Citation
The Genomic basis of diapause and its influence on novel host adaptation in the apple maggot fly rhagoletis pomonella

Material Information

Title:
The Genomic basis of diapause and its influence on novel host adaptation in the apple maggot fly rhagoletis pomonella
Creator:
Calvert, McCall Bain
Place of Publication:
Denver, CO
Publisher:
University of Colorado Denver
Publication Date:
Language:
English

Thesis/Dissertation Information

Degree:
Master's ( Master of science)
Degree Grantor:
University of Colorado Denver
Degree Divisions:
Department of Integrative Biology, CU Denver
Degree Disciplines:
Biology
Committee Chair:
Ragland, Gregory
Committee Members:
Green, Michael
Larson, Erica

Notes

Abstract:
Developing a clear understanding of rapid adaptive evolution requires knowledge on natural selection, relationships between genotype and phenotype, and standing variation in traits putatively under selection. However, recent studies that have amassed these pieces of information have still struggled to accurately predict either the genetic loci responding to selection or the direction of allelic change at those loci. By predictability of evolution, we mean the degree of concordance that exists 1) between laboratory genotype-to-phenotype studies and variation in natural populations or 2) among multiple natural populations responding to the same selection pressures. In chapter 1 of this work, we show that a possible reason for the incongruency between laboratory and field studies might be an incomplete knowledge of the multivariate trait combinations that respond to selection in a correlated manner. Numerous past studies in the apple maggot fly Rhagoletis pomonella have observed a paradoxical relationship between genetic variation underpinning differentiation between host-associated populations and a key life history trait contributing to host adaptation, diapause termination. We found that variation in diapause termination is closely related to another life history trait putatively under selection, diapause intensity, either through linkage or pleiotropy. Furthermore, historical, geographic selection in R. pomonella has likely shaped the available genetic variation in a direction antagonistic to favored trait combination in newly derived host-associated populations. Chapter 2 follows up on the findings of Chapter 1 by addressing whether the genetic variation and architecture of diapause termination, and in turn, population divergence is consistent across geography. The data collected for Chapter 2 needs further analysis, but findings reported here suggest that some genetic characters associated with diapause termination are conserved with geography, while others are highly unique to a given site. The genetic architecture of population divergence, in turn, appears to be unique to a given population pair. We discuss directions for future analysis and provide some speculation on underlying mechanisms.

Record Information

Source Institution:
University of Colorado Denver
Holding Location:
Auraria Library
Rights Management:
Copyright McCall Bain Calvert. Permission granted to University of Colorado Denver to digitize and display this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.

Downloads

This item has the following downloads:


Full Text
THE GENOMIC BASIS OF DIAPAUSE AND ITS INFLUENCE ON NOVEL HOST
ADAPTATION IN THE APPLE MAGGOT FLY RHAGOLETIS POMONELLA
by
McCALL BAIN CALVERT
B.S., Beloit College, 2015
A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Master of Science Biology Program
2019


This thesis for the Master of Science by
McCall Bain Calvert has been approved for the Biology Program by
Gregory Ragland, Chair Michael Green Erica Larson
Date: May 18, 2019
11


Calvert, McCall Bain (M.S., Biology Program)
The genomic relationship between two diapause traits and their influence on rapid
HOST ADAPTATION IN THE APPLE MAGGOT FLY RHAGOLETIS POMONELLA
Thesis directed by Assistant Professor Gregory Ragland
Abstract
Developing a clear understanding of rapid adaptive evolution requires knowledge on natural selection, relationships between genotype and phenotype, and standing variation in traits putatively under selection. However, recent studies that have amassed these pieces of information have still struggled to accurately predict either the genetic loci responding to selection or the direction of allelic change at those loci. By predictability of evolution, we mean the degree of concordance that exists 1) between laboratory genotype-to-phenotype studies and variation in natural populations or 2) among multiple natural populations responding to the same selection pressures. In chapter 1 of this work, we show that a possible reason for the incongruency between laboratory and field studies might be an incomplete knowledge of the multivariate trait combinations that respond to selection in a correlated manner. Numerous past studies in the apple maggot fly Rhagoletispomonella have observed a paradoxical relationship between genetic variation underpinning differentiation between host-associated populations and a key life history trait contributing to host adaptation, diapause termination. We found that variation in diapause termination is closely related to another life history trait putatively under selection, diapause intensity, either through linkage or pleiotropy. Furthermore, historical, geographic selection in R. pomonella has likely shaped the available genetic variation in a direction antagonistic to favored trait combination in newly derived host-associated populations.


