table A.5. Resistance factors for geotechnical strength limit state for axially loaded drilled Shafts Type of Loading Component of Resistance Evaluation Resistance Resistance I Method Factor+ Geomaterial Compression for Side / Clay a method of Chapter II 0 .65 Single Drilled (See Note I) Shafts " Base / Clay Undrained Bearing Capacity . 0 .55 Formula of Chapter II " Side I Sand See Note 2 See Note 2 " Base I Sand See Note 2 See Note 2 " Side / Rock Carter and Kulhawy 0.55 (Chapter II) Horvath and Kenny (Chapter II) 0 . 65 " Base / Rock Canadian Geotechnical Society 0 .50 (Chapter II) Pressuremeter Method 0.50 (Not covered in this Manual) .. Combined Side and Load Test 0 .80 Base Resistance Compression on a Clay Block Failure 0 .65 Drilled Shaft (Chapter I 0) Group Uplift for Single Clay a Method of Chapter II for 0.55 Drilled Shafts Straight Shafts (See Note I) Undrained Strength Method in 0 .50 Chapter IIBelled Shafts " Sand See Note 3 See Note 3 " Rock Carter and Kulbawy 0.45 (Chapter II ) Horvath and Kenney 0 .55 (Chapter II) " Combined Side and Load Test 0 .80 Base Resistance Uplift on Drilled Sand or Clay Not specified 0 .55 Shaft Group 153

PAGE 166

APPENDIX G. L-PILE CALCULATIONS , FIXED HEAD , 1 % REINFORCING 154

PAGE 167

Lat e r a l D e fl ect ion Q n ) -0.(18 -0.06 -0 0 4 -0 02 0 0 02 0 0 4 0 06 0.08 0 1 0 12 0 u 0 16 0 , 8 0 2 0 22 0.24 0 26 0.28 0 3 0.32 0 3 4 0 36 0.38 . ' . . o 0 0 0 0 0 I I o o t o I o o 1 t o o ........... , . ..... , ........................................... , ............................................ ,. .,. ........................................ . I I I I I I I I I I I I I I I I t I t 1 1 g fr 0 I I I I I I I I I t I I t t I I o o I I I I I I I I I I I I I I I I I I I I I I t I I I o I o I 1 I I I I I I o o I I t I I I I I o o I I I o I o o o o o I I o I o o o o I I I I o o o o 1 I 0 I I I I I I I o I o I o I o o I I I I I I I I 0 N I I I t I I I I o o 0 I o o I I t t I o I I ----------.---------.. --------------------------------------------------------------------.. ----... ------------------------------' I I o o o o o o o o I o o I t I I o o o o I I I I o o o o o o o o I o I I o o I ! : ! ! ! ! ! ! ! : : : !iCase1 ] : ; I I I o o o o I I o t I I I I I I o o o I t I o I I I I I I I I I I ' ' ' ' ' ' ' ' ' ' ' "' -___ : ______ :._ --------:-----.---... ---_:_---.--.----------.:.------.-----------. ..... . N • • • • I I o o ' ' ' ' ' ' ' ' . ' ' . I o 0 I ' ' ' . . ' ' . I I I I I I 0 I ' ' ' ' Figure G . l Deflection of Caisson with Fixed Head , 1 % Reinforcing Unfadored B e nding M o ment (in -kips) . . . . I I I o o o 0 r--------,-------r-------;---r---------r-------r------------------, ' ' I ' I ' ' o I ' ' . . ' ' ' ' . ' ' ' . ' ...,. --------------------------------------------------------------------•----------------------•------------------------------• I I I 0 I I I I . . ' . ' ' ' . I I I o I 0 I I 0 I 0 I t I ' ' I ' ' ' ' ' ' ' (0 --------------------------------------------------------------------------------------------------------------------• o o I I I I t I ' ' ' . . ' . ' I I I I I I I . . . . ' . ' ' 0 I 0 I • I o I I --- •rrrrr rrr r . . . . . 0 I I 0 I I o I I I ••••••--•l•••••••-••••••• •••••••••••••L -•••••••••• L ••••• • ••••• L •••• ••••••• L ••••••••••• L •••••••••• • L ••••••••••• L •••••••• 0 I 0 I I 0 o o o I . . ' ' . ' . . ' . ' . o o I o o I 0 0 I 0 I 0 -------------------------------------------------------------------------------------------------------------------------------' . . . . . . . ' . :5. o I I I . . ' ' . ::': I I o I I I o I 0 I rr-r---r---------,-----r-----r----r---r---r-I o o I I I I I 0 0 t I I I 0 I I I 0 I I o o 0 0 I I o I o 0 I I o I o I I I 0 o ---------. : ----------:-------:----------:-----------------: --------f-------f ------------. --------------------o I I o I o I o . ' ' . ' ' . . 0 I I I I o I 0 ------------------------------------------'--------------------------------------------------------------' I 0 o 0 I I I I I o I I I I I ' ' ' ' ' ' r=:-:-:---""---, . . . . N . . . ' . . . . ' . N --------rr:rr------r----rrr r 0 I 0 I I 0 I I . . . . ' . ' . . . . . . ' . N o o I ' t I o -----------------------------------------------------------------------------------------------------------------------------' . ' ' . . . ' I I I 0 I . ' . . . . . <0 N I I o 0 I ---------------------------------------------------------------------------------------------------------------------------------1 I I 0 I I 0 0 I 0 I I I o I I I I I 0 ' 0 ' • ' ' • • • I 0 I o I I I I I o "' N I ' I o o I I 0 ---r-r--r---r-------r--r----r-r••-- •••r----I I I o 0 I t o ' . . ' . . . ' ' • ' • ' ' 0 ' 0 . . . ' . ' . ' M F i gure G . 2 Bending Moment of Caisson with Fixed Head , 1 % Reinforcing 155

PAGE 168

Sheo 1 F o rce ( kips ) .;100 -80 -60 -40 -20 20 40 60 80 I 00 120 UO 160 180 200 220 240 260 280 I o o I o o I o I I o I I I I I I I I I I t I I I I I t I 0 I I o I I I I I I I I o : :::::r::::::;::::::r:::::;::::::r:::::;::::::r::::r::::::r.:::_:;::::::r:::::;.::::::;::::::::::::--r----: -• I I I I I I I I I o I I I o o I o I I o I o I I I I I I I I . -.--:-. --;------:-----: ------:--------------------------; -------:----------:-• ---t-• -:-• --t ------:------. -I o o o o I I I I I o I I I I ' . . . . ' ' . ' . ' ' ' ' I o o o I o o I o I I I I I I I I I I I I I I I o I I I I I I I t I ••••• .J •••••• o l • •••••• • ••••••• 0 ••••••• • ••••••• • ••••• J ••••••• L •••••• J ••••••• L •••••• .J ••••••• L ••••••• • ••• • ••• J ••••••• 1 ••••••• 1 ••••• • •'• •••••• J •••• o I o I I I I I I o • I I I o I I I g o I o I I 0 I I I I I I o I I o I I o I I I I I I I I I I I I o o I I I o I I I I o I I I ' . ' ' ' ' ' . ' ' ' ' ' . ' ' ........... .... --.-.... --.-... .. .. •.... -. . --... -... .... -...... ---.-.. -.----.... ---.-----1 0 I I 0 0 I 0 0. 0 I I I 0 0 I I " I I I 0 I I I I 0 I I 0 I I 0 I I I I I I I I I I I I I I I I o I I I I I I I • • • • • ..,. • • • • • • • • • • • • • • • • • • • • • • .,. • • • • • • • • • • • • •,. • • • • • • • • • • • • .,. • • • • • • • • • • • • • • • • • • • ..,. • • • • • • r • • • •. • .,. • • • • •• • • • •. • • .,. • • • • • • • • • • • • • •,• • • • • • • '• • • • I I I 0 I o I I I I I I I I I I 0 I I I I I I I I I I I o I 0 ' ' ' . ' ' ' ' ' ' ' ' . . I I I 0 I I I I I I I I I 0 I ------: ----(----t---------------------------r-------r ----------! -----;------!--------N N "' N 0 i F ! F i ui I [ Euui T I E ! i ':: l u ----r------r -----r------:----;--------:---------:-------1-------:-------:-------r -------:------:---r ---------:-------------r ---------:-----; -------r---;----r -----;----r -----;-------r ----r----r ------r ------; -----;-------;----:----r-M Figure G.3 Shear of Caisson with Fixed Head , 1 % Reinforcin g LPile output for caisson with fixed head , 1 % reinforcin g : ============================================================================== LPILE Plus for Windows , Version 5 . 0 (5. 0.26) Analysis of Indi vidua l Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method (c) 1985-2006 by Ensoft , Inc . All Rights Reserved ============================================================================== Name of input data file : Name of output file : Name of plot output file : Name of runtime file: Fixed 1 percentlpd Fixed 1 percentlpo Fixed 1 percentlpp Fixed 1 percentlpr Time and Date of Analysis Date : March 31, 2009 Time: 18:33 : 7 156

PAGE 169

Problem Title Design of Cai ssons for CN Leach Tanks Program Options Units Used in ComputationsUS Customary Units : Inches , Pounds Bas i c Program Options : Analysis Type 1: Compu tation of Lateral Pile Response Using User specified Constant El Computation Options : Only internally generated p-y curve s used in analysis Analysis does not use p y multipliers (individual pile or shaft action only ) Analysis assumes no shear resistance at pile tip Analysis for fixed length pile or shaft only -No computat ion of foundation stiffness matr i x elements Output pile response for full length of pile Analysis assumes no soil movements acting on pile -No additional p-y curves to be computed at user specified depths Solution Control Parameters : Number of pile i ncrements 100 Maximum number of iterati ons allowed= 100 Deflection tolerance for convergence = 1 . 0000E -05 in Maximum allowable deflect ion = 1 . 0000E+02 in Pr i nting Options : -Values of pile-head deflect io n , bending moment , shear force , and soil reaction are printed for full length of pile. Printing Increment (spacing of output points) = 1 P ile Structural Properties and Geometry Pile Length = 360 .00 in Depth of ground surface below top of pile = Slope angle of ground surface -24 . 00 in . 00 deg . Structural properties of pile defined using 3 points Point Depth Pile Moment of Pile Modulus of X Diameter Inert i a Area Elasticity in i n in* * 4 Sq.in lbs / Sq.in 157

PAGE 170

1 2 3 0 . 0000 36 . 00000000 86034 . 0000 1017.0000 336 . 0000 36.00000000 86034 . 0000 1017.0000 360 . 0000 84 . 00000000 2447506 . 5542 . 0000 Soil and Rock Layering Information The soil profile is modelled using 2 layers Layer 1 is stiff clay without free water Distance from top of pile to top of layer = -24.000 in Distance from top of pil e to bottom of layer = 36 . 000 in Layer 2 is stiff clay without free water Distance from top of pile to top of layer = 36. 000 in Distance from top of pile to bottom of layer= 525.000 in (Depth of l owest layer extends 165 . 00 in below pile tip) Effective Unit Weight of Soil vs . Depth Distribution of effective unit weight of soil with depth is defined using 4 points Point Depth X Eff . Unit Weight No . in lbs/in**3 1 2 3 4 -24 . 00 36 . 00 36 . 00 525 . 00 . 06940 . 06940 . 06940 . 06940 Shear Strength of Soils Distribution of shear strength parameters . with depth defined using 4 points 3605000 . 3605000 . 3605000. Point Depth X Cohesion c Angle of Friction E50 or ROD No . in lbs/in ** 2 Deg. k_rm % ------------------------------1 24 . 000 13 . 89000 . 00 . 00500 . 0 2 36.000 13 . 89000 . 00 .00500 . 0 3 36 . 000 27 . 77000 . 00 . 00500 . 0 4 525 . 000 27 . 77000 . 00 .00500 . 0 158

PAGE 171

Notes : (1) Cohesion = uniaxial compressive strength for rock materials . (2) Values of E50 are reported for clay strata . ( 3 ) Default values will be generated for E50 when input values a r e 0 . ( 4 ) RQD and k _rm are reported only for weak rock strata . Loading Type Cyclic loading criteria was used for computation of p y curves Number of cycles of loading = 5. Pile head Loading and Pile head Fixity Conditions Number of loads specified = Load Case Number 1 Pile head boundary conditions are Shear and Slope (BC Type 2) Shear force at pile head = 244750 . 000 lbs Slope at pile head = . 000 in/in Axial load at pile head = 846200.000 lbs (Zero slope for this load indicates fixed-head condition) Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 1 Pile head boundary conditions are Shear and Slope (BC Type 2) Specified shear force at pile head = 244750 . 000 lbs Specified slope at pile head O .OOOE+OO in/in Spec i fied axial load at pile head = 846200.000 lbs ( Zero slope for this load indicates fixed-head conditions) Depth Deflect. X y in in Moment M lbs -in Shear v lbs Slope s Rad . Total Stress lbslin * * 2 Soil Res . p lbs/in Es* h F/L lbs/in 0.000 . 321838 1.7315E+07 3.600 . 321477 1 . 6439E+07 7 . 200 . 320428 1 .5571 E+07 10 . 800 . 318729 -1.4713E+07 14.400 .316415 1 . 3864E+07 18. 000 .313521 1.3024E+07 244750 . -7 . 7099E-17 4454 . 7766 727.4327 4068.4348 242106 . . 0001959 4271. 3554 -741. 5458 8304 . 0690 239412 . . 0003817 4089.8232 -755 . 2462 8485 . 1700 236669 . . 0005574 3910 . 2237 -768 . 5298 8680 . 4460 233879. -0007233 3732 . 5992 -781. 3920 8890 . 2698 231044 . -.0008793 3556.9909 -793 . 8277 9115 . 1094 1 5 9

PAGE 172

21. 600 . 310084 -1. 2195E+07 228164. -.0010257 3383.4387 805 . 8319 9355.5262 25 . 200 . 306136 1 . 1375E +07 225242 . . 0011625 3211 . 9813 -817 . 3988 9612 . 1746 28.800 . 301714 -1. 0566E+0 7 222280 . -.0012898 3042 . 6560 828.5231 9885 . 8027 32.400 . 296850 9766982. 219278 . . 0014078 2875.4992 839.1988 10177 . 2550 36 . 000 . 2915 7 8 -8978 558 . 215701 . . 0015166 2710 . 5455 -1147 . 7195 14170.4654 39 . 600 . 285930 8204692 . 210877 . -.0016163 2548 . 6375 1532.4564 19294 . 3666 43 . 200 . 279940 -7450396 . 205332. -.0017072 2390 . 8240 1548 . 3621 19911 . 7747 46 . 800 .273639 6715904 . 199730 . -.0017894 2237 . 1538 1563.4337 20568 . 5962 50.400 .267056 -6001436 . 194076. -.0018632 2087 . 6731 1577 . 6607 21267.3349 54 . 000 .260224 5307202 . 188373 . . 0019288 1942.4258 -1591 . 0326 22010 . 7598 57 . 600 . 253169 -4633 400. 182622 . . 0019865 1801.4533 1603 . 5384 22801 . 9300 61. 200 . 245921 -3980217 . 176829 . -.0020365 1664 . 7945 1615 . 1669 23644 . 2235 64 . 800 . 238506 3347825 . 170995 . . 0020790 1532.4858 1625 . 9064 24541 . 3703 68.400 . 230951 -2736387 . 16512 4 . -.0021144 1404 . 5609 1635 . 7452 25497.4903 72 . 000 . 223283 -2 146051 . 159219. -0021427 1281.0511 -1644.6712 26517 . 1373 75 . 600 . 215524 1576954 . 153284 . . 0021643 1161.9849 -1652 . 6718 27605.3490 79 . 200 . 207700 1029221 . 147322. . 0021794 1047 . 3882 1659 . 7345 28767 . 7049 82 . 800 .199832 -502960. 141336 . .0021883 937 . 2842 1665 . 8461 30010 . 392 7 86.400 . 191944 1728 . 0972 135329 . -.0021912 832.4166 1670 . 9933 31340.2851 90 . 000 . 184056 484760 . 129306 . .0021884 933.4765 1675 . 1623 32765 . 02 8 4 93 . 600 .176187 946066 . 123270 . . 0021801 1029 . 9905 1678.3391 34293 . 1449 97.200 . 168359 1385586 . 117224. . 0021666 1121.9468 -1680 . 5091 35934 . 1530 100 . 800 . 160588 1803278 . 111172 . . 0021481 1209 . 3362 1681.6574 37698 . 7054 10 4.400 . 152893 2199112 . 1 05118 . -.0021248 1292 . 1 524 1681.7685 39598 . 7523 1 08 . 000 . 145289 2573073 . 99065 . 2043 .0020971 1370 . 3923 1680 . 8265 41647 . 7319 111. 600 .137794 2925159 . 93017 . 8498 -0020652 1444 . 0556 1678 . 8149 43860 . 7952 115 . 200 . 130420 3255384 . 86979 . 6933 -.0020294 1513 . 1452 1675 . 7165 46255 . 0712 118 . 800 .1231 82 3563777. 8095 4 . 6795 . 0019898 1577 . 6670 1671 . 5134 48849.9825 122.400 . 116093 3850380 . 74946 . 8188 .0019467 1637 . 6302 -1666 . 1870 51667 . 6206 126 . 000 . 109166 4115254 . 68960 . 1904 -.0019005 1693 . 0470 1659 . 7177 54733.1969 129 . 600 .102410 4358473. 62998 . 9459 .0018513 1743 . 9331 1652 . 0849 58075 . 5841 133.200 .095836 4580126 . 57067 . 3127 . 0017995 1790 . 3073 1643 . 2669 61727 . 9733 136 . 800 . 0 8945 4 4780321 . 51169 . 5989 . 0017451 1832.1920 1633 . 2408 65728 . 6732 140.400 . 083271 4959180 . 45310 . 1980 . 0016886 1869 . 6128 1621 . 9 8 20 70122 . 0892 144 . 000 . 077296 5116843 . 39493 . 5948 . 0016301 1902 . 5989 -1609.4643 74959 . 9324 147 . 600 . 071534 5253466 . 3372 4 . 3722 . 0015700 1931 . 1831 1595 .6 594 80302 . 7199 151. 200 . 065992 5369223 . 28007 . 2190 -.0015083 1955.4019 1580.5368 86221 . 6552 154 . 800 . 060674 5464307 . 22346 . 9391 . 0014454 1975 . 2953 1564 . 0631 92801 . 0014 158.400 . 055585 5538928 . 16748.4624 -.0013816 1990 . 9074 -1546.2017 100141 . 162 . 000 .050727 5593314 . 11216 . 8579 . 0013170 2002 . 2860 1526.9119 108362 . 165 . 600 . 046103 5627713 . 5757 . 3492 . 0012518 2009.4830 1506.1485 117610. 169 . 200 . 041714 5642394 . 375.3337 . 0011864 2012 . 5544 1483 . 8601 128061 . 172 . 800 . 037560 5637644 . 4923.5937 .0011210 2011 . 5607 -1459 . 9885 139934. 176.400 . 033643 5613773 . -10133 . 6124 . 0010557 2006 . 5665 1434.4663 153498 . 180.000 .029960 5571114 . 15248 . 6386 . 0009908 1997 . 6413 1407 . 2149 169094. 183 . 600 . 026509 5510019 . 20262 . 2797 -.0009264 1984 . 8592 -1378 . 1412 187154 . 187.200 .023289 5430870 . -25167 . 7736 . 0008630 196 8 . 2995 -1347.1331 208238 . 190 . 800 . 020296 5334069 . 29957 . 9099 . 0008005 1948.0469 -1314 . 0537 233081 . 194.400 . 017526 5220050.-34624 . 9239 . 0007392 1924.1919 -1278 . 7319 262668 . 198.000 . 014974 5089274. 39160 . 3520 -.0006794 1896.8309 -1240 . 9503 298355 . 201 . 600 . 012634 4942235 . -43554 . 8270 . 0006212 1866.0675 -1200.4247 342055 . 205 . 200 . 010501 4779463.-47797 . 7832 . 0005648 1832.0125 1156 . 7732 396568 . 208 . 800 . 008568 4601531 . -518 77 . 0120 . 0005103 1794.7857 -1109.4650 466172 . 212.400 . 006827 4409058.-55777 . 9625 . 0004580 1754 . 5165 1057.7297 557774. 216 . 000 . 005270 4202721.-59482 .5725 -.0004080 1711 . 3466 1000 . 3870 683365 . 160

PAGE 173

219 . 600 .003889 3983270 . 62967 . 1538 -.00036 05 1665.4332 -935.4915 865981. 223.200 . 002674 3751554 . -66198.0985 -.000315 6 1616.9537 -859 .4778 1156992 . 226 . 800 . 001616 3508566 . -69121 . 4267 . 0002735 1566 . 1159 -764 . 5935 1702923 . 230.400 . 000705 3255546.-71709. 1171 . 0002342 1513 . 1791 673 . 0123 3436423 . 234 . 000 -7 . 02E-05 2993688.-72798 . 8378 -.0001980 1458.3933 67 . 6119 3465913 . 237 . 600 -.000720 2732600 . -71525.2623 -.0001647 1403 . 7686 639 . 9301 3197831. 241. 200 -.001256 2479710 . -69037.8672 -.000 1345 1350 . 8590 741. 9561 2125936 . 244 . 800 -.001689 2236347 . -66252 . 0575 -.0001071 1299 . 9427 805 . 7160 1717549 . 248.400 -.002028 2003348 . -63270.8952 -8.2521E-05 1251.1947 850.4853 1509945 . 252 . 000 . 002283 1781299. -6 0150 . 0355 6 . 0557E 05 1204 . 7378 883.3256 1392927 . 255 . 600 -.002464 1570636 . -56926 . 1935 -4 . 1104E-05 1160.6630 907 . 6977 1326326 . 259 . 200 -.002579 1371681 . -53626 . 2929 -2.4028E-05 1119 . 0377 925 . 5804 1292064. 262 . 800 . 002637 1184673. -5027 1.4520 -9.1916E -06 1079 . 9120 938 . 2201 1280978 . 266.400 .002645 1009783.-46879 . 0345 3 . 5441E-06 1043 . 3214 946.4563 1288149. 270 . 000 -.002611 847123 . 43463 . 8262 1.4321E-05 1009.2897 950.8817 1310952. 273 . 600 . 002542 696756 . -40038 . 7649 2 . 3281 E-05 977 .8301 951. 9301 1348153 . 277 . 200 -.002444 558702 . -36615.4225 3 . 0567E-05 948 . 9464 949 . 9268 1399472 . 280.800 -.002322 432939 . -33204 . 3400 3 . 6322E-05 922 . 6343 945 . 1190 1465379 . 284.400 . 002182 319409 . -29815 . 2738 4 . 0688E 05 898 . 8817 937 . 6956 1547019 . 288 . 000 -.002029 218021.-26457. 3856 4 . 3808E-05 877 . 6693 927 .7978 1646233 . 291. 600 .001867 128649 . -23 139.4017 4.5819E-05 858 . 9710 915 . 5266 1765668 . 295 . 200 -.001699 51138 .0251 19869 . 7556 4 . 6863E-05 842 . 7541 900 . 9435 1908983 . 298 . 800 .001529 -14698.6444-16656.7323 4 . 7074E-05 835 . 1303 884 . 0694 2081192 . 302.400 .001360 -69077.2542-13508.6 294 4 . 6588E-05 846 . 5074 864 . 8766 2289239 . 306 . 000 . 001194 -112245 . -10433 . 9579 4 . 5536E 05 855.5388 843 . 2743 2542942 . 309 . 600 . 001032 -144479 . -7441 . 7130 4.4046E -0 5 862 . 2829 819 . 0840 2856646 . 313.200 -.000877 -166093. -4541. 7713 4 . 2243E 05 866 . 8050 791. 9948 3252254 . 316 . 800 . 000728 -177 437 . -1745 . 5070 4 . 0250E-05 869 . 1784 761.4854 3765214 . 320.400 -.000587 -178 906. 849.8909 3.8182E-05 869.4857 680.4023 4173676 . 324 . 000 -.000453 -171551. 3026 . 9773 3 . 6148E-05 867 . 9468 529.0901 4203166. 327.600 -.000327 -157332. 4670 . 5669 3.4239E-05 864 . 9720 384 . 0153 4232657 . 331.200 .000207 -138131. 5802.1654 3 . 2524E-05 860.9548 244.6506 4262147 . 334 . 800 9 . 24E-05 -115755 . 6440 . 8988 3 . 1051 E 05 856 . 2732 110.2012 4291637. 338.400 1 . 69E-05 -9 1945 . 9600 6605 . 0776 3.0237E-05 581. 6640 -18 . 9908 4039801 . 342 . 000 . 000125 68382.4174 6336 . 2438 3 . 0044E 05 396 . 3283 -130.3613 3746551 . 345 . 600 .000233-46508. 0493 5689 . 8162 2 . 9971 E-05 300 . 5734 -228.7652 3530974 . 349 . 200 . 000341 -27598 . 3407 4704 . 0200 2 . 9938E-05 241.9967 -318.8994 3366183. 352 . 800 . 000449 -12821. 5072 3403 . 7626 2 . 9924E-05 202.4791 -403.4659 3236417 . 356.400 . 000557 -3273 . 5689 1806.0832 2 . 9920E 05 174.0589 -484.1338 3131826 . 360 . 000 .000664 0.0000 0 . 0000 2 . 9919E 05 152 . 6886 -561. 9885 1522968 . Output Verification : Computed forces and moments are within specified convergence limits . Output Summary for Load Case No. 1 : Pile head deflection = .32183847 in Computed slope at pile head = 7 . 709882E-17 Maximum bending moment = 17315401 .1bsin Maximum shearforce = 244750 . 00000 lbs Depth of max imum bending moment = 0 . 00000 in Depth of maximum shear force = 0 . 00000 in Number of iterations = 24 161

PAGE 174

Number of zero deflection points = 2 Summary of Pile Response (s) Definition of Symbols for Pile-Head Loading Conditions : Type 1 = Shear and Moment , y = pile-head displacment in Type 2 = Shear and Slope , M = Pile-head Moment lbs-in Type 3 = Shear and Rot. Stiffness , V = Pile-head Shear Force lbs Type 4 = Deflection and Moment , S = P ile-head Slope , radians Type 5 = Deflection and Slope , R = Rot. Stiffness of P ile-head inlbs/rad Load Pile-Head Pile-Head Type Condition Condition 1 2 lbs Axial Pile Head Maximum Maximum Load Deflection Moment Shear in in-lbs lbs 2 V= 2.45E+05 S= 0 . 000 846200 . . 3218385-1 . 7315E+07 244750 . The analysis ended normally . 162

PAGE 175

APPENDIX H. L-PILE CALCULATIO S , FIXED HEAD, 5% REINFORCING 163

PAGE 176

La!eral D efl ect i o n (in ) 0 . 02 0 .04 0.06 0 08 0 . 1 0 12 014 016 018 0 . 2 0 .22 0.2 4 0 . 26 0 .28 I I I I o I I I o 1 1 o e S" s .. 0 ''' ''' • •••b;r;Zfii <•••••••r••••L r••••••••••l•••••••••••• /i----/"'':''"'""; ...... :---------:-------+-------f-------+------+--------j--------+--------j--------+--------:--------F : , : : : : : : : : : : : : ... : : : : : : : : : Case2 : e" • • • • • • • • • • • Cftse 3 • --.-:---------:-------+-------:---.-----:--------i---------:--------: ---------:-------------!---------: : ; ; : : ; ; ; Case Ill 0 N : : : : : : : : : 5 . . . . . . . . . . . . . ' ' . . N o I I o I I o I I o o I o o N • • • •. • •-' • • •• • • • • .,. • • • • • • •• ' • • • • • • • • "'" • • • •. • • • r • •••• •..... • • • • • • • ' • • •. •. • • .,. • • • • • • • ., • • • • • •-• • • • • • • • • .,. • • • • • • •• •. • • • • • • • . , . • • • • • • • • • • • • • • • • • • ' o o o I I o I o o I I o o o o o I I o I o o o I o o I I I I I I I < < > I < I o I 0 I I I I I I o o I o o ;:: ' ' ' ' ' . ' . . . . . . . -o--T-----..,--------r--..,-----r------..,--------r-----,•----r---,--•---,---r------' . . . . . . . . . . 0 I I I > > > o I o > . . ' . . . . . ' . .
PAGE 177

She01 For c e ( kips) .... : :::::r:::::[::::::r:::::1;.2 .. ---...!-----+------i-----0-------!-------i-------i------+-----l-------;------+------;------+------i-------i-------i. ______ j _______ ::+---_). ____ __; _ _ "' N I I I I I o I o I : : : : • : : Csse3 : I I I I t I o o o 0 -----)-. ---. ••• --:-.--.-. •••• -.--••.• --:-•. -. -----)---.-. CI!Se 4 ! ! ! ! ; ! : : ! ! , ---.... -----_._-----J------.... -----J------.... ----J------.... ---.--J--------------.-------------I I I I I I I I I I I I o I ' ' . . . . . . ' ' ' . ' ' o I o I I I I I I I I o o o I I I I o o I o I o o I I o o o o o I I o I o I o I o -----.... -----... -----.... -----.... -----.... -----.. ------------.--------------.-. I I I I I I I I 0 I I I I ' ' . . ' ' . ' ' ' ' . ' I o o I I I I I I I I I I I I f o o I o I o I o I I I I I I I I I I I I I I I ----.... -----.. -----.... -----... -----... -.--.-.. -----.... -.----.-.-....... .. -.. .. -. --...... . -----. -------. .. . . . ' ' . ' ' ' . ' ' ' I I I I I I I I I I I I t ' ' ' . ' . . ' . . . ' ' I I I I I I I o I I I I I I I I I I I I I I I I I I I I ............................................................................................. •.---------------------. ' ' ' ' ' ' ' ' . ' . ' ' I I I I I I I I I I I I I I I 0 0 0 0 0 0 0 0 I I I I I 0 I I I I I I 0 0 1 ..... ---. ..... -.. -----. --. ----.... -. ..... --.-. ... -.-:.-----.. .. -----.--:----. -:------: -• 0 I I I I 0 I I 0 0 0 I I 0 I I 0 I I I 0 0 I I I 0 I 0 I I I I I I I 0 0 0 Figure H.3 Shear of Caisson with Fixed Head , 5% Reinforcing la1eml Oe O ectiou (in ) om 0 06 0 08 0 . 1 0 .12 0 .14 016 0 .18 0 . 2 0 . 22 0 . 24 0 . 26 0 . 28 ' ' ' ' ' ' ' . ' . ' . ' . . . . ' . . ' . . . :::: g "i c _'_/__ ' -... .. -. ;_ .... --. . :------... ... ---. ----.--; __ ...... -, _ _ . ---... ' -----.------. ___ ;_ ... -----; __ ----... ' ---.----.:----... --. ; ; ; i : ; i ; ; ; ! Cese 1 ! ; ---...... ; .......... ; ......... .......... ; ..... Ce.-;-;2--t---------:----: : : ; ' ' : : : : : Con-e 3 : : 0 N ........ -i..... __ . ... . .... ; ......... . . ...... .. ___ .. _ _ ... _ . .. ... _ ..... ;. _ ...... ...... _. _ ..... _ Cese 4 _ •••• _ •• __ _ . . . . . ' . . . . . . . ' . . ' . ' . . ' . ' . . N N --... --... ---.. .. . . --! .. ---... --..... ........ .. ----. . 1. ___ ... -l-...... ..... _. _ ........ L. __ .... _ : ...... __ ..... __ . .. _ ' ' ' . ' ' . ' ' -.-----.. ;. -------.. -: ... ---. ---.. ----.--. ... -.: -----------:-.---. -. ... ---:-----.--. -----. . . . . ' ' . . . . . . . . . . . . . . ' . . . . . "' N a> N :: :::::::: ::::::::::::::::::::::::::::::: t:::::::: :r::::::::;::::::::: 1:::::::::::::::::: :::::::::::;:: ::::::: 1::::::::: :r:::: : : : : : : : : : : : 0 . ' . . . . ' ' ' . M Figure H.4 Deflection of Caisson with Fixed Head , Uplift, 5 % Reinforcin g 165

PAGE 178

Unf actored Bending M o m e nt p n -klps) -18EA 1 6E 4 -2 000 0 2000 4000 6000 . . . . . . . . ' . . . --------r------------r-------r--------y--------r---------------... -----------------. . . . ' . . . . 0 I o I I I 0 I I 0 o o I I •••••••••-.•••••••••r••••••••..,••••••••••r••••••••••-,• ••••••••••r••••••••,•••••••••,--,•••••• I I I I 0 I o I I o o o o o . ' . . ' . . . . . . ' . . . . . . . g Q. .. t ' ' ' ' • --------.... ---------... ---------.... ----------.. -------.--.-------.--... ------.--.. --I I I I o I o o 0 I o I o I o I o o I I o o o I o I I I o o o o o I o I o o . . ' ' . . . . . . . . . ' o o I o o o o I ......... .., ........... , .......... .., ........... , .......... ., ........... , .......... , ........... ,. ........ . ' ' t ' ' ' I ' o I o o I I I o 0 o o I I . . . . . . . . . . . . . . ' ' . ' "' N . . ' . . . . . ....... --4.-.. -----_ ... -.---.. . .,_ .. ---.-.. .. .. ...... -.-........ ... -.. --.. --.-...... ------------.---.... --------.... ---.. .. -.. . . . . . . . . ' . ' ' . ' ' . . ' ' ' ' ' . ' . . . . . ' . . . . . . . . . . g . . Figure H.S B e nding Moment of Cai sso n with Fixed head , Uplift, 5% Rein forcing 0 N N N "' N S hear Force (kips} . . ' . . ' ------.. . . .. --. ... ----. -----.: .. ----.:.. --.. . ' . . CD ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' N ----r-----r -----r-----r ------r-----:-----r-----r ------r ----r---r ------;-----T-----: T ----T--Figure H.6 Shear of Caisson w ith Fixe d Head , U plift , 5% R e inforcin g 166

PAGE 179

LPile output for caisson for fixed head , 5 % reinforcing: ============================================================================== LPILE Plus for Windows , Version 5 . 0 (5. 0 . 26) Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p y Method (c) 1985-2006 by Ensoft , Inc . All Rights Reserved ============================================================================== Name of input data file: Name of output file : Name of plot output file : Name of runtime file : Fixed 5percent.lpd Fixed 5percent.lpo Fixed 5percent.lpp Fixed 5percent.lpr Time and Date of Analysis Date : March 31, 2009 Time: 18 : 12:34 Problem Title Design of Caissons for CN Leach Tanks Program Options Units Used in ComputationsUS Customary Units : Inches , Pounds Basic Program Options: Analysis Type 1: Computation of Lateral Pile Response Using User -s pecified Constant El Computation Options: Only internally-generated p y curves used in analysis Analysis does not use p-y multipliers (individual pile or shaft action only) Analysis assumes no shear resistance at pile tip Analysis for fixed-length pile or shaft only -No computation of foundation stiffness matrix elements Output pile response for full length of pile Analysis assumes no soil movements acting on pile -No additional p-y curves to be computed at user-specified depths Solution Control Parameters : Number of pile increments 100 167

PAGE 180

Maximum number of iterations allowed = 100 Deflection tolerance for convergence = 1 . 0000E-05 in Maximum allowable deflection = 1 . 0000E+02 in Printing Options : Values of pile head deflect ion, bending moment , shear force, and soil reaction are printed for full length of pile. Printing Increment (spacing of output points ) = 1 Pile Structural Properties and Geometry Pile Length = 360 .00 in Depth of ground surface below top of pile = Slope angle of ground surface 24 . 00 in .00 deg . Structural properties of pile defined using 3 points Point Depth Pile Moment of Pile Modulus of 1 2 3 X Diameter Inertia Area Elasticity in i n in**4 Sq.in lbs/Sq .in 0 . 0000 36 . 00000000 99 7 27 . 0000 1017 . 0000 336 . 0000 36. 00000000 99727 . 0000 1017.0000 360 . 0000 84 . 00000000 2461200 . 5542 . 0000 Soi l and Rock Layer ing Information The soi l profile i s modelled using 2 layers Layer 1 is stiff clay without free water Distance from top of pil e to top of layer = -24. 000 in Distance from top of pile to bottom of layer = 36. 000 in Layer 2 is stiff clay without free water Distance from top of pile to top of layer 36. 000 in Distance from top of pile to bottom of layer= 525 . 000 in ( Depth of lowest layer extends 165 . 00 in below pile tip) Effective Unit Weight of Soil vs. Depth D i stribution of effective unit wei ght of soil with depth is defined using 4 points Point Depth X Eff . Unit Weight No. in lbs/in* * 3 1 2 24 .00 36. 00 . 06944 .06944 168 3605000 . 3605000 . 3605000 .

PAGE 181

3 4 36 . 00 525 . 00 . 06944 . 06944 Shear Strength of Soils Distribution of shear strength parameters with depth defined using 4 points Point Depth X Cohesion c Angle of Friction E50 or RQD No . in lbs/in ** 2 Deg . k_rm % ---------------------------1 24 . 000 13 . 88000 .00 . 00500 . 0 2 36 . 000 13 . 88000 . 00 . 00500 . 0 3 36 . 000 27 . 77000 . 00 . 00500 . 0 4 525 . 000 27 . 77000 . 00 . 00500 . 0 Notes : (1) Cohesion = uniaxial compressive strength for rock materials . ( 2 ) Values of E50 are reported for clay strata . ( 3 ) Default values will be generated for E50 when i nput values are 0 . ( 4 ) RQD and k_rm are reported only for weak rock strata . Loading Type Cyclic loading criteria was used for computation of p y curves Number of cycles of loading = 5 . Pile-head Loading and Pile head Fix i ty Conditions Number of l o ads specified = 5 Load Case Number 1 Pile-head boundary conditions are Shear and Slope (BC Type 2) Shear force at pile head = 3750 . 000 lbs Slope at pile head = . 000 in/in Axial load at pile head = 296800 . 000 lbs ( Zero slope for this load indicates fixed head condition) Load C a se Num b e r 2 Pil e head b oundary con d i tions are Shear and Slope (BC Type 2) Shear force at pile head = 98000 . 000 lbs Slope at p i le head . 000 in/in Axial load at pile head 788 960 . 000 lbs 169

PAGE 182

(Zero slope for this load indicates fixed head condition) Load Case Number 3 Pile-head boundary conditions are Shear and Slope (BC Type 2 ) Shear force at pile head = 147000 . 000 lbs Slope at pile head = .00 0 in/in Axial load at pile head 788960.000 lbs (Zero slope for this load indicates fixed head condition) Load Case Number 4 Pile head boundary conditions are Shear and Slope (BC Type 2) Shear force at pile head = 196000 . 000 lbs Slope at pile head = . 000 in/in Axial load at pile head 788960.000 lbs (Zero slope for this load indicates fixed-head condition) Load Case Number 5 Pile head boundary conditions are Shear and Slope (BC Type 2) Shear force at pile head = 244750.000 lbs Slope at pile head = . 000 in/in Axial load at pile head = 788960 . 000 lbs (Zero slope for this load indicates fixed-head condition) Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 1 Pile head boundary condit i ons are Shear and Slope (BC Type 2) Specified shear force at pile head = 3750 . 000 lbs Specified slope at pile head O .OOOE+OO in/in Specified axial load at pile head = 296800 . 000 lbs ( Zero slope for this load indicates fixed-head conditions) Depth Deflect. Moment X y M V in in lbs-in lbs Shear Slope S Stress Rad. lbs/in **2 Total p lbs/in Soil Res. F/L lbs/in Es*h 0 . 000 . 000259-94237 . 0909 3750 . 0000 -5 . 2704E 20 308 . 8479 -62 . 1204 3 . 600 . 00025 7 -81139.1267 3524 . 9118 -8. 7806E-07 306.4838 -62.9286 7 . 200 . 000253 -68855. 8496 3298 .2541 1.6290E -06 304.2667 -62.9923 10. 800 . 000246 57388 . 2156 3072 .5801 -2.2611 E-06 302 . 1969 -62.3822 14.400 . 000237-46728 .4411 2850 . 1857 2.7824E 06 300.2729 61.1702 18. 000 . 000226 -3686 0 . 9326 2633 . 1087 -3 . 2009E-06 298.4919 -59.4281 21. 600 . 000214 -27763.2185 2423 . 1286 3 . 5245E -06 296 . 8498 -57.2275 25 . 200 . 000200 -19406 . 8753 2221. 7692 3 . 7606E-06 295 . 3415 54.6388 28. 800 . 000186-11758 . 4436 2030 .3025-3. 9167E-06 293 .9611 51.7316 170 431399 . 879790 . 896782 . 913773 . 930765 . 947757 . 964748 . 981740. 998732.