Chapter 2 follows up on the findings of Chapter 1 by addressing whether the genetic variation and architecture of diapause termination, and in turn, population divergence is consistent across geography. The data collected for Chapter 2 needs further analysis, but findings reported here suggest that some genetic characters associated with diapause termination are conserved with geography, while others are highly unique to a given site. The genetic architecture of population divergence, in turn, appears to be unique to a given population pair. We discuss directions for future analysis and provide some speculation on underlying mechanisms.
The form and content of this abstract are approved. I recommend its publication.
Approved: Gregory Ragland
IV


for Keaton


Acknowledgements
I was helped by so many people throughout my thesis. I would like to thank and acknowledge:
Greg Ragland, for welcoming into his lab, providing support in so many aspects of the project contained within this thesis, and mentoring me on skills beyond just research.
Other members of the Ragland lab for being wonderful and supportive colleagues: Marianne Davenport, Eddy Dowle, Erina Rader, Lalitya Andaloori, and Jantina Toxopeus.
Our collaborators Meredith Doellman, Glen Hood, Peter Meyers, Jeffrey Feder, Scott Egan, Thomas Powell, Dan Hahn, Stewart Berlocher, and James Smith.
All of the other faculty in the Department of Integrative Biology. In particular, Michael Green for providing useful intellectual feedback during project design and for serving on my committee, Michal Wunder for instructing two enlightening statistics courses that influenced the direction this work took, Annika Mosier for all of the intellectual feedback I received in here Biological Workshop courses, and John Swallow for providing constructive feedback during project design.
Many students within the department of Integrative biology for intellectual and emotional support, especially those engaged with me deeply on specific topics within this thesis and just beyond: Nick Bard, Andrew McDevitt, Libby Pansing, Alii Pierce, Erin Sanders, Emily Scott, Scott Yanco, and anyone else I may have forgotten to mention.
Erica Larson for serving on my Master’s committee and providing excellent feedback, and many other faculty and students in the Department of Biology at the University of Denver for providing fun conversation during local conferences like the Guild of Rocky Mountain Ecologists and Evolutionary Biologists (GREEBs).
vi


My Parents, Kathy Bain and Geoff Calvert, for their unending support and love.
And last but not least Dana Crawford for her love, patience, and support through every step of achieving my Master’s degree.
Vll


I. The genomics of multivariate trait combinations and their influence on the
PREDICTABILITY OF EVOLUTION............................................................. 1
Introduction............................................................................1
Methods & materials......................................................................7
Fly collection and rearing............................................................7
Genotyping-by-sequencing..............................................................8
Previously published GBS studies......................................................8
Diapause intensity phenotyping........................................................9
Genotyping diapause intensity phenotypes.............................................12
Data analysis........................................................................13
Results................................................................................16
Diapause intensity differs between host races........................................16
Strong genetic associations with the shallow diapause intensity phenotype............17
Chromosomal distribution of diapause intensity-associated loci.......................18
Host Race Divergence for Diapause-associated loci....................................18
Genetic associations between diapause intensity and diapause termination.............19
Clinal variation for diapause associated loci........................................20
Selection response of diapause-associated loci.......................................20
Discussion.............................................................................21
Evidence for historic, clinal selection and antagonistic pleiotropy in Rhagoletis pomonella21
Laboratory measures of phenotypes versus field selection.............................25
Antagonistic pleiotropy and genomic divergence.......................................26
Summary..............................................................................28
viii


II. Consistency of the genetic architecture of a geographically varying seasonal
TRAIT AND ITS CONTRIBUTION TO SPECIATION..............................................44
Introduction..........................................................................44
Materials and Methods.................................................................48
sample collection...................................................................48
Diapause termination GWAS...........................................................49
Diapause Intensity GWAS.............................................................49
Sequencing and Bioinformatics.......................................................50
Assignment to Linkage Groups........................................................52
Genetic architecture of diapause termination and intensity..........................53
Calculation of allele frequency differences.........................................54
Correlations of allele frequency differences........................................54
Results...............................................................................55
Polygenic Architecture..............................................................55
Orientation of loci association with diapause intensity and host race...............55
Association between diapause intensity and diapause termination.....................56
Clinal variation in diapause intensity and diapause termination.....................57
Relationship of diapause intensity and termination to host race differences.........58
Discussion............................................................................59
References...............................................................................85
Appendix
A. Chapter 1 Diapause intensity phenotypic data......................................94
IX


B. Chapter 1 supplemental methods...................................................97
C. Chapter 1 supplemental results..................................................102
D. DNA extraction protocol..........................................................106
E. Chapter 2 supplemental results..................................................107
x


List of Tables
1. Correlation coefficients of allele frequency difference comparisons (Chapter 1, Table 1)...........29
2. Correlation coefficients for allele frequency differences between diapause termination and host
race differentiation (Chapter 1, Table 2)..........................................................32
3. Correlation coefficients of diapause intensity vs. diapause termination (Chapter 2, table 1).......64
4. Correlation coefficients of diapause termination at Grant, MI vs. geography (Chapter 2, Table 2) ...............................................................................................65
5. Correlation coefficients of diapause termination at Urbana, IL vs. geography (Chapter 2, Table 3)
................................................................................................66
6. Correlation coefficients of diapause intensity vs. geography (Chapter 2, Table 4)...............67
7. Correlation coefficients of diapause termination vs. host race differences at Grant, MI (Chapter 2,
Table 5).........................................................................................68
8. Correlation coefficients of diapause termination vs. host race differentiation at Urbana, IL
(Chapter 2, Table 6)...........................................................................69
9. Correlation coefficients of diapause intensity vs. host race differentiation (Chapter 2, Table 7) ..70
xi


List of Figures
1. Conceptual figure of historical and contemporary selection and diapause phenotypes (Chapter 1,
Figure 1).........................................................................................33
2. Metabolic rate trajectories and diapause class frequencies (Chapter 1, Figure 2)..................35
3. Results of BSLMM and individual polygenic scores (Chapter 1, Figure 3)............................36
4. significant SNPs across the Rhagoletis pomonella genome (Chapter 1, Figure 4).....................37
5. Relationships between the strength of genetic associations in GBS experiments (Chapter 1, Figure
5)................................................................................................39
6. X-fold test results (Chapterl, Figure 6)..........................................................40
7. Overlap and clinal variation in alleles significantly association with diapause termination and
diapause intensity (Chapter 1, Figure 7)..........................................................42
8. Enrichment of loci significantly associated with diapause intensity (Chapter 2,Figure 1) 71
9. Enrichment of loci significantly associated with diapause termination at Urbana, IL (Chapter 2,
Figure 2)....................................................................................72
10. Enrichment of loci significantly associated with both diapause intensity and diapause termination
(Chapter2, Figure 3).........................................................................73
11. Enrichment of loci with allelic association in both diapause termination and host race at Grant,
MI (Chapter2, Figure 4).......................................................................74
12. Enrichment of loci with allelic association in both diapause termination and host race at Grant,
MI (Chapter2, Figure 5).......................................................................76
13. Relationship between diapause intensity and diapause termination (Chapter 2, Figure 6).....78
14. Relationship between diapause termination and geography (Chapter 2, Figure 7)................79
15. Relationship between diapause intensity and geography (Chapter 2, Figure 8)................81
Xll