PAGE 183

32.400 . 000172 -4780 . 3274 1849 .7531 -3. 9995E -06 292 . 7016 48 . 5737 1015723 . 36. 000 . 000158 1568 . 3254 1652.2754 -4 . 0156E-06 292 . 1218 -61. 1362 1395857. 39. 600 . 000143 7124 . 6365 1408 . 0558 -3. 9720E-06 293 . 1247 -74. 5414 1873341. 43 . 200 . 000129 11714 . 8149 1151. 0768 -3. 8777E-06 293.9532 -68 . 2247 1 902834 . 46 . 800 . 000115 15420.6759 916 . 8479 -3 .7419E -06 294 .6221 -61. 9025 1932327 . 50.400 . 000102 18324.1160 705 . 2393 3.5729E 06 295 .1461 -55 . 6579 1961820 . 54. 000 8 . 96E 05 20506 . 0337 515 . 8425 -3. 3785E-06 295 . 5399 -49 . 5626 1991312 . 57.600 7 . 78E 05 22045.4014 348 . 0116 -3. 1654E-06 295 . 8178 -43 . 6768 2020805. 61. 200 6.68E-05 23018.4817 200 . 9025 2 . 9398E-06 295 . 9934 -38 . 0505 2050298. 64 . 800 5 . 66E-05 23498 . 1817 73. 5098 -2. 7069E-06 296 . 0800 -32. 7233 2079790 . 68.400 4 . 73E 05 23553 . 5366 -35.2986 2.4713E-06 296 . 0900 27 . 7258 2109283 . 72.000 3 . 88E -05 23249.3132 -126.7491 2.2370E -06 296 .0351 23 . 0800 2138776 . 75. 600 3 . 12E-05 22645 . 7238 202 . 1335 -2. 0072E -06 295.9261 -18 . 8002 2168268 . 79. 200 2.44E-05 21798.2412 -262 . 7826 1 .7847E 06 295 . 7732 14 . 8937 2197761 . 82. 800 1 . 84E 05 20757 . 5030 310 . 0422 1 . 5717E-06 295.5853 -11.361 6 2227254. 86.400 1 . 31E 05 19569 . 2960 345 . 2528 1 . 3697E-06 295 . 3709 -8 . 1998 2256747. 90. 000 8.50E 06 18274 . 6102 -369 . 7313 -1. 1803E-06 295.1372 -5 . 3994 2286239 . 93. 600 4 . 58E-06 16909 . 7527 384.7561 -1. 0041E-06 294 . 8908 2 . 9477 2315732 . 97. 200 1 . 27E 06 15506 . 5117 -391. 5542 -8.4181 E-07 294.6376 . 8289606 2345225 . 100 . 800 1.48E 06 14092 . 3614 -391. 2908 6 . 9362E-07 294 . 3823 . 9753166 2374717 . 104.400 -3. 72E-06 12690 . 7005 385 . 0615 -5 . 5952E-07 294.1293 2.4854 2404210 . 108.000 5 .51 E 06 11321. 1146 373 . 8864 -4 . 3930E -07 293 .8821 3 . 7230 2433703 . 111. 600 6 . 88E-06 9999 . 6572 -358 . 7060 -3 . 3256E 07 293 . 6436 4 . 7106 2463196 . 115 . 200 7 . 90E-06 8739 . 1417 -340 . 3790 2 . 3874E-07 293.4161 5.4 711 2492688. 118 . 800 8 . 60E 06 7549.4384 319 . 6813 1 . 5718E 07 293 . 2014 6 . 0276 2522181 . 122.400 -9. 03E-06 6437.7724 -297 . 3066 -8. 7152E-08 293.0007 6.4027 2551674. 126 . 000 9.23E 06 5409 . 0170 273 . 8684 -2. 7839E-08 292 . 8150 6 . 6185 2581166 . 129 . 600 9.23E 06 4465.9796 249 .9021 2 . 1603E -08 292 . 6448 6 .6961 2610659 . 133.200 9 . 08E 06 3609 . 6758 -225 . 8689 6 . 2035E-08 292.4903 6 . 6557 2640152. 136 . 800 8 . 79E-06 2839.5911 202.1595 9.4325E-08 292 . 3513 6.5162 2669645. 140.400 8.40E -06 2153 . 9256 179 .09911. 1933E-07 292 . 2275 6 . 2952 2699137 . 144.000 7 . 93E -06 1549 . 8226 156.9516 1 . 3787E-07 292 . 1185 6 . 0089 2728630 . 147 .600 -7.40E06 1023 .5791 -135 . 9255 1.5075E-07 292.0235 5 . 6722 2758123 . 151.200 6 . 84E 06 570 . 8367 -116. 1785 1 . 5874E 07 291 . 9418 5 . 2984 2787615. 154 . 800 -6. 26E-06 186 . 7549 -97.8229 1.6253E 07 291.8724 4.8992 2817108 . 158.400 5 . 67E 06 133 . 8355 80 .9311 1 . 6280E-07 291. 8629 4.4852 2846601 . 162 . 000 5 . 09E 06 396.2969 -65. 5402 1 . 6014E-07 291. 9103 4 . 0653 2876094 . 165 . 600 -4. 52E-06 606.0673 -51. 6572 1.5512E-07 291.9481 3 . 6475 2905586 . 169 . 200 3 . 97E 06 768 . 5600 -39 .2631 1.4824E 07 291. 9775 3 .2381 2935079. 172 . 800 3.45E-06 -889 . 0784 -28. 3178 1 . 3994E-07 291. 9992 2 . 8426 2964572 . 176.400 2 . 96E 06 972 . 7474 -18 . 7638 1 . 3062E -07 292 . 0143 2.4652 2994064 . 180 . 000 2.51E-06 -1024.4568 -10 . 5297 1 . 2062E-07 292 . 0236 2 . 1093 3023557. 183 . 600 2 . 10E-06 -1048 .8191 3 . 5339 1 . 1 024E-07 292 . 0280 1.7773 3053050 . 187.200 1.72E-06 1050 . 1368 2.3126 9.9730E-08 292 . 0283 1.4708 3082543 . 190.800 1 . 38E-06 -1032 . 3818 7.1035 8.9304E-08 292.0251 1 . 1909 3112035 . 194.400 1 . 07E 06 -999 .1821 10. 9352 7 . 9132E-08 292 .0191 .9378403 3141528 . 198.000 8 . 08E-07 953 . 8173 13. 9042 6 . 9354E 08 292 . 0109 . 7115784 3171021 . 201. 600 5 . 75E-07 -899 . 2202 16. 1057 6 . 0076E-08 292 . 0010 . 5115121 3200513 . 205 . 200 3 . 75E 07 837 . 9843 17. 6326 5 . 1379E -08 291. 9900 . 3367206 3230006 . 208 . 800 2 . 05E-07 -772 . 3756 18. 5735 4 . 3316E -08 291.9781 . 1860019 3259499 . 212.400 -6 . 34E-08 -704 . 3480 19. 0125 3 . 5922E-08 291. 9659 . 0579376 3288992 . 216 . 000 5.32E -08 635.5620 19. 0285 2 . 9214E-08 291. 9535 . 0490484 3318484 . 219 . 600 1.47E 07 567.4049 18. 6943 2 . 3191E-08 291. 9412 -.1366382 3347977. 223 . 200 2 . 20E-07 -501.0125 18. 0765 1 . 7842E-08 291. 9292 .2065737 3377470 . 226.800 2.75E-07 -437.2920 17. 2356 1 . 3144E-08 291. 9177 . 2606173 3406962 . 171

PAGE 184

230.400 3 . 15E 07 234 . 000 3.41 E 07 237.600 3 . 55E-07 241.2 00 3 . 60E-07 244 . 800 3 . 56E 07 248.400 3.47E-07 252 . 000 3 . 32E-07 255 . 600 3 . 13E-07 259.200 2 . 92E 07 262 . 800 2.69E-07 266.400 2.45E 07 270 . 000 2 .21 E 07 273.600 1 . 97E-07 277 . 200 1 . 74E 07 280 . 800 1 .51 E 07 284.400 1 . 30E 07 288 . 000 1.1 OE07 291. 600 9 . 22E 08 295 . 200 7 . 56E 08 298 . 800 6 . 05E 08 302.40 0 4. 70E 08 306 . 000 3 . 50E 08 309 . 600 2.44E-08 313 . 200 1.51E 08 316 . 800 6 . 89E 09 320.400 -2 . 54E-10 324 . 000 -6 . 50E 09 327 . 600 -1. 20E 08 331. 200 -1. 68E-08 334 . 800 -2 .11 E-08 338.400 -2 .51 E 08 342 . 000 -2 . 89E 08 345 . 600 -3 . 27E-08 349 . 20 0 -3 . 65E 08 352.800 -4 . 03E-08 356.400 -4.40E 08 360 . 000 -4 . 78E-08 Output Verification : -376 . 9444 16. 2255 9 . 0672E-09 291.9068 . 3005178 3436455 . 320.4874 15 . 0942 5.5753E 09 291.8966 -.3279821 3465948. -268 . 2777 13 . 8835 2 . 6275E-09 291. 8872 . 3446524 3495441. -220.5318 12.6294 1 . 8018E-1 0 291. 8785 -.3520875 3524933 . -177 . 3466 11. 3625-1.8119E-09 291. 8708 . 3517493 3554426 . -138 . 7182 10 . 1083 -3 . 3943E-09 291. 8638 . 3449920 3583919 . -104 . 5594 8 . 8878 4 . 6124E 09 291. 8576 . 3330562 3613411 . -74 . 7158 7.7176 -5 . 5099E 09 291. 8522 . 3170652 3642904 . 48 . 9807 6 . 6105 -6 . 1293E-09 291. 8476 -.2980236 3672397 . -27 .1074 5 . 5757 6 . 5102E 09 291. 8436 .2768193 3701890 . -8 . 8214 4 . 6199 -6.6901 E 09 291. 8403 . 2542262 3731382 . 6 . 1699 3 .7466-6. 7034E 09 291. 8399 . 2309088 3760875 . 18 .1686 2 . 9576 -6 . 5815E 09 291. 8420 -.2074284 3790368 . 27.4789 2.2526 -6 . 3530E-09 291. 8437 . 1842494 3819860 . 34.4009 1 .6298-6. 0432E 09 291. 8450 -.1617467 3849353 . 39 . 2264 1.0863 -5 . 6745E 09 291.8458 . 1402136 3878846 . 42 . 2342 . 6181262 5 . 2667E 09 291. 8464 -.1198693 3908338 . 43 . 6881 . 2208005 -4 . 8365E-09 291. 8466 . 1008672 3937831 . 43 . 8343 -.1107050 4 . 3983E-09 291.8467 . 0833025 3967324. 42 . 9004 .3816453 3 . 9640E-09 291.8465 . 0672198 3996817. 41. 0949 . 5973574 -3 . 5435E-09 291. 8462 . 0526203 4026309. 38. 6070 -.7631172-3.1444E 09 291.8457 . 0394685 4055802 . 35 . 6072 -.8840191 2 . 7729E09 291. 8452 -.0276992 4085295 . 32.2480 . 9648791 2.4331E 09 291. 8446 .0172230 4114787 . 28 . 6653 -1. 0102 2 . 1282E 09 291. 8439 . 0079320 4144280 . 24.9794 -1. 0239 -1. 8596E-09 291. 8433 .0002950 4173773 . 2 1 . 2971 -1.0097 -1.6279E 09 291. 8426 . 0075877 4203266. 17.7130 -.9707136 -1.4326E-09 291. 8419 . 0140800 4232758. 14 . 3111 -.9095386 1.2722E 09 291. 8413 . 0199061 4262251 . 11.1670 . 8283540-1 . 1447E 09 291. 8408 . 0251964 4291744 . 8 . 3494 -.7323907 1 . 0763E 09 201.9740 .0281165 4039924 . 5 . 8961 -.6276695 -1. 0597E 09 138.1592 . 0300619 3746692 . 3 . 8324 . 5158516 -1. 0536E 09 104.9877 . 0320591 3531129 . 2 . 1842 -.3967587 1 . 0510E-09 84 . 6610 .0341036 3366350. .9779939 . 2702336 -1. 0499E 09 70.9284 .0361881 3236594 . .2407730 -.1361440 1.0496E 09 61. 0292 . 0383062 3132011 . 0 . 0000 0 . 0000 -1.0495E-09 53 . 554 7 . 0404527 1523064 . Computed forces and moments are within specified convergence limits . Output Summary for Load Case No. 1 : P i le-head deflection = .00025920 in Computed slope at pile head = -5 . 270427E-20 Maximum bending moment = -94237 . 09087 lbs-in Maximum shear force = 3750 . 00000 lbs Depth of maximum bending moment = 0 . 00000 in Depth of maximum shear force 0 . 00000 in Number of iterations = 5 Number of zero deflection points = 3 172

PAGE 185

Computed Values of Load Distribution and Deflection for Latera l Loading for Load Case Number 2 Pile-head boundary conditions are Shear and Slope (BC Type 2) Specified shear force at pile head = 98000.000 lbs Specified slop e at pile head O.OOOE+OO in/in Specified axial load at pil e head = 788960.000 lbs ( Zero slope for this load indicates fixed-head conditions) Depth Deflect. X y M in in Moment v lbs lbs -in Shear Slope Total S Stress p Rad. lbslin**2 lbs/in Soil Res . F/L lbs/in Es* h 0 . 000 .045170 5126317 . 98000 . 0000 6 . 7461E-18 1701.0348 -444 . 9834 17732 . 1756 3 . 600 .045078 4776327 . 96382 . 7034 -4 . 9580E-05 1637 . 8643 -453.5 147 36218 . 3614 7 . 200 . 044813 4432079. 94735 . 5078 -9. 5684E 05 1575 .7301 -461. 5940 37081 . 2289 10 . 800 . 044389 4093688 . 93060 . 0373 -.000138 4 1514 . 6528 -469 . 2230 38054.4315 14.400 . 043817 -3761261 . 91357 . 9129 . 0001777 1454 . 6522 -476.4017 39140 . 9348 18 . 000 . 043110 3434902 . 89630.7573 .0002137 1395 . 7467 -483 . 1292 40345 . 1042 21. 600 .042278 3114706 . 87880 . 1987 .0002465 1337.9536 -489.4034 41672 . 6664 25 . 20 0 .041335 -2800764. 86107 . 8738 .0002761 1281. 2894 495.2215 43130 . 7137 28. 800 .0 40290 2493160 . 84315.4306 -.0003026 1225.7692 500 . 5803 44727.7433 32.400 .039156 2191973 . 82504 . 529 7 . 0003261 117 1.4072 505.4758 46473 . 7266 36 . 000 . 037942 1897275 . 80354.1 032 . 0003466 1118.2163 689.2055 65392.4997 39 . 600 . 036660 -1611455 . 77462.8372 . 0003641 1066 . 6279 917 . 0534 90053 . 3313 43 . 200 . 035320 1337474 . 74150 . 9877 -.0 003789 1017 . 1763 -922.8630 94061.8099 46 . 800 .033932 1075416 . 70819 . 7533 -.0003910 969 . 8766 -927 . 8228 98436 . 0680 50.400 . 032505 825351 . 67472 . 2088 .0004005 924.7418 -931.9241 103211 . 54. 000 . 031049 587341 . 64111.4624 . 0004076 881.7826 935.1572 108429 . 57 . 600 . 029571 -36 1433 . 60740.6588 -.0004123 841. 0080 -937 . 5114 114134 . 61. 200 . 028080 -147666 . 57362.9822 .0004149 802.4245 938.9756 120382 . 64 . 800 . 026584 53936 . 8068 53981 . 6591 . 0004153 785 .5071 -939 . 5373 127233 . 68.400 .025089 243361. 50599 . 9612 -.0004139 819 . 6969 939 . 1837 134760 . 72. 000 . 02 3604 42060 7 . 47221 .2091 . 0004105 851. 6885 937 . 9008 143045. 75. 600 . 022134 585686 . 43848 .7751 -.0004055 881.4840 935 . 6736 152186 . 79. 200 . 020684 738622 . 40486 . 0875 -.0003989 909.0878 932.4862 162293 . 82.800 . 019262 879 452 . 37136 . 6337 . 0003908 934 . 5065 928 . 3214 173501 . 86.400 . 017871 1008226 . 33803 . 9655 . 0003813 957 . 7493 923 . 1609 185965 . 90 . 000 . 016516 1125006 . 30491 . 7038 . 0003706 978 . 8274 916 . 9845 199870. 93 . 60 0 .0152 02 1229871 . 27203 . 5442 . 0003588 997.7547 -909 . 7708 215437. 97. 200 .013933 1322910 . 23943.2641 -.0003461 1014 . 5476 901.4959 232932 . 100 . 800 . 012711 1404228 . 20714 . 7306 .0003324 1029.2249 -892 . 1338 252673 . 104.400 . 011539 1473945 . 17521 . 9098 .0003180 1041. 8082 -881. 655 5 275052 . 108.000 .010421 1532193 . 14368.8785 . 0003029 1052 . 3215 -870 . 0285 300549. 111. 60 0 . 009358 1579121 . 11259.8382 -.0002874 1060 . 7918 857 .2161 329758 . 115 . 200 . 008352 1614 896 . 8199 . 1328 -.0002714 1067.2488 -843 . 1758 363427. 118 . 800 . 007404 1639697 . 5191. 2707 -.0002551 1071. 7252 827 . 8587 402502 . 122.400 . 006516 1653722 . 2240 . 9533 -.0002386 1074 . 2567 -811. 2065 448202 . 126 . 000 . 00568 7 1657187 . -646 . 8877 . 0002220 1074 .8821 793 . 1496 502119 . 129 . 60 0 . 004917 1650325 . -3467.0409 -.0002055 1073 . 6436 -773.6022 566373 . 173

PAGE 186

133 . 200 . 004207 1633391 . -6213 . 9479 . 0001890 1070 .5871 -752.4572 643842 . 136.800 . 003556 1606659 . -8881. 6090 -.0001728 1065 .7621 -729 . 5768 738539 . 140.400 . 002963 1570425.-11463.4493 -.0001569 1059 . 2222 704 . 7789 856229. 144 . 000 . 002427 1525013.-13952 . 118 7 -.0001414 1051. 0257 677 . 8152 1005512 . 147 . 600 .001945 1470773 . -16339 . 1844 -.0001264 1041. 2357 648 . 3324 1199838 . 151. 200 . 001517 1408089.-18614 . 6302 -.0001120 1029.9217 -615 . 8042 1461578. 154 . 800 .001139 1337384.-20765 . 9885 9 . 8226E 05 1017 . 1599 -579 . 3949 1831174 . 158.400 .000810 1259132.-22776 . 6859 8 . 5226E 05 1003 . 0360 -537 . 6592 2390913 . 162 . 000 . 000525 1173876.-24500 . 0732 -7. 3045E-05 987 . 6479 -419 . 7782 2876094 . 165 . 600 . 000284 1083146.-25667 .7341 6 . 1 7 44E-05 971. 2719 -228 . 9224 2905586 . 169.200 8 . 09E 05 989419. 26198.4840 5 . 1367E-05 954.3548 -65 . 9387 2935079 . 172 . 800 8 . 62E-05 894809 . -26189 . 3815 -4.1934E 05 937 . 2784 70. 9956 2964572. 176.400 000221 801093 . 25730 . 6767 3 . 3443E 05 920 . 3634 183 . 8404 2994064 . 180.000 -.000327 709738 . 24905.4116 2 . 5878E 05 903 . 8744 274 . 6402 3023557 . 183.600-.000407 621921.-23789 . 1982 1 . 9211E-05 888 . 0242 345.4783 3053050 . 187.200 -.000465 538565. 22450 . 1516 1.3401E 05 872 . 9789 398.4364 3082543 . 190 . 800 -.000504 460357.-20948 . 9558 8 . 3996E -06 858 . 8629 435 . 5612 3112035 . 194.400 . 000526 387780. 19339 . 0416 -4.1532E-06 845 . 7634 458.8356 3141528 . 198 . 000 -.000534 321139 . 17666 . 8560 6 . 0380E -07 833 .7351 470 . 1564 3171021 . 201. 600 . 000530 260582.-15972 . 2063 2 . 3087E -06 822 .8051 471. 3157 3200513 . 205 . 200 . 000517 206126 . 14288 . 6604 4.6454E-06 812 .9761 463 . 9876 3230006 . 208 . 800 -.000497 157677 . 12643 .9891 6.4669E -06 804 . 2315 449.7187 3259499 . 212.400 -.000471 115053. 11060 . 6362 7.8324E-06 796 . 5380 429 . 9219 3288992 . 216 . 000 -.000440 77996 .2771 9556 . 2038 8.7989E-06 789 . 8496 405 . 8739 3318484 . 219 . 600 -.000407 46197 .9061 8143 . 9435 9.4207E-06 784.1103 378.7152 3347977 . 223 . 200 . 000372 19306 . 3695 6833 . 2427 9 . 7487E 06 779.2565 349.4519 3377470 . 226 . 800 . 000337 -3056 . 8189 5630 . 0999 9 . 8300E-06 776 . 3236 318 . 9608 3406962 . 230.400 . 000302-21286 .1891 -4537 . 5813 9 . 7081E-06 779 . 6139 287 . 9940 3436455. 234 . 000 -.000267-35782 . 5512 3556 . 2552 9.4224E-06 782 . 2304 257 .1871 3465948 . 237 . 600 -.000234 -46944 . 7504 -2684 . 5989 9 . 0082E 06 784 .2451 227 . 0663 3 495441. 241. 200 . 000202 -55162 . 8348 1919 . 3764 8.4970E-06 785.7284 198. 0573 3524933 . 244 . 800 -.000173-60812 . 5276 1255 . 9837 7 . 9163E-06 786 .7481 170.4942 3554426 . 248.400 -.000145-64250.8865 688 . 7629 7 . 2902E 06 787 . 3687 144.6285 3583919 . 252 . 000 -.000120 -65813 . 0325 211.2820 6.6390E-06 787 . 6507 120 . 6386 3613411 . 255.600 -9. 75E-05 -65809.8299 183.4168 5 . 9800E 06 787 .6501 98.6385 3642904 . 259 . 200 7 . 71E 05 64526.4009 502 . 6012 5 .327 4E-06 787.4184 78. 6862 3672397 . 262.800 -5 . 91E -05 62221 . 3636 753 . 6629 4 . 6928E-06 787 . 0024 60 . 7925 3701890 . 266.400 -4. 33E -05 -59126 . 6856 943 . 9608 4 . 0853E 06 786 . 4438 44 . 9285 3731382 . 270.000 2 . 97E-05 55448 . 0523 1080 . 6911 3 . 5116E-06 785 . 7798 31. 0328 3760875 . 273 . 600 1 . 81E-05 51365 . 6575 1170 . 7824 2 . 9768E-06 785 . 0430 19. 0180 3790368 . 277 . 200 8.27E -06 -47035 . 3287 1220 . 8138 2.4842E-06 784 . 2614 8 . 7772 3819860 . 280.800 -1.77E -07 42589 . 9095 1236 . 9530 2 . 0354E-06 783.4590 . 1890021 3849353 . 284.400 6 . 38E-06 38140 . 8295 1224 . 9135 1 . 6312E 06 782.6560 6 . 8776 3878846 . 288 . 000 1.16E-05-33779 . 7988 1189 . 9275 1 . 2712E 06 781. 8689 -12 .5591 3908338. 291. 600 1 . 55E 05 -29580.5727 1136 . 7329 9 . 5393E 07 781. 1110 -16 . 9935 3937831. 295 . 200 1.84E-05 -25600 . 7405 1069 . 5728 6 . 7766E 07 780.3926 -20 . 3177 3967324 . 298 . 800 2 . 04E-05 -21883.4980 992.2040 4 .3991 E-07 779 . 7217 -22 . 6649 3996817 . 302.400 2 . 16E-05 -18459 . 3707 907 . 9150 2 . 3793E 07 779 . 1037 -24 . 1623 4026309 . 306 . 000 2 . 21E 05 -15347 . 8615 819 . 5500 6 . 8665E-08 778 .5421 -24 . 9294 4055802 . 309 . 600 2 .21 E-05 -12559 . 0010 729 . 5379 7 . 1 05 7 E-08 778.0387 -25 . 0773 4085295 . 313 . 200 2 . 16E-05 -10094 . 7850 639 . 9258 1 . 8448E-07 777 . 5939 -24 . 7072 4114787 . 316.800 2 . 08E-05 -7950.4872 552.4143 2 . 7483E 07 777 . 2069 -23 . 9103 4144280 . 320.400 1 . 96E-05 -6115 . 8408 468 . 3947 3.4525E-07 776 . 8757 -22 . 7673 4173773 . 324 . 000 1 . 83E 05 -4576 .0841 388 . 9868 3 . 9878E 07 776 . 5978 -21. 3482 4203266 . 327 . 600 1 . 68E 05 3312 . 8704 315 . 0764 4 . 3828E-07 776 . 3698 19 .7131 42 3 2758 . 174

PAGE 187

331. 200 1 .51 E-05 -2305 . 0442 334 . 800 1.34E-05 1529 . 2878 338.400 1 . 16E 05 -960 . 6456 342.000 9 . 85E-06 -561 . 1717 345 . 600 8 . 06E-06 294 . 5025 349 . 200 6 . 27E 06 130.2571 352 . 800 4.48E-06 -41.9641 247.3518 -4 . 6641E-07 776 . 1879 -17 . 9117 186.3389 -4 . 8561E-07 776.0479 -15 . 9844 134 . 0703 4 . 9469E-07 536 . 9484 -13 . 0537 92. 1281 -4 . 9653E-07 367 . 2766 -10.247 4 59.4571 4 . 9707E-07 279.0881 -7 . 9031 34. 6825 -4.9726E 07 225 . 0503 -5 . 8605 16 . 8884 -4 . 9732E-07 188 . 5443 -4 . 0251 4262251 . 4291 744 . 4039924 . 3746692. 3531129 . 3366350 . 3236594 . 356.400 2.69E-06 -5 . 8360 360 . 000 8 . 96E 07 0 . 0000 5.4360 -4 . 9733E-07 162 . 2291 -2.3374 0.0000 -4 . 9733E 07 142 . 3602 . 7583281 3132011. 1523064. Output Verification : Computed forces and moments are within spec ifie d convergence l i mits . Output Summary for Load Case No . 2: P i le head deflection = .04517044 in Compute d s l ope at pile head = 6 . 74614 7 E-18 Max imum bending moment -5126317 . lbs-in Maximum shear force = 980 00 . 00000 lbs Depth of maximum bending moment = 0 . 00000 in Depth of maximum shear force = 0 . 00000 in Number of iter ations = 16 Number of zero d e flection points = 3 Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 3 Pile head boundary conditions are Shear and Slope (BC Type 2) Specified shear force at pile head = 147000 . 000 lbs Specifie d slope at pile head = O.OOOE+OO in/in Specified axial load at pile head = 788960 . 000 lbs ( Zero slope for this load indi ca tes fixed-head conditions) X y M V in in lbs -in lbs Shear Slope S Stress Rad . lbs/in ** 2 Total p lbs/in Soil Res . F/L l bs /in Es * h 0 . 000 .1 03045 8846425 . 3 . 600 .1 02885 8320643 . 7.200 .102426 -7 801848 . 10 . 800 . 101685 -729 0186 . 14.400 . 100682 6785797 . 18 . 000 . 099434 6288817 . 21. 600 . 097959 5799374 . 25 . 200 . 096275 -53 17590 . 28 . 800 . 094399 -4843584 . 32.400 . 092349 4377465 . 36 . 000 . 090141 3919340 . 39 . 600 . 087792 3472192 . 14 7 000 . -1. 9275E 18 2372.4874 546.8388 9552.2752 145012 . -8 . 5951E 05 2277 . 5875 557 . 3923 19503.4303 142988 . -.0001667 2183.9488 567 . 5222 19946 . 9475 140927 . -.0002422 2091 . 5975 577 . 2272 20435.8257 138832 . -.0003127 2000 . 559 1 586 . 5051 20971 . 2420 136705 . . 0003782 1910 . 8577 595 . 3530 21554.8037 134547 . . 0004387 1822 . 5167 603.7673 22188 . 5371 132359 . . 0004944 1735 . 5583 -611. 7442 22874 . 8853 130143 . .0005452 1650.0036 -619 . 2792 23616 . 7157 127901 . .0005914 1565 . 8726 626 . 3680 24417.3338 125233 . .0006329 1483 . 1843 -855 . 5943 34170 . 0759 121640 . -.0006699 1402.4773 1140.7156 46776 . 0 76 0 175

PAGE 188

43 . 200 . 085318 46 . 800 .082734 50.400 . 080055 54. 000 . 077297 57. 600 . 074472 61. 200 . 071595 64 . 800 . 068679 68.400 . 065734 72. 000 . 062774 75 . 600 . 059810 79.200 . 056852 82. 800 . 053910 86.400 .050994 90. 000 . 048113 93. 600 .045275 97. 200 .042488 100 . 800 . 039760 104.400 .037096 108 . 000 .034504 111.600 .031989 115 . 200 . 029555 118.800 .027208 122.400 . 024951 126 . 000 . 022789 129.600 . 020723 133 . 200 .018 756 136 . 800 . 016890 140.400 . 015126 144 . 000 . 013466 147 . 600 . 011909 151. 200 .010456 154 . 800 .009105 158.400 . 007856 162.000 . 006707 165 . 600 . 005657 169 . 200 . 004702 172 . 800 . 003839 176.400 . 003067 180 . 000 . 002380 183 . 600 . 001775 187 . 200 . 001248 190 . 800 . 000793 194.400 .000407 198 . 000 8 . 26E -05 201. 600 . 000184 205.200 -.000400 208 . 800 -.000569 212.400 -.000697 216 . 000 .000789 219 . 600 -.000849 223 . 200 -.000883 226 . 800 . 000894 230.400 . 000886 234 . 000 -.000862 237 . 600 . 000827 -3039729 . 117516 . . 0007025 1324.4208 -1150.4236 48542 . 2985 26220 8 8 . 113358 . -.0007309 1249 . 0398 -1159 . 3080 50444 . 9597 -2219398 . 10917 0 . . 0007551 117 6 . 3572 -1167 . 3597 52494.80 3 4 -1831774 . 104955 . . 0007754 1106 . 3938 -1174 . 5688 54703.9277 -1459320 . 100715. . 0007919 1039 . 1686 1180 . 9253 57085 . 9506 -1102129 . 96453 . 5428 . 0008047 974 . 6982 -1186.4185 59656 . 2032 -760283 . 92174 . 1228 . 0008140 912 . 9975 -1191 . 0370 62431 . 9588 -433852. 87879 . 6713 .0008200 854 . 0789 -1194 . 7693 65432 . 7029 122892 . 83573.4009 . 0008228 797 . 9529 1197 . 6031 68680.4521 172551 . 79258 . 5689 . 0008226 806 . 9161 -1199 . 5257 72200.1310 452443 . 74938.4800 -.0008194 857.4345 1200 . 5237 76020 . 0204 716763 . 70616.4874 . 0008136 905 . 1424 1200 . 5833 80172 . 2901 965503. 66295 . 9956 -.0008052 950 . 0381 1199 . 6899 84693 . 6362 1198668 . 61980.4629 . 0007943 992 . 1227 1197 . 8283 89626.0462 1416274 . 57673.4031 . 0007812 1031.3991 -1194.9826 95017 . 7213 1618354 . 53378 . 3895 -.0007660 1067 . 8730 -1191. 1360 100924 . 1804950 . 49099 . 0572 . 0007489 1101. 5523 -1186 . 2708 107410 . 1976121. 44839 . 1069 -.0007300 1132.4474 1180 . 3682 114549 . 2131938 . 40602 . 3090 -.0007094 1160 . 5713 -11 73.4084 122429. 2272488 . 36392 . 5082 . 0006873 1185 . 9394 1165 . 3699 131151 . 2397869 . 32213 . 6286 . 0006640 1208 . 5698 1156.2299 140836 . 2508197 . 28069 . 6798 . 0006394 1228.4833 1145 . 9638 151627 . 2603603 . 23964 . 7643 . 00061 3 8 1245 . 7033 1134 . 5448 1636 9 2 . 2684230. 19903 . 0857 -.0005873 1260 . 2560 -1121.9433 177237 . 2750241. 15888 . 9592 -.0005601 1272 . 1705 1108 . 1270 192507 . 2801813 . 11926 . 8232 . 0005323 1281.4787 -1093 . 0597 209802 . 2839138. 8021. 2548 -.0005041 1288.2157 1076 . 7005 229492 . 2862429. 4176.9880 -.0004755 1292.4195 1059 . 0033 252035. 2871914 . 398 . 9363 -.0004468 1294 . 1315 1039 . 9144 27800 7 . 2867840 . 3307 . 7778 . 0004181 1293 .3961 -1019 . 3712 308138. 2850473.-6937 . 7854 .0003895 1290 . 2615 997 . 2996 343371 . 2820100.-10485.4224 . 0003611 1284 . 7794 973 . 6098 384939 . 2777029.-13944 . 6643 . 0003330 1277 . 0054 -948 . 1912 434489 . 2721590.-1 7 309. 0372 . 0003055 1266 .9991 -920 . 9048 494265 . 2654139.-20571.4935 -.0002 786 1254 . 8247 -891. 5710 56741 1 . 2575058 . 23724 . 2342 . 0002524 1240 .5511 -859.9516 658467 . 2484758 . 26758.4429 . 0002271 1224 . 2527 -825 . 7199 774255 . 2383687. 29663 . 8753 . 0002027 1206 .0101 -788.4092 925546 . 2272330.-32428 . 1848 . 0001794 1185 . 9109 -747 . 3184 1130482 . 2151223. 35035 . 7400 -.0001572 1164.0520 -701. 3234 1422432 . 2020966. -37465 . 3308 . 0001364 1140.5416 -648.4493 1871047 . 1882247 . 39685 . 0089 . 0001168 1115 . 5039 584 . 7052 2653744 . 1735897 . 41376 . 1362 9 . 8699E-05 1089 . 0888 -354 . 8100 3141528 . 1584900.-42145 . 6971 8 . 2073E 05 1061. 8348 -72. 7238 3171021 . 1432915 . 41981 . 6193 -6. 6963E 05 10 3 4.4026 163 . 8782 3200513 . 12830 12.41041 . 3247 -5 . 3365E-05 1007 . 3463 358 . 5077 3230006. 1137720 . 3 9469 . 3927 -4 . 1246E 05 981.1221 5 1 4 . 7878 3259499 . 999067. 37397 . 3143 3 . 0547E 05 956.0962 636 . 3669 3288992 . 868633 . -35132.4796 -2. 1196E-05 932 . 5538 621. 8746 2839234 . 746234 . -32862 . 5858 -1. 3111E -05 910.4616 639 . 1775 2709802 . 632097 . -30539 . 9882 6 . 2100E-06 889 . 8608 651. 1545 2655056 . 526381 . 28181 . 8976 4 . 0977E 07 8 70 . 7798 658 . 8958 2653671 . 429190 . 25 802. 2579 4.3745E 06 853 . 2375 663 . 1262 2694864 . 340580.-23412 . 7869 8.2285E 06 837.2441 664 . 3577 2773 392. 260571. 21023 .5981 1 . 1238E-05 822 . 8030 662 . 9694 2887331. 176

PAGE 189

241. 200 .0 00781 189146 . -186 43 . 5972 1 . 3490E 05 809 . 9114 659.2533 3037050 . 244.800 . 000729 126260. 16280 . 7462 1 . 5069E-05 798. 5609 653.4417 3224749. 248.400 -.000673 71839 . 2091 -13898 . 6424 1 . 6061 E-05 788.7383 669 . 9493 3583919 . 252.000 . 000614 26098 . 7289 11583.7034 1.6551E-05 780.4825 616 . 1279 3613411 . 255.600 -.000554 11657.4755 -9465 .9784 1 . 6624E-05 777 . 8760 560.3860 3642904 . 259.200 -000494-42150.7460 7549 . 9239 1.6354E-05 783.3798 504 . 0887 3672397 . 262 . 800 -.000436 --66109.8279 5835.4859 1 . 5812E-05 787 . 7042 448 . 3768 3701890 . 266.400 -.000380 84256 . 0660 4318 . 8785 1 . 5059E-05 790 . 9795 394.1828 3731382 . 270.000 -.000328 -97291.2981 -2993 . 3017 1.4150E-05 793.3323 342 . 2487 3760875 . 273 . 600 . 000278 105888 . 1849 . 5949 1 . 3133E-05 794 . 8839 293 .1439 3790368 . 277.200 . 000233 110683 . -876 . 8259 1 . 2049E 05 795.7494 247 . 2834 3819860 . 280.800 .000192 112270 . 62.8135 1.0933E-05 796.0358 204 . 9457 3849353 . 284.400 -.000154 -111197 . 605.4122 9 . 8137E-06 795 . 8422 166 . 2907 3878846. 288.000 -.000121 107967 . 1141.2121 8 . 7164E-06 795 . 2591 131. 3759 3908338 . 291. 600 -9.16E-05 103030 . 1557 . 9987 7.6600E-06 794 . 3681 100 .172 2 3937831. 295 . 200 -6 . 59E-05 -96792 . 5103 1868 . 9516 6.6595E 06 793.2422 72. 5794 3967324 . 298.800 4 . 36E-05 -89611 . 5084 2086.7847 5 . 7262E-06 791. 9461 48.4390 3996817 . 302.400 -2.46E-05 -8180 0 . 1886 2223 . 5599 4 . 8680E 06 790 . 5362 27 . 5472 4026309 . 306 . 000 -8 . 58E-06 -73629 . 5303 2290.5442 4 . 0898E-06 789 . 0615 9 . 6663 4055 802 . 309 . 600 4 .82E 06 65331 . 5027 2298 . 1055 3.3941E-06 787 . 5637 -5.4656 4085295 . 313 . 200 1 . 59E-05 57102.4508 2255 . 6423 2 . 7811E 06 786 . 0785 -18 . 1251 4114787 . 316.800 2.48E 05 49106.6759 2171.5447 2.2493E-06 784 . 6353 -28 . 5958 4144280. 320.400 3.21E-05 41480 . 1060 2053 . 1818 1 . 7958E 06 783 . 2587 -37.1614 417 3773 . 324 . 000 3.78E-05 -3 4333 . 9678 1906.9127 1.4162E 06 781.9689 -44 . 0992 420 3266 . 327.600 4.22E 05 -27758 . 3793 1738 . 1181 1 . 1053E 06 780 . 7821 -49 . 6755 4232758 . 331. 200 4.57E 05 21825 . 7963 1551.2492 8 . 5708E 07 779 . 7113 -54 . 1405 4262251 . 334 . 800 4 . 84E-05 16594 . 2538 1349.8921 6 . 6472E-07 778 . 7670 -57 . 7245 4291744 . 338.400 5 05E 05 12110 . 3494 1143 . 9507 5 . 6364E 07 537 . 6256 -56 . 6873 4039924 . 342 . 000 5.25E 05 -8361 0102 943 . 6029 5 . 3958E-07 367 . 5478 -54 .6171 3746692 . 345 . 600 5.44E -05 5319.4738 749.2465 5 . 3099E 07 279.2209 -53 . 3587 3531129 . 349 . 200 5.63E -05 -2969.4515 558.4351 5 . 2739E 07 225.1137 -52 . 6477 3366350 . 352 . 800 5 . 82E-05 -1301 . 7369 369.4900 5 . 2596E 07 188.5693 -52 . 3219 3236594 . 356.400 6 . 01E-05 312 .1115 181.2114 5 . 2551E 07 162 . 2347 52 . 2773 3132011 . 360 . 000 6.20E 05 0.0000 0 . 0000 5 . 2544E-07 142 . 3602 -52.4444 1523064. Output Verification : Computed forces and moments are within specified convergence limits . Output Summary for Load Case No . 3 : Pile-head deflect ion . 1 0304454 in Computed slope at pile head = 1 . 927471E -18 Maximum bending moment = -8846425 . lbs -in Maximum shearforce = 147000 . 00000 lbs Depth of maximum bending moment = 0 . 00000 in Depth of maximum shear force 0 . 00000 in Number of iterations 20 Number of zero deflection points = 2 Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 4 177