16. Relationship between diapause phenotypes and host race differences at Grant, MI (Chapter2,
Figure 9).................................................................................82
17. Relationship between diapause termination and host race differences at Urbana, IL (Chapter 2,
Figure 10)................................................................................84
Xlll


I.
The genomics of multivariate trait combinations and their
INFLUENCE ON THE PREDICTABILITY OF EVOLUTION
Introduction
A common goal among evolutionary biologists is to evaluate the genetic basis of adaptation (Stinchcombe & Hoekstra, 2007; Futuyma, 2010). Developing a comprehensive understanding of adaptation requires knowledge of natural selection, the genotype-to-phenotype relationships for traits responding to selection, and standing genetic variation for those traits (Pfrender, 2012). The clearest descriptions of the genomic basis of adaptation have been made in systems where well defined, directional selection operates on traits controlled by a handful of loci of major effect (Etges et al, 2010; Via et al, 2012; Soria-Carrasco et al, 2014; Peichel & Marques, 2017; Chaturvedi et al., 2018). Often, these studies have confirmed a-priori expectations of the relationships among genotype, phenotype, and selection; genetic variation in a specific trait responding to selection closely mirrored genetic variation between populations responding to divergent selection. Classic examples include identification and characterization of the Ectodysplasin gene for lateral plate development in stickleback fish, theALXl haplotype associated with beak size in Darwin’s finches, the optix genes for wing color polymorphism in Heliconius butterflies, and the agouti gene for coat color in field mice (Steiner et al., 2007; Barrett et al, 2008, 2019; Reed etal., 2011; Lamichhaney etal., 2015).
As genomic techniques have become streamlined and financially accessible, more studies have explored the genetic basis of adaptation in quantitative and polygenic traits (Bradshaw et al, 2012; Egan et al, 2015; Brennan et al, 2018; Chaturvedi et al, 2018). Under polygenic models of adaptation, hundreds to thousands of genetic loci contribute to variation in a trait
1


under selection and, therefore, the effect of any single locus is expected to be small (Rockman, 2012; Boyle et al., 2017). The weak signal of any given variant is difficult to detect, and response to selection can appear as genome-wide shifts in allele frequencies or decreases in nucleotide diversity suggestive of soft selective sweeps (Hermisson & Pennings, 2005; Berg & Coop, 2014). The ability to identify causal variants and architectures of adaptation is strengthened when genome wide association (GWA) studies for traits putatively under selection are combined with genome scans for divergent loci between populations (e.g. Brennan et al. 2018). Just as with research on the genetic basis of adaptation on comparatively simpler traits described above, such approaches have often observed strong alignment between the loci underlying an adaptive, quantitative trait and loci contributing to population differentiation (Orsini et al., 2012; Via et al., 2012; Soria-Carrasco etal., 2014; Fountain etal., 2016; Brennan etal., 2018; Troth etal., 2018).
Despite this apparent meshing of genetic evidence, the direction of allele frequency change is not always concordant between laboratory GWA or quantitative trait locus (QTL) experiments and genome scans in natural populations. Here, the expectation is that an allele increasing the adaptive value of a trait that is under positive, directional selection should occur at higher frequencies in the natural population experiencing selection. While numerous studies have observed overlap in genetic loci responding in both laboratory selection and field experiments, the sign of allele frequency change between divergent populations in nature does not always match expectations derived from laboratory observations. For example, genetic differences in host performance of host-associated populations of Melissa blue butterflies Lycaedes melissa successfully predicted many of the loci differentiated between natural populations, but not always the sign of the allele frequency change at those loci (Chaturvedi et al., 2018). Studies on
2


Daphnia water fleas, pea aphids, and Glanville fritillary butterflies have observed similar incongruence between laboratory and field studies, albeit with varying degrees of predictability (Orsini et al., 2012; Via et al., 2012; Fountain et al., 2016). One explanation is that associated SNPs and the actual, causal variants have different phase/LD relationships in different populations (Linnen, 2018). A natural extension of this hypothesis is that genomic predictability should increase with the proportion of the genome that is sequenced, but whole genome sequence data from Timema stick insects did not reveal elevated levels of genomic predictability between different host associated populations (Soria-Carrasco el al., 2014).
Alternatively, a lack of genomic predictability may simply be the result of incomplete knowledge of the multivariate trait combinations responding to natural selection. Adaptation to novel environments can involve trait shifts along multiple ecological niche axes (i.e. multifarious selection), as is the case with Lake Victoria cichlid species which vary in diet, parasite load, and visual system (male color and female preference) with water depth (Seehausen et al., 2008; Seehausen, 2009). Moreover, any overlap in the genomic regions controlling different traits responding to selection could facilitate (or possibly constrain) adaptation through pleiotropy or linkage relationships (i.e. divergence hitchhiking; Via and West 2008; Feder et al. 2012). Several theoretical approaches predict that co-adapted allele complexes, when maintained by reduced recombination and/or migration, that underlie favorable trait combinations should promote adaptation and speciation (Navarro & Barton, 2003; Kirkpatrick & Barton, 2006; Feder & Nosil, 2009), though few studies provide rigorous empirical tests (but, see Coughlan and Willis n.d.; Ruegg et al. 2014; Ayala et al. 2018). Such tests are necessary to fully resolve the degree to which linked selection influences the predictability of evolution, and at least one study presents clear evidence for antagonistic pleiotropy mediating the predictability of evolutionary response
3


(Troth et al., 2018).
Additional studies provide clues about the origins of co-adapted gene complexes that may constrain adaptive evolution. Ample genetic variation is often maintained in populations when selection varies markedly over time and space (Machado et al., 2016; Pease et al., 2016; Doellman et al., 2018, 2019). However, predictable, spatial variation along environmental clines can cause specific allelic combinations across loci to experience intense directional (and correlational) selection locally, with the favored direction varying geographically (Bergland et al., 2016; Vines et al., 2016). Thus, selection will favor linkage disequilibrium among loci across environments (Navarro & Barton, 2003; Kirkpatrick & Barton, 2006), though the specific allelic combinations favored in a given environment may vary (Bierne et al., 2011; Butlin & Smadja, 2018). Past patterns of selection and evolution for trait combinations may therefore build up genetic covariance, thereby constraining the directions that future evolution can take (Schluter, 1996). Genomic approaches have seldom been used to test for genetic constraint, highlighting an apparent disconnect between the emergent field of population genomics and classical quantitative genetics (Seehausen et al., 2014).
In this study, we test whether historically adaptive LD relationships among loci associated with two important and related life history traits in the apple maggot fly, Rhagoletis pomonella, may explain a long-standing evolutionary paradox where misalignment between predictions based on allelic variation in laboratory GWA experiments and allelic variation in natural populations has been consistently and repeatedly demonstrated (Feder etal., 1993,
1997a; Michel etal., 2010; Ragland etal., 2017; Doellman etal., 2019). The A. pomonella complex is a group of closely related, North American fruit-feeding species, each uniquely adapted to a different fruit hosts despite shallow genetic differences (Feder et al., 1988). Host-
4


associated population, also termed host races, can evolve rapidly; genetically distinct, apple infesting populations formed approximately 200 years ago from ancestral hawthorn-infesting populations (Walsh, 1867; Bush, 1969). In addition to host preference (Linn etal., 2003, 2004), seasonal emergence time has rapidly evolved towards earlier seasonality in the apple host race to synchronize flies with the earlier fruiting time of apples relative to haws at sympatric sites (Feder et al., 1994; Doellman et al., 2019). Past studies, first using allozyme markers, then microsatellites, and genome-wide (RAD) genetic markers have all found loci strongly associated with adult emergence timing and with host race differentiation (Feder et al., 1993; Michel et al., 2010; Ragland etal., 2017). However, these studies also found that the direction of allelic variation in the recently derived apple host race was consistently opposite to the expected direction such that the earlier emerging apple host race harbored higher frequencies of alleles associated with late emergence.
Here, we test the hypothesis that historical and current selection on an additional trait related to seasonal adaptation to fruit hosts may explain this counterintuitive relationship between genetic variation for emergence timing and host race divergence in R. pomonella (Fig. 1 A). Adult emergence timing is determined by the timing of the termination of pupal diapause, a state of developmental arrest in which the insects overwinter (Fig. 1 B). We hypothesize that selection for a trait we term diapause intensity is ‘dragging along’ maladaptive variation in diapause termination timing through pleiotropy, linkage disequilibrium, or a combination of the two. We define diapause intensity as the recalcitrance to pre-winter cues that initiate premature diapause termination (Fig. 1 C) (Dambroski & Feder, 2007; Lehmann et al., 2016). As a fallbreeding species, mean emergence time of geographic populations of R. pomonella increases with decreasing latitude to track later fruiting times of their fall-fruiting host plants (Fig. 1 A)
5