PAGE 190

Pile-head boundary conditions are Shear and Slope (BC Type 2) Specifie d shear force at pile head = 196000 .000 lbs Specified slope at pile head = O.OOOE+OO in/in Specified axial load at pile head = 788960 . 000 lbs ( Zero slope for this load indicates fixed-head conditions) X y M V in in lbs-in lbs Shear Slope S Stress Rad . lbs/in**2 Total p lbs/in Soil Res . F/L lbs/in Es* h 0 . 000 .185316 -1. 3037E+07 196000 . -4.2 404E 17 3128.8925 -633.2 470 6150 . 8238 3.600 .185081 -1. 2336E+07 193698. -.0001270 3002.2440 645 . 5132 12555.8560 7 . 200 . 184401 -1. 1642E+07 191353 . . 0002471 2877 . 0421 -657 . 3754 12833.7158 10 . 800 . 183302 1.0956E+07 188966. . 0003602 2753 . 3182 -668.8305 13135 .6601 14.400 . 181807 1 . 0279E+07 186538 . . 0004665 2631. 1026 -67 9 . 8749 13462 . 3154 18 . 000 . 179943 -9610651. 184072. .0005661 2510.4246 -690 . 5045 13814.4927 21. 600 . 177731 8950723 . 181567 . . 0006591 2391. 3125 -7 00 . 7149 14193 . 1835 25. 200 . 175197 -8299622 . 179027 . -.0007454 2273 . 7935 -710 . 5012 14599 . 5586 28. 800 . 172364 -7657493 . 176452. .0008253 2157 . 8939 -719.8587 15034 .9704 32.400 . 169255 -7024476 . 173845. . 0008988 2043 . 6389 728 . 7820 15500 . 9574 36. 000 .165893 -6400704 . 170739. .0009660 1931.0525 -996. 5166 21625 . 18 7 8 39.600 .162300 5789665 . 166551 . . 0010271 1820 . 7644 1330 . 0972 29503.1716 43.200 . 158498 5195699 . 161740 . -.0010821 1713 . 5579 1 3 43 . 0557 30505.1882 46 . 800 .154509 -4618992 . 156883 . . 0011312 1609.4663 -1355. 2092 31575 . 9520 50.400 . 150353 4059716 . 151984 . -.0011747 1508 . 5212 1366 . 5480 32720 . 1848 54.000 .146051 -3518036 . 147045 . . 0012126 1410 . 7518 1377 . 0624 33943 .1421 57 . 600 .141622 2994102 . 142070 . . 0012452 1316 . 1855 1386 . 7419 35250 . 6684 61.200 .137085 -2488055 . 137062. . 0012727 1224 . 8478 -1395 . 5760 36649 . 2610 64 . 800 . 132459 -2000024 . 132024. . 0012951 1136 . 7618 1403 . 5537 38146 . 1449 68.400 . 127760 153012 7 . 126958 . . 0013128 1051. 9486 -1410 . 6637 39749 . 3587 72. 000 . 123007 -1078468. 121869 . . 0013259 970.4275 -1416.8941 41467 . 8548 75. 600 . 118214 -645141 . 116758. . 0013345 892.2151 1422 .2331 43311 . 6152 79. 200 . 113398 -230228 . 111630 . . 0013389 817 . 3264 -1426 . 6682 45291 .7871 82 . 800 . 108574 166202. 106488. -.0013392 805.7701 -1430.1865 47420.8390 86.400 . 103756 544092. 101334. . 0013356 873 . 9765 1432 .7749 49712 . 7447 90 . 000 . 098957 903397 . 96173 .5481 . 0013284 938 . 8286 1434.4198 52183 . 1977 93.600 .094191 1 244087 . 91008.4001 -.0013177 1000 . 3206 -1435.1069 54849 . 8632 97. 200 .089470 1566143 . 85842 . 5286 . 0013036 1058.4493 -1434.8217 57732 . 6746 100 . 800 . 084806 1869558 . 80679.4613 -.0012864 1113 . 2136 -1433.5490 60854 . 1849 104.400 . 080208 2154342 . 75522.7816 -.0012662 1164 . 6150 -1431.2731 64239 . 9836 108.0 00 .075689 2420515 . 70376 . 1308 -.00 12433 1212 . 6573 -1427.9774 67919 .1931 111. 600 . 071256 2668113 . 65243.2111 -.0012178 1257 . 3469 -1423 . 6447 71925 . 0648 115 . 200 . 066920 2897184 . 60127.7878 -.0011900 1298.6927 -1418 .2571 76295 . 6954 118 . 800 . 062689 3107793 . 55033 . 6932 -.0011599 1336.7059 -1411 . 7955 81074 . 8947 122.400 . 058569 3300016. 49964.8295 -.0011278 1371.4008 -1404 . 2399 86313.2414 126 . 000 . 054568 3473946 . 44925 . 1736 . 0010939 1402 . 7940 1395 . 5690 92069 . 3758 129 . 600 . 050693 3629691 . 39918 . 7814 . 0010584 1430 . 9048 -1385 .7601 98411 . 5936 133 . 200 . 046948 3767374 . 34949 . 7934 -.0010213 1455 . 7555 -1374.7889 105420 . 136 . 800 . 043339 3887131 . 30022.4409 . 0009830 1477 . 3709 -1362.6292 113188 . 140.400 . 039870 3989119. 25141 . 0536 . 0009436 1495 . 7789 -1349 . 2526 121828 . 144 . 000 . 036545 4073507. 20310 0684 . 0009032 1511 0103 1334 .6281 131471 . 147 . 600 .033367 4140482. 15534 . 0393 . 0008621 1523 . 0989 1318 . 7214 142277 . 151. 200 . 030338 4190249 . 10817 . 6503 . 0008204 1532 . 0814 -1301.4947 154437 . 178

PAGE 191

154 . 800 .027461 4223029 . 6165 . 7302 . 0007782 1537.9980 -1282.9053 168184 . 158.400 . 024735 4239063 . 1583 . 2712 . 0007359 1540 . 8920 -1262.9052 183805 . 162 . 000 .022162 4238609 . -2924.5485 . 0006934 1540 . 8101 -1241.4391 201655 . 165.600 . 019743 4221945 . 7352 . 3362 -.0006511 1537 . 8024 -1218.4430 222180. 169 . 200 .017475 4189371.-11694.4485 . 0006090 1531 . 9229 -1193.8416 245945 . 172 . 800 .015358 4141204.-15944 . 9447 . 0005672 1523 . 2292 1167 . 5451 273678. 176.400 . 013391 4077789 . 20097 . 5259 . 0005261 1511 . 7832 -1139.4444 306333 . 180 . 000 . 011570 3999491.-24145.4538 . 0004857 1497 . 6509 -1109.4044 345184 . 183 . 600 . 009894 3906701 . -28081.4399 . 0004461 1480 . 9030 -1077 . 2545 391968 . 187 . 200 . 008359 3799838.-31897.4910 -.0004075 1461.6151 -1042 . 7739 449120 . 190 . 800 . 006960 3679353 . -35584 . 6870 . 0003700 1439 . 8685 1005 . 6684 520167 . 194.400 . 005694 3545731 . -39132 . 8500 . 0003339 1415 . 7505 965 . 5333 610424 . 198.000 . 004556 3399493 . 42530 . 0301 . 0002991 1389.3558 -921 . 7890 728323 . 201 . 600 . 003541 3241213.-45761 . 6615 -.0002658 1360 . 7874 873 . 5618 888161 . 205 . 200 . 002642 3071520 . -48809 . 0719 . 0002342 1330 . 1589 -819.4440 1116485 . 208 . 800 . 001854 2891119 . -51646 . 5683 . 0002044 1297 . 5978 -756.9429 1469527 . 212.400 . 001171 2700825. -54234 . 7752 . 0001764 1263 . 2512 -680.9498 2094029 . 216 . 000 . 000584 2501630 . -56430 . 0928 . 0001503 1227 . 2980 -538 . 6711 3318484 . 219 . 600 8 . 82E-05 2295383.-57547.4217 . 0001263 1190 . 0718 -82 . 0672 3347977 . 223 . 200 . 000325 2088006.-57146 . 0792 . 0001044 1152 . 6419 305 . 0353 3377470 . 226 . 800 -.000663 1884524. 55467 .1963-8.4484E05 1115 . 9147 627 . 6775 3406962 . 230.400 . 000933 1689122 . 53128.4292 -6 . 6591E 05 1080 . 6462 671 . 6376 2590373 . 234 . 000 . 001143 1502377. -50636 . 7524 -5.0612E-05 1046.9401 712 . 6273 2245085 . 237 . 600 . 001298 1324825.-48018.4536 -3 . 6457E 05 1014 . 8932 741. 9831 2058165 . 241. 200 . 001405 1156852 . 45308 . 9498 -2.4032E-05 984 . 5752 763 . 2968 1955510 . 244 . 800 -.001471 998737 . 42533 . 6288 -1. 3240E 05 956 . 0367 778.5482 1905537 . 248.400 -.001501 850685 . 39712.1195 -3.9803E 06 929 . 3143 788 . 9570 1892841 . 252 . 000 -.001500 712833 . 36860 . 3973 3 . 8478E 06 904.4330 795 . 3331 1909416 . 255 . 600 -.001473 585268 . 33991 . 9562 1 . 0347E 05 881.4085 798 . 2453 1951150 . 259 . 200-.001425 468032.-31118 . 5168 1 . 5621E 05 860.2482 798 . 1100 2016254 . 262.800 -.001360 361126 . 28250.4815 1 . 9772E 05 840 . 9525 795 . 2430 2104519 . 266.400 .001283 264516.-25397 . 2417 2 . 2904E 05 823 . 5151 789 . 8903 2216963 . 270.000 . 001195 178136 . 22567 . 3922 2.5121E-05 807 . 9241 782 . 2483 2355708 . 273 . 600 -.001102 101888.-19768 . 8887 2.6523E 05 794 . 1619 772.4 7 59 2523998 . 277 . 200 . 001004 35648 . 9409 17009 . 1658 2 . 7211E 05 782.2063 760 . 7035 2726344 . 280 . 800 . 000906-20732.4916 14295 . 2332 2 . 7286E-05 779 . 5139 747 . 0369 2968793 . 284.400 . 000808 -67431 . 7368 -11633 . 7600 2 . 6845E-05 787 . 9428 731. 5594 3259377 . 288 . 000 . 000713 -104648 . 8924.4387 2 . 5983E 05 794.6601 773 . 6191 3908338 . 291. 600 -.000621 131835 . 6309.3583 2.4 799E-05 799 . 5672 679.2033 3937831 . 295 . 200 . 000534 -150216 . 4027.4505 2 . 3387E 05 802 . 8848 588 . 5232 3967324. 298 . 800 -.000453 -160966 . 2063 . 7326 2 . 1829E 05 804 . 8250 502.4312 3996817. 302.400 -.000377 165199. 400.6678 2.0196E-05 805 . 5891 421.4937 4026309 . 306 . 000 -.000307 -163965 . 980 . 8668 1 . 8548E 05 805 . 3664 346 . 0254 4055802 . 309 . 600 . 000243 158242. 2100 . 7325 1 . 6935E-05 804 . 3335 276 . 1222 4085295 . 313.200 . 000185 148936 . 2978 . 8004 1.5397E-05 802 . 6538 211. 6933 4114787 . 316 . 800 . 000132 -136882 . 3634 . 3358 1 . 3966E-05 800.4782 152.4930 41442 8 0 . 320.400 8.47E-05 -122848 . 4085.4921 1 . 2665E 05 797 . 9451 98 . 1493 4173773 . 324 . 000 -4 . 13E-05 -107539 . 4348.9082 1 . 1512E 05 795 . 1819 48 . 1929 4203266 . 327 . 600 -1. 77E-06 -91601.6069 4439.4062 1.0515E-05 792 . 3053 2 . 0837 4232758 . 331 . 200 3.44E-05 -75634 . 8039 4369.7831 9 . 6774E-06 789.4234 -40 . 7632 4262251 . 334 . 800 6.79E-05 -60194 . 1407 4150 . 6943 8.9973E 06 786.6365 -80.9529 4291744 . 338.400 9.92E-05 -45800 . 9146 3804 . 5782 8.6279E-06 539 . 6719 -111 . 3338 4039924 . 342.000 .000130-32850 . 1884 3360 . 5947 8 . 5360E 06 368 . 3995 -135 . 3236 3746692 . 345 . 600 . 000161 21653 . 1217 2833.3399 8 . 5019E-06 279 . 6526 -157 . 5957 3531129. 349 . 200 . 000191 -12498.4363 2227.7791 8.4871E-06 225 . 3263 -178 . 8270 3366350 . 179

PAGE 192

352.800 .000222 -5661. 3230 1546 . 9907 8 .4810E-06 188.6558 -199 . 3888 3236594 . 356.400 . 000252 1408 . 2797 792 . 9845 8.4790E-06 162 . 2546 -219.5035 3132011. 360 . 000 . 000283 0 . 0000 0 . 0000 8.4787E -06 142 .3602 239.3117 1523064 . Output Ver ification : Computed forces and moments are within specified convergence limits. Output Summary fo r Load Case No. 4 : Pile head deflection = . 18531575 in Computed slope at p ile head = 4.2404 35E-17 Maximum bending moment = 13037203 . lbs-in Maximum shear force = 196000 . 00000 lbs Depth of maximum bending moment = 0 . 00000 in Depth of maximum shear force 0 . 00000 in Number of iterations 22 Number of zero deflection points = 2 Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 5 Pile head boundary conditions are S hear and Slope (BC Type 2) Specified shear force at pile head = 244750.000 lbs Specified slope at pile head O .OOOE+OO in/in Specified axial load at pil e head = 788960 . 000 lbs (Z ero slope for this l oad ind ica tes fixed-head conditions) Depth Deflect. Moment Shear Slope Total p lbs/in Soil Res . F/L Es* h X y M V i n in lbs-in lbs 0 . 000 .2917 39 1.7594E+07 3 . 600 . 291422 -1 . 6717E+07 7 . 200 .290502 1 . 5849E+07 10 . 800 . 289011 1.4991E +07 14.40 0 . 286979 -1.414 1E +07 18 . 000 . 284438 1.3301E +07 21. 600 .281417 1 . 2471E +07 25.200 .27794 7 1 . 1650E +07 28.800 .274057 1 . 0840E+07 32.400 .269776 -1. 0039E+07 36.000 .265133 9249289 . 39 . 600 .260157 -8473528 . 43 . 200 . 254875 -77 16922 . 46 . 800 .249 315 6979698. 50.400 . 24350 3 -626 2069 . 54 . 000 . 237466 5564242 . 57. 600 .231228 4886408 . 61.200 .224 814 4228751 . 64 . 800 .218248 -3 591441 . S Stress Rad . lbs/ i n**2 lbs/in 244750 . 3.8549E-17 3951. 3408 -709 . 3122 4376.3888 242172 . .0001718 3793 .0931 723 . 0846 8932.4357 239544 . . 0003348 3636.4510 -736.4676 9126 .5631 236870 . . 0004892 3481.4503 749.4570 9335.4495 234149 . -.0006351 3328.1258 762 .0 482 9559.4840 231384 . . 0007725 3176 . 5112 -774 . 2365 9799 . 1514 228575 . . 0009015 3026.6394 786.0165 10055 . 0300 225725 . . 0010223 2878 . 5423 -797.3831 10327 .7 917 222835 . -.0011349 2732.2506 808 . 3308 10618 . 2023 219906 . . 0012394 2587.7940 -818.8539 10927 . 1245 216415 . -.0013360 2445 . 2014 1120.4358 15213.3825 211705 . . 0014247 2305.1822 -1496.6009 20709 . 6915 206288 . . 0015058 2168 . 6204 1512 . 3877 21361 . 8404 200817. -.0015794 2035 . 5567 1527 . 3840 22054.7688 195293 . -.0016457 1906 . 0300 -1541.5798 22791 . 0116 189719 . -.0017049 1780 .0771 1554 . 9650 23573 . 3668 184098 . -.0 017572 1657 . 7331 1567.5290 24404 . 9202 178434 . -.0018028 1539 . 0308 1579.2613 25289 . 0732 172729 . . 0018420 1424 . 0009 1590.1508 26229 . 5742 180

PAGE 193

68.400 . 211552 72. 000 . 204749 75. 600 . 197860 79. 200 . 190906 82.800 . 183907 86.400 .176882 90. 000 . 169850 93. 600 . 162828 97. 200 . 155834 100 . 800 .148883 104.400 . 141991 108 . 000 . 135173 111.600 . 128442 115 . 200 . 121811 118.800 . 115293 122.400 . 1 08900 126 . 000 .102641 129 . 600 .096527 133 . 200 .090568 136.800 .084771 140.400 . 079145 144.000 .073696 147.600 . 068430 151.200 . 063353 154 . 800 . 058470 158.400 . 053785 162 . 000 . 049300 165 . 600 . 045019 169 . 200 . 040943 172 . 800 .037073 176.400 . 033409 180 . 000 .029952 183 . 600 . 026700 187 . 200 . 023651 190 . 800 . 020804 194.400 . 018156 198 . 000 . 015702 201.600 . 013439 205.200 . 011362 208.800 .009466 212.400 . 007745 216 . 000 . 006192 219 . 600 . 004800 223 . 200 . 003562 226 . 800 . 002471 230.400 .001517 234 . 000 .000693 237 . 600 1 . 17E 05 241. 200 -.000606 244 . 800 .0 01098 248.400 -.0 01499 252.000 . 001816 255 . 600 . 002058 259 . 200 -.002234 262 . 800 . 002350 -2974637 . 166987 . . 0018749 1312.6722 1600 . 1863 27230 . 5554 -2378486 . 161210. . 0019017 1205 . 0714 -1609 . 3563 28296 . 5752 -1803126 . 155401. -.0019226 1101. 2230 1617.6490 29432.6655 -1248679 . 149564 . . 0019379 1001. 1493 1625.0525 30644.3872 -715256 . 143702 . -.0019477 904 . 8705 -1631. 5545 31937 . 8934 -202959 . 137818 . . 0019523 812.4045 -1637.1422 33320 . 0019 288127 . 131916 . -.0019519 827 . 7767 -1641. 8029 34798 . 2790 757927 . 125999 . . 0019467 912 . 5722 1645 . 5233 36381.1366 1206379 . 120070 . . 0019368 993 . 5145 1648 . 2898 38077 . 9433 1633435 . 114133 . . 0019226 1070 .5951 1650 . 0884 39899.1551 2039060 . 108191. . 0019042 1143 . 8074 -1650.9047 41856.4665 2423231 . 102249 . . 0018819 1213 . 1475 -1650 . 7238 43962 . 9869 2785939 . 96308 . 0768 . 0018558 1278.6137 -1649 . 5304 46233.4484 3127191 . 90373.7666 .0018262 1340 .2071 1647 . 3086 48684.4491 3447004 . 84449.3361 . 0017933 1397 .9311 -1644 .0417 51334.7414 3745413 . 78538 . 5782 -.0017573 1451. 7917 -1639.7127 54205.5733 4022464. 72645 . 3494 -.0017184 1501. 7975 -1634.3034 57321 . 0956 4278221 . 66773 . 5723 . 0016768 1547 . 9596 -1627.7950 60708 . 8490 4512759 . 60927.2392 -.0016328 1590 .2921 -1620 . 1678 64400 . 3502 4726172 . 55110.4160 . 0015865 1628 . 8116 1611.4007 68431 . 8012 4918566 . 49327 . 2460 . 0015383 1663 . 5374 -1601.4715 72844 . 9516 5090066 . 43581 . 9552 -.0 014881 1694.4919-1590. 3567 77688 . 1554 5240810 . 37878 . 8578 -.0014364 1721.7000 1578 . 0308 83017 . 6717 5370953 . 32222 . 3628 . 0013833 1745.1900 1564.4665 88899 . 2808 5480669 . 26616 . 9814 . 0013290 1764.9928 1549 . 6343 95410 . 3050 5570145 . 21067 . 3365 0012736 1781. 1426 1533 . 5018 102642 . 5639588 . 15578.1728 . 0012175 1793 . 6767 1516 . 0336 110704 . 5689224. 10154 . 3696 . 0011608 1802 . 6355 1497 . 1904 119725 . 5719294 . 4800 . 9563 . 0011037 1808 . 0629 -1476.9281 129863. 5730060 . -476.8693 . 0010463 1810.0061 1455 . 1972 141310 . 5721804 . 5673 . 7182 0009890 1808 . 5160 1431.9411 154299 . 5694827 . -10783.9821 -.0009318 1803 . 6469 -1407.0944 169124 . 5649453.-15801 . 7977 . 0008750 1795.4571 -1380.5809 186148 . 5586025 . -20721. 0020 . 0008188 1784 . 0089 1352 . 3104 205837 . 5504913.-25535 .0741 . 0007633 1769 . 3687 -1322 .1741 228790 . 5406508.-30237 . 0583 . 0007086 1751. 6074 -1290 . 0394 255794. 5291231.-34819.4629 . 0006551 173 0 . 8007 -1255 . 7409 287901 . 5159529 . -39274 . 1199 . 0006028 1707 . 0295 1219 . 0685 326554 . 5011882.-43591 . 9893 -.0005518 1680 .3801 -1179 .7 479 373786 . 4848802.-47762 . 8766 . 0005025 1650 . 9454 -1137.4118 432561 . 4670843 . -51775 . 0092 -.0004548 1618 . 8252 -1091. 5508 507390 . 4478605 . 55614 . 3724 . 0004090 1584.1276 -1041.4287 605518 . 4272743 . -59263 . 6063 . 0003652 1546 . 9710 985 . 9235 739440 . 4053981 . 62700.0260 -.0003235 1507.4861 -923.1986 932937 . 3823140 . 65891 . 6463 -.0002840 1465 . 8209 849 . 9238 1238270 . 3581175 . -68787 . 6832 . 00024 7 0 1422.1480 -758.9857 1800 758 . 3329272 . -7 1354.4491 -.0002124 1376 . 6813 666 . 9953 3465948 . 3068629 . -72534 . 5374 . 0001803 1329 . 6372 11.3907 3495441 . 2808047 . -71446 . 6205 . 0001509 1282 . 6041 593 . 0075 3524933 . 2555071.-69076 . 8085 . 0001241 1236 . 9437 723.5547 2371630 . 2311399 . 66354.8683 -9.9698E-05 1192 . 9627 788 . 6343 1894127. 2077882 . 63433 . 6371 -7. 7722E 05 1150 . 8146 834 . 2720 1653718 . 1855118.-60369.7820-5 . 8030E-05 1110 . 6073 867 . 8697 1517783 . 1643549 . 57200.2235 -4. 0513E 05 1072.4206 892 . 9962 1439056. 1443507 . 53951 .8216-2. 5057E -05 1036 . 3144 911. 6715 1396497 . 181

PAGE 194

266.400 . 002414 1255239 . -50645 . 5255 -1. 1545E-05 1002 . 3334 925 . 1596 1379482 . 270 . 000 . 002433 1078925 . -47298.4870 1.4130E-07 970 . 5100 934 . 3063 1382278 . 273 . 6 00 . 002413 914689. -43925.2653 1 . 0123E-05 940.8666 939 . 7057 1 401762 . 277.200 . 002360 762605 . -40538.5734 1 . 8521E-05 913.4166 941. 7898 1436373 . 280 . 800 -.002280 622706 . -37149.7693 2 . 5456E-05 888 . 1658 940 . 8791 1485598. 284.400 . 002177 494982.-33769 . 2007 3 . 1052E-05 865 . 1126 937 . 2145 1549732 . 288 . 000 . 002056 379391 . -30406.4592 3.5430E 05 844 . 2492 930 . 9753 1629777 . 291. 60 0 . 001922 275855 . -27070 . 5806 3.87 1 1 E-05 825 . 5616 922.2906 1727463. 295 . 2 0 0 -.001778 184263.-23770 . 2160 4 . 1014E-05 809 . 0300 911. 2452 1845347 . 298 . 800 . 001627 104476 . 20513 . 7910 4 . 2460E-05 794 . 6291 897.8798 1987031 . 302.40 0 . 001472 36322.6624-17309.6704 4 . 3165E-05 782.3279 882 . 1873 2157534 . 306 . 000 .001316-20398. 6939 14166.3474 4 . 3245E-05 779.4537 864.1033 2363910 . 309 . 600 . 001161 -65920 . 6914-11092.6831 4 . 2813E-05 787 . 6701 843.4880 2616301 . 313 . 200 -.001008 -100509 . 8098 . 2335 4 . 1979E-05 793.9131 820.0951 2929805 . 316.800 . 000858 -124466 . 5193 . 7303 4 . 0853E-05 798 . 2372 793 . 5178 3327978 . 320.4 00 -.000714 138136 . -2276 . 2979 3 . 9538E 05 800 . 7044 827 . 2780 4173773 . 324 . 000 -.000574 141080 . 418 . 5166 3 . 8140E 05 801. 2359 669.8412 4203266 . 327 . 600 . 000439 -135339 . 2553 . 1978 3 . 6756E-05 800 . 1997 516 . 0928 4232758 . 331.200 . 000309 -122906 . 4140 . 8073 3 . 5463E 05 797.9555 365 . 9125 4262251. 334.800 . 000184 -105727 . 5193 . 4448 3.4319E-05 794.8549 218 . 8861 4291744 . 338.400 -6.20E-05 -85708 . 2935 5712 . 6062 3.3662E-05 542 . 0958 69 . 5369 4039924. 342 . 000 5.88E-05 -64787 . 5584 5727.6965 3 . 3488E-05 369 . 5102 -61. 1534 3746692 . 345 . 600 .000179-44659. 1054 5301 . 3274 3.3419E-05 280 . 2606 -175 . 7183 3531129. 349 . 200 .000299-26807. 8399 4481 . 1288 3 . 3388E-05 225 . 6455 -279 . 9476 3366350 . 352.800 .000420-12584. 6414 3298 . 2798 3 . 3375E-05 188 . 7933 -377 . 1907 3236594 . 356.400 . 000540 -3249.8139 1774 . 1951 3 . 3371E-05 162 . 2882 -469 . 5230 3132011 . 360 . 00 0 .000660 0.0000 0 . 0000 3 . 3370E 05 142 . 3602 -558 . 2978 1523064 . Output Verification: Computed forces and moments are within specified convergence limits . Output S u mmary for Load Case No. 5 : Pile head deflection . 29173868 in Computed slope at pile head = 3.854941 E-17 Maximum bending moment = -17593887 . lbs-in Maximum shear force = 244 750 . 00000 lbs Depth of maximum bend i ng moment = 0 . 00000 in Depth of maximum shear force 0 . 00000 in Number of iterations 24 Number o f zero deflection points = 2 Summary of Pile Response(s) Definition of Symbols for Pile Head Loading Conditions : Type 1 = Shear and Moment , y = pile-head disp l acment in Type 2 = Shear and Slope , M = Pile-head Moment lbs-in Type 3 = Shear and Rot. Stiffness , V = Pile head Shea r Force lbs Type 4 = Deflection and Moment , S = Pile-head Slope , radians Type 5 = Deflection and Slope , R = Rot. Stiffness of Pile-head in-lbs/rad 182

PAGE 195

Load Pile-Head Type Condition 1 2 Pile-Head Condition lbs Axial P ileHead Maximum Load Deflection Moment in in-lbs lbs Maximum Shear 2 V= 3750 . 000 S= 2 V= 98000. S= 2 V= 1.47E+05 S= 2 V= 1 . 96E+05 S= 2 V= 2.45E+05 S= 0.000 296800. . 0002592 -94237 . 0909 3750 . 0000 0 . 000 0.000 0 . 000 0.000 788960 . 788960. 788960. 788960. . 0451704 -512631 7 . 98000 . 0000 . 1030445 -8846425 . 147000 . . 1853158 -1. 3037E + 07 196000 . . 2917387 -1.7594E+07 244750 . The analysis ended normally . LPile output for caisson w ith fixed h ea d , uplift , 5 % r e inforcin g : ============================================================================== LPILE Plus for Windows , Version 5 . 0 (5. 0 . 26) Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p y Method (c) 1985 2006 by En soft , Inc. All Rights Reserved ============================================================================== Name of input data file : Name of output file: Name of plot output file: Name of runtime file : Fixed 5 up . lpd Fixed 5 up.lpo Fixed 5 up . lpp F ixed 5 up . lpr Time and Date of Analysis Date : March 31, 2009 Time: 18: 23:40 P roblem Title Design of Caissons for CN Leach Tanks Program Options Units Used in Computations US Customary Units: Inches , Pounds Basic Program Options : Analysis Type 1: Computation of Lateral Pile Response Using User specified Constant El 183

PAGE 196

Computation Options: Only internally-generated p-y curves used in analysis Analysis does not use p-y multipliers (individual pile or shaft action only) Analysis assumes no shear resistance at pile tip Analysi s for fixed-length pile or shaft only -No computation of foundation stiffness matrix elements Output pile response for full length of pile Analysis assumes no soil movements acting on pile No additional p-y curves to be computed at user specified depths Solution Control Parameters: Number of pile increments 100 Maximum number of iterations allowed = 100 Deflection tolerance for convergence = 1 . 0000E 05 in Maximum allowable deflection = 1.0000E+02 in Printing Options : -Values of pile head deflection , bending moment, shear force , and soil reaction are printed for full length of pile . Printing Increment (spacing of output points) = 1 Pile Structural Properties and Geometry Pile Length 360 . 00 in Depth of ground surface below top of pile = Slope angle of ground surface = 24.00 in . 00 deg. Structural properties of pile defined using 3 points Point Depth Pile Moment of Pile Modulus of X Diameter Inertia Area Elasticity in in in**4 Sq.in lbs/Sq .in 1 2 3 0 . 0000 36 . 00000000 99727 . 0000 336 . 0000 36. 00000000 99727 . 0000 360.0000 84. 00000000 2461200. 1017 . 0000 1017.0000 5542.0000 Soil and Rock Layering Information The soil profile is modelled using 2 layers Layer 1 is stiff clay without free water Distance from top of pile to top of layer = Distance from top of pile to bottom of layer = Layer 2 is stiff clay without free water Distance from top of pile to top of layer = Distance from top of pile to bottom of layer = -24. 000 in 36 . 000 in 36. 000 in 525 . 000 in (Depth of lowest layer extends 165 .00 in below pile tip) 184 3605000. 3605000 . 3605000 .

PAGE 197

Effective Unit Weight of Soil vs . Depth Distribution of effective unit weight of soil with depth is defined using 4 points Point Depth X Eff. Un i t Weight No. in lbs/in**3 1 2 3 4 -24.00 36.00 36 . 00 525 . 00 . 06940 . 06940 .06940 . 06940 Shear Strength of Soils Distribution of shear strength parameters with depth defined using 4 points Point Depth X Cohesion c No . in lbs/in ** 2 Angle of Fr iction Deg . k_rm E50 or % 1 -2 4.000 2 36.000 3 36 . 000 4 525.000 Notes: 13.88000 13.88000 27 . 77000 27 . 77000 . 00 .00 .00 .0 0 . 00500 .00500 . 00500 . 00500 . 0 . 0 . 0 . 0 RQD (1) Cohesion = uniaxial compressive strength for rock materials . (2) Values of E50 are reported for clay strata. (3) Default values will be generated for E50 when input values are 0 . (4) RQD and k_rm are reported only for weak rock strata. Loading Type Cyclic loading criteria was used for computation of p -y curves Number of cycles of loading = 5 . Pile-head Loading and Pile-head Fixity Conditions Number of loads specified = 4 Load Case Numbe r 1 Pile head boundary conditions are Shear and Slope (BC Type 2) Shear force at pile head = 98000.000 lbs 185

PAGE 198

Slope at pile head = . 000 in/in Axial load at pile head = -353600.0 00 lbs (Zero slope for this load indicates fixed-head condition) Load Case Number 2 Pile-head boundary conditions are Shear and Slope (BC Type 2) Shear force at pile head = 147000.000 lbs Slope at p ile head = . 000 in/in Axial load at pile head = -353600. 000 lbs (Zero slope for this load indicates fixed-head condition) Load Case Number 3 Pile-head boundary conditions are Shear and Slope (BC Type 2) Shear force at pile head = 196000 . 000 lbs Slope at pile head . 000 in/in Axial load at pile head -353600.000 lbs (Zero slope for this load indicates fixed-head condition) Load Case Number 4 Pile head boundary conditions are Shear and Slope (BC Type 2) Shear force at pile head = 244750 . 000 lbs Slope at pile head = . 000 in/in Axial load at pile head -353600.000 lbs (Zero slope for this load indicates fixed-head condition) Computed Values of Load Distribution and Deflection for Lateral Loading f or Load Case Number 1 Pile head boundary conditions are Shear and Slope (BC Type 2) Specified shear force at pile head = 98000.000 lbs Specified slope at pile head = O.OOOE+OO in/in Specified axial load at pile head = -353600 . 000 lbs (Zero slope for this load indicates fixed-head conditions) Depth Deflect. Moment X y M V in in lbs -in lbs Shear Slope S Stress Rad . lbs/in**2 Total p lbs/in Soil Res . F/L lbs/in Es* h 0 . 000 . 044862 -5103524. 98000.0000 2.0238E-17 1268 . 8383 -444.2107 17823.2118 3 . 600 .044770 4753635 . 96385.5150 4.9352E-05 1205 . 6859 -452 . 7254 36404 . 3462 7 . 200 .044506 -4409674. 94741.1907-9 . 5230E-05 1143 . 6034 -460.7880 37271 . 9174 10 . 800 . 044084 4071741 . 93068 . 6518 . 0001377 1082 . 6090 -468.4002 38250 . 6004 14.400 .043515 -3739930. 91369.5193 -.0001768 1022 . 7195 475 . 5623 39343.3617 18 . 000 . 042811 -3 414330 . 89645.4153 . 0002126 963 . 9512 482 . 2732 40554 . 5802 21. 600 . 041984 -3095025 . 87897.9675 . 0002452 906.3188 -488 .5311 41890.0081 186

PAGE 199

25.200 . 041045 2782089 . 86128.8115 . 0002746 849 . 8362 494 . 3333 43356 .7741 28. 800 . 040007 2475596 . 84339 .5941 -.0003010 794 . 5165 -499 . 6764 44963.4225 32.400 . 038879 -2175611. 82531 . 9742 . 0003243 740 . 3712 -504 . 5569 46719 . 9826 36. 000 . 037672 -1882192 . 80385.4506 . 0003446 687.4112 -687 . 9563 65742 . 2304 39. 600 .036398 1597713. 77499.4370 . 0003620 636 . 0648 915 . 3846 90538 . 3953 43 . 200 . 035066 1325117 . 74193 . 6353 . 0003766 586.8633 -921.1719 94571 . 6367 46 . 800 . 033686 1064477. 70868 . 5264 -.0003886 539 . 8197 926 . 1108 98972 . 9864 50.400 .032268 815853. 67527 . 1807 -.0003980 494.9449 930.1924 103778 . 54. 000 . 030820 579295 . 64172 . 7012 -.0004050 452 . 2478 933.4073 109028 . 57. 600 . 029352 -354841. 60808.2274 -.0004097 411.7355 -935 . 7449 114769 . 61. 200 . 027871 142519 . 57436 . 9375 . 0004122 373.4128 937 . 1940 121055 . 64 . 800 . 026384 57655 . 8278 54062 . 0520 -.0004126 358 . 0957 -937 . 7424 127950 . 68.400 . 024900 245678 . 50686 . 8363 -.0004111 392 . 0323 -937 . 3774 135524. 72. 000 . 023425 421555 . 47314 . 6043 . 0004077 423 . 7768 -936 . 0849 143861 . 75. 600 .021965 585305 . 43948 . 7213 -.0004027 453.3326 -933 .8501 153058 . 79 . 200 . 020525 736960 . 40592.6082 -.0003961 480 . 7052 -930 . 6572 163230 . 82. 800 . 019113 876563 . 37249 . 7449 -.0003880 505 . 9026 926.4891 174508 . 86.400 . 017732 1004171 . 33923 . 6752 . 0003786 528 . 9348 -921.3274 187051 . 90 . 000 .016387 1119850. 30618 . 0115 -.0003679 549 .8141 915.1524 201043 . 93 . 600 . 015083 1223683 . 27336.4412 -.0003562 568 . 5553 907 . 9423 216709. 97 . 200 .013823 1315766 . 24082 . 7324 . 0003435 585 . 1754 899 . 6737 234313 . 100 . 800 . 012610 1396205 . 20860 . 7430 -.0003299 599.6941 -890 . 3205 254179. 104.400 . 011447 1465123 . 17674.4293 -.0003156 612 . 1334 879 . 8538 276700 . 108 . 000 . 010338 1522657 . 14527 . 8578 -.0003006 622 . 5178 868 . 2414 302358 . 111. 600 . 009283 1568958 . 11425.2194 -.0002851 630.8749 855 . 4466 331752 . 115.200 . 008285 1604193. 8370 . 8467 -.0002693 637.2344 841.4272 365633 . 118 . 800 . 007344 1628543 . 5369 . 2360 -.0002531 641. 6294 -826.1343 404955. 122.400 . 006463 1642207 . 2425 . 0762 . 0002367 644.0957 809 .5101 450943 . 126 . 000 . 005640 1645401 . -456 . 7149 . 0002202 644 . 6722 791.4850 505199 . 129 . 600 . 004877 1638358 . -3270.9406 . 0002038 643.4010 -771. 9738 569855 . 133 . 200 . 004173 1621331 . -6012.0587 -.0001875 640.3278 -750 . 8696 647806 . 136 . 800 . 003527 1594594 . 8674 . 0878 -.0001714 635.5019 -728 . 0354 743089 . 140.400 .002939 1558441 . -11250.4734 . 0001556 628 . 9767 703 . 2899 861499. 144 . 000 . 002407 1513194.-13733 . 8895 . 0001402 620 . 8099 676 . 3857 1011682 . 147 . 600 . 001929 1459200 . 16115 .9321 . 0001253 611. 0644 646 . 9713 1207156 . 151. 200 .001505 1396841 . -18386 . 6213 -.0001110 599 . 8089 614 . 5227 1470396 . 154 . 800 . 001130 1326534 . 20533 . 5374 9 . 7388E 05 587 .1191 578.2085 1842013 . 158.400 . 000803 1248751.-22540 . 1763 8.4494E 05 573 . 0798 536 . 5909 2404577 . 162.000 . 000522 1164030 . 24256 . 2123 7.2414E 05 557.7882 -416 . 7624 2875969 . 165 . 600 . 000282 1073922. 25416 . 0154 6 . 1209E-05 541. 5244 227 . 5727 2905459 . 169.200 8 . 10E 05 980879 . -25944.4774 -5. 0921E-05 524 . 7308 66 . 0173 2934949 . 172.800 -8.47E-05 886992 . 25937 . 8226 4 . 1569E 05 507 . 7849 69 . 7144 2964440 . 176.400 . 000218 794020.-25485 .5141 3 . 3153E-05 491. 0042 181.5681 2993930. 180.000 . 000323 703412.-24669 . 8606 2 . 5656E 05 474.6501 271. 5728 3023420 . 183.600 . 000403 616332 . -23565 . 7988 1 . 9048E 05 458.9328 341. 7 949 3052910 . 187 . 200 . 000461 533690 . -22240.8298 1 . 3290E 05 444 . 0164 394 . 2990 3082400. 190 . 800 . 000499 456164 . -20755 . 0854 -8. 3344E 06 430 . 0236 431.1145 3111890 . 194.400 -.000521 384232 . -19161 . 5067 4.1268E-06 417 . 0404 454 . 2070 3141380 . 198 . 000 -.000528 318191 . -17506 . 1123 -6.0995E-07 405.1204 465.4565 3170870 . 201. 600 . 000525 258186 . -15828 . 3404 2 . 2758E-06 394 .2901 466 . 639 0 3200361 . 205 . 200 -.000512 204233 . -14161.4464 4 . 5910E-06 384 . 5518 459.4132 3229851 . 208 . 800 -.000492 156236 . -12532 . 9421 6 . 3958E-06 375 . 8887 445 . 3114 3259341 . 212.400 -.000466 114012.-10965.0619 7.7489E-06 368 . 2676 425 . 7332 3288831 . 216 . 000 -.000436 77306 . 9555 9475 . 2444 8 . 7067E-06 361. 6426 401. 9432 3318321 . 219 . 600 -.000403 45812 . 2439 8076 . 6187 9 . 3232E 06 355 .9581 375 . 0710 3347811 . 187

PAGE 200

223.200 . 000369 19179 . 0370 -6778 .4871 9 . 6486E-06 351.1510 346 . 1132 3377301. 226 . 800 -.000334 -2 968 . 2987 -5 586 . 7956 9 . 7297E-06 348 . 2250 315 . 9376 3406791 . 230.400-.000299-21021.1203-4504. 5867 9 . 6096E-06 351.4834 285 . 2895 3436281 . 234.000 .000265 -35376.8578 -3532.4294 9 . 3272E 06 354.0745 254 . 7979 3465772. 237 . 600 -.000232-46430.86 54 2668 . 8221 8 . 9177E 06 356 . 0697 224 . 9839 3495262 . 241.200 . 000200-54569.6733 -191 0.5668 8.4120E-06 357.5387 196.269 0 3524752. 244 . 800 . 000171 60165 . 5300 1253 .1113 7 . 8375E 06 358.5487 168 . 9840 3554242. 248.400 . 000144 63572 . 1206 -69 0 . 8594 7 . 2180E-06 359 . 1636 143 . 3781 3583732 . 252 .000-. 000119-65121 . 3413 -217.4489 6 .5737 E 06 359.4432 119.6278 3613222 . 255 . 600 -9 . 67E-05 -65121.0164 174 . 0036 5 . 9216E-06 359.4432 97 . 8459 3642712 . 259.200 -7.66E-05 -63853.4393 490 . 6883 5 . 2758E-06 359 .2144 78.0901 3672202. 262.800 5 . 87E-05 61574.6291 739.9183 4 . 6478E 06 358.8031 60 . 3711 3701693. 266.400-4.31E-05-58514.1947 928 . 9748 4 . 0466E -06 358 . 2507 44 . 6603 3731183 . 270.000 -2.96E-05 54875.7083 1064 . 9782 3.4789E-06 357.5939 30 . 8971 3760673 . 273 . 600 -1.80E-0 5 -50837.4945 1154 . 7845 2 . 9496E-06 356 . 8651 18. 9952 3790163 . 277 . 200 -8.34E-06 46553 . 7507 1204 . 9036 2.4620E 06 356. 0919 8 . 8488 3819653 . 280 . 800 -3 .16E-07 -42155.9202 1221.4393 2.0178E -06 355 . 2981 . 3376847 3849143 . 284.400 6 . 19E 06 37754 . 2508 1210.0454 1.6178E 06 354 . 5037 -6.6676 3878633 . 288 . 000 1 . 13E-05-33439.4744 1175 . 9003 1 . 2613E-06 353.7249 12 . 3019 3908123. 291. 600 1 .53E-05-29284. 5575 1123 . 6930 9.4727E-07 352 . 9749 16 . 7021 3937614. 295 . 200 1 . 82E 05 25346.4728 1057 . 6231 6.7375E-07 352.2641 -20 . 0034 3967104. 298 . 800 2 .01 E-05 -21667 . 9556 981.4092 4 . 3836E-07 351. 6002 -22.3376 3996594 . 302.400 2 . 13E 05 18279 . 2103 898.3065 2 . 3835E-07 350 . 9885 -23 . 8305 4026084 . 306 . 000 2 . 18E-05-15199. 5418 811.1305 7 . 0733E-08 35 0.4327 -24.6006 4055574 . 309.600 2 . 18E 05 -12438.8907 722.2859 -6.7646E-08 349.934 4 24 . 7575 4085064 . 313.200 2 . 14E 05 9999.2559 633 .7 992 -1.7999E-07 349.4941 24.4017 4114554 . 316 . 800 2 . 05E-05 -7875.9944 547 . 3544 -2 . 6948E-07 349.1 108 -23.6232 4144044. 320.400 1 . 94E 05 6058 . 9906 464 . 3288 3 . 3925E 07 348 .7829 -22.5021 4173534 . 324 . 000 1 . 81E-05 -4533.6909 385 . 8312 -3 . 9229E-07 348 . 5076 -21. 1077 4203025. 327 . 600 1 . 66E-05 -3282 . 0046 312 . 7386 -4 . 3142E-07 348.2817 -19.4993 4232515 . 331.200 1 . 50E-05 2283.0717 245 .7321-4. 5928E-07 348 . 1014 17 . 7265 4262005. 334 . 800 1 . 33E 05 1513 . 9029 185 . 3321 -4 . 7829E-07 3 4 7.9625 15.8291 4291495. 338.400 1 . 15E-05 -9 49 .8981 133 . 5524 -4 . 8728E-07 240.6838 -12 . 9375 4039673 . 342.000 9 . 77E-06 -553.5664 91. 9635 4 . 8910E 07 164 . 6183 -10.1675 37 464 39. 345 . 600 8 01 E 06 289 . 0063 59 . 5246 -4.8964E-07 125.0872 -7.8541 3530874 . 349.200 6.24E 06 126 . 2357 34 . 8771 4 . 8982E 07 100 . 8657 5.8389 3366092. 352 . 800 4.48E -06 39 . 1379 17.1157 -4.8987E 07 84 . 5031 4 . 0285 3236334 . 356.400 2.72E-06 -4 . 2495 5 . 6090 -4 . 8989 E 07 72 . 7087 -2.3641 3131748 . 360 . 000 9.54E 07 0.0000 0 . 0000 -4 . 8989E 07 63 . 8037 -.8071488 1522931 . Output Verification : Computed forces and moments are within specified convergence limits . Output Summary for Load Case No . 1 : Pile head deflection . 04486168 in Computed slope at pile head = 2 . 023844E-17 Maximum bending moment = 5103524 . lbs-in Maximum shear force = 98000 . 00000 lbs Depth of maximum bending moment = 0 . 00000 in Depth of maximum shear force 0 . 00000 in Number of iterations = 16 Number of zero deflection points = 3 188