(Feder & Bush, 1989; Dambroski & Feder, 2007). Geographically variable selection also favors a more intense diapause with decreasing latitude, presumably in response to generally warmer conditions in the late fall and early winter that could lead to premature diapause termination (Fig. 1 A) (Dambroski & Feder, 2007). Thus, historic, correlational selection along geographic clines in ancestral, hawthorn-infesting populations has favored combinations of late diapause termination timing and more intense diapause in the south and early diapause termination timing and less intense diapause in the north (Fig. 1 A). In contrast, selection on apple-infesting compared to hawthorn-infesting races at a given, sympatric site favors relatively earlier diapause termination timing and more intense diapause in apple flies in response to earlier fruiting apple trees that also leads to warmer, longer prewinter periods (Feder et al., 1997b; Egan el al., 2015; Ragland et al., 2017). Host-associated selection is therefore acting to favor trait combinations that have been historically disfavored by geographically variable selection in the ancestral host race (Fig. 1 A). We hypothesize that this historical, geographically variable selection has favored either 1) increased linkage disequilibrium (LD) between loci influencing the two diapause traits wherein alleles associated with late diapause termination timing and more intense diapause are in phase, or 2) alleles at loci that pleiotropically affect both traits such that an allele increasing emergence timing also increases diapause intensity. If either of these hypotheses are true, then selection on diapause intensity in the apple host race may be driving the observed, counterintuitive increase in alleles associated with late emergence (diapause termination).
In this study, we combine new data on genotype-to-phenotype relationships for diapause intensity with published data on genotype-to-phenotype relationships for diapause termination, population genetic variation among host races and across geography, and genetic responses to laboratory selection that mimics field seasonality. We asked four questions related to the above
6


hypotheses about the influence of pleiotropy and/or LD on observed genetic differences between the R. pomonella host races: i) Is there is segregating genetic variation for diapause intensity in an ancestral, hawthorn-infesting population? ii) Do genetic variants associated with diapause intensity also associate with host race divergence? iii) Do genetic variants associated with diapause intensity also associate with diapause termination? iv) Do genetic variants associated with diapause intensity also vary clinaly across geography, and respond to laboratory selection on seasonality?
Methods & materials
Fly collection and rearing
Unless otherwise noted, standardized collection and rearing methods were used for the current study and to generate all other, previously published data included in the analyses (Egan et al., 2015). Flies were collected as larvae in infested fruits gathered from the field and reared to pupariation at 21°C with a 14:10 light:dark cycle. Infested fruit were held over wire mesh racks on top of plastic collecting trays which were checked for pupae a minimum of 3 times per week. For emergence timing and diapause intensity phenotyping, we cleared trays in the early evening and only used flies in the experiment that exited from fruit and formed puparia in the intervening period from early evening to the next morning to synchronize development. Only flies that had been in the laboratory for at least 10 days were used in the experiment to standardize larval environmental rearing conditions. Collected pupae were placed in petri dishes with moist vermiculite, then transferred to the desired experimental conditions. Unless otherwise noted, overwintering treatments for all experiments were conducted at 4°C and constant darkness.
7