PAGE 201

Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 2 Pile-head boundary conditions are Shear and Slope (BC Type 2) Specified shear force at pile head = 147000.000 lbs Specified slope at pile head = O.OOOE+OO in/in Specified axial load at pile head = -353600 . 000 lbs (Zero slope for this load indicates fixed-head conditions) Depth Deflect. Moment X y M V in in lbs-in lbs Shear Slope S Stress Rad . lbs/in**2 Total p lbs/in Soil Res. F/L lbs/in Es * h 0 . 000 .102108 -8794421 . 147000 . 1 . 3492E 17 1935 . 0185 545 . 5799 9617 . 6754 3.600 . 101950 8268813 . 145017 . -8 . 5431E-05 1840 . 1500 -556.1070 19636 . 9853 7 . 200 . 101493 -7750517 . 142997 . -.0001656 1746 . 6013 -566 . 2102 20083.6934 10 . 800 . 100757 -7239658. 140941. .0002407 1654 . 3950 -575 . 8885 20576 . 1936 14.400 . 099760 6736354 . 138851 . . 0003107 1563 . 5524 585 . 1396 21115 . 6643 18. 000 .098520 6240720 . 136729 . -.0003756 1474 . 0940 -593 . 9607 21703 . 7190 21.600 .097056 5752863 . 134575 . . 0004357 1386 . 0394 602 . 3486 22342.3955 25 . 200 .095383 5272886 . 132393 . -.0004909 1299.4070 -610 . 2992 23034 . 1531 28 . 800 . 093521 -4800886. 130182. -.0005413 1214.2144 617 . 8085 23781 . 8797 32.400 . 091486 4336954 . 127945 . -.0005871 1130.4779 624 . 8720 24588 . 9060 36 . 000 . 089294 -3881175 . 125284 . . 0006282 1048.2132 853 . 5543 34411 . 9995 39 . 600 . 086963 -3436508 . 121699. -.0006649 967 . 95 40 -1137 . 9860 47109.2435 43 . 200 . 084507 -3006633 . 117585. . 0006971 890 . 3646 1147 . 6545 48889 . 9156 46 . 800 .081944 -2591669 . 113438 . -.0007251 815.4668 1156.5007 50808.1980 50.400 .079286 -2 191727. 109260 . -.0007491 743.2802 1164 . 5156 52874.9241 54 . 000 . 076550 -18 06906 . 105055. . 0007691 673 . 8226 -1171 . 6897 55102.2942 57 . 600 . 073749 -1437292. 100825. -.0007854 607 . 1101 -1178 . 0128 57504 . 0416 61.200 .070895 1082964. 96574 . 5300 -.0007980 543.1564 1183.4743 60095 . 6280 64 . 80 0 . 068003 743987 . 92305 . 7624 -.0008071 481. 9735 -1188 . 0632 62894.4747 68.400 . 065084 420417 . 88022 . 0662 -.0008130 423 . 5715 1191 . 7679 65920 . 2344 72 . 000 .062150 112298 . 83726 . 6467 .00 08156 367 . 9582 1194 . 5763 69195.1129 75 . 600 . 059212 180338 . 79422 . 7534 . 0008153 380 . 2390 -1196.4756 72744 . 2499 79 . 200 .056280 457470 . 75113 . 6824 -.0008121 430 . 2594 1197.4527 76596 . 1701 82 . 800 . 053365 719089 . 70802 . 7786 -.0 008062 477.4797 -1197.4939 80783 . 3216 86.400 .050475 965198 . 66493.4374 -.0007978 521. 9005 -1196.5846 85342.7179 90 . 000 . 047621 1195811 . 62189 . 1076 . 0007869 563 . 5245 -1194 . 7098 90316 . 7100 93 . 600 .0 44809 1410956 . 57893 . 2935 . 0007739 602 . 3566 1191 . 853 6 95753 . 9164 97 . 200 . 042049 1610673 . 53609 . 5581 -.0007588 638.4040 -1187 . 9994 101710 . 100 . 800 .039346 1795013 . 49341 . 5261 . 0007417 671. 6761 -1183 .1295 108251 . 104.400 . 036708 1964043 . 450 92 . 8873 . 0007229 702 . 1848 1177.2254 115450 . 108.00 0 .034141 2117841 . 40867.4009 . 0007025 729 . 9443 1170 . 2671 123397 . 111. 600 . 031651 2256500 . 36668 . 8997 -.0006806 754 . 9712 -1162.2336 132194 . 115.200 . 029241 238 0 125 . 32501.2957 . 0006573 777.2846 -1153 . 1020 141962 . 118.800 . 026918 2488836 . 28368 . 5857 -.0006330 796 . 9061 -1142 . 8480 152844. 122.400 . 024684 2582767 . 24274 . 8590 -.0006076 813 . 8600 -1131 . 4447 165013. 189

PAGE 202

126 . 000 . 022543 2662068 . 20224 . 3053 -.0005813 828 . 1732 -1118 . 8630 178673 . 129 . 600 . 020499 2726902 . 16221.2249 -.0005543 839 . 8754 -1105 . 0705 194073 . 133.200 . 018552 2777450 . 12270 .0412 . 0005268 848.9988 -1090 . 0315 211516 . 136.800 . 016706 2813905 . 8375 . 3147 . 0004988 855 . 5 788 -1073 . 705 4 231374 . 140.400 . 014961 2836482 . 4541. 7619 . 0004705 859.6537 -1056 . 0462 254110 . 144 . 000 . 013319 2845408 . 774 . 2774 -.0004420 861. 2648 1037. 0007 280302 . 147 . 600 . 011778 2840931 . -2922.0366 .0004136 860.4568 -1016.5070 310688 . 151. 200 .010341 2823317 . -6541 . 8339 .0003852 857.2775 -994.4915 346217 . 154 . 800 . 009005 2792849 . -10079.4756 . 0003571 851. 7784 -970 .8651 388132 . 158.400 . 007770 2749835 . -13528.9657 . 0003293 844 . 0146 945 . 5183 438090 . 162 . 000 . 006634 2694602 . -16883 . 8632 . 0003021 834.0455 -918.3136 498351 . 165 . 600 . 005595 2627503 . -20137 . 1595 . 0002754 821.9344 -889.0733 572077 . 169 . 200 . 004651 2548914 . -23281 . 1028 . 0002495 807 . 7497 857 . 5619 663831 . 172 . 800 . 003798 2459243 . -26306 . 9364 . 0002244 791. 5649 -823.4567 780466. 176.400 . 003035 2358932 . -29204.4930 -.0002003 773.4595 -786.297 0 932788. 180.000 . 002356 2248461.-31961 .53 25 -.0001773 753 . 5202 745 . 3916 1138966. 183 . 600 . 001758 2128358 . -34562 . 5790 -.0001553 731.8 425 -699 . 6342 1432347 . 187 . 200 . 001238 1999215 . -36986 . 6730 .0001347 708 .5331 647 . 0847 1882306 . 190 . 800 . 000789 1861711 . -39202 . 3328 -.0001153 683 . 7146 583 . 8374 2664577 . 194.40 0 . 000407 1716665 . -40892 . 7129 9 . 7425E-05 657 . 5348 -355 . 2626 3141380 . 198 . 000 8 . 73E-05 1567036 . -4 1670.6601 -8.0984E-05 630 . 5278 -76 . 9303 3170870 . 201. 600 -.000176 1416430 . -41527 . 5733 6 . 6047E-05 603 . 3445 156.4229 3200361 . 205 . 200 -.000388 1267869. -40619 . 1085 -5.2607E-05 576.5304 348 . 2797 3229851. 208 . 800 .000555 1123838 . -39088 . 1841 -4.0632E-05 550 . 5339 502 . 2338 3259341 . 212.400-.000681 986331 . 37064 . 7335 3 . 0067E 05 525 . 7148 621. 9054 3288831 . 216 . 000 -.000771 856895.-34832.1618 -2 .0839E -05 502 . 3527 618.4122 2886739 . 219 . 600 -.000831 735486.-32574 . 8218 1 . 2866E 05 480.4392 635.6656 2754498 . 223 . 200 -.000864 622324 . 30264 . 9740 6 . 0679E 06 460 . 0142 647 . 5832 2698742. 226 . 800 . 000874 5 1 7563 . 27919 . 8521 3 .6081 E 07 441. 1056 655 . 2623 2697557 . 230.400 . 000866 421300. 25553.4026 4 . 3398E-06 423 . 7309 659.4319 2739881 . 234 . 000 . 000843 333589 . 23177 . 3326 8 . 1194E 06 407 . 8997 660 . 6070 2820336 . 237 . 600 -.000808 254444 . 20801 . 7344 1 . 1063E 05 393 . 6146 659 . 1697 2936949 . 241. 200 .000764 183845 . 18435.4827 1 . 3258E-05 380 .8719 655.4146 3090078 . 244 . 800 . 000713 121742 .-15989.4870 1.4788E-05 369 . 6629 703.4718 3554242. 248.400 . 000657 68758 . 2092 -135 45.8064 1.5742E-05 360 0996 654 . 1285 3583732 . 252 . 000 .000599 24252 . 5357 -11285 . 8743 1.6207E-05 352. 0667 601. 3893 3613222 . 255.600 -.000540 -12458 . 8232 -9219 . 1035 1 . 6266E-05 349 . 9380 546 . 8167 3642712. 259.200 . 000482-42083 . 5963 -7349.7029 1.5993E-05 355 .2851 491. 7392 3672202 . 262 . 800 -.000425 -65335 . 9662 -5677.4939 1 . 5455E-05 359.4820 437.2658 3701693. 266.400 . 000371 -82922.2039 -4198 . 6706 1.4713E-05 362 . 6561 384 . 3027 3731183 . 270.000 . 000319 -95528.9357 -2906.4999 1 . 3820E-05 364 . 9316 333 . 5699 3760673 . 273 . 600 . 000271 103814 . -1791. 9590 1.2822E-05 366 .4269 285 . 6194 3790163 . 277 . 200 .000227 -108398 . -844 . 3092 1 . 1759E-05 367 . 2544 240 . 8527 3819653. 280 . 800 . 000187 109863 . -51. 6050 1 . 0666E-05 367.5187 199 . 5385 3849143 . 284.400 . 000150 -108743 . 598 . 8576 9 . 5719E-06 367.3166 161. 8296 3878633 . 288 . 000 . 000118 -105527 . 1120 . 1541 8.4991E-06 366.7361 127 . 7796 3908123 . 291. 600 -8.90E05 100656. 1525.4017 7.4668E 06 365 . 8570 97 . 3580 3937614 . 295 . 200 -6. 39E-05 -9 4524 . 8614 1827.4825 6.4896E-06 364.7503 70.4647 3967104 . 298 . 800 -4. 23E-05 -87481 . 6545 2038 . 8176 5.5783E-06 363.4791 46 . 9437 3996594 . 302.400 -2.38E 05 79831 . 1728 2171.1865 4.7406E 06 362 . 0982 26. 5946 4026084 . 306 . 000 -8.15E-06 -71837 . 0426 2235 . 5886 3 . 9813E-06 360 .6553 9 . 1843 4055574 . 309 . 600 4 . 89E-06 -63724 .7991 2242 . 1422 3 . 3026E 06 359 .1911 -5 . 5434 4085064. 313 .200 1 . 56E -05 55685 . 2106 2200 .0174 2 . 7047E-06 357.7401 -17 . 8593 4114554 . 316.800 2.44E-05 -47877 . 7880 2117 . 3981 2 . 1862E-06 356 . 3309 -28 . 0403 4144044 . 320.400 3.14E 05 40434 .3786 2001.4709 1 . 7440E-06 354 . 9874 -36 . 3636 4173534 . 190

PAGE 203

324 . 000 3 . 69E-05 -33462 .7571 327 . 600 4.13E-05 -27050 . 1375 331. 200 4.46E 05 21266 . 5390 334 . 800 4 . 72E 05 16167 . 9496 338.400 4 . 92E 05 -11799.2374 342 . 000 5 .11 E 05 8146 . 7850 345.600 5 . 30E 05 5184 . 0996 349 . 200 5.48E 05 2895 . 0029 352.800 5 . 66E 05 1270.25 9 9 356.400 5 . 85E 05 305 . 5205 360.000 6.03E 05 0.0000 Output Verification : 1858.4365 1 . 3741 E-06 3 53 .7291 43 . 0999 4203025 . 1693.5405 1 . 0711 E-06 352.5716 -48 . 5090 4232515. 1511 . 1218 8 . 2918E-07 351. 5277 52 . 8347 4262005 . 1314 . 6761 6.4176E 07 350 . 6075 -56 . 3018 4291495 . 1113 . 8585 5.4327E 07 241. 3427 55 . 2635 40396 7 3 . 918 . 5853 5 . 1983E 07 164.8824 -53 . 2216 37464 3 9 . 729 . 2333 5 . 1146E 07 125 . 2166 -51. 9739 35308 7 4 . 543.4092 5 . 0795E 07 100 . 9275 -51. 2617 3366092 . 359.4712 5 . 0655E 07 8 4 . 5276 -50 . 9261 3236334. 176 . 2460 5 . 0612E 07 7 2 .7141 50 . 8656 3131748 . 0 . 0000 5 . 0604E 07 63 . 8037 -51. 0120 1522931 . Computed forces and moments are within specified convergence limits . Output Summary for Load Case No . 2 : P i le head defle c t i on = .1 0210823 i n Computed slope at pile head = 1 . 349229E-1 7 Max i mum be n d i ng moment = 8794421 . lbs in Max i mum shear force = 147000.00000 lbs Depth of maximum bending moment = 0 . 00000 in Depth of max i mum shear forc e = 0 . 00000 in Number of iterations 20 Number of zero deflection point s = 2 Computed Values of Load Distribution and Deflect i on for Lateral Load i ng for Load Case Number 3 Pile head boundary conditions are Shear and Slope (BC Type 2) Spec i fied shear force at pile head = 196000 . 000 lbs Spec i fied slope at pile head O .OOOE+OO in/in Specified axial load at pile head = -353600.000 lbs ( Zero slope for this load indi c ates fixed head conditions ) Depth Deflect. Moment X y M V i n in lbs-in lbs Shear Slope S Stress Rad . lbs/in ** 2 Total p lbs/in Soil Res . F / L lbs /in Es * h 0 . 000 . 183264 1 . 2944E + 07 3 . 600 . 183031 1 . 2242E+0 7 7 . 200 . 182356 1 . 1549E+07 10 . 800 . 181265 -1. 0865E+07 14.400 . 179783 -1. 0190E+07 18 . 000 . 177933 9523071 . 21. 600 . 175740 -8865530 . 25 . 200 . 173227 8217157 . 28 . 800 . 170418 -7578071 . 32.400 . 16 7 336 -6948384 . 196000 . 5 . 7824E 17 2683.9506 -631.4734 6202 . 2541 193705 . . 0001261 2557 . 3484 -643 . 7028 12660 . 8574 191366. -.0002452 2432 . 2800 655 . 5279 12941 . 1412 188986 . . 0003574 2308 . 7717 666 . 9457 13245.7906 186565 . . 0004629 2186 . 8485 677 . 9527 13575.4331 184105 . . 0005616 2066 . 5345 -688 . 5451 13930 . 8839 181608. . 0006536 1947 . 8531 -698 . 7184 14313 . 1408 179075. . 0007392 1830 . 8266 708.4680 14723 . 3839 176508 . . 0008182 1715.4761 -717 . 7890 15162 . 9770 1 7 3908 . . 0008910 1601 . 8222 -726 . 6764 15633.4728 191

PAGE 204

36. 000 .164003 39. 600 .160442 43 . 200 . 156675 46.800 . 152723 50.400 . 148607 54.000 . 144346 57. 600 . 139960 61. 200 . 135468 64 . 800 .130888 68.400 . 126238 72. 000 .121533 75. 600 . 116790 79. 200 . 112025 82. 800 .1 07253 86.400 . 1 02487 90 . 000 . 097741 93 . 600 . 093028 97.200 . 088359 100 . 800 . 083748 104.400 . 079203 108 . 000 . 074735 111 . 600 . 070354 115 . 200 . 066069 118 . 800 . 061888 122.400 .057817 126 . 000 . 053865 129 . 600 .050036 133.200 . 046337 136 . 800 . 042773 140.400 . 039348 144.000 . 036064 147.600 . 032927 151. 200 . 029936 154.800 . 027096 158.400 . 024405 162 . 000 . 021866 165 . 600 . 019478 169 . 200 .017240 172 . 800 . 015152 176.400 . 013211 180 . 000 . 011415 183.600 . 009762 187 . 200 . 008248 190.800 . 006869 194.400 .005621 198 . 000 . 004499 201. 600 .003499 205 . 200 .002613 208.800 . 001837 212.400 . 001164 216 . 000 . 000587 219 . 600 9.83E-05 223 . 200 . 000308 226 . 800 . 000641 230.400 . 000907 -6328203 . 170811 . . 0009574 1489 .8841 -993.6409 21811 . 2562 -5720981 . 166635 . . 0010178 1380 . 2848 -1326 . 2467 29758 . 3490 -5 1310 19 . 161838. . 001072 1 1273.8011 -1339.1476 3 0 770.2837 -4558479 . 156995. . 0011206 1170.4616 -1351 . 2449 31851.6886 -4003508 . 152110. . 0011635 1070 . 2935 -1362 . 5292 33007 . 3328 -3466247 . 147186 . -.0012009 973 . 3218 1 372 . 9907 34242 . 5255 -2946824 . 142226 . . 0012330 879 . 5697 -1382.6192 35563 . 1709 -2445358. 137233 . -.0012600 789 . 0586 -1391.4044 36975 . 8336 -1961955 . 132210 . -.0012820 701. 8080 -1399 . 3352 38487 . 8133 -1496713. 127159 . . 0012994 617 . 8351 -1406.4004 40107.2322 -1049716 . 122085 . . 0013121 537 . 1555 -1412 . 5886 41843 . 1362 621041 . 116990 . -.0013205 459 . 7826 -1417 . 8878 43705 . 6119 -210748 . 111878 . -0013246 385 . 7279 -1422.2856 45705 . 9232 181108 . 106751 . . 0013248 380 . 3780 -1425 . 7695 47856 . 6698 554489 . 101614 . -.0013211 447 . 7705 -1428 . 3262 50171.9726 909366 . 96469.1773 .0013138 511. 8232 -1429 . 9423 52667 . 6903 1245722 . 91320 . 1944 -.0013030 572 .5331 -1430 . 6037 55361 . 6745 1563554 . 86170 . 5749 . 0012889 629 . 899 4 -1430 . 2960 58274 .0691 1862869 . 81023.8346 -.0012718 683.9236 1429.0041 61427 . 6653 2143688 . 75883.5452 -.0012517 734 . 6094 1426 . 7123 64848 . 3227 2406044 . 70753 . 3354 -.0012289 781. 9627 1423.4042 68565.4717 2649983 . 65636 . 8946 -.0012036 825 . 9920 -1419 . 0629 72612 . 7145 2875565 . 60537.9747 .0011760 866 . 7079 1413 . 6704 77028 . 5502 3082863 . 55460.3942 -.0011461 904 . 1236 -1407 . 2077 81857 . 2502 3271962 . 50408 .0411 -.0011143 938 . 2547 1399 . 6551 87149 . 9259 3442964. 45384 . 8774 .0010807 969 . 1192 -1390 . 9914 92965 . 8334 3595982 . 40394 . 9437 . 0010454 996.7379 -1381. 1940 99373 . 9842 3731146. 35442 . 3646 -.0010088 1021.1340 1370 . 2388 106455 . 3848599 . 30531 . 3548 . 0009708 1042 . 3334 -1358 . 0999 114304 . 3948500 . 25666.2269 -.0009318 1060 . 3648 1344.7490 123034 . 4031023 . 20851 . 3993 -.0008918 1075 . 2597 -1330 . 1552 132778 . 4096359 . 16091.4073 -.0008511 1087 . 0524 1314 . 2848 143696 . 4144714 . 11390 . 9148 . 0008099 1095 . 7802 -1297.1000 155983 . 4176312 . 6754 . 7294 . 0007682 1101.4833 1278.5586 169873 . 4191393 . 2187.8206 . 0007263 1104 . 2053 -1258 . 6130 185657 . 4190215 . -2304 . 6578 . 0006843 1103 . 9927 -1237 . 2083 203691 . 4173057 . -6717 . 3393 -.0006425 1100 . 8958 -1214.2814 224428 . 4140215.-11044 . 6094 -.0006008 1094 . 9680 -1189 . 7576 248436. 4092006 . 15280.5594 -.0005596 1086 . 2667 1163.5480 276451 . 4028770 . 19418.9262 . 0005190 1074 . 853 0 -1135 . 5447 309435 . 3950868 . 23453 . 0126 . 0004790 1060 . 7924 1105 . 6144 348672 . 3858689 . 27375 . 5778 .0004399 1044 . 1546 -1073 . 5885 395911 . 3752644. -31178 . 6854 . 0004018 1025.0144 -1039 .2491 453605 . 3633179. 34853.4847 .0003648 1003.4518 1002.3061 525300 . 3500770 . 38389 . 8853 .0003291 979 . 5529 -962 . 3609 616336 . 3355934 . 41776 . 0524 . 0002948 953.4110 918.8431 735173 . 3199232. -44997 . 5792 -.0002620 925 . 1275 -870 . 894 0 896120 . 3031285 . -48036 . 0282 . 0002308 894 . 8142 817.1332 1125681 . 2852785 . -50866 . 0885 . 0002013 862.5963 -755 . 1226 1479743. 2664536 . -53 449 . 1108 . 0001737 828.6187 -679 . 8898 2103110. 2467510 . -55646 . 0966 . 0001480 793 . 0569 -540 . 6579 3318321 . 2263508 . -56783 . 7463 -.0001243 756.2360 -91.3697 3347811 . 2058350 . 56427 . 3457 -.0001027 719 . 2066 289 . 3700 3377301 . 1856969 . 54814 . 6810 -8.3065E-05 682 . 8588 606 . 5548 3406791 . 1663473 . 52522 . 7814 -6.5439E -05 647 .9341 666 . 7227 2647720. 192

PAGE 205

234.000 . 001112 1478639. 50048 . 6721 -4 . 9707E-05 614 . 5728 707 . 7825 2291149 . 237 . 600 . 001264 1302996. -47447.8310 3 . 5780E 05 582 . 8706 737 . 1292 2098743 . 241.200 -.001370 1136923 . 44755 . 8759 2 . 3564E-05 552 . 8957 758.4014 1993272 . 244.800 -.001434 980694 . -41998 . 2762 1 . 2962E-05 524 . 6974 77 3 . 5984 1941995. 248.400 . 001463 834503 . -39194 . 6912 3 . 8735E 06 498 . 3109 783 . 9488 1928989 . 252 . 000 . 001462 698482 . -36361 . 1014 3 . 8017E-06 473 . 7602 7 90.2677 1945995. 255 . 600 -.001436 572712.-33510 . 9910 1 . 0166E 05 451. 0597 793.1269 1988780 . 259 . 200 -.001389 457229.-30656 . 0615 1 . 5323E-05 430 . 2158 792 . 9451 2055502. 262 . 800 . 001325 352028 . -27806.6891 1 . 9375E-05 411. 2277 790 . 0396 2145943 . 266.400 . 001249 257070. 24972 . 2331 2.2424E-05 394 . 0885 784 . 6581 2261147 . 270 . 000 -.001164 172285 . -22161 . 2516 2.4574E-05 378 . 7854 776 . 9982 2403286. 273 . 600 -.001072 97571 . 5049-19381 . 6584 2 . 5925E 05 365 . 3002 767.2202 2575687 . 277 . 200 . 000977 32802.7450 16640.8420 2.6578E 05 353 . 6099 755.4556 2782970 . 280 . 800 . 000881 22174 .8925-13945. 7617 2 . 6631E-05 351. 6917 741. 8112 3031331 . 284.400 . 000786 -67538 . 9392 11303 . 0334 2 . 6182E 05 359.8796 726 . 3712 3329003 . 288 . 000 . 000692 -103490 . 8642.4472 2 . 5325E-05 366 . 3685 751. 7322 3908123 . 291. 600 . 000603 -129700 . -6101 . 8275 2.4158E-05 371. 0992 659.7232 39376 1 4 . 295 . 200 -.000519 -147362. 3885 . 8000 2 . 2771 E 05 3 74 . 2870 571.4032 3967104. 298 . 800 -.000439 157620 . -1979 . 6050 2 . 1244E-05 3 76 . 1385 487.5941 3996594 . 302.400 -.000366 161561 . 366 . 0238 1 . 9646E-05 37 6 . 8498 408 . 8399 4026084. 306 . 000 . 000298 -160205 . 973 . 6806 1.8035E 05 376 . 6052 3 3 5.4403 4055574 . 309.600 . 000236 -154504 . 2058 . 9428 1 . 6459E-05 3 7 5 . 5762 26 7 .4831 4085064 . 313 . 200 -.000179 -145339 . 2909 . 1877 1.4958E-05 373 . 9219 204.8752 4114554 . 316 . 800 -.000128 133520 . 3543 . 2346 1 . 3562E 05 3 7 1 . 7887 147 . 3 731 4144044 . 320.400 8 . 16E-05 -119793. 3978 . 8076 1.2293E 05 369 . 3111 94 . 6118 4173534 . 324 . 000 -3.95E 05 -104841 . 4232 . 1462 1 . 1169E-05 366 . 6124 46 . 1318 4203025. 327 . 600 1 . 20E 06 89293 . 2303 4317 . 7133 1 . 0197E-05 363.8061 1.4055 4232515 . 331.200 3 . 39E 05 73727 . 9441 4247 . 9951 9 . 3805E-06 360.9966 40.1378 4262005. 334 . 800 6 . 63E-05 58683 . 7837 4033 . 3889 8 . 7176E 06 358 . 2813 79 . 0879 429 1 495 . 338.400 9 . 67E 05 -44665 . 3500 3695.7735 8 . 3574E 06 243 . 3389 108.4763 4039673 . 342 . 000 .000127-32052. 9374 3263 . 5216 8 . 2678E 06 165 . 7138 13 1 . 6637 3746439 . 345 . 600 . 000156 21146.9452 2750 . 7697 8.2345E 06 125.6385 153 . 1985 3530874 . 349 . 200 . 000186 -12226.4310 2162 . 2934 8 . 2200E 06 101. 1356 173 . 7328 3366092. 352 . 800 . 000215 5557 . 5054 1501 . 0508 8.2140E-06 84 . 6127 193 . 6242 3236334 . 3 56.400 . 000245 -1397 . 9528 768 . 9719 8 . 2121E-06 72.7341 213 . 0863 3131748 . 360.000 .000275 0 . 0000 0 . 0000 8 . 2118E 06 63 . 8 037 232.2546 1522931 . Output Verificat i on : Computed forces and moments are within specified convergence limits . Output Summary for Load Case No . 3 : Pile head deflection = . 18326435 in Computed slope at pile head = 5 . 782412E 17 Maximum bending moment -12943796 . lbs-in Maximum shear force = 196000 . 00000 lbs Depth of maximum bending moment = 0 . 00000 in Depth of maximum shear force = 0 . 00000 in Number of iterat i ons 22 Number of zero deflection points = 2 193

PAGE 206

Computed Values of Load Distribution and Deflect ion for Lateral Loading for Load Case Num b er 4 P ilehead boundary conditions are Shear and Slope (BC Type 2 ) Specified shear force at pile head = 244750 . 000 lbs Specified slope at pile head O .OOOE+OO in/in Spec i fied axial load at pile head = 353600 . 000 lbs ( Zero slope for this load indicates fixed-head conditions ) Depth Deflect. Moment X y M V in in lbs-in lbs Shear Slope S Stress Rad . lbs/in ** 2 Total p lbs/in Soil Res . F/L lbs/in Es * h 0.000 .287964 1 . 7447E+07 244750 . 4 . 6259E 17 3496 . 7076 706 . 9919 4419.2444 3 . 600 . 287650 -1. 65 7 0E+07 242180 . . 0001703 333 8 . 5224 720 . 7165 9019 . 9 172 7 . 200 . 286738 1 . 5704E+07 239562 . -.0003319 3182 . 0612 734 . 0513 9216 .018 6 10 . 800 . 285260 -1.4846E +07 236896. -.0004849 3027.3533 -746 . 9923 9427 .0817 14.400 .283247 1 . 3999E+07 234184 . 0006293 2874.4268 759 .5351 9653.4969 18 . 000 . 280730 -1.3162E+07 231428 . . 0007653 2723 . 3092 -771. 6749 9895 . 7516 21.600 . 277737 -1. 2335E+07 228629 . . 0008929 2574 .0271 7 8 3.4066 10154.4288 25 . 200 . 274300 1.1518E+07 225788 . .0010123 2426 . 6058 794 . 7252 10430 . 2063 28. 800 . 270448 -1. 0712E +07 222907 . . 0011236 2281. 0700 805 . 6251 10723 . 85 7 6 32.400 . 266210 9915934 . 219988. -.0012269 213 7 .4434 816 .1011 11036 . 2542 36.000 .261615 9130890 . 216509 . .0013223 1995 . 7486 -1116 . 6723 15366 . 1924 39. 600 .256690 8360434 . 211814. -.0014099 1856 . 6870 -1491 . 5592 20918.6846 43 . 200 . 251464 -7609415 . 206417 . -.0014898 1721. 1335 -1507 . 2690 21578 . 3433 46 . 800 .245963 6878028 . 200963 . -.0015623 1589.1234 -1522 . 18 9 8 22279 . 2866 50.400 . 240215 -6166456 . 195458 . -.0016277 1460 . 6898 -1536 . 3118 23024 . 0788 54. 000 . 234244 5474873 . 189904 . -.0016859 1335.8641 1549 . 6250 23815.5514 57.600 . 228076 4803443 . 184302 . -.0017374 1214 . 6759 1562 . 1190 24656 .8271 61. 200 . 221735 4152319 . 178658 . -.0017822 1097 . 1528 1573 . 7833 25551 . 3482 64 . 800 . 215244 -3521645 . 1 72973 . -.0018207 983 . 3206 -1584 . 6071 26502 . 90 8 5 68.400 . 208626 2911551 . 167250 . -.0018529 873.2032 -1594 . 5792 27515 . 6907 72. 000 . 201903 2322161. 161493 . -.0018791 766 . 8225 -1603 . 6884 28594 . 3088 75. 600 . 195097 1753584 . 155705 . .0018995 664 . 1985 -1611.9230 29743 . 8564 79. 200 . 188227 1205920 . 149889 . . 0019143 565 .3491 -1619 . 2710 30969 . 9629 82 . 800 . 181314 -679257 . 144048 . . 0019237 470 . 2903 1625 . 7205 32278.8572 86.400 . 174376 173672. 138185. -.0019280 379 . 0359 -1631 . 2588 33677.4414 90 . 000 . 167432 310769 . 132305 . -.0019273 403 . 7808 -1635.8732 35173 . 3755 93. 600 . 160499 774014 . 126409 . . 0019219 487 .3931 1639.5505 36775.1754 97. 200 . 153594 1216020 . 120502 . . 0019119 567 . 1720 -1642 . 2774 38492 . 3262 100 . 800 .146733 1636757 . 114586 . . 0018976 643 .1121 -1644 . 0399 40335.4138 104.400 . 139931 2036209 . 108666 . . 0018793 715 . 2102 -1644.8238 423 1 6 . 2779 108 . 000 . 133203 2414369 . 102745 . -.0018570 783.4654 -1644 . 6143 44448 . 1912 111.600 . 126561 2771247 . 96826.7973 -.0018310 847.8792 -1643 . 3962 46746 . 0690 115 . 200 . 120019 3106861 . 90914 . 6076 -.00180 16 908.4551 1641.1537 4 9226.7161 118 . 800 . 113590 3421245 . 85012 . 3643 . 0017689 965 . 1992 -1637 . 8704 51909 . 1182 122.400 . 107283 3714446 . 79123 .8451 . 0017332 1018 . 1199 1633 . 5292 54814 . 7878 126 . 000 . 101111 3986524 . 73252 . 8906 . 0016946 1067 . 2280 1628 . 1122 57968.1756 129 . 600 . 095082 4237553 . 67403.4072 . 0016534 1112 . 5368 -1621. 6008 61397 . 1645 133 . 200 . 089206 4467619 . 61579 . 3702 -.0016099 11540621 1613.9753 65133 . 6618 194

PAGE 207

136 . 800 . 083491 4676826 . 55784 . 8278 -.0015641 1191 . 8224 -1605 . 2149 69214 . 3172 140.400 . 077945 4865288 . 50023 . 9052 -.0015163 1225 . 8385 -1595 . 2976 73681 . 3955 144 . 000 . 072574 5033137 . 44300.8097 -.0014667 1256 .1341 -1584 . 1999 78583 . 8447 147 . 600 . 067384 5180520. 38619.8358 . 0014156 1282 . 7355 -1571 . 8967 83978 . 6128 151. 200 . 062381 5307596 . 32985.3720 . 0013631 1305 . 6719 -1558 . 3610 89932 . 2808 154 . 800 . 057570 5414544. 27401.9083 -.0013094 1324.9752 -1543.5633 96523 . 1062 158.400 . 052954 5501556 . 21874 . 0451 . 0012548 1340 . 6803 -1527.4718 103844 . 162.000 . 048536 5568843 . 16406 . 5035 -.0011993 1352 . 8250 -1510 . 0513 112004 . 165 . 600 . 044319 5616630 . 11004 . 1380 -.0011433 1361.4502 -1491 . 2629 121136 . 169 . 200 .040304 5645162 . 5671 . 9514 -.0010869 1366 . 6000 -1471 . 0630 1313 98 . 172 . 800 . 036493 5654700 . 415 . 1132 . 0010304 1368 . 3217 1449.4027 142984 . 176.400 . 032885 5645527 . 4761.0182 . 0009738 1366 . 6660 -1426 . 2259 156131 . 180.000 .029481 5617942 . 9850 . 8677 -.0009174 1361 . 6871 1401.4683 171135. 183 . 600 . 026280 5572265 . -14848 . 6087 . 0008614 1353.4428 -1375 . 0545 188364 . 187 . 200 . 023279 5508839 . -19748 . 1185 . 0008059 1341 . 9948 -1346 . 8955 208287 . 190 . 800 . 020478 5428027.-24542 . 9219 . 0007511 1327.4088 -1316 . 8842 2315 1 1 . 194.400 . 017871 5330218.-29226.1156 . 0006973 1309 . 7549 -1284 . 8900 258827. 198 . 000 .015457 5215824 . -33790 . 2681 . 0006445 1289 . 1077 -1250 . 7503 291299. 201.600 . 013231 5085287.-38227 . 2835 -.0005929 1265 . 5467 -1214 . 2582 3303 7 9 . 205.200 . 011189 4939078 . 42528 . 2089 -.0005427 1239 . 1570 -1175 . 1448 378113 . 208 . 800 .009324 4777702 . -46682 . 9588 . 0004940 1210 . 0299 -1133 . 0496 4374 79. 212.400 . 007631 4601 7 03 . -50679 . 9006 -.0004471 1178 . 2633 1087.4737 513001. 216 . 000 . 006105 4411669 . -54505 . 2080 . 0004020 1143 . 9635 -1037 . 6972 611930 . 219 . 600 . 004737 4208242.-58141 . 7884 . 0003588 1107 . 2465 -982 . 6253 746 7 30 . 223.200 . 003521 3992134.-61567 . 3628 -.0003177 1068.2406 -920.47 1 6 941013 . 226 . 800 . 002449 3764148 . 64 750.6329 -.0002789 1027 . 0907 -848 . 0118 1246320 . 230.400 . 001513 3525220. 67642.1975 -.0002424 983.9659 -758.4131 1804258 . 234 . 000 . 000704 3276507. -70227.4429 . 0002084 939.0751 -677 . 8344 3465772 . 237 . 600 1 . 30E 05 3019052.-71470.3340 -.0001768 892.6062 -12 . 6607 3495262. 241 . 200 . 000569 2761471 . -70490 . 0242 .0001479 8 46.1147 557 . 2773 3524752 . 244 . 800 . 001052 2511147 . -68198 . 5782 -.0001215 800 . 9331 715 . 7483 2449697 . 248.400 . 001444 2270131 . -65503 . 9304 9 . 7563E-05 757.4315 781. 2783 1947803 . 252 . 000 . 001754 2039270.-62608.9568 -7.5987E-05 715 . 7628 82 7 . 0404 1697174 . 255 . 600 . 001991 1819153.-59571 . 1362 -5 . 6669E 05 676 . 0333 860 . 6377 1556078 . 259.200 -.002162 1610214 . -56427 . 7167 -3 . 9499E-05 638 . 3212 885 . 7065 1474599 . 262 . 800 . 002275 1412773 . 53205 . 712 7 2.4364E 05 602 . 6846 904 . 2957 1430668. 266.400 -.002338 1227071.-49926.1501 -1. 1147E 05 569 . 1666 917 . 6835 1413191. 270 . 000 . 002356 1053277 . -46606 . 2175 2 . 7034E-07 537 . 7981 926 . 7235 1416201 . 273 . 600 -.002336 891507 . -43260.4884 1 . 0007E 05 508 . 5997 932 . 0149 1436456 . 277 . 200 . 002284 741827.-39901 . 6748 1 . 8185E 05 481. 5836 933 . 9927 1472342. 280 . 800 . 002205 604261 . 36541 . 1241 2.4925E 05 456 . 7540 932 . 9800 1523334. 284.400 . 002104 478794 . -33189 . 1650 3 . 0347E 05 434 . 1081 929 . 2195 1589743. 288 . 000 . 001986 365376 . -29855 . 3635 3.4574E-05 413 . 6370 922 . 8925 1672619 . 291. 600 -.001855 263923.-26548 . 7232 3 . 7724E 05 395.3255 914 . 1299 1773762. 295 . 200 . 001715 174321 . -23277 . 8570 3 . 9919E 05 379 . 1530 903 . 0180 1895837. 298.800-.001568 96424.4940-20051 . 1454 4 . 1274E-05 365 . 0932 889 . 5995 2042591 . 302.400 . 001418 30058 .1302-16876. 9014 4 . 1907E-05 353.1146 873 . 8693 2219248 . 306 . 000 -.001266 24982 . 5037 13763.5598 4 . 1933E-05 352.1984 855 . 7649 2433153 . 309 . 600 . 001116 -68932.7429 10719.9163 4 . 1463E-05 360 . 1311 835 . 1482 2694873. 313.200 .0 00968 -102060 . -7755.4564 4.0606E-05 366 . 1104 811 . 7740 3020159 . 316 . 800 . 000823 124669 . -4880 . 8383 3 . 9471 E 05 370.1911 785 . 2360 3433629 . 320.400 -.000683 137102 . 2041 . 2464 3 . 8161 E 05 372.4352 792 . 3151 4173534 . 324 .000 .000549 -139268 . 537.6562 3 . 6777E-05 372 . 8262 640.4085 4203025 . 327 . 600 . 000419 133137. 2576 . 3412 3 . 5413E 05 371.7196 492 . 1943 4232515 . 331 . 200 . 000294 -120629 . 4087 . 8519 3.4143E 05 369.4619 347 . 5339 4262005 . 195

PAGE 208

334 . 800 . 000173 -103618. 5084.2274 3.3020E-05 366.3915 206 . 0080 4291495 . 338.400 5 . 58E 05 -83938 . 1498 5567 . 7689 3 . 2376E 05 245 . 7242 62 . 6262 4039673. 342.000 6 . 03E-05 -63447 . 3096 5567.5498 3.2206E-05 166.8057 -62 . 7478 3746439 . 345.600 . 000176 -43769.7982 5143 . 7635 3 . 2139E 05 126 . 2364 -172 . 6890 3530874. 349.200 . 000292 26330 . 3896 4341. 9892 3 .21 08E -05 101.4503 272 . 7412 3366092 . 352 . 800 . 000407-12425.7307 3192 . 0564 3 . 2095E 05 84.7490 -366.1104 3236334 . 356.400 . 000523 -3265 . 8714 1714 . 4485 3 . 2091E-05 72.7681 -454.7829 3131748 . 360 . 000 . 000638 0 . 0000 0 . 0000 3.2090E-05 63 . 8 037 -540 . 0536 1522931 . Output Verification : Computed forces and moments are within specified convergence limits. Output Summary for Load Case No. 4 : Pile-head deflection .28796447 in Computed slope at pile head = 4 . 625929E 17 Maximum bending moment 17446786 . lbs-in Maximum shear force = 244750 . 00000 lbs Depth of maximum bending moment = 0 . 00000 in Depth of maximum shear force 0 . 00000 in Number of iterat i ons = 24 Number of zero deflection points = 2 Summary of Pile Response (s) Definition of Symbols for Pile-Head Loading Conditions : Type 1 = Shear and Moment , y = p ilehead displacment in Type 2 = Shear and Slope , M = Pile head Moment lbs-in Type 3 = Shear and Rot. Stiffness , V = Pile head Shear Force lbs Type 4 = Deflection and Moment , S = Pile head Slope , radians Type 5 = Deflection and Slope , R = Rot. Stiffness of Pile head in-lbs/rad Load Pile Head P ileHead Type 1 2 lbs Axial Pile Head Maximum Maximu m Load Deflection Moment Shear in in-lbs lbs 2 V= 98000 . S= 2 V= 1.47E+05 S= 2 V= 1 . 96E+05 S= 2 V= 2.45E+05 S= 0 . 000 353600. . 0448617 5103524 . 98000 . 0000 0 . 000 -353600 . . 1021082 8794421 . 147000. 0 . 000 -353600 . . 1832644 -1. 2944E+07 196000. 0 . 000 353600 . . 2879645 -1.7447E+07 244750 . The analysis ended normally . 196

PAGE 209

APP E DIX I. L-PIL E CALCULA TIO S , PINNED HEAD , 1 % REINFORCING 197

PAGE 210

Lat e ral Deflecti o n {in) 0.1 0.2 0.3 0 . 4 0.5 0.6 > > > > I I I I o o o I o o I I I I I I I I I I I I I I I o I o o N •. ••••:•. ••• •• ••:•••• •••• ••••••• f ..... ...... . •:• ...... ••:• . ••• .. ...... ..... • : • ... •••• •:• ... ••• ...... I I o o o o o o o o o o o o o o I I I I I o 0 o 0 I 0 o I . . I I I I I I I I I 0 I o ...,. ---... ------.... ------.. -------.-------.... ------. ---------.... ------.. -------..... . --------. .. ---.. . --.----... -.-.-.----... --' ' ' ' . . ' o o 0 I I I I . ' ' . . ' . ' I I o I I I o I I I I t o I I o o I o o o o o (0 ----:--:-------:----:-------:------:-------:--------------:------:------:-----:------:-----:------;------• • • 0 ' • ' ' ' • ' ' ' 0 o o 0 o I I I I I I I I o I o o I I I o o I I I o I I ----r • .,. • • ., • • 1 • • • -r • • • • • • .,. • • ...,. • • • ,--• • r r • • • • • • , • • • • • • • ' • • • r , o 0 I I I o I I I o I I o I ' ' ' • • ' 0 • • ' • ' I I I I o I 0 I I I I ' . ' . ' . ' ' ' ' ' . . .... -... ---------.J.-.-.-.. ... -"-.-.. ...... -.--. . '--.... -J - •••• -•• ' •••••••• l.--•• -. -----.--. ' t ' ' ' ' ' ' • • • . ' . . ' ' ' ' . ' I o I I I o o o o 0 ' . . . . . . . . . . I I I 0 I 0 0 I 0 0 I 0 0 0 ............................. _______________ , ________ 1 ________ ., .................................................................................... . I I I I 0 0 0 0 1 ::' I I I I o o 0 0 o . . . . . ' . ' ' . . . ' ' ' . :!:. o o 0 1 I o o o I o o o o : 1 0 0 I o I 0 o o o o 0 I I I o o o o I o o I 0 0 I I o o o o o o I 0 o 0 I o I iT 0 I o o o o I I t I I I I t 0 --:----:;--------:--------:---------:---------:--------:--------:--------:---------:--------:--------:------:-----:-----• • • • ' ' ' • ' • 0 ' • ' ' ' . . ' ' . ' . . ' o o o o o o o I o o I o 0 I -----.--... -... ---.-. . . --.---... --. . -.-----...... --.-.. .... ---.-. . . . -.--.--...... --.-.---..... .. --. _ .... . -.--. o o o o o I o 0 I I I o o : : : : : : : : : : : : =-:::-7; ---, -----__ . --;. __ .-.. -] _. ___ .. ; __ . __ . _ [ _ .. __ . _ :--_. ---i ____ . --]-_____ . -[. ______ [ _ . _. __ . + __ ... _ . J .. ___ .. _; .. lease { L:-__ . __ __ :<: . . . ' . . . . . . . . . . --• -:---------:-------;--------f-------:--------:---------:--------;-------• -:---------:-------{------i-----r----: ------N N . . . . . . . . ' ' ' . . . . . . . . . . . ' ' . . . . ' • • • • • • • ' ' ' • • • • 0 • • • • • • • ' • • • • • • 0 -----....... --.... . -... .. -.-.. ---.--..... -----•'•-.-.-.-..... -.-... -.... --.-------.---.. -.--.. -.. ---...... ----. -... -.--. . ' . ' . . ' . . . . . N I I I o 0 > I 0 I o ' ' ' . . ' . . ' 0 o I o o o 0 0 t 0 I o o o o o o o o I I o I I o ----................................................................................................ , ................................... ,_ ______ _ . . ' . . . ' . . ' <0 N . . . . ' ' . . . ' . . . . . . ' ' . . . o o 0 0 I o o o I o o I o 0 -.-,•r,-.,,rr,-,r-r-,--I I o 0 o o I o I o o o o 0 . ' . . . . . ' . . . . ' o o o o I I o I o o I I o 0 o I 0 o o > 0 0 0 o I o M Figure 1.1 Deflection of Caisson with Pinned Head, 1 % Reinforcing Unfa c t o 1 e d B ending M o m e nt (in -kips) ' . . . . ' . ' ' o o o ' o o o I o o o I > 0 0 I o o 0 I I 0 I N +--::-}:: : ..... . 0 o o o I o o o o o o o . . . . . . . . . . . I 0 0 I o I I o I 0 > -.r • •••••• ---..... ....... ••••••••••• -.-•• -....... ---••• -••• •• .--••• •• ---. -----••••••• -.•• • ----. I o I 0 I 0 o I o I o ' • 0 • • ' ' • ' ' I 0 I I I 0 I o o o ' . ' . . . ' ' ' . . . ' . . . . . . ' . ' . ' . ' -----------.------.-.... ----,------.------.. ---------,-------.-. . . . ' . . ' . ' ' . ' . . . . ' . . . ' ' ' ' ' . . . . . . . . ' . . . 0 o I I I I 0 o o o o 0 I ' ' . . ' . ' ' . . . . ' ' ' ..... , ...... ., ....... , ....... , ...... , ...... ., ....... , ....... , ...... , ...... , ....... , ....... r , I I I 0 0 I I I I o I o I I I ••••••• •••• J.-••• --.-.-. " ••• •• •• -.•• J •• -•• ---.--•• l ...•••••• ••• •• -----......... ••• ••• ------.-. 0 0 0 0 0 0 0 0 0 o I 0 0 0 I I o o t o o o o o o I t o o I I o o o o o o I o o o I I 0 0 o I 0 o o I o I o o I 0 0 o o 0 0 o I 0 o I I ----------------.. ----------------.. ------<------------------... ------------------>------• I I I o I o o o o o I I 0 o o 0 I I o o o o o o o o o s . . . . . . . . . ' ' . ' . I o I o I o o o o I o o 0 o o : I I 0 I I 0 I 0 0 I 0 0 0 I 0 ..... , ...... ., ....... , ....... , ...... , ...... ., ....... , ....... , ...... , ...... , ....... , ....... r •o-,,iT . . . . . . . 0 • • 0 ' • -.---.-----J.-------.--.l ......•.... -J ••• •• ---•• --. l.-----•. . -.--J-----------..... ... .•. --------.. ---' • • ' • • • ' • 0 • ' • • • ' • • • • • • ' • 0 • • • • I o o o o o o I 0 I • I I I o o I o o o I o I I I I o I I I I 0 o I I 0 I o .................... .., .......................................... ......................... .. o I I I I o o o I ---------------I I o o o o o o ' . . . . ' . ' 0 N . . . . o o o I I I -----.--ro----. . . . . . 1--. jcose 1 . . ' . . . ' . . . . . N N o I I I o 0 o o .. ------"--------J ............................... J ...... . • ..... . I I o o o I o o I I o I o o o 0 I . . . . . . N ' ' ' ' . ' .. -... -.......... -. --... .. --.-.-. . -. ...... ... ------......... . .... . ... ....... . ... --.--. . -.. -.. J.-----_._ .. . I I I I I I I I I I 0 o o o I o o I o o o I o o o o • • • 0 • ' • • • • • I 0 I I 0 o I I I I o o I "' N ' . . . . ' ' ' ' ' ' . ' . --.-------.--------------------.----------------;•--.. -------.-----. . . • 0 . ' o I o I I I I o o I I 0 N ----:--:------t -----:-:---r---t-----; -----:----:---t -----• --:--' ' ' ' . ' . ' 0 I I o I I I I . ' . . ' ' . . 0 o I o o o o I ' M Figure 1.2 Moment of Caisson with Pinned Head , 1 % Reinforcing 198

PAGE 211

S hear F o r ce (kips) .;ro 160 -140 -60 -40 -20 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 . . . ' . I 0 I I 0 I o I I I I I I I I • ••• L ••••• I. •••• •'• •••• j ••••• ••••• ••••• L ••••• I. •••• ' •••• j ••••• J ••••• I ••••• L ••••• I I o I I I I I I I I I I ' ' ' •• ... •• ----. - • .J.-••• •••• -' •• •• ............ ' •••• .J •• --.1 ••• I o o 0 ' o o I I I I I I 0 I I I I o I I I I o I I I I o I I I I I I ' ' I o I I o I I I o I o I I ' ' ' . . ' I I I I I I o o o I . . ' I I o I o I o o o I . ' . ' . ' . ' ' . . ' . ' . ' . ' . . . g o o o I I I I o I o I o I ' . . ' . ' I o I o I o I 0 I I o I o o I t I o o t 0 "'-" :::> I 0 o I I o o o 0 o o o o I 0 o I o o o o I 0 --_ .. -------J. -------------... -------.. --------... -------.. -------• ----... -------.. ----• ----o o I o o o o o o o o o I o o o o o I I I I o o I o o o o I o o I o I o I o o o I I I I I I I I I I I o I I I I I I I o o I : : : : : : . . ' ' : . ' . . : : ( J : : . . . . ' ' ' . . . ' . ' • 0 • ' ' • • I I I I I t I I I I I I I I 0 I I I I I I I ..,. •-o• • • r • • • • -,..-• •• -.-• • • • ..,. • • • •, • •-• • • • • •• • • •• • •r • • •• •,• • • • • ..,. • • • • .,. • • • • • • • • • • • • •-.-• • • • •,•-• • • ..,. • • •• • • • • • • • • • • • • • • • • • 0 I I I I I 0 I 0 I 0 0 0 I 0 0 0 0 I 0 I I 0 0 0 I 0 0 I 0 0 0 0 I I 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 o ' o I t o t I t o I t . ' . . ' ' ' . . I I I I I o o o 0 I o I I I I I I ' ' . ' ' ' ' . ' ' . . . ' . . . . . . . . . . . . . . ' ' . ' . ----:------1----y----1----T-----r---: ----:-----r----1---;-----r-----r----r----r---1-----r-----r----:-----T----r---i-----!-----r----. . . . ' . ' ' ' . ' . . . . ' . . . . . . . . ' ' ' ' . ' . ' . . ' ' . . . ' ' ' ' . ' . . < o I I o I I I I I o I . . . ' . ' . ' . ' . . I I I 0 I I I I I I I . . ' . ' ' ' . . I o I o I o o o I 0 o o I o I o o t Figure 1.3 Shear of Caisson w ith Pinned Head , 1 % Reinforcin g LPile output for pinned head caisson wit h 5% r e inforcin g : ==================================== ========================================== LPILE Plus for Windows , Version 5 . 0 ( 5 . 0 . 26 ) Analysis of Individual P i l e s and Drilled Shafts Sub jecte d to Lat eral Loading Using the p y Me thod (c) 1985-2006 by Ensoft , Inc . All Rights Reserved ============================================================================== Name of input data file: Name of output file: Name of plot output file : Name of runtime file: Pinned 1 percent.lpd Pinned 1 percent.lpo Pinned 1 percent.lpp Pinned 1 percent.lpr Time and Date of Analysis Date : March31 , 2009 Time: 18:46:59 1 99

PAGE 212

Problem Title Design of Caissons for CN Leach Tanks Program Options Units Used in ComputationsUS Customary Units : Inches , Pounds Basic Program Options : Analysis Type 1: Computation of Lateral Pile Response Using User specified Constant El Computation Options : Only internally-generated p y curves used in analysis Ana ly s i s does not use p-y multipliers (ind i vidua l pil e or shaft act i on only ) Analysis assumes no shear resis tance at pile tip Ahalysis for fixed-length pile or shaft only No computation of foundation stiffness matrix elements Output pile respon se for full length of pile Analysis assumes no soil movements act ing on pile Additional p-y curves computed at specified depths Solutio n Contro l Par ameters: Number of pile increments 100 Maximum number of iterations allowed = 1 00 Deflection tolerance for convergence = 1 . 0000E-05 in Maximum allowable deflect ion = 1 . 0000E+02 in Printing Options : -Values of pile-head deflection , bending moment , shear force , and soi l reaction are printed for full length of pile . Printing Increment (spacing of output poin ts) = 1 Pile Structural Properties and Geometry Pile Length = 360.00 in Depth of ground surface below top of pile = Slope angle of ground surface = -24 . 00 i n . 00 deg. Structural properties of pile defined using 3 points Po i n t Depth Pile Momen t of Pile M o dulus of 1 2 X Diameter Inertia Area Elasticity in in in* * 4 Sq.in lbs/Sq in 0 . 0000 36 . 00000000 86034 . 0000 336.0000 36 . 00000000 86034.0000 1017 . 0000 1017 . 0000 200 3605000 . 3605000 .

PAGE 213

3 360 . 0000 84 . 00000000 2447506. 5542 . 0000 3605000. Soil and Rock Layering Information The soi l profile is modelled using 2 layers Layer 1 is stiff clay without free water Distance from top of pile to top of layer = -24.000 in Distance from top of pile to bottom of layer= 36 . 000 in Layer 2 is stiff clay without free water D i stance from top of pile to top of layer = 36 . 000 in Distance from top of pile to bottom of layer = 525 . 000 in (Dept h of lowest layer extends 165 . 00 in below pile tip) Effective Uni t Weight of Soil vs . Depth Distribution of effective unit weight of soil with depth is defined using 4 points Point Depth X Eff . Unit Weight No . in lbs/in* * 3 1 2 3 4 -24 . 00 36.00 36 . 00 525 . 00 . 06940 . 06940 . 06940 . 06940 She ar Strength of Soils Distribution of shear strength parameters with depth defined using 4 points Point Depth X Cohesion c Angle of Friction E50 or RQD No . in lbs/in* * 2 Deg . k_rm % 1 -2 4.000 2 36 . 000 3 36. 000 4 525 . 000 Notes : 13 . 89000 13 . 89000 27 . 78000 27 . 78000 . 00 . 00 .00 . 00 . 00500 . 00500 .00500 . 00500 . 0 . 0 . 0 . 0 (1) Cohesion= uniaxial compressive strength for rock materials . (2) Values of E50 are reported for clay strata . (3) Default values will be generated for E50 when input values are 0 . (4) RQD and k_rm are reported only for weak rock strata. 201

PAGE 214

Loading Type Cyclic load ing criteria was used for computation of p y curves Number of cycles of loading = 5 . Pile-head Loading and Pile head Fixity Conditions Number of loads specified = Load Case Number 1 Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 244750 . 000 lbs Bending moment at pile head = . 000 inlbs Axial load at pile head 846200 . 000 lbs ( Zero moment at pile head for this load indicates a free-head condition) Output of p y Curves at Specified Depths p y curves are generated and printed for verification at 7 depths . Depth No. Depth Below Pile Head Depth Below Ground Surface 1 2 3 4 5 6 7 in . 000 10.000 20. 000 30.000 40.000 50.000 60. 000 in 24.000 34. 000 44.000 54. 000 64 . 000 74. 000 84. 000 Depth of ground surface below top of pile = -24.00 in p-y Curve Computed Using Cyclic Criteria for Stiff Clay without Free Water Soil Layer Number = Depth below pile head Depth below ground surface . 000 in = 24.000 in Equivalent Depth = Diameter = 24.000 in 36.000 in Undrained cohesion , c Average Eff . Unit Weight = 13 . 89000 lbs /in**2 Epsilon-50 Pet Pcd = . 06940 lbs/in* * 3 .00500 172 6 . 7621bs/in 4500 . 360 lbs/in 202

PAGE 215

y50 = .450 in p-multiplier = 1 . 00000 y multiplier = 1.00000 Number of cycles of loading = 5 . y , in p , lbs/in --------------------------0 . 0000 0.0000 7 . 2000E-05 88.9626 .0003600 133 .0301 . 0007200 158 . 2004 . 0036000 236 . 5648 . 0072000 281.3245 . 0360000 420 . 6782 . 0720000 500 . 2736 .18 00000 629.0607 . 3600000 748 .0835 .5400000 827 . 8905 . 7200000 889 . 6262 1 . 8000 1118 . 6457 3.6000 1330.3014 7 . 2000 1582 . 0039 9 . 9872 1716.8627 12 . 7744 1726 . 7616 p-y Curve Computed Using Cyclic Criteria for St iff Clay without Free Water Soil Layer Number 1 Depth below pile head 10.000 in Depth below ground surface = 34. 000 in Equivalent Depth = 34 . 000 in Diameter = 36 . 000 in Undrained cohesion , c 13 . 89000 lbs/in **2 Average Eft . Unit Weight = . 06940 lbs/in ** 3 Epsilon-50 = . 00500 Pet 1821. 1961bs/in Pcd 4500 . 360 lbs/in y50 = .450in p-multiplier 1 . 00000 y multiplier 1.00000 Number of cycles of loading = 5 . y , in p , lbs/in 0 . 0000 7.2000E-05 . 0003600 .0007200 .0036000 .0072000 . 0360000 . 0720000 . 1800000 . 3600000 . 5400000 0 . 0000 93 . 8278 140.3054 166 .8521 249.5021 296 . 7097 443 .68 45 527.6328 663.4631 788.9950 873 . 1665 203

PAGE 216

. 7200000 1 . 8000 3 . 6000 7 . 2000 9 . 9872 12 . 7744 938.2785 1179 . 8228 1403.0536 1668 . 5213 1810 . 7554 1821. 1956 py Curve Computed Using Cyclic Crite ria for Stiff Clay w i thout Free Water Soil Layer Number = 1 Depth below pile head = 20.000 in Depth below g r ound surface = 44 . 000 in Equivalent Depth = 44 . 000 in Diameter = 36.000 in Undrained cohesion , c 13 . 89000 lbs/in ** 2 Average Eft . Unit Weight . 06940 lbs/in ** 3 Epsilon-50 . 00500 Pet = 1915 . 630 lbs/in Pcd = 4500 . 360 lbs/in y50 = .450in pm u ltip lie r 1 . 00000 y multiplier = 1 . 00000 Number of cycles of loading = 5 . y , in p , lbs/in 0 . 0000 7 . 2000E 05 . 0003600 . 0007200 . 0036000 . 0072000 . 0360000 . 0720000 .1800000 . 3600000 . 5400000 .7200000 1 . 8000 3 . 6000 7 . 2000 9 . 9872 12.7744 0 . 0000 98 .6931 147.5806 175.5039 262.4395 312 . 0949 466.6908 554.9920 697 . 8655 829.9066 918.4426 986 . 9308 1240 . 9998 1475 . 8058 1755 . 0388 1904 . 6480 1915 . 6296 p-y Curve Computed Using Cyclic Criteria for Stiff Clay without Free Water Soil Layer Number = Depth below pile head 30.000 in Depth below ground surface = 54. 000 in Equiva lent Depth 54. 000 in Diameter = 36 . 000 in Undrained cohesion , c 13. 89000 lbs/in**2 Average Eft. Unit Weight = . 06940 lbs/in**3 Epsilon-50 = . 00500 Pet 2010 . 064 lbs/in 204

PAGE 217

Pcd = 4500 . 360 lbs/in y50 = .450 in pmultiplier 1 . 00000 y multiplier 1 . 00000 Number of cycles of loading = 5 . y , in p , lbs/in 0.0000 7 . 2000E-05 . 0003600 . 0007200 . 0036000 . 0072000 .03 60000 .0720000 . 1800000 . 3600000 .5400000 .7200000 1 . 8000 3.6000 7 . 2000 9 . 9872 12. 7744 0 . 0000 103 . 5583 154 . 8558 184 . 1556 275 . 3769 327.4801 489 . 6970 582 . 3512 732 . 2679 870.8182 963 . 7187 1035.5832 1302 . 1769 1548 . 5580 1841. 5562 1998 . 5407 2010 . 0636 py Curve Computed Using Cyclic Criteria for Stiff Clay without Free Wat er Soil Layer Number = 2 Depth below pile head 40 . 000 in Depth below ground surface = 64.000 in Equivalent Depth 46 .031 in Diameter = 36 . 000 in Undrained cohesion , c 27. 78000 lbs/in **2 Average Eff. Unit Weight = . 06940 lbs/in**3 Epsilon-50 . 00500 Pet 3754 .611 l bs/in Pcd = 9000 . 720 lbs/in y50 = .450in p-multiplier = 1.00000 y-multiplier 1 . 00000 Number of cycles of loading = 5. y , in p, lbs/in 0 . 0000 7.2000E-05 . 0003600 . 0007200 . 0036000 .0072000 . 0360000 . 0720000 .1800000 . 3600000 0 . 0000 193.4373 289 . 2562 343 . 9855 514 . 3783 611. 7024 914 . 7084 1087 . 7777 1367 .8081 1626 .6071 205

PAGE 218

.5400000 . 7200000 1 . 8000 3 . 6000 7 . 2000 9 . 9872 12 . 7744 1800.1367 1934.3727 2432 . 3449 2892.56 1 9 3439 . 8552 3733 . 0876 3754 . 6113 p-y Curve Computed Using Cyclic Criteria for Stiff Clay w i thout Free Water Soil Layer Number = 2 Depth below pile head = 50. 000 in Depth below ground surface = 74. 000 in Equivalent Depth = 56.031 in Diameter 36. 000 in Undrained cohesion , c 27 . 78000 lbs/in** 2 Average Eff. Unit Weight = . 06940 lbs/in** 3 Eps i lon -50 = . 00500 Pet = 3918.495 lbs/in Pcd 9000 . 720 lbs/in y50 = .450 in pmultiplier = 1 . 00000 y multiplier = 1 . 00000 Number of cycles of loading = 5 . y , in p , lbs/in 0 . 0000 7 . 2000E 05 . 0003600 . 0007200 . 0036000 . 0072000 . 0360000 . 0720000 . 1800000 .3600000 .5400000 . 7200000 1 . 8000 3 . 6000 7 . 2000 9 . 9872 12. 7744 0 . 0000 201. 8806 301. 8819 359 . 0000 536.8303 638.4024 954 . 6342 1135 . 2578 1427 . 5112 1697 . 6064 1878 . 7104 2018 . 8056 2538 . 5137 3018 . 8186 3590 . 0005 3896 .0321 3918.4953 p-y Curve Computed Using Cycl ic Criteria for Stiff Clay without Free Water Soil Layer Number 2 Depth below pile head = 60.000 in Depth below ground surface = 84. 000 in Equivalent Depth = 66 .031 in Diameter = 36. 000 in Undrained cohesion, c = 27. 78000 lbs/in**2 Average Eff. Unit Weight = . 06940 lbs/in ** 3 Epsilon 50 = . 00500 206

PAGE 219

Pet = 4082 . 379 lbs/in Pcd = 9000.720 lbs/in y50 = .450 in p multiplier 1 . 00000 y-multiplier = 1 . 00000 Number of cycles of loading = 5 . y , in p , lbs/in 0 . 0000 7.2000E 05 . 0003600 . 0007200 . 0036000 . 0072000 . 0360000 . 0720000 . 1800000 . 3600000 . 5400000 . 7200000 1 . 8000 3 . 6000 7 . 2000 9 . 9872 12.7744 0.0000 . 210 . 3239 314 . 50 7 5 374 . 0146 559 . 2823 665.1024 994.5601 1182 . 7379 1487 . 2142 1768 . 6058 1957 . 2840 2103.2 3 86 2644.6825 3145 . 0752 3 740 . 1458 4058.9766 4082 . 3793 Computed Values of Load Distribution and Deflection fo r Lateral Load i ng for Load Case Number 1 Pile head boundary cond i tions are Shear and Moment ( BC T ype 1 ) Spec i fied shear force at p i le head = 244 7 50.000 lbs Specified moment at pile head = . 000 in-lbs Specified ax ial load at pile head = 846200 . 000 lbs (Zero moment for this load indicates free-head conditions ) Depth D efle ct. Moment X y M V in in lbs-in lbs Shear Slope S Stress Rad . lbs / in ** 2 T otal p lbs/in Soil Res . F/L lbs/in Es * h 0 . 000 3 . 600 7.200 10 . 800 14.400 18 . 000 21. 600 25.200 28 . 800 32.400 36 . 000 39.600 1.466 -.0001116 1.426 907334 . 1 . 387 1800689 . 1 . 348 2679861 . 1 . 309 3544654 . 1.271 4394878 . 1.232 5230350. 1 . 194 6050892. 1 . 156 6856335 . 1 . 118 7646514 . 1 . 080 8421273 . 1 . 043 9175094 . 244750 . -.0108722 832 . 0551 -1062.6208 1305 . 0988 240900 . . 0108669 1021 . 8872 1076.2337 2716 . 1748 237002 . -.0108512 1208 . 7945 -1089.4169 2826 . 9396 233057 . -.0108252 1392 . 7345 -1102.1624 2942.7961 229067. . 0107891 1573 . 6661 1114.4619 3064.0713 225034 . -.0107430 1751 . 5497 -1126 . 3072 3191 .1170 220959. -.0106872 1926 . 3468 -1137.6903 3324 . 3125 216843 . .0106217 2098 . 0204 -1148.6030 3464 . 0667 212689 . . 0105468 2266 . 5348 -1159 . 0371 3610 . 8210 208499 . . 0104626 2431 . 8558 1 168.9844 3765 . 0523 203528 . . 0103694 2593 . 9505 -1592 . 5824 5307.46 3 4 196848 . . 0 1 02672 275 1 .664 7 -2118 . 5072 7311 . 6464 2 07

PAGE 220

43 . 200 1 . 006 9901135 . 189196 . -.0101565 2903 . 5667 2132.6349 7629.3532 46 . 800 . 969952 1 . 0599E +07 181495 . . 0100375 3049 . 6128 2145 . 8532 7964 . 3836 50.400 . 934039 1 . 1269E+07 173748 . . 0099106 3189 . 7620 -2158 . 1480 8318 . 0004 54. 000 . 898596 1 .1911 E+07 165958 . . 0097761 3323 .9761 -2169 . 5046 8691.5802 57.600 .863651 1.2524E+07 158129 . . 0096343 3452 . 2195 -2179 . 9083 9086 . 6263 61. 200 . 829229 1 . 3108E+07 150264. -.0094855 3574.4595 2189 . 3441 9504 . 7826 64.800 .795355 1.3663E+07 142367 . . 0093302 3690 . 6661 2197 . 7968 9947 . 8500 68.400 . 762051 1.4190E+07 134442. .0091685 3800 . 8124 2205 . 2508 10417 . 8043 72. 000 . 729341 1.4687E+07 126492 . . 0090009 3904 . 8742 -2211. 6902 10916 . 8174 75.600 .697245 1 . 5155E+07 118520 . . 0088278 4002 . 8303 2217 . 0987 11447 . 2809 79. 200 . 665781 1 . 5594E+07 110530 . . 0086493 4094.6627 -2221.4597 12011 . 8332 82. 800 . 634970 1 . 6004E +07 102527 . . 0084659 4180.3563 2224 .7561 12613.3913 86.400 . 604827 1 . 6384E+07 94513 . 9811 . 0082779 4259 .8991 -2226 .9701 13255 . 1864 90. 000 . 575369 1 . 6735E+07 86494.8845 -.0080857 4333 . 2823 -2228.0836 13940 . 8056 93 . 600 . 546610 1 . 7056E+07 78473 . 7942 -.0078896 4400 . 5002 -2228 . 0777 14674 . 2408 97 . 200 . 518563 1. 7348E+07 70454 . 7754 . 0076900 4461.5506 -2226 . 9328 15459 .9441 100 . 800 .491242 1 . 7610E+07 62441 . 9650 -.0074871 4516.4344 -2224 . 6285 16302 . 8946 104.400 .464656 1 . 7843E+07 54439 . 5752 -.0072813 4565.1558 -2221. 1436 17208 . 6744 108 . 000 .438816 1 . 8046E+07 46451 . 8963 . 0070730 4607.7226 -2216.4558 18183 . 5605 111. 600 .413730 1 . 8221E+07 38483 .3011 . 0068626 4644 .1461 -2210 . 5416 19234 . 6315 115 . 200 .389406 1 . 8365E+07 30538 . 2492 -.0066502 4674.4409 2203.3762 20369 . 8956 118 . 800 . 365849 1 .8481 E+07 22621.2918 -.0064364 4698 . 6254 2 1 94.9335 21598.4434 122.400 . 343064 1 . 8567E+07 14737.0779 . 0062214 4716 . 7216 2185.1854 22930.6310 126 . 000 . 321055 1 . 8625E +07 6890.3603 -.0060055 4728 . 7554 -2174 .1021 24378.3015 129 . 600 .299824 1 . 8654E+07 -913 . 9963 . 0057892 4734 . 7564 -2161 . 6516 25955 . 0544 133 . 200 . 279373 1 . 8654E+07 -8671 . 0072 -.0055727 4734 .7581 -2147.7989 27676.5747 136 . 800 . 259701 1 . 8625E+07 16375 . 5568 . 0053563 4728 . 7980 -2132 . 5064 29561 . 0395 140.400 . 240807 1 . 8568E+07 24022 . 3875 -.0051405 4716 . 9179 2115 . 7328 31629 . 6217 144 . 000 . 222689 1 . 8483E+07 -31606 . 0853 . 0049254 4699 . 1637 -2097.4326 33907 . 1220 147 . 600 . 205344 1 . 8371E+07 39121 . 0637 -.0047115 4675.5855-2077. 5554 36422.7673 151. 200 . 188766 1 .8231 E+07 46561 . 5440 -.0044991 4646 . 2382 2056.0448 39211 . 2298 154 . 800 .172950 1.8063E+07 -53921 . 5319 -.0042885 4611 .1811 -2032.8374 42313 . 9426 158.400 . 157889 1 . 7868E+07 61194 . 7893 . 0040800 4570.4784 2007 .8611 45780 . 8176 162 . 000 . 143575 1.7647E+07 68374.7996 .0038738 4524 . 1992 -1981. 0335 49672.5199 165.600 .129998 1 . 7400E+07 75454 . 7257 -.0036704 4472.4179 -1952 . 2588 54063 . 5215 169 . 200 . 117148 1 . 7126E+07 82427 . 3567 -.0034701 4415.2143 -1921.4251 59046 .2711 172 . 800 . 105013 1 . 682 7 E +07 89285 . 0420 . 0032730 4352.6741 1 888.4000 64736 . 9908 176.400 . 093582 1 . 6503E+07 96019.6062 -.0030796 4284 .8891 -1853 . 0245 71283 . 9055 180 . 000 . 082840 1 . 6155E+07 -102622 . -0028900 4211 . 9575 -1815 .1051 78879 . 2006 183 . 600 . 072774 1.5782E+07 -109083. -.0027047 4133 . 9848 -1774.4027 87776 . 8734 187 . 200 . 063367 1 . 5386E+07 -115392 . -.0025238 4051.0841 -1730 . 6159 98320 . 2252 190 . 800 . 054602 1.4967E+07 -121538 . -.0023476 3963 . 3770 -1683 . 3573 110986 . 194.400 . 046464 1.4525E+07 -127505 . . 0021765 3870.9947 -1632 . 1160 126457 . 198.000 . 038932 1.4062E+07 -133280 . . 0020106 3774.0796 -1576 . 1985 145751 . 201.600 .031987 1 . 3578E+07 -138844 . . 0018502 3672 . 7866 -1514 . 6277 170463. 205 . 200 . 025610 1 . 3073E+07 -144173 . . 0016955 3567 . 2863 -1445 . 9623 203256. 208.800 . 019780 1 . 2550E+07 -149238 . . 0015468 3457.7685 1367 . 9403 248970 . 212.400 . 014474 1 . 2008E+07 -153998 . . 0014043 3344.4487 -1276 . 6917 317551 . 216 . 000 . 009669 1 . 1450E+07 -158393 . . 0012681 3227 . 5784 1164 . 6629 433627 . 219 . 600 . 005343 1 . 0876E+07 -162313. . 0011386 3107.4654 -1013 . 2779 682711 . 223.200 . 001472 1 . 0288E+07 -165471. -.0010157 2984 . 5245 -741. 3540 1813645 . 226 . 800 -.001970 9690498 . 165362 . . 0008998 2859.4973 802 . 2212 1465908 . 230.400 -.005007 9102964 . 162077. -.0007907 2736 . 5736 1022 . 3824 735109 . 234 . 000 -.007663 8528357. 158172. -.0006884 2616 . 3547 1147 . 1117 538887 . 237 . 600 .009963 7968316 . 153884 . -.0005926 2499 .1831 1235.4158 446393 . 208

PAGE 221

241. 200 -.01193 0 7424004 . -149314 . . 0005033 2385.3024 1303.2915 393274 . 244 . 800 -.013587 6896321 . -144524 . . 0004202 2274.9006 1357 . 6564 359722. 248.400 -.014956 6385988 . 139557 . . 0003431 2168 .1291 1402 . 1878 337522 . 252.00 0 -.016057 5893603 . -134 442 . . 0002719 2065 . 1123 1439 . 0917 322637 . 255 . 600 . 016913 5419659 . -129206. -.0002062 1965 . 9540 1469 .8011 312853 . 259 . 200 -.017542 4964573 . -123869 . . 0001459 1870 . 7410 1495 . 3003 306867 . 262 . 800 . 017964 4528690. -118448. -9. 0833E-05 1779 . 5457 1516 . 2933 303872 . 266.400 . 018196 4112298. -112959. -4 . 0684E-05 1692.4284 1533.2989 303355 . 270.000 -.018257 3715632. 107415 . 4 . 7462E-06 1609.4381 1546 .7071 304993 . 273 . 600 . 018162 3338880 . -101829 . 4.5688E 05 1530 . 6142 1556.8146 308587 . 277.200 -.017928 2982186 . -9 6211 . 5812 8 . 2373E-05 1455 . 9869 1563 .8481 314032. 280 . 800 .017569 2645655 . 90574.2924 . 0001150 1385 . 5779 1567 . 9790 321292 . 284.400 -.017099 2329350.-84927.1298 . 0001439 1319.4008 1569.3336 330397 . 288 . 000 -.016533 2033302 . -79279 . 9305 . 0001692 1257.4618 1567 . 9993 341433 . 291. 600 -.015881 1757504 . -73 642.2805 . 0001912 1199 . 7593 1564 . 0285 354544 . 295 . 200 -.015156 1501913 . -68023.6383 . 0002101 1146.2847 1557.4394 369942 . 298.800 -.014368 1266453.-62433.4586 . 0002262 1097 . 0219 1548 . 2160 387917 . 302.4 00 . 013527 1051014 . -56881 . 3217 . 0002397 1051.9478 1536 . 3045 408859 . 306 . 000 -.012642 855448 . 51377 . 0784 . 0002507 1011. 0315 1521 . 6084 433287 . 309 . 600 -.011722 679571.-45931 . 0205 .0002596 974 . 2347 1503 . 9793 461897 . 313.200 . 010773 523162.-40554.0913 .0002666 941. 5109 1483 . 2036 495637 . 316.80 0 . 009802 385957.-35258 . 1578 .0002719 912 . 8049 1458 . 9818 535825 . 320.400 . 008815 267647. 30056 . 3756 . 0002757 888 .0521 1430 . 8972 584340. 324 . 000 . 007817 167872.-24963.7020 . 0002782 867 . 1772 1398 . 3659 643961 . 327.6 00 -.006812 86213 . 5316-19997 . 6461 . 0002797 850 . 0926 1360 . 5540 718986 . 331.200 -.005804 22184 . 8652-15179.4287 . 0002803 836 . 6966 1316 . 2334 816452 . 334 . 800 . 004794-24786.2006-10535 . 8932 .0002803 837.2408 1263 . 5085 948796 . 338.400-.003786-55381 .3195-6044. 8601 . 0002801 579 . 3488 1231. 5099 1171146 . 342 . 000 .002778 -7 0015 . 5475 1678 . 8159 . 0002799 396 . 3863 1194 . 0702 1547604 . 345 . 600 . 001770-69174 . 3102 2480 . 370 7 . 0002798 30 1 . 1804 1116 . 5890 2270959 . 349 . 200 . 000763-53861 . 8758 5774 . 3605 .0002798 242.5884 713.4054 3367189 . 352.8 00 . 000244-29303 . 5896 6662.7984 . 0002798 202 . 8089 -219 . 8288 3237378 . 356 .400 . 001252 7594.2329 4306 . 6712 . 0002798 174 . 1382 1089 . 1308 3132751 . 360 . 000 . 002259 0 . 0000 0 .0 000 . 0002798 152 . 6886 1402 . 6216 1117783 . Output Ver ification : Comp uted f orces and moments are within specified con v ergence l i mits . Output Summary for Load Case No . 1 : Pile-head deflection = 1.46557295 in Computed slope at pile head -.01087220 Maximum bending moment = 18653619 . lbs -in Maximum shear force = 244750 . 00000 lbs Depth of max i mum bending moment = 133 . 20000 in Depth of max i mum shear force = 0.00000 in Number of iterations 33 Number of zero deflection points = 2 S ummary of Pile Response(s) Definition of Symbols for Pile Head Loading Conditions : 209

PAGE 222

Type 1 = Shear and Moment , y = pile head displacment in Type 2 = Shear and Slope , M = Pile-head Moment lbs-in Type 3 = Shear and Rot. Sti ffness , V = Pile-head Shear Force lbs Type 4 = Deflection and Moment , S = Pile -hea d Slope , radians Type 5 = Deflection and Slope , R = Rot. Stiffness of Pile-head inlbs /rad Load Pile-Head Pile-Head Type Condition Condition 1 2 lbs Axia l Pile-Head Maximum Maximum Load Deflection Moment Shear in inlbs lbs 1 V= 2.45E+05 M= 0 . 000 846200. 1.4656 1 . 8654E+07 244750 . The analysis ended normally . 210

PAGE 223

APPENDIX J. L-PILE CALCULATIONS , PINNED HEAD, 5% REINFORCING 211

PAGE 224

later a l D e Oecti o u ( i u ) ;' e. " ';; Q; 0 :: y: i i/t i _v ; i : ... : :/. : : ' ' : j ' ' : : /://: : : : : : : : : :Y:!I!itrl-1! ' o ' o I ' o I o o o o .... --------.--.----.... -.------.-------.... -------.--------.,. --------.--------.,. --------.---------.---------.--------I I I o I o o o I I i i ; i i i ; "'eo= .. --, ; : : ; : C8s"e_ 2 __ o o I I ' ' Cas e ) ' ' ' ' --------:------;----:------:---: --:-----:-----;---------:-------:-------:--Case 5 : : ' : : ' ' : '----.,..--' . . ' ' ' ' ' ' ' ' ' ' ' ' . ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' -----------------'---------------""---------------""---------------------------------------------------------------------' o I o o I I I o I I I I I I o o o o o I I o I I o o I o ' r ' ' ' ' ' ' ' . ' ' . . . . I o I o o o ' ' . . . . ' ' ' ' ' ' . . ' ' ' . ' ' . . . ' . ' ' ' ' ' Figure J.l Deflection of Ca i sson with Pinned Head , 5% Reinforcing Unfactored Bending M o m en1 {in. kips) ;' s -: g. ';; 0 0 N "' N •::-!:: ...... ' ' . ' ' ' ' ' ' ' ' ' ' ' ' ' ' Figure J.2 Moment of Caisson with Pinned Head , 5% Reinforcing 212

PAGE 225

S hear Force ( kipS! 20 4 0 60 80 100 120 1 4 0 160 18 0 200 220 2 4 0 260 280 s ;": 0 0 N N N N
PAGE 226

Design of Caissons for CN Leach Tanks Program Options Units Used in ComputationsUS Customary Units : Inches , Pounds Basic Program Options: Analysis Type 1 : -Computation of Lateral Pile Response Us ing User specified Constant El Computation Options : Only internally-generated p-y curves used in analysis Analysis does not use p y multipliers ( i ndividual pile or shaft action only ) Analysis assumes no shear resistance at pile tip Analysis for fixed length p i le or shaft only No computation of foundation stiffness matrix elements Output pile response for full length of pile Analysis assumes no soil movements acting on pile No additional p y curves to be computed at user specified depths Solution Control Paramete r s : Number of pile increments 100 Maximum number of i terat i ons allowed = 1 00 Deflection tolerance for convergence = 1 . 0000E 05 in Maximum allowable deflection = 1 . 0000E+02 in Printing Options : Values of pile head deflection , bending moment , shear force , and soil reaction are printed for full length of pile . Printing Increment (spacing of output points ) = 1 Pile Structural Properties and Geometry Pile Length 360 . 00 in Depth of ground surface below top of pile = Slope angle of ground surface = -24.00 in . 00 deg . Structural properties of pile defined using 3 points Point Depth Pile Moment of Pile Modulus of 1 2 3 X Diameter Inertia Area E lasticity in in in** 4 Sq.in lbs / Sq . in 0 . 0000 36 . 00000000 99727 . 0000 336.0000 36.00000000 99727.0000 360 . 0000 84.00000000 2461200 . 1017 . 0000 1017 . 0000 5542 . 0000 214 3605000. 3605000 . 3605000 .

PAGE 227

Soil and Rock Layering Information The soil profile i s modelled using 2 layers Layer 1 is stiff clay without free water Distance from top of pile to top of layer = -24 . 000 in Distance from top of pile to bottom of layer= 36 . 000 i n Layer 2 is stiff clay without free water Distance from top of pile to top of layer = 36 . 000 in Distance from top of pile to bottom of layer= 525 . 000 i n (Dept h of lowest layer extends 165 . 00 in below pile tip) Effective Unit Weight of Soil vs. Depth Distribution of effec tive unit weight of soil with depth is defined using 4 points Point Depth X Eff . Unit Weight No . in lbs/in ** 3 1 2 3 4 -24 . 00 36 . 00 36 . 00 525 . 00 . 06944 . 06944 . 06944 . 06944 Shear Strength of Soi ls Distribution of shear strength parameters with depth defined using 4 points Point Depth X Cohesion c Angle of Friction E50 or RQD No . in lbs/in* * 2 Deg . k_rm % 1 -24 . 000 2 36 . 000 3 36 . 000 4 525 . 000 Notes : 13 . 89000 13 . 89000 27 . 78000 27 . 78000 .00 .00 . 00 . 00 . 00500 . 00500 . 00500 . 00500 . 0 . 0 . 0 . 0 (1) Cohesion = uniaxial compressive strength for rock materials. (2) Values of E50 are reported for clay strata . (3) Default values will be generated for E50 when input values are 0 . (4) RQD and k_rm are reported only for weak rock strata . Load i ng Type 215

PAGE 228

Cyclic loading criteria was used for computation of p y curves Number of cycles of load ing = 5 . Pile-head Loading and Pile-head Fixity Conditions Number of loads specified = 5 Load Case Number 1 Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 3750.000 lbs Bending moment at pile head = .000 i n-lbs Axial load at pile head = 296800 . 000 lbs (Zero moment at pile head for this load indicates a free-head condit ion ) Load Case Number 2 Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head 98000 . 000 lbs Bending moment at pile head = . 000 in-lbs Axial load at pile head = 846200 . 000 lbs (Zero moment at pile head for this load indicates a free head condition) Load Case Number 3 Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 147000 . 000 lbs Bending moment at pile head = . 000 in-lbs Axial load at pile head 846200 . 000 lbs (Zero moment at pile head for this load ind icates a free-head condition) Load Case Number 4 Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 196000 . 000 lbs Bending moment at pile head = . 000 inlbs Axial load at pile head = 846200 . 000 lbs (Zero moment at pile head for this load indicates a free-head condition) Load Case Number 5 Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head 244750 . 000 lbs Bending moment at pile head = . 000 in-lbs Axial load at pile head 846200 . 000 lbs (Zero moment at pile head for this load ind icates a free-head condition) 216

PAGE 229

Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 1 Pile-head boundary conditions are Shear and Moment (BC Type 1) Specified shear force at pile head = 3750 . 000 lbs Specified moment at pile head = . 000 inlbs Specified axial load at pile head = 296800 . 000 lbs (Zero moment for this load indicates free-head conditions) Depth Deflect. Moment X y M V in in lbs-in lbs Shear Slope S Stress Rad . lbs/in * *2 Total p lbs/in Soil Res. F/L lbs/in Es * h 0 . 000 .000569 1 . 2030E 08 3750 . 0000 1.2344E-05 291. 8387 -136 . 5224 3 . 600 . 000525 12628 . 5239 3273.2422-1 . 2281E-05 294 . 1181 -128.3430 7 . 200 . 000481 23593 . 5873 2826.4815 -1.2099E -05 296.0972 -119.8574 10.800 .000 438 33005.0469 2410 . 6282 -1. 1816E-05 297 . 7959 -111 . 1723 14.400 . 000396 40975 . 3603 2026 . 2201 -1. 1446E-05 299 . 2345 -102 . 3877 18 . 000 . 000355 47618 . 2906 1673.4492 -1. 1002E-05 300.4335 -93 . 5961 21.600 . 000317 53047 . 7058 1352.1875-1 . 0498E-05 301.4135 -84 . 8826 25.200 .000280 57376.4745 1062 .0137 -9 . 9452E-06 302 . 1948 -76 . 3250 28.800 . 000245 60715.4570 802 . 2400 -9 . 3539E-06 302 . 7974 -67 . 9937 32.400 .000212 63172 . 5915 571. 9379 -8.7336E-06 303.2409 -59 . 9519 36 . 000 . 000182 64852 .0731 336 . 9091 8 . 0927E-06 303 . 5441 -70.6196 39.600 .000154 65615 . 6308 65.4193 7.4394E-06 303 . 6819 -80 . 2081 43 . 200 . 000128 65338 . 9899 -201 . 2375 -6 . 7838E-06 303 . 6320 -67 . 9346 46 . 800 .000105 64181 . 2175 425 . 2312 6 . 1353E-06 303.4230 -56 . 5063 50.400 8.43E05 62290.4366 -609.6675 -5 . 5021 E-06 303 . 0817 -45 . 9583 54 . 000 6 . 56E 05 59803 . 3690 757 . 7503 -4 . 8908E-06 302 . 6328 -36 . 3099 57.60 0 4 . 91E-05 56845 . 0856 -872 . 7265 -4 . 3068E06 302 . 0989 -27 . 5658 61. 200 3.46E-05 53528 . 9416 -957 . 8377 -3 . 7542E-06 301.5003 -19 . 7183 64 . 800 2 . 21E-05 49956 . 6763 1016.2781 3 . 2361E-06 300 . 8556 -12 . 7486 68.400 1 . 13E-05 46218 . 6543 1051 . 1576 2 . 7545E-06 300 . 1809 -6.6289 72. 000 2.23E-06 42394 . 2279 -1065.4711 -2 . 3109E-06 299.4906 1 . 3231 75.600 -5 . 33E-06 38552 . 2004 1 062.0735 1 . 9056E-06 298 . 7971 3 .21 07 79 . 200 -1. 15E-05 34751 . 3711 -10 43 . 6589 -1. 5386E-06 298 . 1111 7 . 0196 82 .800-1. 64E-05 31041 . 1438 1012 .7461-1 . 2092E-06 297.4414 10 . 1542 86.400 -2.02E-05 27462.1829 -971.6669 -9 . 1626E-07 296 . 7955 12 . 6676 90 . 000 -2 .30E05 24047 . 1002 922 . 5596 6.5837E 07 296.1791 14.6142 93.600 -2.49E 05 20821 . 1608 -867 . 3657 -4 . 3372E-07 295 . 5968 16 . 0490 97.200 -2 . 61E-05 17802 . 9937 -8 07 . 8301 -2.403 4E 07 295 . 0521 17.0264 100.800 2 . 67E-05 15005.2980 -745 .5031 -7 . 6081E-08 294 .5471 17.5997 104.400 -2 . 67E-05 12435 . 5337 -681 . 7467 6 . 1308E-08 294.0833 17.8205 108.000 -2 . 62E-05 10096 . 5907 -617.7408 1 . 7 412E-07 293.6611 17.7383 111. 600 -2 . 54E-05 7987.4281 554.4925 2 . 6466E-07 293 . 2804 17 . 3996 115.200 -2.43E05 6103.6794 492 . 8462 3 .3521 E-07 292.9404 16 . 8483 118 . 800 2 . 30E-05 4438 . 2189 433.4948 3 . 8799E-07 292 . 6398 16 .1247 122.400 -2 . 15E-05 2981 . 6874 376.9913 4.2514E-07 292 . 3769 15 . 2662 126 . 000 -1. 99E-05 1722 . 9733 323.7609 4.4870E-07 292 . 1497 14 . 3063 129.6 00 -1. 83E-05 649.6502 -27 4 . 1139 4 . 6058E-07 291.9560 13.2754 133.200 -1. 66E-05 -251 . 6309 -228 . 2576 4 . 6257E-07 291. 88 42 12.2003 217 4 31699 . 880399. 897400 . 914400 . 931401 . 948402 . 965402. 982403. 999404 . 1016404. 1396556. 1874064 . 1903566. 1933068 . 1962569. 1992071. 2021573 . 2051075 . 2080576. 2110078 . 2139580 . 2169081. 2198583 . 2228085. 2257587 . 2287088 . 2316590. 2346092 . 2375593 . 2405095 . 2434597 . 2464098 . 2493600. 2523102 . 2552604. 2582105 . 2611607 . 2641109.

PAGE 230

136 . 800-1 . 50E -05 -994 . 7930 -186 . 3087 4.5633E-07 292.0183 11. 1046 2670610 . 140.400-1 . 33E 05 -1594 . 0285 -148 . 3048 4.4337E-07 292 . 1265 10 . 0086 2700112 . 144 . 000 -1. 18E-05 -2063 . 5353 -114.2162 4.2505E-07 292 . 2112 8 . 9295 2729614 . 147.600 -1.03E-0 5 2417 . 2934 -83 . 9559 4 . 0262E-07 292 . 2750 7.8818 2759116. 151. 200 8 . 88E-06 -2668 . 8780 -57 . 3900 3 . 7716E-07 292 . 3205 6 . 8770 2788617 . 154.800 -7.57E-06 -2831. 3075 -3 4 .3471 3.4962E-07 292.3498 5.9246 2818119 . 158.400 -6 . 36E 06 -2916 .9241 -14 . 6263 3 . 2084E-07 292 . 3652 5.0314 2847621 . 162 . 000 5 . 26E 06 -2937 . 3027 1 . 9946 2 . 9153E-07 292 . 3689 4 . 2024 2877122 . 165.600 4.26E-06 -2 903 . 1862 15.7527 2.6229E-07 292 . 3627 3 . 4409 2906624. 169 . 200 3 . 37E 06 2824.4441 26 . 8935 2 . 3361E-07 292 . 3485 2 . 7484 2936126 . 172 . 800 -2. 58E-06 -2710 . 0523 35 . 6660 2.0590E-07 292 . 3279 2 . 1252 2965628 . 176.400 -1. 89E-06 -2568 .0891 42.3178 1.7947E-07 292 . 3023 1 . 5703 2995129 . 180 . 000 -1. 29E 06 2405 . 7476 47 . 0915 1 . 5457E 07 292 . 2730 1 . 0818 3024631. 183 . 600 7 . 74E-07 -2229 . 3605 50. 2214 1 . 3136E-07 292 . 2411 . 6570514 3054133 . 187 . 200 3.42E 07 2044.4341 51.9311 1 . 0997E-07 292 . 2077 .2927414 3083634 . 190 . 8 00 1 . 73E -08 -1855 . 6919 52.4311 9 . 0438E-08 292 . 1737 . 0149290 3113136 . 194.400 3.09E -07 1667 . 1233 51.9181 7 . 2801E -08 292.1396 .2700877 3142638. 198 . 000 5.41E 07 -1482 . 0373 50. 5732 5 . 7034E-08 292 . 1062 -.4770796 3172140 . 201. 600 7.20E-07 -1303.1183 48. 5618 4.3089E -08 292.0739 . 6403611 3201641 . 205 . 200 8 . 52E -07 -1132.4844 46 . 0332 3 . 0895E-08 292 .0431 . 7644076 3231143 . 208 . 800 9.42E 07 971.7452 43 . 1207 2 . 0359E-08 292 .0141 . 8536356 3260645 . 212.400 9 . 98E 07 822 . 0587 39. 9420 1 . 1378E-08 291.9871 . 9123370 3290146 . 216 . 000 1.02E-06 684.1873 36. 5994 3 . 8369E-09 291. 9622 . 9446264 3319648. 219 . 600 1.03E 06 558.5509 33.1812 2 . 3852E-09 291. 9396 . 9543990 3349150 . 223 . 200 1 . 01E 06 -445 . 2776 29. 7617 7.4111E -09 291.9191 . 9452990 3378652 . 226 . 800 9 . 73E-07 -3 44 . 2505 26.4029 -1. 1364E-08 291. 9009 . 9206970 3408153 . 230.400 9 . 25E 07 255 .1521 23.1551 1.4365E-08 291.8848 . 8836762 3437655 . 234 .0008. 69E 07 -177. 5033 20. 0578 -1. 6531E -08 291.8708-. 8370247 3467157 . 237 . 600 8 . 06E 07 110 . 7005 17 . 1413 1 . 7974E -08 291.8587 . 7832352 3496658. 241. 200 7.40E-07 -5 4.0472 14.4274 1.8799E-08 291. 8485 -.7245091 3526160 . 244 . 800 6 .71 E 07 6 . 7830 11. 9303 1 .91 04E -08 291.8400 .6627655 3555662 . 248.400 6 . 02E 07 31. 8919 9 . 6580 1 . 8978E-08 291.8445 -.5996531 3585164 . 252 . 000 5 . 34E-07 62 . 7949 7 . 6128 -1. 8504E -08 291.8501 -.5365660 3614665 . 255.600 4 . 69E-07 86 . 7434 5.7926 -1. 7755E-08 291. 8544 .4746599 3644167 . 259.200 4 . 07E -07 104 . 5393 4 . 1914 1 . 6797E-08 291. 8576 -.4148715 3673669 . 262 . 800 3.48E-07 116 . 9574 2 . 8003 -1. 5688E-08 291. 8599 -.3579377 3703170. 266.40 0 2 . 94E-07 124 . 7353 1 . 6081 -1.4478E08 291. 86 13 -.3044151 3732672. 270 . 000 2.44E 07 128 . 5667 . 6017030 1.3210E-08 291. 8619 . 2547005 3762174. 273 . 600 1.98E-07 129 . 0958 . 2330475 1 . 1920E -08 291. 8620 .2090498 3791676. 277.200 1 . 58E 07 126.9142 -.9110124 1.0638E-08 291.8616 . 1675973 3821177 . 280 . 800 1 . 22E-07 122 . 5592 -1.4474 -9.3893E-09 291. 8609 -.1303733 3850679 . 284.400 9 . 03E -08 116 . 5133 1 . 8572 -8. 1923E -09 291.8598 . 0973210 3880181 . 288 . 000 6 . 29E-08 109 . 2048 -2. 1553 -7.0622E-09 291.8585 .068312 3 3909682 . 291. 600 3 . 94E-08 101.0099 -2. 356 0 -6 . 0097E-09 291. 8570 -.0431622 3939184 . 295.200 1.96E-08 92.2545 -2.4 727 -5 .0421 E-09 291. 8554 -.0216419 3968686 . 298 . 800 3 . 14E-09 83. 2176 2 . 5179 -4. 1636E -09 291.8538 . 0034903 3998188 . 302.40 0 1 . 03E -08 74. 1346 2 . 5033 -3 . 3757E-09 291. 8521 . 0115753 4027689 . 306 .000 -2. 12E-08 65 . 2008 2.4396 2 . 6781E -09 291. 8505 . 0238502 4057191 . 309.600 -2.96E 08 56. 5754 2 . 3361 -2. 0684E-09 291. 8490 . 0336342 4086693 . 313 . 200 -3.61 E-08 48 . 3853 2 . 2014 -1. 5429E-09 291. 8475 .0412250 4116194 . 316 .800-4. 07E 08 40 . 7289 -2. 0427-1. 0967E-09 291.8461 . 0469126 4145696 . 320.400-4.40E -08 33.6802 1.8665-7. 2419E-10 291. 8448 . 0509741 4175198. 324 . 000 -4. 60E-08 27.2916 -1. 6781 -4. 1892E -10 291. 8437 .05 36703 4204700 . 327.600 -4 . 70E-08 21. 5984 -1.4821 -1. 7414E-10 291. 8426 . 0552420 4234201. 331.200-4. 72E -08 16.6209 1 . 2820 1 . 7216E-11 291. 8417 . 0559083 4263703 . 218

PAGE 231

334 . 800 -4 . 68E-08 338.400 -4 . 60E 08 342 . 000 -4 .51 E-08 3 45 . 600 -4.42E-08 349.200 4 . 33E 08 352 . 800 4 . 23E-08 356.4 00 -4.14E 08 360 . 000 -4.04E-08 12.36 77 -1. 0808 1 . 6235E 1 0 291. 8410 . 0558640 4293205 . 8 . 8384 . 8872659 2.3741E 10 201. 9740 . 0516796 4041286 . 5.9789 . 7096618 2 . 5488E 10 138.1592 . 0469893 3747939 . 3.7283 . 5470151 2 . 6099E-10 104 . 9877 . 0433700 3532291 . 2 . 0398 . 3961189 2.6350E 10 84.6610 . 0404612 3367447 . .8756990 -.25 48060 2 . 6448E-1 0 70 . 9284 . 0380460 3237639 . .2046528 . 1215463 2 . 6477E-10 61.0292 . 0359872 3133014 . 0 . 0000 0 . 0000 2 . 6482E 10 53 .5547 .0341933 1523548 . Outpu t Verification : Computed forces and moments are within specified convergence limits . Output Summary for Load Case No . 1: Pile-head deflection = . 00056924 in Computed slope at pile head = . 00001234 Maximum bending moment = 65615 . 63084 lbsin Maximum shear force 3750.00000 lbs Depth of max im um bending moment = 39 . 60000000 in Depth of maximum shear force = 0 . 00000 in Number of i terations 5 Number of zero deflection points = 3 Computed Values of Load Distribution and Deflection for Lateral Loading for Load Ca se Number 2 Pile head boundary cond i tions are Shear and Moment (BC Type 1) Specified shear force at pile head = 98000 . 000 lbs Specified moment at pile head = . 000 in lbs Specified axial load at pile head = 846200 . 000 lbs (Z ero moment for this load indicates free-head conditions ) Depth Deflect. Moment X y M V in in lbs-in lbs Shear Slope S Stress Rad . lbs/in ** 2 Total p lbs /in Soil Res . F / L lbs/i n Es*h 0 . 000 . 200504 3 . 0798E-06 98000 . 0000 -.00201 08 832 . 0551 -646 . 2870 5801 . 9752 3 . 600 . 193265 354738 . 95661 . 3148 . 0020090 896 . 0826 -652.9826 12163.3027 7 . 200 . 186039 701002 . 93299 . 2396 . 0020037 958 . 5808 659 . 2814 12757 . 6328 10.800 . 178838 1038700 . 90915.2188 -.001995 0 1019 . 5329 -665 . 1746 13389 . 9375 14.400 .171675 1367746 . 88510.7294 . 0019830 1078 . 9233 -670 . 6529 14063 . 5289 18 . 000 . 164561 1688059 . 86087 . 2809 . 0019677 1136 . 7374 -675 . 7073 14782 .0736 21.600 . 157507 1999563 . 83646.4161 -.0019492 1192.9616 -680 . 3286 15549 . 6383 25 . 200 .150526 2302189 . 81189 . 7110 -.0019277 1247 . 5834 684 . 5076 16370 . 7407 28 . 800 . 143628 2595873 . 78718 . 7746 . 0019031 1300 . 5914 688 . 2349 17250.4090 32.400 . 136824 2880559 . 76235 . 2496 . 0018757 1351 . 9751 -691. 5013 18194 . 2492 36 . 000 . 130123 3156195 . 73301 . 6403 . 0018455 1401 . 7254 938.2817 25958 . 6202 39 . 600 .123536 3419575. 69375 . 5979 -0018126 1449.2635 1242.8529 36218 . 3189 43 . 200 . 117072 3666743 . 64896.4332 . 0017771 1493 . 8755 1245.5719 38301 . 5606 46.800 . 110741 3897656 . 60 409 . 0523 . 0017392 1535 . 5538 -1247 .4174 40551 . 3874 50.400 . 104550 4112284 . 55916 . 6306 . 0016991 1574.2926 -1248 . 3724 429 85 . 5278 219

PAGE 232

54.000 . 098507 4310608. 51422.4050 -.0016569 1610 . 0886 -1248.4196 45624 . 0969 57 . 600 . 092620 4492621 . 46929 . 6765 . 0016129 1 642 . 9406 -1247 . 5407 48489 . 9926 61. 200 . 086895 4658329 . 42441 . 8126 -.0015671 1672 . 8496 -1245 . 7170 51609 . 3709 64 . 800 .081337 4807750 . 37962.2501 -.0015197 1699 . 8190 -1242 . 9288 55012 . 2187 68.400 . 075953 4940915 . 33494.4983 .0014709 1723 . 8545 1239 . 1555 58733 . 0492 72. 000 . 070747 5057871 . 29042 . 1425 .0014208 1744.9641 -1234 . 3754 62811 . 7514 75. 600 . 065723 5158675. 24608 . 8490 -.0013696 1763 . 1585 1228 . 5654 67294 . 6319 79. 200 . 060886 5243400. 20198 . 3694 0013176 1778.4507 -1221 .7011 72235 . 7058 82 . 800 .056237 5312131 . 15814 . 5467 . 0012647 1790 . 8562 -1213.7560 77698 . 3037 8 6.400 . 051780 5364970 . 11461 . 3224 -.0012113 1800 . 3932 1204 . 7019 83757 . 0923 90.000 . 047516 5402032. 7142 . 7446 . 0011573 1807 . 0827 -1194 . 5080 90500 . 6349 93 . 600 .043447 5423449 . 2862 . 9775 -.0011031 1810 . 9482 -1183 . 1404 98034 .6691 97.200 . 039573 5429367 . -1373 . 6866 . 0010488 1812 . 0164 1170 . 5618 106486 . 100 . 800 . 035896 5419948 . 5562 .8131 -.0009945 1810 . 3164 -1156 . 7307 116010 . 104.400 . 0324 1 3 5395374 . 9699 . 8082 -.0009403 1805 .880 8 -1141 . 5999 126793 . 108 . 000 . 029125 5355839.-13779 .8971 . 0008865 1798 .7451 -1125 .1161 139070 . 111. 600 .026030 5301559. 17798 . 0975 . 0008332 1788 .9481 -1107 . 2174 153129 . 115 . 200 .023126 5232769.-21749 . 1857 . 0007804 1776 . 5319 -1087 . 8316 169339. 118 . 800 .020411 5149720 . 25627.6535 -.0007284 1761. 5422 -1066 . 8728 188168 . 122.400 . 017882 5052688 . 29427.6521 . 0006773 1744 . 0285 -1044 . 2375 210229. 126 . 000 . 015534 4941968 . -33142 . 9171 -0006273 1724 . 0444 -1019 . 7986 236333 . 129.600 .013365 4817881.-36766 . 6678 . 0005784 1701.6476 -993.3963 267579 . 133 . 200 . 011370 4680772 . 40291.4678 -.0005309 1676 . 9005 964.8259 305498 . 136.800 . 009543 4531017.-43709.0261 -0004848 1649.8707 -933.8176 352282 . 140.400 . 007879 4369021.-47009 . 9054 . 0004402 1620 . 6316 -900 . 0042 411207 . 144 . 000 . 006373 4195227.-50183.0740 . 0003973 1589.2631 -862.8672 487397 . 147 . 600 . 005019 4010123.-53215 . 1832 -.0003562 1555 . 8532 -821. 6379 589393 . 151. 200 . 003808 3814248.-56089.3195 -.0003171 1520.4992 -775 . 1045 732698 . 154 . 800 . 002736 3608212.-58782 . 6350 . 0002799 1483 .3111 -721. 1820 949039 . 158.400 . 001793 3392719.-61261 . 1704 . 0002449 1444.4162 -655 .7821 1316651 . 162 . 000 . 000973 3168623 . 63465.4653 -.0002120 1403 . 9686 -568 . 8262 2105187. 165.600 . 000267 2937059.-64876 . 8540 -.0001814 1362 . 1729 -215.2787 2906624. 169 . 200 . 000334 2702615 . -64774 . 6330 .0001532 1319 . 8575 272 . 0682 2936126 . 172 . 800 . 000836 2471615.-63270 . 1803 .0001273 1278 . 1636 563 . 7 389 2426490. 176.400 . 001250 2247845.-61121 . 9947 -.0001037 1237 . 7749 629 . 6976 1813425 . 180.000 . 001583 2032168. 58774.2183 -8. 2232E-05 1198.8467 674 . 6226 1534459 . 183 . 600 . 001842 1825172.-56286.2247 -6 . 2919E-05 1161.4854 707 . 5960 1382818 . 187 . 200 -.002036 1627291. 53693 . 9827 -4.5634E-05 1125 . 7692 732 . 5384 1295412 . 190 . 800 . 002171 1438853 . 51022 . 6543 -3. 0282E 05 1091.7577 751.5330 1246379 . 194.400 .002254 1260112 . 48291.4011 -1. 6769E-05 1059.4962 765 . 8299 1223270 . 198.000 -.002291 1091258 . 45515 . 6718 -4. 9966E-06 1029 .0191 776 . 2419 1219525 . 201. 600 . 002290 932430 . -42708.4449 5 . 1354E 06 1000.3519 783 . 3286 1231562 . 205.200 . 002254 783725 . -39880 . 9683 1 . 3728E 05 973 . 5118 787.4917 1257490. 208 . 800 -.002191 645203 . 37043 . ?299 2 . 0882E 05 948 . 5095 789 . 0296 1296490 . 212.400 . 002104 516887 . 34204 .2721 2 . 6700E-05 925 . 3494 788 . 1692 1348504. 216 . 000 . 001999 398770 . -31372.4107 3 . 1285E 05 904.0301 785 .0871 1414091 . 219 . 600 . 001879 290815.-28555 . 3934 3.4737E 05 884 .5451 779 . 9225 1494370 . 223 . 200 . 001749 192959. 25760 . 5166 3 . 7159E 05 866.8828 772 . 7868 1591033 . 226 . 800 . 001611 105113 . -22994 . 7147 3 . 8652E-05 851. 0272 763 . 7698 1706411 . 230.400 . 001470 27161 . 7757 20264 . 6307 3.9314E-05 836.9576 752.9436 1843596 . 234 . 000 . 001328-41031 . 9980-17576 . 6730 3 . 9245E 05 839.4610 740 . 3662 2006629 . 237.600 -.001188 -99629 . 3736-14937.0645 3 . 8540E-05 850 . 0374 726.0829 2200778. 241. 200 . 001051 148814 . -12351 . 8875 3 . 7297E 05 858 . 9149 710 . 1265 2432945 . 244 . 800 . 000919 -188790 . 9827 . 1296 3 . 5606E-05 866 . 1303 692 . 5168 2712263. 248.400 . 000794 219786 . 7368 . 7360 3 . 3561E-05 871.7248 673 . 2574 3051011 . 2 2 0

PAGE 233

252 . 000 -.000678 -242050 . 4932 . 3239 3 . 1248E-05 875 . 7433 680 . 3048 3614665 . 255 . 600 . 000569 -255489 . -2670.2561 2 . 8757E-05 878 . 1690 576 . 3995 3644167 . 259.200 -.000470 261451 . 768 .5201 2 . 6169E-05 879.2450 480 . 1205 3673669 . 262.800 -.000381 -2611 82 . 801. 1439 2 . 3552E-05 879.1965 391. 9151 3703170 . 266.400 -.000301 -255826. 2068.2002 2 . 0964E-05 878 . 2298 312 . 0051 3732672 . 270 . 000 -.000230 246419 . 3062 . 5656 1 . 8449E-05 876 . 5318 240.4201 3762174 . 273.600 .000168 233888 . 3813 . 9756 1 . 6044E-05 874 . 2701 177 . 0298 3791676 . 277.200 .000115 219056 . 4351.4606 1 . 3777E-05 871. 5930 121. 5730 3821177 . 280 . 800 6 . 89E 05 -202641 . 4702 . 9252 1 . 1665E-05 868 . 6303 73 . 6851 3850679. 284.400 -3 . 05E-05 -185266 . 4894 . 8188 9 . 7233E 06 865.4942 32.9225 3880181 . 288 . 000 1 . 12E-06 -167458 . 4951 . 8913 7 . 9573E-06 862 . 2800 1 . 2155 3909682 . 291. 600 2 . 67E-05 149661 . 4897 . 0224 6 . 3695E-06 859 . 0677 29 . 2672 3939184 . 295 . 200 4 . 70E-05 -132238. 4751.1172 4.9581E 06 855 . 9231 -51. 7913 3968686 . 298 . 800 6 . 24E 05 115483 . 4533 . 0579 3 . 7179E-06 852 . 8989 -69 . 3528 3998188 . 302.400 7 . 37E-05 -99622 . 6588 4259 . 7046 2 . 6409E-06 850.0362 -8 2 . 5102 4027689 . 306 . 000 8.15E-05 -84828 . 9138 3945 .936 3 1.7174E-06 847.3661 -9 1 . 8055 40571 91. 309.600 8 . 61E 05 71222 . 3808 3604 . 7257 9 . 3609E-07 844 . 9102 -9 7 . 7559 4086693 . 313 . 200 8.82E-05 -58880.5917 3247 . 2406 2 . 8470E-07 842.6826 -100.8469 4116194 . 316 . 800 8 . 82E-05 47843 . 9830 2882 . 9659 2.4964E-07 840 . 6906 -101. 5279 4145696 . 320.400 8 . 64E 05 -3 8121 . 7162 2519 . 8414 6 . 8005E 07 838 . 9358 100 . 2080 4175198 . 324 . 000 8 . 33E-05 -29696.9816 2164.4097 -1. 0196E 06 837.4152 -97.2541 4204700 . 327.600 7 . 91E 05 22531 . 7544 1821 . 9708 1 . 2811E-06 836.1219 -92.9897 4234201 . 331.200 7.40E 05 16570 . 9869 1496 . 7392 1.4769E 06 835 . 0460 87 . 6945 4263703 . 33 4 . 800 6 . 84E-05-11746.2341 1192 .0009-1.6186E-06 834.1752 -81. 6046 4293205 . 338.400 6 . 24E 05 -7978.7182 919 . 0460 -1. 6893E-06 576.3267 -7 0 . 0371 4041286 . 3 42 . 000 5 . 63E 05 5118 . 8102 687 . 5402 -1. 7049E-06 394 . 0800 58.5773 3747939 . 345.600 5 .01 E-05 -3018 . 0418 493 . 5919 -1.71 OOE-06 299.4077 -49 .1717 3532291 . 3 49 . 200 4.40E-05 1554 . 5299 331.0782-1. 7120E-06 241.4096 -41.1137 3367447 . 352.800 3 . 78E-05 623.8480 195 . 9021 1 . 7128E 06 202 . 2349 -33 . 9841 3237639 . 356.400 3 . 16E-05 133 . 5992 85 . 1960 -1.7 130E 06 174 . 0013 27 . 5193 3133014. 360 . 000 2 . 55E 05 0.0000 0 . 0000 -1. 7130E-06 152 . 6886 -21. 5449 1523548. Output Verification: Computed forces and moments are within specified convergence limits. Output Summary for Load Case No. 2 : Pile-head deflection .20050354 in Computed slope at pile head = -.00201078 Maximum bending moment 5429367 . lbs -in Maximum shear force = 98000 . 00000 lbs Depth of maximum bending moment = 97 . 20000000 in Depth of maximum shear force = 0 . 00000 in Number of iterations = 23 Number of zero deflection points = 2 Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 3 Pile-head boundary conditions are Shear and Moment (BC Type 1) Specified shear force at pile head = 147000 . 000 lbs 221

PAGE 234

Specified moment at pile head = . 000 i n lbs Specified axial load at pile head = 846200 . 000 lbs (Z ero moment for this load indicates free-head conditions ) Depth Deflect. Moment X y M V in in lbs-in lbs Shear Slope S Stress Rad . lbs/in ** 2 Total p lbs /in Soil Res. F/L lbs/in Es*h 0 . 000 .461331 -2. 1559E 05 147000 . -.0 040193 832 .0551 795 . 9599 3105.6417 3.60 0 .446861 536286 . 144118 . . 0040166 928 . 8508 -805 . 1925 6486 . 7837 7 . 200 .432411 1062121 . 141203 . -.0040086 1023 .7601 814.0241 6777 . 0804 10 . 800 .418000 15773 73. 138258 . -.003995 4 1116 . 759 4 822.4463 7083 . 2746 14.400 .403645 2081918 . 135282 . . 0039770 1207 . 8262 830.4506 7406 .5661 18 . 000 .389365 2575637. 132279 . -.0039537 1296 . 9389 838 . 0287 7748 . 2646 21. 600 . 375178 3058417. 129249 . -.0039255 1384.0772 845 . 1722 8109 . 8008 25 . 200 .361101 3530150 . 126195 . -.0038925 1469 . 2215 -851. 872 4 8492 . 7405 28.800 . 347152 3990735 . 123117. .0038549 1552.3538 -858.1210 8898 . 7986 32.40 0 .33 3346 4440077 . 120017 . -.0038127 1633.4568 863 . 9095 9329 . 8565 36 .000 . 319701 4878088 . 116348 . .0037660 1712 . 5145 1174.6869 13227.5906 39. 600 . 306231 5300725 . 111426 . . 0037150 1788 . 7975 1559.4620 18332.7584 43 . 200 . 292953 57029 90. 105799 . .0036599 1861.4035 1566.5540 19250 .872 9 46 . 800 . 279880 6084779 . 100149 . . 0036009 1930 . 3136 1572 . 7804 20230.1572 50.400 . 267026 6445999 . 94476.9227 -.0035382 1995 .5111 1578 . 1263 21276 . 0344 54.000 . 254405 6786570. 88787.6585 . 0034719 2056.9817 -1582 .5761 22394 . 5289 57. 600 .242028 7106424 . 83084 . 0160 -.0034024 2114 . 7130 1586.1142 23592 .3491 61. 200 .229908 74 05504 . 77369 . 3066 -.0033297 2168 . 6949 -1588 . 7244 24876 . 9819 64 . 800 . 218054 7683769. 71646 . 9006 . 0032542 2218 . 9197 -1590 .3901 26256 . 8038 68.400 .206478 7941188. 65920 .2291 -.003 1759 2265 . 382 0 -1591 .0941 27741 . 2107 72. 000 .195187 8177745. 60192 . 7862 -.0030952 2308.0787 1590.8187 29340.7705 75. 600 .18 4192 8393435 . 54468 . 1304 . 0030123 2347 .0091 1589 . 5456 31067.4036 79. 200 . 173499 8588268. 48749 . 8884 -.0029272 2382.1751 1587 . 2556 32934.5960 82.800 . 163116 8762269 . 43041 . 7568 -.0028404 2413 . 5810 1583 . 9287 34957 . 6544 86.400 . 153048 8915474 . 37347 . 5060 -.0027519 2441.2335 1579 . 5440 37154 . 0103 90.000 . 143302 9047937 . 31670 . 9840 . 0026619 2465 . 1420 1574 . 0794 39543 . 5866 93 . 600 . 133882 9159723 . 26016.1203 -.0025708 2485 . 3187 -1567 . 5116 42149 . 2415 97.200 . 124793 9250916 . 20386 . 9310 -.0024786 2501.7782 1559.8158 44997 . 3079 100.80 0 . 116037 9321610 . 14787 . 5248 -.0023856 2514.5381 1550 . 9654 48118 . 2555 104.400 . 107616 9371920 . 9222.1092 . 0022920 2523 . 6187 1540 .9321 51547 . 5070 108.000 . 099534 9401974 . 3694 . 9984 . 0021980 2529 . 0432 -1529 . 6850 55326.4528 111. 600 . 091791 9411916 . -1789 . 3776 -.0021 038 2530 . 8376 -1517 . 1905 59503 . 7236 115 . 200 . 084387 9401908 . -7226.4621 -.0020096 2529 . 0313 -1503.4120 64136.7982 118.800 . 077321 9372129 . -12611. 5594 . 0019156 2523 . 6564 -1488 . 3087 69294.0584 122.400 . 070594 9322776.-17939 . 8188 . 0018220 2514 . 7486 -1471 . 8354 75057.4389 126 . 000 . 064203 9254064.-23206.2166 -.0017290 2502 .3 464 -1453 . 9412 81525 . 8879 129 . 600 . 058145 9166226 . -28405 . 5334 -.0016368 2486.4923 -1434.5682 88819.9436 133 . 200 . 052418 9059516 . 33532 . 3260 . 0015455 2467 . 2320 -1413 . 6500 97087 . 8739 136 . 800 . 047017 8934210.-38580 . 8929 -.001455 5 2444 . 6151 -1391. 1095 106514. 140.400 .041939 8790601 . -43545 . 2307 . 0013667 2418 . 6948 -1366 . 8560 117331 . 144 . 000 .037177 8629011.-48418.9780 . 0012795 2389 . 5289 -1340 . 7814 129834 . 147 . 600 . 032726 8449780.-53195 . 3429 . 0011940 2357 .1791 -1312 . 7547 144407 . 151.200 . 028580 8253279. 57867 . 0080 . 0011104 2321. 7120 -1282 . 6148 161560 . 154 . 800 . 024732 8039903.-62426 . 00 12 . 0010288 2283.1992 -1250.1592 181976 . 158 .400 . 021173 7810080. 66863 . 5186 -.000949 4 2241.7178 1215 . 1283 206605 . 162 . 000 . 017896 7564270.-71169 . 6744 -.0 008724 2197.3509 -1177 . 1805 236806 . 222

PAGE 235

165.600 . 014891 7302973 . -75333 . 1346 .000 7980 2150 . 1888 -1135 . 8529 274593. 169 . 200 . 012150 7026733.-79340.5596 -.0007263 2100 . 3295 -1090.4943 323104 . 172.800 . 009662 6736146.-83175.7126 -.0006574 2047 . 8806 -1040 . 1463 387540 . 176.400 . 007417 6431873 . -868 17 . 9341 . 0005914 1992.9615 -983.3101 4 77257 . 180 . 000 .005404 6114660. -9 0239.2805 -.0005286 1935.7069 -917.4379 611173 . 183 . 600 .003611 5785371.-93398 . 3800 -.0004690 1876.2726 837 . 6174 835020 . 187 . 200 .002027 5445050 . 96223.8508 . 0004128 1814 . 8470 -732 . 0887 1300236 . 190 . 800 .00063 9 5095074.-98536.2552 -.0003600 1751 . 6790 -552 . 5804 3113136 . 194.400 . 000565 4737782 . -98642 . 6519 -.0003108 1687 . 1904 493.4711 3142638. 198 . 000 -.001599 4386 741.-96477.5651 . 0002651 1623 . 8300 709 . 3549 1597261 . 201. 60 0 -.002474 4044759.-93763.2150 -.0002229 1562.1047 798 . 6174 1162026 . 205 . 200 . 003204 3713004 . -90778 . 0597 -.0001841 1502 . 2253 859 . 8022 966160 . 208 . 800 .003799 3392279 . -87 600 . 5745 0001485 1444.3367 905.4674 857945 . 212.400 .004273 3083184 . -84277.1212 . 0001161 1388 . 5475 940.8956 792736 . 216 . 000 . 004635 2786190.-80839.5684 8.6682E-05 1334 . 9422 968 . 8559 752493. 219 . 600 . 004897 2501668 . 77311 . 8356 6.0207E-05 1283 . 5879 990 . 9957 728534. 223 . 2 00 . 005069 2229912 . -73712.9596 -3.6518E -0 5 1234.5380 1008.3799 716208 . 226 . 800 . 005160 1971157. -7 0058.7459 -1. 5484E-05 1187 . 8346 1021.7388 712860 . 230.400 -.005180 1725583 . 66362.7437 3 . 0246E-06 1143 . 5103 1031 . 5957 716928 . 234 . 000 -.005138 1493327 . -62636.8636 1 . 9141 E-05 1101 . 5897 1038 . 3378 727511 . 237 . 600 -.0 05042 1274481.-58891 .7885 3 . 2998E-05 1062.0897 1042 . 2595 744137 . 241 . 200 -.004900 1069105.-55137 . 2605 4.4732E-05 1025.0207 1043 . 5894 766641. 244 . 800 -.0 04720 877221.-51382 . 2865 5.4477E 05 990 . 3870 1042 . 5073 795100 . 248.400 . 004508 698820 . -47635 . 2908 6 . 2368E-05 958 . 1871 1039 . 1570 829801 . 252.000 -.0 04271 533866.-43904 . 2317 6 . 8539E 05 928.4141 1033 . 6536 871230 . 255.600 -.004015 382292. -40196 . 6925 7 . 3126E-05 901. 0561 1026 . 0903 920081 . 259.200 . 003745 244005.-36519 . 9549 7.6262E-05 876.0961 1016 . 5417 977278 . 262 . 800 -.003466 118884 . -3288 1 . 0592 7 . 8079E-05 853 . 5128 1005 . 0670 1044016. 266.400 -.003182 6785.4024 -29286.8570 7 . 8708E-05 833 . 2798 991. 7120 1121822 . 270 . 000 .002899-92460. 8631 -25744 . 0585 7 . 8279E-05 848 . 7436 976 . 5094 1212639 . 273 . 600 -.002619 -179049 . -22259.2780 7 . 6920E-05 864.3721 959.4797 1318945 . 277 . 200 .002345 253196 . -18839.0812 7.4756E 05 877 . 7552 940.6296 1443931. 280 . 800 . 002081 315146. 15490 . 0383 7 . 1910E 05 888 . 9366 919 . 9498 1591750 . 284.400 . 001827 -3 65163 . -12218 . 7884 6.8504E-05 897 . 9643 897.4113 1767893 . 288.00 0 . 001587 403538 . 9032.1232 6.4655E 05 904.8908 872 . 9582 1979764 . 291. 600 . 001362 430588 . -5937 . 1040 6 . 0479E 05 909 . 7731 846.4969 2237601 . 295.200 . 001152 446654 . 2941 . 2301 5 . 6087E 05 912 . 6728 817 . 877 4 2556009 . 298 . 800 . 000958 452106 . -52.6973 5.1587E-05 913 . 6570 786 . 8631 2956671. 302.400 . 000781 -447348 . 2719 . 1934 4 . 7084E 05 912.7981 753 . 0762 3473473. 306 . 000 -.000619 432815 . 5330 . 5721 4 . 2677E 05 910 . 1751 697 . 6897 4057191 . 309 .600 . 000473 409227 . 7553 . 3925 3 . 8461E 05 905 . 9177 537.2105 4086693 . 313 . 200 . 000342 -378665. 9224.5463 3.4516E-05 900.4014 391 . 2083 4116194 . 316 . 800 -.000225 -3 43021. 10394 . 5201 3 . 0903E-05 893 . 9679 258.7771 4145696. 320.400 . 000120 -3 0 4013 . 11110 . 0911 2 . 7664E-05 886.9272 138 . 7623 4175198 . 324.000 -2 . 55E-05 263197 . 11413.5490 2.4824E 05 879 . 5602 29 . 8255 4204700 . 327 . 600 5 .91 E 05 221986 . 11342 . 1447 2 . 2395E 05 872.1220 -69.4945 4234201 . 331 . 20 0 . 000136 -181670 . 10927.7516 2 . 0374E 05 864.8452 -160.7239 4263703 . 334 . 800 .0 00206 143431 . 10196 . 7305 1 . 8746E 05 857.9433 -2 45.3990 4293205 . 338.400 .000271 -108368. 9208 . 0736 1.7867E-05 582.4241 -303 . 8548 4041286 . 342.000 .000334-77241.5395 8034.4502 1 . 7650E-05 396.5883 -348.1582 3747939 . 345 . 600 .000398-50627. 1804 6705.2750 1 . 7570E-05 300 . 6659 -390. 2725 3532291 . 349 . 200 . 000461 -29 070 . 6050 5226 . 7280 1 . 7535E-05 242 . 0234 -431.1425 3367447. 352 . 800 . 000524-13101.5733 3602.4010 1 . 7521E-05 202.4826 -471 . 2614 3237639 . 356.400 . 000587 -3240 . 0662 1834.4853 1 . 7516E-05 174 . 0579 -510 . 9140 3133014 . 360.000 . 000650 0 .0000 0.0000 1.7516E-05 152 .6886 -550.2749 1523548 . 223

PAGE 236

Output Verification: Computed forces and moments are within specified convergence limits . Output Summary for Load Case No . 3 : Pile head deflection .46133068 in Computed slope at pile head = -.00401926 Maximum bending moment = 9411916 . lbs in Maximum shear force = 147000 . 00000 lbs Depth of maximum bending moment = 111. 60000 in Depth of maximum shear force 0.00000 in Number of iterat i ons = 26 Number of zero deflection points = 2 Computed Values of Load Distribut ion and Deflection for Lateral Loading for Load Case Number 4 Pile head boundary conditions are Shear and Moment (BC Type 1) Specified shear force at pile head = 196000 . 000 l bs Specified moment at pile head . 000 in lbs Specified axial load at pile head = 846200.000 lbs (Zero moment for this load indicates free -hea d conditions) Depth Deflect. Moment X y M V in in lbsin lbs Shear Slope S Stress Rad . lbs/in ** 2 Total p lbs/in Soil Res . F/L lbs/in Es*h 0 . 000 . 836043 -3.38 78E -0 5 196000 . . 0065878 832 . 0551 923 . 5150 1988 . 3273 3 . 600 .812327 719684 . 192655. -.0065842 961. 9528 934.9489 4143.4263 7 . 200 . 788637 1427229 . 189269 . . 0065735 10 89.65 96 945 . 9776 4318 . 2365 10 . 800 .764998 2122471 . 185844. . 0065557 1215 .1457 956 . 5931 4501.6268 14.400 . 741436 2805251 . 182382. -.0065310 1338 . 3825 966 . 7873 4694 . 1822 18. 000 . 717975 3475416 . 178884. -.0064996 1459 . 3424 976 . 5524 4896 . 5357 21.600 . 694639 4132818 . 175352 . . 0064615 1577.9987 985 . 8802 5109 . 3725 25.200 . 671452 4777317 . 171787 . -.0064169 1694 . 3262 994 . 7628 5333.4353 28.800 . 648437 5408779 . 168191 . -.0063659 1808 . 3004 1003 . 1923 5569 .5301 32.400 . 625618 6027074 . 164565 . -.0063086 1919 . 8982 -1011. 1605 5818 . 5322 36 . 000 .603016 6632081 . 160267 . -.0062452 2029 . 0975 -1376.6284 8218.4653 39 . 600 . 580652 7219044 . 154495 . .0061759 2135.0401 1829.9528 11345.5685 43 . 200 . 558549 7782071 . 147887 . -.0061008 2236.6624 1840.8134 11864 .5371 46.800 . 536727 8321003 . 141243 . -.0060201 2333 . 9358 -18 50 . 8104 12413.9842 50.400 . 515204 8835695 . 134563 . -.0059342 2426.8340 -1859.9296 12996.2967 54 . 000 .494000 9326013 . 127853. . 0058433 2515.3328 -1868.1569 13614 . 0942 57.600 .473132 9791836 . 121114. -.0057476 2599.4103 -1875.4776 14270 . 2558 61. 200 .452617 1 0233E+07 114351 . . 0056473 2679 . 0469 -1881 . 8770 14967 . 9527 64.800 .432472 1 . 0650E+07 107566. . 0055428 2754 . 2250 -1887 . 3397 15710 . 6833 68.400 .412709 1 . 1041E+07 100764 . . 0054342 2824 . 9296 1891.8504 16502 . 3155 72. 000 . 393345 1.1408E+07 93946 . 6762 -.0 053218 2891.1481 -1895.3931 17347 . 1337 75. 600 . 374393 1 . 1750E+07 87118 . 6560 -.0052058 2952 . 8701 -1897.9515 18249 . 8946 79 . 200 .355863 1 . 2067E+07 80283 . 2276 -.0050866 3010 . 0877 -1899 . 5087 19215.8905 224

PAGE 237

82.800 . 337769 1 . 2359E+07 73444 . 0264 0049643 3062.7956 -1900.0475 20251 . 0238 86.400 .320 120 1 . 2626E+07 66604.7515 . 0048392 3110 . 9908 -1899 . 5497 21361.8937 90 . 000 . 302927 1 . 2868E+07 59769.16 79 -.0047116 3154.6732 -1897 . 9967 22555 . 8974 93. 600 . 286197 1 . 3085E+07 52941.1095 . 0045816 3193 . 8449 1895 .3691 23841 . 3498 97.200 .269939 1.3277E+07 46124.4816 -.0044496 3228.5110 -1891 .6 464 25227 . 6244 100 . 800 . 254160 1 . 3444E+07 39323.2650 -.0043158 3258.6790 1886 . 8073 26725 . 3205 104.400 .238865 1 . 3587E+07 32541 . 5189 -.0041805 3284.3595 -1880 . 8294 28346.4625 108 . 000 .224060 1.3704E+07 25783 . 3864 . 0040439 3305.5655 -1873 .6887 30104.7394 111. 600 . 209749 1 . 3797E+07 19053.0985 . 0039062 3322.3131 -1865.3601 32015.7923 115 . 200 . 195936 1.3865E+07 12354 . 9806 . 0037677 3334 . 6214 -1855 . 8165 34097 . 5639 118 . 800 . 182622 1 . 3909E+07 5693.4587 . 0036286 3342.5122 -184 5 . 0290 36370 . 7242 122.400 . 169810 1 . 3928E+07 -926 . 9327 .0034892 3346.0106 -1832 . 9662 38859 .1941 126 . 000 . 157500 1.3923E+07 -7501. 5416 . 0033498 3345.1447 -1819.5943 41590 . 7919 129 . 600 . 145691 1 . 3895E+07 -14025.5882 -.0032105 3339.9457 1804 . 8760 44598 . 0412 133.200 .134384 1 . 3842E+07 20494 . 1522 .0030716 3330.4483 -1788 . 7706 47919.1863 136.800 . 123576 1 . 3766E+07 26902 . 1583 . 0029334 3316.6904 -1771 . 2328 51599.4814 140.400 . 113263 1 . 3666E+07 -33244.3589 -.0027961 3298.7135 1752 . 2120 55692 . 8456 144 . 000 . 103444 1.3544E+07 39515 . 3124 . 0026598 3276 . 5625 -1731.6511 60264 . 0096 147 . 600 . 094113 1 . 3398E+07 -45709 . 3581 . 0025250 3250 . 2864 -1709.485 4 65391.3363 151. 200 . 085264 1.3230E+07 -51820 . 5844 -.0023916 3219 . 9377 -1685 . 6403 71170.5783 154 . 800 . 076893 1 . 3039E+07 57842 . 7902 -.0022601 3185.5731 1660.0295 77719 . 9596 158.400 . 068991 1 . 2827E+07 63769.4359 . 0021306 3147 . 2536 -1632 . 5514 85187 .1681 162 . 000 . 061552 1 . 2593E+07 -69593.582 0 -.0020033 3105 . 0447 1603 . 0853 93759 .1641 165 . 600 . 054567 1 . 2338E+07 75307.8095 . 0018785 3059.0164 -1571.4855 103676 . 169.200 .048027 1 . 2062E+07 80904 . 1162 . 001756 3 3009 . 2443 1537 . 5738 115253 . 172 . 800 . 041922 1 . 1766E+07 -86373.7791 . 0016370 2955.8091 -150 1 . 1278 128908 . 176.400 .036241 1.1451E+07 -9 1707 . 1663 . 0015208 2898.7977 -1461.8651 145216 . 180 . 000 .030972 1.1115E+07 -96893 .4 76 4 -.001407 8 2838 . 3036 -1419 .4183 164984. 183 . 600 . 026104 1 . 0762E+07 101920 . -.0012983 2774.4281 -1373 . 2965 189389 . 187 . 200 . 021624 1 . 0389E +07 -106773. . 0011924 2707 . 2809 -1322.822 0 220221 . 190 . 800 . 017519 9999998 . 111435 . -.0010903 2636 . 9822 -1267 . 0206 260359 . 194.400 . 013774 9593791 . 115884. -.0009922 2563.6647 1204.4155 314780 . 198.000 . 010375 9171681 . 120090 . . 0008982 2487.4770 -1132.6039 392986 . 201. 600 . 007307 8734613 . -124014 . -.0008086 2408.5894 1047 . 2500 515957 . 205.200 . 004554 8283706. 127590 . -.0007234 2327 . 2040 939.1217 742467 . 208 . 800 . 002099 7820376 . -130686 . . 0006428 2243 . 5762 -781. 0492 1339808 . 212.400 7.43E-05 7346684 . 131969 . -.0005668 2158 . 0783 67 . 9235 3290146 . 216 . 000 -.001982 6873649. 130437 . .0004956 2072 . 6989 783 . 1778 1422203. 219 . 600 . 003643 6410554 . 127371 . . 0004291 1989 . 1136 920 . 1 545 909346 . 223 . 200 . 005072 5959189. -1239 00. . 0003672 1907 . 6455 1008.4183 715749. 226 . 800 . 006286 5520711. 120153 . . 0003097 1828 . 5034 1073 . 3456 614660 . 230.400 -.007302 5095975. 116198. -.000 2565 1751.8416 1123.9580 554137 . 234 . 000 . 008134 4685651 . 112078 . -.0002076 1677 . 7810 1164 . 6087 515465 . 237.600 -.008796 4290276 . -107826 . -.0 001626 1606.4188 1197.7611 490193 . 241.200 -.009305 3910294 . -103465 . -.0001216 1537 . 8348 1224 . 9552 473944 . 244.800 -.009672 3546068 . -990 15.2263 8.4242E-05 1472.0946 1247 . 2217 464239. 248.400 . 009911 3197898 . -94492 . 7125 -5.0477E-05 1409 . 2524 1265.2859 459589 . 252 . 000 -.010 035 2866028 . 89911.7794 -2. 0116E-05 13 49.3523 1279.6770 459069 . 255 . 600 -.010056 2550655 . -85 284 . 9346 7 . 0035E 06 1292.4299 1290 . 7923 462100 . 259 . 200 . 009985 2251934 . -80623.4224 3.1 049E 05 1238.5128 1298.9367 468331 . 262 . 800 -.009832 1969978 . -75937 . 5120 5 . 2187E-05 1187 . 6217 1304 . 3469 477570 . 266.400 -.009609 1704866 . -71236.7114 7 . 0586E -05 1139 . 7709 1307 . 2089 489744 . 270 . 000 . 009324 1456643 . -66529 . 9320 8 . 6415E-05 1094 . 9686 1307 . 6685 504882 . 273 . 600 -.008987 1225324 . -61825 . 6187 9 . 9842E-05 1053 .2171 1305 . 8389 523102 . 277.200 . 008605 1010890 . -57131. 8585 . 0001110 1014 . 5135 1301. 8057 544606 . 225

PAGE 238

280 . 80 0 . 008187 813298 . 52456.4744 . 0001202 978 . 8494 1295.6299 569692 . 284.400 -.007740 632472 . -47807.1118 . 0001274 946 . 2116 1287 . 3493 598762 . 288 . 000 . 007270 468310. 43191.3219 .0001329 916.5817 1276.9784 632342. 291. 600 -.006783 320684 . 38616.6485 .0001369 889 . 9363 1264 . 5068 671120 . 295 . 200 . 006285 189437 . -34090 .7240 . 0001394 866 . 2470 1249 . 8958 715986 . 298.800 . 005779 74381 . 6009-29621 . 3800 . 0001407 845.4804 1233 . 0731 768115. 302.400 . 005271 24694 .9476-25216. 7845 . 0001410 836 . 5123 1213 . 9243 829068 . 306 . 000 . 004764 -108038 . -20885 . 6174 . 0001403 851. 5552 1192.2796 900968 . 309.600 . 004261 175926 .-16637 . 3042 . 0001389 863.8085 1167 . 8944 986779 . 313 . 200 . 003764 2286 73 . -12482 . 3415 . 0001369 873 . 3289 1140.4183 1090774. 316 . 8 00 . 003275 266633 . 8432 . 7657 . 0001344 880.1804 1109 .3461 1219364. 320.4 00 . 002796 290208 . 4502 . 8613 . 0001316 884.4355 1073.9341 13826 78 . 324 . 000 . 002328 -299856 . -710 . 2904 . 0001287 886 . 1768 1033 . 0497 1597805 . 327 . 600 -.001870 296106 . 2921.9730 . 0001257 885 . 5000 984.8745 1896240. 331. 200 . 001423 -279583 . 6361.9896 . 0001228 882 . 5178 926 . 2458 2343813 . 334 . 800 . 000986 -251048 . 9560 . 8474 . 0001201 877 . 3674 850 . 897 4 3107824 . 338.400 .000558 211477 . 12219.3291 . 0001186 588 . 6866 626 . 0368 4041286 . 342 . 000 . 000132 -163791 . 13593.4966 . 0001181 399 . 5983 137 . 3896 3747939. 345.600 . 000293 114324 . 13323.5101 .0001180 302 . 3493 -287 .3821 3532291 . 349 . 200 . 000717 68580.4282 11598 . 3959 . 000117 9 242 . 9048 -671. 0147 3367447 . 352 . 800 . 001142 31533.4106 8542.4572 . 0001178 202 . 8486 -102 6 . 7290 3237639 . 356.4 00 .001566 -7792 .7 460 4479 . 3547 . 0001178 174 . 1409 12 30 .5501 2829095 . 360 . 000 . 001990 0 . 0000 0 . 0000 . 0001178 152 . 6886 -1359 . 0682 1229262 . Output Verification: Computed forces and moments are within specified con v ergenc e limits . Output Summary for Load Case No . 4 : Pile head deflection . 83604289 in Computed slope at pile head = .00658781 Maximum bending moment 13928292 . lbs -in Maximum shear force = 196000 . 00000 lbs Depth of maximum bending moment = 122.4 0000 in Depth of maximum shear force = 0 . 00000 in Number of iter at ions = 28 Number of zero deflection points = 2 Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 5 Pile head boundary conditions are Shear and Moment (BC Type 1) Specified shear force at pile head = 244750.000 lbs Specified moment at pile head = .000 in-lbs Specified axial load at pile head = 846200.000 lbs (Zero moment for this load indicates free-head conditions) X y M V in in lbs-in lbs Shear Slope S Stress Rad. lbslin**2 Total p lbs/in 226 Soil Res . F/L lbs/in Es*h

PAGE 239

0 . 000 3 . 600 7 . 200 10.800 14.400 18 . 000 21. 600 25.200 28. 800 32.400 36. 000 39 . 600 43 . 200 46 . 800 50.400 54 . 000 57.600 61. 200 64 . 800 68.400 72. 000 75. 600 79. 200 82. 800 86.400 90.000 93.600 97.200 100 . 800 104.400 108 . 000 111. 600 115 . 200 118 . 800 122.400 126 . 000 129 . 600 133 . 200 136 . 800 140.400 144 . 000 147 . 600 151. 200 154 . 800 158.400 162 . 000 165.600 169.200 172 . 800 176.400 180 . 000 183 . 600 187.200 190 . 800 194.400 1 . 323 . 0001170 244750. -.0096514 832 .0551 1035 . 7025 1409.6407 1 . 288 903790 . 240997. . 0096468 995 . 1826 -1049.0902 2932 . 7737 1 . 253 1793956. 237197. -.0096333 1155 .8511 1062 . 0683 3051.3038 1 . 218 2670303 . 233351 . .009611 0 1314 . 0253 1074 . 6290 3175 . 1864 1.184 3532641 . 229461 . . 0095799 1469.6711 1086 . 7647 3304.7597 1 . 149 4380787 . 225527 . .0095 40 3 1622 . 7554 1098.4676 3440 .387 0 1.115 5214563 . 221553 . -.0094923 1773.2459 1109 . 7302 3582.4595 1 .081 6033798 . 217538 . -.0094360 1921. 1119 -1120.5446 3731. 3984 1 . 047 6838327. 213485. . 0093715 2066 . 3235 1130 . 9033 3887 . 6578 1 . 014 7627991 . 209396 . -.0092991 2208 .8521 1140 . 7984 4051. 7277 . 980271 8402637 . 204545. -.0 092188 2348 .6701 1554.4240 5708 . 5477 . 947235 9156882 . 198024. -.0091309 2484 . 8058 -2068 . 1098 7859 . 9227 .914529 9884044 . 190554 . -.0090356 2616 . 0534 -2082 . 2938 8196 . 8512 . 882179 1 . 0584E+07 183033. -.0089331 2742.3756 2095.6127 8551. 7852 .850211 1 . 1256E+07 175467. . 0088237 2863 . 7376 -2108 . 0529 8926 . 0116 . 818648 1 . 1901E+07 167857. -.0087078 2980 . 1065 -2119 . 6008 9320.9313 .787515 1.2518E+07 160207 . . 0085855 3091.4517 2130 . 2424 9738.0713 . 756832 1.3107E+07 152521 . . 0084572 3197 . 7449 -2139 . 9637 10179 . 0984 . 726622 1.3668E+07 14480 1 . . 0083232 3298.9603 2148 . 7505 10645 . 8348 . 696905 1.4200E +07 13705 2 . . 0081837 3395.0740 -2156 . 5880 11140 .2762 . 667700 1.4704E+07 129276 . . 0080389 3486 . 0649 -2163.46 14 11664 . 6117 .639025 1 . 5180E+07 121477 . -.0078893 3571.9141 -2169 . 355 4 12221 . 2467 . 610897 1 . 5627E+07 113658. . 0077351 3652 . 6052 -2174 .2546 12812 . 8293 . 583332 1 . 6045E+07 105824 . . 0075765 3728 . 1243 -2178 . 1429 13442 . 2800 . 556346 1 . 6435E+07 97977.2723 .0074139 3798.4599 -2181 . 0038 14112 . 8265 .529952 1.6796E+07 90122 . 3889 -.0072475 3863 . 6033 2182.8204 14828 . 0431 . 504164 1 . 7128E+07 82262 . 8769 -.0070777 3923.5482 -2183 .5751 15591 . 8967 .478993 1 . 7431E+07 74402 . 5917 -.0069046 3978.2910 -2183 . 2500 16408 . 7999 .454450 1 . 7706E+07 66545.4551 -.0067287 4027 . 8308 -2181 . 8260 17283. 6730 .430546 1.7951E+07 58695.4580 . 0065502 4072 . 1694 -2179 . 2835 18222 . 0158 .407289 1 . 8168E+07 50856.6639 -.0063693 4111.3114 -2175 . 6021 19229 . 9930 . 384687 1 . 8356E+07 43033 . 2118 -.0061865 4145 . 2643 2170 . 7602 20314 . 5332 .362747 1 . 8516E+07 35229 .3201 . 006001 9 4174.0382 2164 . 7352 21483.4475 . 3 41474 1 . 8647E+07 27449 . 2912 . 0058158 4197 . 6466 -2157.503 1 22745 . 5690 . 320873 1 . 8749E+07 19697.5162 . 0056286 4216 . 1054 -2149 . 0386 24110 . 9208 . 300948 1 . 8823E+07 11978.4804 . 0054405 4229.4340 2139 . 3146 25590 . 9166 . 281702 1 . 8868E+07 4296.7702 . 0052517 4237 . 6548 -2128.3022 27198.6033 . 263135 1 . 8886E+07 -33 42 .9203 0050627 4240 .7931 -2115 . 9702 28948 . 9564 . 245250 1 . 8875E+07 -10935 . 7798 . 0048737 4238 . 8778 -2102 . 2850 30859.2401 . 228045 1.8837E+07 -18 476.8708 . 0046849 4231.9410 2087 . 2099 32949.4521 . 211519 1 .8771E+07-2596 1.1174 -.0044966 4220.0181 -2070 . 7049 35242.8752 . 195670 1 . 8677E+07 -33383 . 2922 . 0043091 4203 .1481 -2052.72 56 37766 . 7678 . 180494 1 . 8557E+07 -40737.9999 .004122 7 4181.3735 -2033 .2231 40553 . 2367 . 165987 1 . 8409E+07 48019 . 6585 . 0039376 4154 . 7407 2012.1428 43640 . 3500 . 152143 1 . 8235E+07 55222.4 765 . 0037541 4123.2997 -1989.4228 47073 . 5735 . 138957 1 . 8034E+07 -62340.4250 . 0035725 4087 . 1047 -1964.9931 50907 . 6448 . 126421 1.7808E+07 69367.2047 . 0033931 4046 . 2140 -1938 . 7734 55209.0524 . 114527 1.7555E+07 -76296.2043 . 0032160 4000 . 6900 -1910 . 6708 60059 . 3632 . 103266 1 . 7278E+07 83120.4492 . 0030416 3950 . 6000 1880 . 5764 65559 . 7605 . 092627 1 . 6976E+07 -89 832.5374 . 0028701 3896 . 0158 -1848 . 3615 71837 . 3487 . 082601 1 . 6649E +07 -96424 . 5568 -.0027018 3837 . 0145 -1813 . 8716 79054 . 0928 . 073175 1 . 6298E+07 -102888 . . 0025368 3773 . 6786 -1776 . 9189 87419 . 7940 .064336 1 . 5923E +07 -109214 . . 0023755 3706 . 0963 -1737 . 2715 97211.4329 .056071 1.5526E+07 -115391 . . 0022180 3634.3627 -1694 . 6373 108803 . . 048366 1 . 5106E+07 -121409 . . 0020647 3558 . 5794 -1648 . 6413 122712. 227

PAGE 240

198.000 .041205 1.4664E+07 127254 . . 0019156 3478.8565 -1598 . 7899 139682 . 201. 600 . 034574 1.4201E +07 132912. -.0017711 3395 . 3130 -1544.4140 16081 3 . 205 . 200 . 028454 1 . 3718E+07 138364 . . 0016313 3308.0786 -1484 .5731 187831. 208 . 800 . 022828 1 . 3215E+07 -143589 . . 0014965 3217 . 2961 -1417 . 8839 223601. 212.400 . 017679 1 . 2693E+07 148557 . -.0013667 3123.1240 -1342.1836 273310 . 216 . 000 . 012988 1 . 2154E+07 -153229 . -.0012423 3025 . 7425 -1253 . 7919 347536 . 219.600 . 008734 1 . 1598E+07 -157548 . . 0011234 2925 . 3612 -1145 . 5853 472178. 223 . 200 . 004899 1 . 1026E+07 16141 1 . . 0010101 2822 . 2363 -1000.3226 735088 . 226 . 800 . 001461 1 . 0442E +07 -164555 . . 0009027 2716 . 7107 -746.4724 1839148 . 230.400 . 001600 9847080 . -164516. -.0008011 2609.3815 768 .0791 1727947 . 234 . 000 . 004307 9262088 . 161346 . . 0007 054 2503 . 7948 993 . 0547 830116 . 237 . 600 -.0 06679 8689684 . 157547 . . 0006155 2400.4800 1117 . 8318 602501 . 241. 200 . 008738 8131502 . -153364 . .000531 3 2299 . 7322 1205 . 6932 496714 . 244 . 800 -.010505 7588698 . -148903 . . 0004526 2201. 7600 1273 . 0933 436299. 248.400 -.011997 7062162 . -144222 . -.0003792 2106 . 7240 1327 . 0448 398208 . 252.000 .013235 6552608 . -139365 . -.0003111 2014 . 7533 1371. 2466 372983 . 255 . 600 -.014237 6060626. -13 4363 . -.0002479 1925 .9541 1407.9059 356008 . 259 . 200 . 015020 5586706 . 129239 . . 0001896 1840.4150 1438.4507 344762 . 262 . 800 -.015602 5131258 . 124015 . -.0001360 1758.2098 1463.8587 337766 . 266.400 -.015999 46 94624 . 118708 . 8 . 6759E-05 1679.4007 1484 . 8269 334104 . 270 . 000 -.016227 42 77091 . 113332 . 4 . 1840E 05 1604 . 0390 1501.8671 333196 . 273 . 600 -.0 16300 3878892 . 107901 . 1 . 0054E 06 1532 . 1669 1515 . 3625 334673 . 277 . 200 -.016234 3500213 . 102427 . 3.5940E-05 1463 .8181 1525 . 6032 338311 . 280 . 800 -.016042 3141199 . -96921.7114 6 . 9192E-05 1399 . 0187 1532 . 8089 343987 . 284.400 -.015736 2801955.-91395 . 7957 9.8947E 05 1337 . 7876 1537 . 1443 351662 . 288.000 -.015329 2482547 .-85859 . 2252 . 0001254 1280 .13 67 1538 . 7282 361364 . 291. 600 -.014833 2183005.-80321 . 7618 . 0001488 1226.0715 1537 . 6404 373189. 295 . 200 -.014258 1903324. 74792 . 9448 . 0001692 1175.5912 15 33 . 9246 387298 . 298 . 800 -.013615 1643464 . 69282 . 2195 . 0001870 1128 . 6885 1527 . 5895 403929 . 302.400 . 012912 1403352 . 63799.0637 . 0002022 1085 . 3500 1518 . 6082 42 3 409 . 306 . 000 -.012158 1182879 . 58353.1237 . 0002152 1045.5561 1506.9141 44 6182. 309 . 600 . 011362 981899 . -52954 . 3667 . 0002260 1009.2807 1492 . 3954 472838. 313 . 200 . 010531 800230.-47613 . 2619 . 0002349 976.4908 1474 . 8850 504181 . 316 . 800 -.009671 637652 . -42341 . 0067 . 0002421 947.1466 1454 . 1456 541308 . 320.40 0 -.008788 493900 . -37149.8203 . 0002478 921. 2004 1429 . 8468 585758 . 324 . 000 -.007887 368663 . -32053 . 3430 . 0002521 898 .5961 1401. 5294 639753 . 327.600 -.006972 261580 . 27067 . 202 1 . 0002553 879 . 2683 1368 . 5489 706617 . 331. 200 . 0060 49 172224.-22209 . 8514 .0002575 863 .1403 1329 . 9793 791575 . 334 . 800 -.005119 100100 . 17503 . 8919 . 0002588 850 . 1224 1284.4427 903 3 6 1 . 338.400 . 004185 44619.3373-12918 . 7307 .0002594 578.5522 1262 . 8692 10 8 6313 . 342 . 000 . 003251 5504 . 9200 -8409.8354 .0002595 394.09 35 1242 . 0726 13 75383 . 345 . 600 . 002317 17512 .2601 4024 .137 0 . 0002595 299.7907 1194.4265 1855816. 349 . 200 -.001383 -25 049 . 6218 100.9071 .0002594 241.9337 1097 . 2646 2856213 . 352 . 800 -.000449 18366 . 3792 2802 . 9406 . 0002594 202.5871 403 .8651 3237639 . 356.400 . 000485 -6449.0130 2770.4030 . 0002594 174 . 1164 -421. 9 415 3133014 . 360 . 000 . 001419 0 . 0000 0 . 0000 .0002594 152 . 6886 -1200 . 8282 1523548 . Output Veri fication : Computed forces and moments are within specified convergence limits. Output Summary for Load Case No. 5: Pile-head deflection = 1 . 32251041 in Computed slope at pile head = .009 65137 228

PAGE 241

Maximum bending moment 1888573 4 . lbs-in Maximum shear force = 244750 . 00000 lbs Depth of maximum bending moment 133.20000 in Depth of maximum shear force 0 . 00000 in Number of iterations = 33 Number of zer o deflection point s = 2 Summary of Pile Response ( s ) Definition of Symbols for Pile Head Loading Conditions : Type 1 = Shear and Moment, y = pile-head displacment in Type 2 = Shear and Slope , M = P ile -head Moment lbs -in Type 3 = Shear and Rot. Stiffness , V = Pil e-hea d Shear Force lbs Type 4 = Deflection and Moment , S = Pile-head S l ope , radia n s Type 5 = Deflection and Slope , R = Rot. St iffnes s of Pile head inlbs/rad Load Pil e-Head Pil e Head Type Condition Condition 1 2 lbs V= 3750 . 000 M= V= 98000 . M= V= 1.47E+05 M= V= 1 .96E+ 05 M= V= 2.45E+05 M= 0 . 000 0 . 000 0 . 000 0 . 000 0 . 000 The analysis ended norma lly . Axia l Pile-Head Maximum Maximum Load Deflection Moment Shear in inlbs lbs 296800 . . 0005692 65615 . 6308 3750 . 0000 846200 . .200 5035 5429367 . 98000.0000 846200. .4613307 9411916 . 147000 . 846200 . . 8360429 1 . 3928E+07 196000 . 846200 . 1.3225 1 . 8886E+07 244750 . 229

PAGE 242

APPENDIX K. PSI CALCULATIO S, FIXED HEAD 230

PAGE 243

Displacement -0 . 002 0 0 . 002 0.004 0.006 0.00 8 0 2 --4 E J: 6 c. -8 0 -----/ v-t , r -10 • 12 Displacement (m) Figure K.l P S I D eflect i o n , F ixed Hea d , 1 % Reinfor c in g E J: c. 0 2000 0 -2 -4 -6 8 1 0 -12 Moment 1500 1 000 500 --... r---Moment ( kN.m) Figure K.2 P S I Moment, F ixed Hea d , 1 % R e i nforc in g 231 0 500 ) / I 0 .01 10 0 0

PAGE 244

PSI defl e ct i on output for a fix e d h ea d c a is s on w ith 1 % r e i nforc in g : Joint ux UY uz RX RY RZ Y Coor Dep t h 4342 0 0 0 . 008198 0 0 0 16 . 668 0 4005 0 -0 . 00013 0.007175 0 0 0 1 5 . 652 -1. 016 3668 0 -0.00014 0.005616 0 0 0 14 . 636 2 . 032 333 1 0 0 . 00013 0 . 004034 0 0 0 13 . 62 3.048 2994 0 -0.00013 0.002682 0 0 0 12 . 604 4 . 064 2657 0 -0 . 00012 0 . 001652 0 0 0 11. 588 -5 . 08 2320 0 0 . 00012 0 . 000946 0 0 0 10 . 572 -6.096 1983 0 0.00012 0 . 000504 0 0 0 9 . 556 7.112 1646 0 0.00012 0 . 000251 0 0 0 8 . 54 8 . 128 1309 0 0 . 00011 0 . 00014 0 0 0 6 .01 10 .658 P S I m o m e nt o utput for a fixe d h ea d ca i sso n w i t h 1% r e in forci ng: Deeth Moment 0 74 . 59513 1 463 . 56 1 . 016 -28 . 3655 -556.532 2 . 032 0 . 544152 10 . 67626 -3 048 16.66141 326 . 8968 4 . 064 23 . 22406 455 . 6561 -5 . 08 23 . 01934 451 . 639 4 6 . 096 1 8 . 66889 366.2835 -7 . 112 13.29134 260 . 7761 -8 . 128 8 . 325381 1 63 . 344 10 . 658 0 . 292377 5 . 736437 232

PAGE 245

Displacement -0.002 0 0 .002 0.004 0 .006 0.008 0 -2 -4 E .r::. 6 -Q. ell 0 -8 ......... v ,_...,--/ / I -10 ' -12 Displacement (m) Figure K.3 PSI Deflecti on, F i xed Head, 5% Reinforcing Moment -2000 -1500 -1000 -500 0 500 1000 0 -2 -4 E .r::. 6 -c. ell 0 -8 -10 1------..___ 1-----) / I 1,/ -12 Moment (kNm) Figure K.4 PSI Moment , Fixed Head, 5% R einforc ing 233

PAGE 246

P S I defl e ction output for a fixe d h ea d c a i ss on w ith 1 % rei nfo r c in g : Joint ux UY uz RX RY RZ Y-Coor 4342 0 0 0.007410 0 0 0 16 . 668 0 4005 0 -4. 85E 05 0 . 006624 0 0 0 15. 652 -1. 016 3668 0 -5 .21 E-05 0 . 005378 0 0 0 14. 636 -2. 032 3331 0 -4 . 69E-05 0 . 004030 0 0 0 13 . 62 -3. 048 2994 0 -4 . 55E-05 0 . 002815 0 0 0 12. 604 -4.064 2 657 0 4.40E 05 0 . 0018 3 9 0 0 0 11. 588 5 . 08 2320 0 4 . 30E-05 0 . 00112 7 0 0 0 10 . 572 6 . 096 1983 0 -4 . 23E-05 0 . 000646 0 0 0 9 . 556 7 . 1 1 2 1646 0 -4. 18E 05 0 . 000340 0 0 0 8 .54 8 . 128 1309 0 -4 . 13E-05 -0. 000193 0 0 0 6 .01 -10 . 658 P I mom e n t o utput for a fixe d h ea d ca i sso n wi th 1 % reinforcing : Depth Moment 0 86. 97735 1706 . 5 -1. 016 -39 . 6033 -777 . 017 -2 . 032 7 . 85974 -154 . 208 -3.048 11.47219 225 . 0844 -4. 064 20 . 98256 411. 6777 5 . 08 23. 13756 453 . 9589 -6 . 096 20 . 24444 397. 196 -7 . 112 15. 29677 300 . 1225 8 . 128 10 . 05638 197 . 3062 -10 . 658 0.417863 8 . 198472 234

PAGE 247

APPENDIX L. PSI CALCULA TIO S , PINNED HEAD 235

PAGE 248

-E .c ... 0.. c -0 . 005 0 -2 -4 -6 -8 -10 -12 Displacement 0 0.005 0 .01 ____.----/ r Displacement (m) Figure L.l PSI Deflection , Pinned Head, 1 % Reinforcing Moment -200 0 200 400 600 800 0 y -2 --4 E .c -6 ... 0.. -8 0 -10 --.---/' ____.----/""' / v -12 Moment (kN.m) Figure L.2 PSI Moment , Pinn ed Head, 1 % Rein forc in g 236 0.015 1000

PAGE 249

PSI defl ectio n o utput for a pinned head cais so n wi th 1 % reinforci ng: Joint ux UY uz RX RY RZ Y -C oor Depth 4342 0 0 . 00800 0 . 0108302 0 0 0 16. 668 0 4005 0 0 .007 60 0 . 0077598 0 0 0 15. 652 -1. 016 3668 0 0 . 00748 0.0052223 0 0 0 14 . 636 -2. 032 333 1 0 0 . 00729 0.0032481 0 0 0 13.62 -3.048 2994 0 0 . 00 714 0 . 0018439 0 0 0 12. 604 4 . 064 2657 0 0 . 00 700 0 . 0009252 0 0 0 11. 588 5 . 08 232 0 0 0 . 00688 0 . 0003816 0 0 0 10. 572 6 . 096 1983 0 0.006 77 0.0000991 0 0 0 9 . 556 -7. 112 1646 0 0.00669 0.0000212 0 0 0 8 .54 -8. 128 1309 0 0 . 0065 7 0 . 0001456 0 0 0 6.01 -10 . 658 PSI mom ent o utput for a pinned he a d ca i sson wit h 1 % r einforci n g : Depth Moment 0 3 . 355006 -6 5 . 8252 -1. 016 30. 68596 602 . 0585 2 . 032 41. 1855 808 . 0595 -3. 048 40 . 79925 800.4813 4 . 064 34. 72148 681. 2353 5 . 08 26 . 55148 520 .9401 6 . 096 18. 3867 360.7471 -7. 112 11. 3732 223 . 1422 -8. 128 6 . 086939 119 .4257 -10. 658 -0.11386 -2. 23387 237

PAGE 250

-E .c. c. 4> 0 -0 .002 0 -2 4 -6 -8 -10 1 2 Displacement 0 0 . 0 0 2 0 .004 0 .006 0 . 008 0 . 0 1 ___.--v--/ v I Di splacement ( m ) Figure L.3 P S I D eflectio n , P inn ed Hea d , 5% Re i nfo r ci n g . .c. a 4> 0 -200 0 -2 -4 -6 -8 1 0 -12 0 / / Moment 200 400 600 BOO ---Moment (kNm) Fig ure L.4 P S I Mom en t , P i nn e d Hea d , 5 % R einfo r cing 238 0 .012 1000

PAGE 251

PSI deflection output for a p inn ed head caisson with 5% reinforcing: Joint ux UY uz RX RY RZ Y Coor 4342 0 -0 . 007816 0 . 010432 0 0 0 16. 668 0 4005 0 -0 007437 0 . 00 7593 0 0 0 15 . 652 1 . 016 3668 0 -0. 007360 0 . 005234 0 0 0 14 . 636 -2.032 3331 0 -0. 007217 0 . 00 3360 0 0 0 13 . 62 -3.048 2994 0 -0 . 007102 0 . 001990 0 0 0 12 . 604 -4. 064 2 657 0 -0 . 006994 0 . 001060 0 0 0 11.588 -5.08 2320 0 -0. 006900 0 . 000479 0 0 0 10.572 -6 . 096 1983 0 -0. 006818 0 . 000151 0 0 0 9 . 556 -7.1 12 1646 0 -0.006753 0 . 000013 0 0 0 8 . 54 -8. 128 1309 0 -0.006682 0 . 000238 0 0 0 6 .01 -10 . 658 PSI moment output for a pinned he ad caisson with 5% reinforcing : Moment 0 3 . 260689 -63 . 9747 1 . 016 31. 5162 7 618 . 3491 -2. 032 43.45199 852 . 5281 -3. 048 44.27528 868 . 6811 -4.064 38 . 87164 762 . 6615 5 . 08 30 . 79468 604 . 1916 6 . 096 22.2298 436 . 1486 -7. 112 14.43219 283 . 1595 -8. 128 8.13109 159.532 -10 . 658 -0 . 1 0 764 -2. 11198 239

PAGE 252

APPE DIX M. SETTLEMENT ANALYSIS CALCULA TIO S 240

PAGE 253

Settlement us Sl Unit s B,no. t = 3 .00 0 .900 lt&m D i ameter of s haft B bsse = 7 .00 2 .134 It & m D i ameter of ba. se C p = 0 .03 From table C . 1 soft clay= 0.06, stiff clay= 0.03 Qn:ax = 36.00 1723 . 6908 ksf & k Pa Unit allowable bearing pressu r e L= 30.00 9 . 144 ft&m Length , ft A , h•'t = 7 .07 0 . 657 tt2 & m 2 Area of ca i sson A 50.89 0 .033 in2 & m 2 Steel area Arotal = 1068 . 77 0 .690 in2 & m 2 Total area E c -3605 .00 24 , 855 .61 ksi & Mpa Youngs Modulus of concrete 29000 .00 199 , 948 .04 ksi & Mpa Youngs Modulus of steel n= 8 .04 modu lar ratio E= 3319 .58 22 , 887.73 ksi & Mpa Trans for med Youngs Modulous Esoi, = 14.50 100 .00 ksi & Mpa Youngs Modulus of soi l , Budhu (2000) 0 = 231.40 1029 .318 kips & kN SERVICE LOAD appl ied to head , k ips & kN Or Omi>= 46 .28 205 .864 k ips & kN = Rs(mobir= O ms= 185 .12 823 . 454 kips & kN = Rs side resistance mob i lized when Oh is applied It is conservative to estimate it as zero . W e = 0 . 014088 0 . 3578 in &mm elastic compress ion of the drilled shaft = U (AE)*( O 0 .50ms) Wbb = 0 . 066114 1 . 6793 i n &mm = Cp(OmJ:/Br.as,•qmax) Wt;;s= 0 . 088609 2 . 2507 in &mm = (0.93 + 0 .16.{UBsl\a 1 )0 l • Cp(O mJ L * q max) Wr= 0 . 168811 4 . 2878 in &mm =we +wbb +wb,. First Estimate of settlement SR = 0 .040 0 .041 Test for flexib ili ty= (UB)* ( Eso/Ec) flex i ble test for rigidity . Sr-< 0 .01 k = 0 . 67 Ora= 231.40 1029 .318 k ips & kN SERV I CE LOAD applied to head . kips & kN Or 8= 0 . 0157316 0 . 3996 in &mm = k Oral I AE 24 1

PAGE 254

Analysis for flexible shaft settlement wr= 0 .17 ws= 0 .1621 wa = 0 .1543 ws/ Bsh = 0.45 ws/ B::.a.s;; = 0 .18 0 . 9 0 .08 Rs= 1385 Rs = 134 R!ld = 1 1 0 . 8 Rs.; = 120. 6 Rra = 231.4 0 . 0 Final settlement = 4 .3180 4 .0880 3 .8882 i n & mm Adj ust to get R m = Om in & mm =wr-0 . 5 o Settlement of midpoint of shaft in & mm =wr-o % settlemenVdiameter of shalt , Fig. C . 1 & C . 3 % settlemenVdiameter of base. F i g . C.2 & C.4 From C . 1 , Side Load Transfer / Ultimate Side Load Transfer From C.2, End Bearing / Ultimate End Bearing 6160.785 kips & kN 596.061 kips & kN Check against Om for agreement % Difference, therefore settlement esti mate is correct ___ ..:.0:..:. 1..:..7....:.in..:..c:.:.h:__ __ is an accept able amount of service settlement 242

PAGE 255

APPENDIX N . HBCOLUMN OUTP UT 243

PAGE 256

INDIVID U AL CIRC U LAR COL U MN (C) Copyright HBCOLUMN Vl.O , 1992 by CRSI Time = 15:48 : 59 Date =04/08/09 INPUT 36"pile 3% reinforcing fc = 4000 psi fy = 60 ksi Diameter = 36.00 in. 24#10 Concrete Cover To Trans = 3.0 in. # 4 Spirals CALCULATIONS Cl. Spacing= 2.35 in. Rho = 2.99 % # 4 Spirals @ 2 in . Qtys . . Cone = 7.07 cf/ f Long / Tran Stl = 103. 27 35.38 plfForm = 9.42 sf/f Gross Section Area = 1018 in/\2 INTERACTION POINTS iP iM Ecc Descript. (K) (in*K) (in) 3306 6437 1.95 Max Allow 2834 11200 3.95 Oo/ofy 2330 14772 6 . 34 25% fy 1890 16904 8.95 50% fy 1154 19281 16.71 Balance 407 18081 44.41 .1 fc Ag 0 18749 999.99 iP = 0 846 19372 22.90 iP = 846 244

PAGE 257

APPENDIX 0. STAAD RESULTS 245

PAGE 258

A WW A Seismic Onl y La Union Station Time History , Michoacan 9119/ 1985 Ca l eta De Campos Time History , Michoacan 9 / 1911985 Las Vi gas T ime Hi s tor y, Guerrero 9 /1411995 La s V i g a s Time His tory , Guerrero 3 /13/ 1996 11T KA-L U.* 11T K-L U.* 11TK-CDC. * 11 TKLV 9 14 9 5. * ---11 TK 3 1 3 96. * Table 0.1 Summar y of Support R ea ction s, A WW A Seismic Only . Reaction Summary Horizonta l Vertical Moment II ode L : c F X F Y F Z fv1X MY MZ ( k ip) ( k i p ) ( k ip) (kip.i n ) ( kip I n ) (k ip I n ) Max F X 301 11:6: LFD U = 1 249.225 718 . 575 -8.198 -2 .4E 3 1 .084 604 . 0 38 MinFX 3 40 1 2 : 6: LFD U = 1 249.225 718 . 575 8 .198 -2.4 E 3 1 .084 604 . 0 38 M a x F Y 99 11: 6 : LFD U = 1 24 0 . 652 846.820 0 . 00 0 0 . 000 0 . 000 1 .3E 3 MinFY 252 13:LFD U = 0.9 240.311 -472 . 968 0.000 0 . 0 0 0 0.0 00 504.721 Max F Z 322 11: 6 : LF D U = 1 24 9.225 718 . 575 8.198 2.4E 3 1 .084 6 04 . 03 8 MinFZ 301 1 1 : 6 : LF D U = 1 2 4 9 .22 5 718 . 5 75 -8.198 -2 .4E 3 1 .084 6 04 .038 Max M X 178 11 : 6 : LF D U = 1 2 4 8 . 763 29 1 . 9 1 6 3.452 2 . 53E 3 -0.03 4 -2 74 . 9 4 8 MinMX 14 11 : 6 : LFD U = 1 24 8.763 291 .91 6 3 .452 2.53E 3 0.03 4 -2 74.948 Max M Y 322 11 : 6 : LF D U = 1 24 9 . 225 7 18575 8 .198 2.4E 3 1.084 6 04 . 0 38 M i n M Y 30 1 1 1 :6: LFD U = 1 2 4 9 . 225 718.575 -8. 1 98 -2.4 E 3 -1.084 60 4 . 0 38 Max M Z 23 0 11:6: LFD U = 1 2 4 0 . 52 1 788 .174 -0 . 000 -0. 000 0 . 000 l .0 9 E 3 MinMZ 252 1 2 : 6 : LF D U = 1 -24 0 .521 7 88 .174 -0 . 000 0 . 000 0 . 0 0 0 3 .09E 3 Table 0.2 Summary o f Principal Str e sses , A WW A S e ismic Onl y Plate Centre Principal Stress Summary Principal Von Mis Tresca Plate L/C T op Bottom lot> Bottom Top Bottom (ps i ) (psi) (ps i ) (psi) ( p si) (ps i ) Max ( t ) 204 11 : 6: LFD U = 1 32. 1. 974 32 1 . 97 4 288.3 99 2 70 . 85 7 32 1 . 97 4 3 0 3 . 9 39 Max ( b ) 2 05 1 1 : 6: LFD U = 1 32 1 . 97 4 32 1.974 288 . 3 99 270.85 7 32 1 . 97 4 3 0 3. 9 3 9 Max V M ( t ) 20 4 11: 6 : LFD U = 1 321.97 4 32 1 . 97 4 288 . 399 270.857 32 1.974 3 0 3 . 93 9 Max V M ( b ) 2 04 11: 6 : LFD U = 1 32 1 . 9 74 3 2 1 .974 288 . 3 99 270 .8 5 7 32 1. 9 74 3 03 . 9 39 Tresca ( t ) 2 05 11: 6 : LFD U = 1 32 1 . 97 4 32 1 . 97 4 288 . 3 99 270 . 8 57 321. 974 3 0 3. 9 39 Tresca (b) 20 5 11: 6 : LFD U = 1 32 1 . 97 4 -32 1 . 97 4 288 . 3 99 270 . 857 32 1 . 97 4 303 . 939 2 46

PAGE 259

Ta bl e 0 .3 S umm ary of Pl a t e Ce n te r S tr ess , A WW A S e i smic Only P l ate Centre Stress Summarv S hear M e m br.m e B endin g Pl
PAGE 260

Table 0.5 Summary of Plate Center Stress , La Unio n Station Time History of Michoacan 911911985 Event. Plate Centre Stress Summary S hear M embrane B ending Pl.-e 1 -'C Ox Oy Sx Sy Sxy Mx Mxy (p si) (psi) (psi ) (psi) (psi) ( l b .inAn ) Ob.iniln) ( lb lnlin) M a xQx 28 2 11: 6 : LFD U = 1 183.871 70 .152 28 . 2 45 10.859 26 .474 -33 E 3 3 .1E 3 14.4E 3 M i n Q x 2 9 8 12: 6 : LFD U = 1 -133. 371 -7 0 .152 28 . 2 44 10. 859 26 .474 33 E 3 3 .1E 3 14.4E 3 MaxQy 11 1 2 : 6 : LFD U = 1 -176. 1 5 3 249 .7 92 1 9 . 62 6 6 4 .090 4 3 . 3 29 4 3 . 5 E 3 2 7 . 2 E 3 1 . 7 3 E 3 M i nQy 1 49 11: 6 : LF DU=1 176.153 249 .792 19. 62 6 -6 4 . 090 4 3 . 3 29 43 . 5 E 3 -27. 2 E 3 1 . 73 E 3 M a x S x 80 11: 6 : LF D U = 1 8 4 . 1 9 4 -169. 9 0 8 36.516 -60 . 0 8 5 52 . 9 5 0 -47 . 6 E 3 3 . 92 E 3 5 . 39 E 3 MinSx 8 4 5 : L OAD 5 : TIM 2 7 . 616 6 1 . 806 -36 .493 60 . 082 52 . 9 67 5 . 8 E 3 -20 . 1 E 3 -8 . 85E 3 Max Sy 50 5 : L O AD 5 : TIM 29 . 549 78 . 7 66 28 . 658 73.756 -61. 808 -7 . 04E 3 6.46E 3 17 . 9 E 3 Min S y 110 11: 6 : LF D U = 1 69.769 -162 .460 26 .859 -73.768 61. 9 09 1 7 E 3 3 1.2E 3 1 3 . 6 E 3 M a x S x y 110 11: 6 : LF DU=1 6 9 . 769 1 62 . 460 28 .659 73 . 7 6 8 61.9 09 -17 E 3 3 1 . 2 E 3 -13 . 6 E 3 Min Sxy 50 5 : L O AD 5 : TIM -29. 549 -78.7 66 -26. 658 73.7 56 -61.808 -7.04E 3 6.46 E 3 17 . 9 E 3 Max M x 151 11 :6: LFD U = 1 1 7 . 3 8 2 -91 . 318 2.216 -7.857 -11. 6 09 53 . 3 E 3 60 .7E 3 9 . 56 E 3 MinMx 3 1 2 : 6 : LFD U = 1 1 2 1 . 3 5 3 38 . 612 22 . 3 1 1 3 . 9 6 7 26 . 1 2 7 5 1.1E 3 -51. 1 7 3 3.54E 3 M a x M y 23 1 2 : 6 : LFD U = 1 -23065 3 1.469 4 . 2 95 4.490 7.73 2 42 . 2 E 3 66 .1E 3 4 . 6 1 E 3 Min M y 4 2 1 2 : 6 : LFD U = 1 -150. 967 1 1 1 . 069 22.6 79 5 9 . 3 89 -53. 747 -7 . 32 E 3 -7 4.7E 3 1 8 . 8 E 3 Max M x y 28 1 1 2 : 6 : LFD U = 1 161. 50 3 7 1 . 83 7 -30 . 0 00 5 7 . 2 05 4 8.2 27 -5E 3 -9 . 05 E 3 28.6E 3 M in M x y 260 1 2 : 6 : LF D U = 1 -26.108 -63.45 1 -2 4 . 658 5 7 . 4 3 4 4 5 . 336 -3 0 . 8 E 3 -3 1 . 6 E 3 27 . 1E 3 Table 0.6 Summary of Principal Stresses, La Un ion Station T ime History of Michoacan 9 /19/1985 Even t Plate Centre Principal Stress Summarv Principa l Von Mis Tr ese a Plat e L I C lot> Bottom lot) Bottom Top Bottom (ps i ) (ps i ) (ps i ) ( psi) ( psi ) (ps i) Max ( t ) 13 8 11: 6 : LFD U = 1 322.052 74 . 5 3 9 2 9 2 . 007 291. 520 322 . 0 52 3 26.253 M a x (b) 10 9 11: 6 : LFD U = 1 32 0.724 -320 .724 324.416 1 3 5 . 999 327 . 987 138. 3 82 M a x V M ( t ) 140 12 : 6 : L F D U = 1 314 . 195 -77 . 0 3 6 353 . 967 2 58 . 378 391 . 23 1 277 . 996 Max V M (b ) 118 11:6: LFD U = 1 290 . 2 77 -290 . 277 2 86.738 4 5 1.553 2 90 . 277 454 . 889 Tre s ca ( t ) 290 11: 6 : LFD U = 1 212 . 96 3 -212 . 9 63 341 . 032 2 7 2 .742 393 . 341 3 14.819 Tre s ca (b ) 115 11:6: LFD U = 1 26 3 . 547 -2 6 3 . 547 287.25 4 44 3 . 92 0 306 . 192 4()1.106 248

PAGE 261

Ta ble 0.7 Summary of Support Reactions, Caleta De Campos Station Time His t ory ofMichoacan 9 / 1 9/1985 Event. Reaction Summary H orizonta l V ertica l H orizonta l M o m ent II o de uc F X F Y F Z rii1X M Y M Z (kip) (ki p) (kip) (kipi n ) (kip in) (kip In) Max F X 95 1 2 : 6 : LFD U = 1 58 . 535 486 . 953 94 . 099 909.550 -3. 215 1.2E 3 M i n f){ 99 11 : 6 : LFD U = 1 -58.535 486 .953 -94 . 099 -909 . 550 -3 . 215 1 .2E 3 Ma x F Y 95 1 0 : LFD U = 1 .4 0 . 062 583 .184 0 . 000 -0.000 -0 . 000 -690 . 150 Min F Y 178 14 : LFD U = 0 . 9 -30 . 153 -9 1. 382 52.727 174.433 4 . 510 1 .35E 3 M ax FZ 57 1 2 : 6: L F D U = 1 -54.37 3 523 . 050 98. 623 83 1 . 705 8 . 628 427 .203 Min FZ 132 11 : 6 : LFD U = 1 54 . 373 523 . 050 -98 . 623 -831 . 708 8 . 628 -427.202 M a x M X 178 11: 6 : LFD U = 1 36 . 863 330.504 -57.982 2 . 86 E 3 -3 .971 1 48.726 Min M X 8 12:6: LFD U = 1 -36 . 862 33 0.50 2 57 . 98 1 -2 . 86 E 3 -3 .971 -148 . 705 Ma x M Y 129 14 :LFD U = 0 . 9 54 . 059 400.4 22 96.905 1 .7E 3 9 . 592 -722 . 036 Min M Y 129 11 : 6 : LFD U = 1 -54 .28 9 402 . 645 -97.592 -716 . 786 -9.629 381.992 M a x MZ 230 10: LFD U = 1 . 4 0.103 2 1 4 .28'1 -0.000 -0 . 000 0 . 000 2 . 45 E 3 Min M Z 252 1 0: LFD U = 1 .4 -0 . 103 214 .281 -0 . 000 -0 . 000 0 . 000 -2.45 E 3 Tab l e 0.8 S u mmary of P l ate Center Stress , Cale t a De Campos S t ation Time Histo r y of M i c h oacan 9 /191198 5 Event. Plate Centre Stress Summarv Shea r M e m b r a n e Bend i n g Pl"e uc Ox Oy Sx Sy Sxy M x My Mxy (ps i ) (ps i) (psi) (psi) (psi) ( l b inAn) Qb-inAn) (lb In/ in) Ma x Q x 80 1 O :LFD U = 1 .4 1 3 0 .444 -12 6 . 119 0 . 027 -0 . 004 -0 . 020 -48 .8E 3 -28 .1E 3 -4 .03E 3 MinQx 76 10 :LFDU=1.4 1 30.444 -126.119 0 . 027 -0.004 0 . 020 -48 .8E 3 -28 .1E 3 4 .03E 3 Ma xQy 54 1 2:6 : LFD U = 1 113 . 509 132 . 983 -13 .151 -25 . 640 23.008 -28 . 1 E 3 -35.4E 3 -10 .7E 3 MinQy 106 1 1 : 6 : LFD U = 1 -113 . 509 -132.. 983 1 3.15 1 -25. 640 23.008 -28 . 1 E 3 -35.4E 3 -10.7E 3 Ma x S x 8 4 1 1 : 6 : LFD U = 1 -127.45 1 85.297 1 8.060 22 . 652 -24 . 020 -44 .7E 3 -16 .9E 3 941 . 302 MinSx 84 14:LFD U = 0.9 -68 . 216 103.88 2 1 8 . 020 -22 . 658 23 . 990 -28 .5E 3 -25.2E 3 -6.99 E 3 Ma xSy 110 14 :LFD U = 0 . 9 59. 786 -49. 547 14 . 035 28 . 500 -27 .381 -21.3E 3 -30 .7E 3 10 .7E 3 M inSy 110 1 1 : 6 : LFD U = 1 114 .021 -131. 918 -14 . 032 28 . 52 1 27.559 -20 .8E 3 -35 .2E 3 -3 .18E 3 Max Sxy 110 11: 6 : LFDU=1 114 .021 1 31. 918 -14 . 032 -28 .521 27.559 -20 .8E 3 35.2E 3 -3.18E 3 Min S x y 110 14 :LFD U = 0 . 9 59 . 786 49 . 547 14 . 035 28. 500 -27 .381 -21.3E 3 -30 .7E 3 10 .7E 3 Ma x M x 7 3 10:LFD U = 1.4 7 . 768 5 .961 0 . 007 0 . 138 0 . 002 3 1.4E 3 29.9E 3 1 .24E 3 MinMx 76 1 O :LFD U = 1 .4 -130 .444 -126 . 119 0 . 027 -0 . 004 0 . 020 48 .8E 3 -28 .1E 3 4.03E 3 Ma x M y 17 1 2 : 6 : LFD U = 1 -19 . 609 17 . 938 1 . 187 1 . 5 1 1 4 . 966 24.3E 3 36 . 2 E 3 -3.43E 3 Min My 118 11: 6 : LFD U = 1 120 . 595 102 . 034 13 . 002 20.919 2 1 . 095 -16 .7E 3 -:J5.7E 3 9 .5E 3 Ma x Mxy 67 10 :LFD U = 1.4 -22 . 965 -4 . 096 0 . 014 0.058 0 . 029 -1 .41 E 3 19.8E 3 1 9 . 8 E 3 M i n Mxy 69 10 :LFD U = 1.4 22. 965 -4 . 096 0 . 014 0 . 058 -0 . 029 1 .41E 3 19 .8E 3 1 9 . 8 E 3 249

PAGE 262

Table 0.9 Summary of Principal Stresses , Caleta De Campos Station Time History of Michoacan 911911985 Even t Plate Centre Principal Stress Summarv Princi1> a l Von Mis Tresca Plate LiC T o p Bottom T<>i> Bottom Top Bottom (psi) (ps i ) (ps i ) (psi) (psi) (psi) M a x ( t ) 109 11 : 6 : LFD U = 1 245.453 -2 4 5.453 212.678 150.491 2 4 5.453 170.717 Max (b) 51 1 2 : 6 : LFD U = 1 245.453 245.453 212.6 7 8 150.491 245 . 453 170.717 Max VM ( t ) 109 11 : 6 : LFD U = 1 245.453 -2 45 .453 2 1 2 . 673 150.491 245.453 170 . 717 Max V M (b) 50 11: 6 : LFD U = 1 169.867 16 9.867 147.859 235 . 635 1 69 . 867 266.930 Tre sca ( t ) 5 1 12 : 6 : LFD U = 1 245.453 -2 4 5.453 2 1 2.678 150 .491 245. 453 170 . 717 Tresca (b) 50 11: 6 : LFD U = 1 169 . 867 169 . 867 147 . 859 235 . 635 16 9 . 867 266 .930 Table 0.10 Summary of Support R eac tions , Las Vigas Station Time History of Coas t of Guerrero 911411995 Eve nt. Reaction Summary Horizontal Vertical Horizontal Moment tlode L i C F X FY FZ fy'()( l'v1Y MZ (kip) (kip) ( kip) (kip-in) ( kip In) ( k i p In) Max F X 17 8 1 2: 6 : LFD U = 1 11.897 210. 053 -25 . 309 2 . 14E 3 -1 . 094 569 . 945 MinF X 8 11 : 6 : LFD U = 1 -11.897 2 10 .052 25.3 09 2 . 14E 3 -1. 09 4 -569 . 928 M a x F Y 95 10 : LFD U = 1.4 0 . 062 588.134 0 . 000 -0 . 000 -0.0 00 -690.150 MinFY 17 8 13:LFD U = 0 . 9 -5 . 187 29.069 2 0 . 054 887 . 722 1 .633 92 4 . 322 Max F Z 57 11:6: LFD U = 1 8.299 4 83.214 41.862 8 . 055 3 . 733 -6 1 . 692 MinFZ 132 12 : 6 : LFD U = 1 8.299 483.214 41.862 -8 . 056 -3 . 733 6 1 . 692 Max M X 178 1 2 : 6 : LFD U = 1 11 . 897 210 . 053 -25 . 30 9 2 .14E 3 -1 . 094 569 . 945 MinMX 8 11: 6 : LFD U = 1 -11 . 897 2 10.05 2 25.3 09 -2 .14E 3 1 . 094 -5 69 . 928 Max M Y 60 14 : LF D U = 0 . 9 8 . 086 36 7.47 6 41. 576 141 .430 3 .84 3 44 . 236 Min M Y 60 11:6: L F D U = 1 -7 . 856 4 35.591 -40 . 889 1 . 1 3 E 3 -3.379 29 5 . 808 MaxMZ 230 10 :LFD U = 1.4 0 . 103 2 14.281 -0 . 000 0.000 0 . 000 2.45 E 3 MinMZ 2 5 2 10: LF D U = 1.4 0 . 103 2 14.281 -0.0 00 -0 . 000 0 . 000 -2 .45E 3 250

PAGE 263

Table 0.11 Summary of Plate Center Stress , Las Vigas Station Time Hi s tor y of Coast of Guerrero 9/14/1995 Eve nt. Plate Centre Stress Summary S hear Membrane B ending Plate uc Ox Oy Sx Sy Sxy Ml< My M>cy (psi) ( psi) (psi) (psi) (psi) (lb .inAn) Qb.inAn) (lb In/in) Ma x Qx 80 1 O :LFD U = 1 .4 1 3 0.44-J -126 .119 0.027 -0 . 00 4 -0 . 020 -48.8E 3 28 . 1 E 3 -4 .03E 3 MinQx 76 10:LFD U = 1.4 1 30.444 -126 .119 0 . 02 7 -0 . 004 0 . 020 -48 .8E 3 28 .1E 3 4 .03E 3 MaxQy 8 4 10:LFD U = 1.4 1 3 0.444 126.119 0 . 027 -0. 004 -0 . 020 4 8.8 E 3 -28 . 1 E 3 -4.03E 3 MinQy 76 1 0 :LFD U = 1.4 -13 0.444 126.119 0.02 7 0 . 004 0 . 020 4 8 . 8 E 3 28 . 1 E 3 4 .03E 3 Max S x 7 11:6 : LFD U = 1 0 . 383 -1. 032 5 .266 -0.525 0. 167 6 . 16E 3 -826.496 538 . 226 MinSx 157 12:6: LFD U = 1 4.457 2 . 590 -4. 728 0.608 -3 . 773 -17. 2 E 3 2 .01E 3 5 .78E 3 MaxSy 110 13:LFD U = 0 . 9 71. 7 33 -89 . 962 3 .021 11.493 -9 . 327 1 9 E 3 -29 . 3 E 3 5 .95E 3 MinSy 110 12: 6 : LFD U = 1 102 . 074 -91.502 -3 . 019 11. 515 9 . 505 23 .1E 3 36 .6E 3 1 .52E 3 Max Sxy 50 11: 6 : LFD U = 1 -102.073 91. 502 -3. 019 -11. 515 9.505 -23.1E 3 -36 . 6 E 3 1 . 52E 3 Min S x y 50 1 4 :LFD U = 0 . 9 -71. 7 33 89 . 962 3 .021 11.493 9.327 19E 3 -29.3 E 3 5 .95E 3 Max M x 73 10:LFD U = 1.4 -7 . 768 5 .961 -0 . 007 0 . 1 38 0 . 002 31.4E 3 29 . 9 E 3 1 . 24E 3 Min M x 76 10:LFD U = 1.4 -130 .444 -126 . 119 0 . 027 0 . 00 4 0 . 020 -4a.8E 3 28 . 1 E 3 4 . 0 3 E 3 Max M y 73 10 :LFD U = 1.4 7 . 768 5 .961 -0 . 007 0 . 1 38 0 . 002 3 1 .4E 3 29.9E 3 1 . 24 E 3 Min M y 50 10:LFD U = 1.4 115 .871 120 . 976 0 .001 -0 . 014 0 .118 -28 . 1 E 3 -4J .9E 3 4 . 98 E 3 Max Mxy 67 10:LFD U = 1 . 4 22 . 965 -4 . 096 0 .014 0 . 058 0 . 029 -1.41E 3 19. 8 E 3 19.8E 3 Min M x y 69 1 O :LFD U = 1 .4 22 . 965 4 . 096 0.014 0 . 058 0 . 029 1.41E 3 19 . 8 E 3 19.3E 3 Table 0.12 Summary of Pr i ncipal Stresses , Las Vigas Station Time History of Coast of Guerrero 9/14/1995 Event. Plate Centre Principal Stress Summary Princip a l Von Mis Tres e a Plate L.• C Top Bottom Top Bottom Top Bottom (ps i ) (psi) (ps i ) (ps i ) ( psi ) (ps i ) Max ( t ) 76 1 0 : LFD U 1 .4 229 . 344 -229 . 3 44 198. 969 199. 000 229.344 22 9 . 38 1 M a x (b) 76 1 0 : LFD U 1 .4 229 . 3 4 4 -229 .344 198. 969 199. 000 229 . 3 44 229.38 1 Max VM (t ) 76 1 O : LFD U 1 .4 2 29 . 3 44 -229.344 193.969 199.000 229 . 3 44 229.381 Max V M (b) 76 10: LFD U 1.4 229 . 3 44 -229. 3 44 198. 969 199.000 229 . 3 44 22 9.381 Tresca ( t ) 76 1 O : LFD U 1 .4 229 . 3 44 -229. 3 44 198. 969 199. 000 229 . 344 229.381 Tres ca (b) 76 1 0 : LFD U 1 .4 229 . 3 44 -2 29 . 3 44 19 8 . 969 199. 000 229 . 3 44 229 .331 251

PAGE 264

Table 0 . 13 S umm ary of S upp ort R eact i o ns , Las Vigas Station Time History of Coas t of Guerrero 3113/ 1996 Event. Reaction Summary Horizontal Vertical Horizontal Moment Uode uc FX F Y FZ MX M'r' 1\11Z (kip) (k ip ) (kip) (k ip-in) ( kip In) (k i p In) Max FX 178 1 2: 6 : LFD U = 1 5 . 654 127.06 4 -0.061 1 . 69 E 3 0 . 1 82 818.460 Min F X 8 11 : 6 : LFD U = 1 -5 .654 1 27.064 0 . 062 -1. 69 E 3 0 .182 -8 1 8.456 Max F Y 95 1 OLFD U = 1.4 0 . 062 538 .134 0.0 00 -0 .000 -0 . 000 -690 .150 MinFY 178 14: LFD U = 0 . 9 4 . 696 92.904 0 . 689 1 . 26 E 3 0.105 60 4 . 993 M a x F Z 8 1 2: 6: LFD U = 1 -2. 015 146.218 5 .944 -1 . 78 E 3 0.434 -88 9.278 M inFZ 178 11 : 6: L F D U = 1 2 . 015 146.218 -5.944 1 .78 E 3 0.434 889.275 Max M X 175 1 0 : LFD U = 1.4 -4.47 4 159.415 -3 . 5 03 2.02 E 3 -0 . 359 -996.178 MinMX 8 10:LFD U = 1 . 4 -4.474 159.415 3.5 0 3 -2.02E 3 0 . 359 -996 . 178 Max M Y 57 1 2 : 6 : LFD U = 1 0 . 766 4 6 1 .572 5 . 3 69 -497 . 015 0.479 -205.848 Min M Y 175 1 2 : 6 : LFD U = 1 -2 . 141 127 .699 -0 .199 1 .69 E 3 -0. 502 -82 1 .429 Max M Z 230 1 O : LFD U = 1 .4 0.103 214.281 0 . 000 -0 . 000 0 . 000 2 .45E 3 Min MZ 252 1 0 : LFD U = 1 .4 -0.103 214.281 -0.0 00 -0. 000 0.000 2.45E 3 Table 0.14 Summary of Plate Center St r ess, Las Vi gas St atio n Time History of Coas t of Guerrero 3/13/1996 Event. Plate Centre Stress Summary S h ea r Membrane B ending Pille L1C Qx Oy Sx Sy Sxy Mx M xy (ps i ) (ps i ) (!lSi) (psi) (ps i) (lb. inAn) Qb.inAn) (lb lnlin) Max Q x 80 1 0 : LFD U = 1 .4 1 3 0.444 1 26 . 119 0 . 0 2 7 -0 . 004 -0 . 020 4 8 .8E 3 -28 .1E 3 -4 .03E 3 MinQx 76 10 :LFD U = 1.4 136.444 -126.119 0 . 027 -0 . 004 0.020 -48.8E 3 -28 . 1 E 3 4 .03E 3 MaxQy 8 4 10:LFDU=1.4 -130.444 1 2 6.119 0 . 0 2 7 -0004 -0 . 020 -48 .8E 3 28 .1E 3 -4 .03E 3 MinQy 76 10: LFDU=1.4 -130.44 4 1 26 .119 0 . 027 -0 . 00 4 0 . 020 -48 .8E 3 28 .1E 3 4 .03E 3 MaxSx 1 53 11: 6 :LFDU=1 3 . 190 -1. 710 2 . 2 H 0 . 205 -0.418 1 2 .9E 3 499 . 706 48.706 MinSx 147 11: 6 :LFDU= 1 49.042 -57 . 146 -2.170 1.486 -0 . 519 1 2 . 8 E 3 -16. 7 E 3 -10 .9E 3 MaxSy 54 13:LFDU=0. 9 7 4 . 241 76 . 318 0.2 8 2 1.359 0 . 99 1 -18 .1E 3 -28.4E 3 -3 .52E 3 MinSy 205 1 2 : 6 : LFD U = 1 -8 . 106 23 . 287 0 . 116 2.029 -0 .497 1 . 38 E 3 -9 .57E 3 -8.45E 3 M a x S x y 265 11: 6 : LFD U = 1 44. 158 24.251 -1 .071 -1. 847 2 .3 79 -18E 3 -2 . 26 E 3 -1.64E 3 MinSxy 282 12: 6 : LFDU=1 44. 573 24 . 616 -1. 875 -1. 988 -2. 609 -17 .4E 3 -2.5 E 3 1 .63E 3 M ax M x 73 10:LFD U = 1.4 -7.768 5 .961 -0.007 0 . 1 38 0 . 002 3 1.4E 3 2 9 . 9 E 3 1 .24E 3 MinM x 76 10:LFD U = 1.4 -130.444 -126 . 119 0 . 027 -0 . 004 0 . 020 48.8E 3 28 .1E 3 4 .03E 3 Max M y 73 1 O :LFD U = 1.4 -7 . 768 5 .961 -0 . 007 0 . 138 0 . 002 31.4E 3 29.9E 3 1.24E 3 Min My 50 1 O :LFD U = 1 .4 -11 5 . 8 7 1 1 20 . 976 0 .001 -0 . 014 0 . 118 -28 . 1 E 3 43.9E 3 4 .98E 3 Max M x y 67 10:LFD U = 1.4 -22 . 965 -4. 096 0 . 014 0 . 058 O.D29 1.41E 3 19. 8 E 3 19.8E 3 Min Mxy 69 1 0 : LFD U = 1.4 22 . 965 4 . 096 0 .014 0 . 058 -0 . 029 1.4 1 E 3 19.8 E 3 19.8E 3 252

PAGE 265

Table 0.14 Summary of Principal Stresses, Las Vi gas St at i on Time History of Coast of G u errero 311311996 Event. Plate Centre Principal Stress Sumrnarv Principa l Von Mis Tresca Pl ate uc Top Bottom TOf) Bottom Top Bottom (psi) (psi) (psi ) (ps i ) (psi) (ps i ) Max ( t ) 76 1 0: LFD U = 1 .4 229.344 -22 9.344 1 9 8 . 969 199.000 229 .3 44 229.381 Max (b) 76 10:LFD U = 1 . 4 229 . 344 -229 .344 198. 969 199. 000 229 . 344 229 .381 Max V M (t) 76 1 0 : LFD U = 1 .4 229 . 3 44 -229.344 198. 969 199.000 229 . 344 229 .381 M ax VM (b) 76 10:LFD U = 1.4 229 . 3 44 -229 . 344 198. 969 199.00 0 229 . 344 229 .381 Tre sca ( t ) 76 1 0 : LF D U = 1 .4 229 . 3 44 -229.344 1 98 . 969 1 99. 000 229.344 229.381 Tresca (b) 76 1 O :LFD U = 1.4 229 . 3 44 -229.344 198. 969 199 . 000 229 . 344 229 . 381 253

PAGE 266

APPENDIX P. TIME HISTORY INFORMATION 254

PAGE 267

Acceleration Station: La Union, Mexico Guerrero Array Stn UNI Station Owner: University ofNevada Reno S tation Latitude & Longitude : 17 . 9800 ,-101.8100 Earthquake: Michoacan 1 985 -09-1 9 13: 17:47 UTC Hypocentral Distance: 83. 9 km Component : 9 0 148 (.) Q.) (/) ....... (.) Q.) (/) ....... 1: (.) 14 8 0 Component: 180 166 (.) Q.) ....... (.) Q.) (/) ....... 1: (.) -166 0 1 3 13 2 5 second s 2 5 seconds 255 38 3 8 50 63 5 0 63

PAGE 268

Comp onent: Up 123 u II) '? ..... u II) ..... s: u -123 0 13 2 5 seconds 38 Acceleration 5 0 S tation; Caleta De Campos , Mexico Guerrero Array Stn CMP Station Owner: University ofNevada Reno Station Latitude & Longitude: 18.0710 , -102.7540 Earthquake: Michoacan 1985-09-1913:17:47 U TC Hypocentral Distance: 38.3 km Com pon ent : 90 141 -141 0 1 0 20 seconds 256 30 41 63 5 1

PAGE 269

Component: 180 140 t..) II) (/) ...... t..) II) (/) ...... :1: t..) -140 0 Component: Up 88 t..) II) (/) ...... t..) II) (/) ...... :1: t..) -88 0 1 0 10 20 second s 20 seconds 257 30 41 51 30 41 51

PAGE 270

Acceleration Station: Las V i gas, Mexico Guerr ero Array Stn VIG Station Owner: University ofNevada R eno Station Latitude & Longitude: 1 6.7580 , 99.2300 Earthquake: Near the Coast of Guerrero 199509 -14 14:04 :31 UTC Hypocentral Di s tance: 70.8 k m Comp on ent: 90 79 -79 0 8 58 -58 0 8 16 seconds 1 6 seconds 258 25 3 3 25 33 41 41

PAGE 271

Component: 180 100 () 0 ..... () 0 ..... :r:: () 100 0 8 16 seconds 25 Acceleration Station: Las Vigas , Mexico G u errero Array Stn VIG Station Owner: U ni versity ofNevada R e no Station Latitude & Longitude: 1 6 . 7580, -99.2300 33 Earthquake: ear the Coast of Guerrero 1996031 3 2 1:04:20 UTC H y pocentral Di s tance: 46.0 km Component: 90 289 () 0 ..... () 0 ..... :r:: () -289 0 5 1 0 seconds 259 15 20 41 25

PAGE 272

Component: Up 1 0 7 () G) ..... () G) ..... :1: () -107 0 Component: 180 281 () G) ..... () G) ..... :1: () 2 8 1 0 5 5 1 0 seconds 1 0 seconds 260 15 20 2 5 15 20 2 5

PAGE 273

APPE DIX Q . CAP DESIGN CALCULATIONS 261

PAGE 274

Caisson Cap Design Top Slab Posit ive M oment DESIGN FOR FLEXURE fc = 4 KSI d= 32. 5 I N C HES b = Mu= 298 .20 K-FT Jy= TRY AS= 3.16 SQ IN. #d @6" a = 4 .65 {3= 0 . 85 .ss= 0 . 0148 Tension controlled !j>= 0 .90 c f'Mn= 429.11 K-FT Reinforcing d i stribu t ion M= 22 4 .2 1 K-F T /F T Cc= 2 . 00 AS= 3.16 SQ IN./F T p = 0.0081026 k= 0 . 3 0 1 7106 j = 0 .90 fs= 29. 1 3 KSI Max imum Rei nforcement O .K. pmax =0.724pb = 0 .0206 O .K. For grade 60 rebar &. 4ks i concrete Minimum Reinforcement As min = = A s min = 200bd/f = L a rger of 2 control s 1 .23 SQ. IN. 1 .30 SQ. IN. Top S lab N egclti ve Momem D ESIGN FOR FLE XURE fc = 4 KSI d= 32 INCHES M u = 298 . 0 0 K-FT TRY AS= 3 . 1 6 SQ. IN. a= 4 .65 _ {3_ = O K b= fy= #0@6 " 0.85 ss= 0 . 0146 Tension controlled
PAGE 275

Maximum Reinforcement pmax =0 724pb = _ 0 .0206 O.K. __ 60 & 4ksi Minimum Reinforcement As _ _r:n in = 3 ( f_)0 5 b d/fy = = 200bd/fy= _ Larger of 2 control Shear Design 1 .21 SQ. I N . 1 .28 SQ. IN. ----O K Axial load= 894 k)ps _ bo@ d/2 for punching shear. worst case is edge pier center only 2' from edge d/2 +diam = 68 in ------C i rcumference= 213. 6 in ------bo = 154. 8 in ------"""'!'-'---Vu= 5 . 8 ksi __ = Vc= (fc/5b0d = 469.98 ksi OK Max imum Stress from STAAD analys is __ Vu= 493.1psi rpVc= = 3035.79y _si___ OK ------Beam shear with 3 oiers alon g 24' Vu = 2682. 0 ki s -----b = Vu= Vc= (fc)0 5b0d = 288 in 0.291 ksi 17 48.61 ksi O K 263 -------

PAGE 276

BIBLIOGRAPHY Algermissen, S.T . (1983). An Introduction to the Seismicity ofthe United States. Oakland , California: The Earthquake Engineering Research Institute. American Association of State Highway and Transportation Officials. (2004). AASHTO LRFD Bridge Design Specifications 3rd Edition, 2004. Washington, DC: Author. American Society of Civil Engineers. (2006). American Society of Civil Engineers Minimum De sign Loads for Buildings and Other Structures (ASCE 7 -05). USA: Author. Arrellaga, Jose A., Isenhower, William M., Reese, Lymon C., & Wang, Shin Tower. (2004) . Computer Program LPILE Pluse Versio n 5.0 Technical Manual. Austin: Ensoft, Inc. AWWA Standard: Welded Carbon Steel Tanks for Water Storage (AWWA DJ0005 ) . (2006). Denver: American Water Works Association. Breitenbach , Allan, & Castillo, Jorge. (2008) Seismic Ha zard Study--El Aguila Project--Oaxaca Mexico. Unp ublished manuscript. Budhu , Munj. (2000). Soil Mechanics and Foundations. New York: John Wiley & Sons , Inc. Chang , Nien-Yin, & Nghiem, Hien. (April, 2007). Nonlinear Finite Element Code for Pile-Soil Interaction (PSI). Unpublished manuscript. Chang, NienYin , & ghiem, Hien. (2007). Nonlinear Spring Functions for 3-D Seismic Responses of Structures on Piles. Proce edi ngs of 32nd Annual Conference for Deep Foundations. Colorado Springs , CO. Chang , NienYin , & Nghiem, Hien. (2008). Soil-Structure Interaction Effects of High Rise Buildings. Proceedings 61h International Converence on Case Histories in Geotechnical Engineering, Arlington, VA. Arlington , VA. 264

PAGE 277

Estado de Oaxaca. (2007). Reglam ento de Construcci6n y Seguridad Estructural Para e l Estado de Oaxaca. Oaxaca, Mexico: Author. Gutierrez , Jorge. (2003). Seismic Code Evaluation: Mexico. Retrie ved January , 2008, from website: http :/ /www. acs aec.org / Documents/Disasters / Projects / ACS ND 00 1/MEXICsce.pdf Idris, I.M. , & Seed , H. Bolton . (1982). Ground Motions and Soil Liquefaction During Earthquakes. Oakland, California: The Earthquake Engineering Research Institute. Isenhower , William M., Reese , Lymon C., & Wang, Shin-Tower.(2006). Analysis and Design of Shallow and Deep Foundations. Hoboken, New Jersey: John Wiley & Sons, Inc. International Building Code 2003. (2002). USA: International Code Council, Inc. McCarthy , David F. y988) . Essentials ofSoil Mechanics and Foundations: Ba sic Geotechnics , 3r Edition . Englewoo d cliffs, ew Jersey: Prentice Hall. Nghiem, Hien Manh (2009) Soil-Pile Structure Interaction Effects on High Rise s Under Seismic Shaking. Unpublished doctoral dissertation , University of Colorado at Denver. Normas Tecnicas Complementarias para Di sefio por Sismo. O'Neil, Michael W., & Reese , Lymon C. (1999). Drilled Shafts: Construction Procedures and Design Methods. (Publication No. FHWA-IF-99-025). Washington, D.C. : Federal Highway Administration. Unidad Estata l de Proteccion Civil, Oaxaca. (2003). Atlas Estatal De Riesgos: Id entificacion de P e ligros y Localizacion de Zonas Vulne rabl es. (pp. 17101). Oaxaca, Mexico: Author. Unidad Estata l de Proteccion Civil, Oaxaca. (2004) . Sismicidad en el Estado de Oaxaca . Oaxaca , Mexico: Author. 265