Genotyping-by-sequencing
Single Nucleotide Polymorphism (SNP) genotypes for the current study and for all other, previously published data included in the analyses were generated using a common genotyping-by-sequencing (GBS) approach. Generation of individually barcoded double digest restriction amplified DNA (ddRAD) libraries, de novo genome assembly of contigs, variant SNP calling, and allele frequency estimation were performed following Egan et al. (2015). Sequencing was performed on Illumina HiSeq platforms. Custom scripts and the Genome Analysis Toolkit (GATK version 2.5-2; McKenna et al. 2010) were used to estimate the genotype probabilities used as input for the analyses described below, which account for genotype uncertainty.
Previously published GBS studies Geographic survey
GBS data comparing sympatric host races at multiple geographic sites from Doellman et al. (2018) were used to investigate how loci associated with diapause traits vary across geographic gradients in seasonality. In Doellman et al. (2018) adult flies from both host races were reared from field collected fruits gathered at sympatric sites in Grant, MI (lat., long. = 43.35 N, -85.9 W), Fennville, MI (42.6 N, -86.15 W), Dowagiac, MI (41.88 N,
-86.23 W), and Urbana, IL (40.08 N, -88.19 W). These sites roughly follow a north - south cline in the Midwestern United States. Larvae that emerged from fruit and pupated were overwintered and reared to adulthood following the methods of Egan et al. (2015).
Diapause termination GWAS
GBS data used to associate SNP genotypes with diapause termination (emergence time) phenotypes are from Ragland et al. (2017) and the details of experimental design can be found there. Briefly, adult flies belonging to both host races sampled from Fenneville, MI were reared
8


from field collected pupae as described above, overwintered for 16 weeks, then held at 21°C,
14:10 L:D until adult eclosion. The earliest and latest eclosing flies in each host race were sequenced in a bulked segregant design, wherein the strength of genetic association with eclosion time was determined by the magnitude of allele frequency differences between the bulks (Michelmore eta/., 1991; Pool, 2016). SNP frequency differences between early and late eclosion flies were highly correlated between the host races (r = 0.54, p < 0.0001 for all 10,241 SNPs genotyped; r = 0.66, p < 0.0001 for 4244 of these SNPs mapped to chromosomes 1-5). Therefore, we report results using averaged SNPs between the host races to estimate the mean allele frequency differences between eclosion bulks.
Pre-winter selection experiments
GBS data from pre-winter selection experiments in the hawthorn and apple host races from Egan et al. (2015) and Doellman et al. (2018), respectively, were used to test whether loci associated with diapause phenotypes also responded to laboratory selection. Both studies genetically compared flies surviving different pre-winter treatments in the lab. Briefly, apple and haw race pupae were reared from field-collected, infested fruit in Grant, MI and exposed to either a short (7-day) or long (32-day) pre-winter warming treatment (26°C, 15:9 L:D) starting on the day of pupariation. These treatments mimic conditions more typically experienced by hawthorn flies (short pre-winter) and apple flies (long pre-winter) in the field. Following the prewinter treatment, pupae were overwintered for 30 weeks, then held at 21°C, 14:10 L:D until eclosion. Random samples of successfully emerging flies from each treatment were sequenced.
Diapause intensity phenotyping
We used two methods in the experiments described in more detail below to assign a diapause intensity ‘class’ to an individual fly. The first is based on emergence patterns when
9


pupae are exposed to warm temperatures without chilling, as established in Dambroski and Feder (2007). Briefly, this approach is based on an observed, bi-modal distribution of emergence timing, with the early and late emergence timing modes corresponding to non-diapause (ND) and shallow-diapause (SD) phenotypes, respectively, while individuals not emerging are classified as diapause (DIA) phenotypes (This DIA phenotype has previously been referred to as chill-dependent [CD] in R. pomonella (Dambroski & Feder, 2007)). The second method is based on metabolic rate measured via stop-flow respirometry, which serve as a biomarker for diapause status (Ragland et al., 2009). Briefly, individual pupae were sealed with 3ml CCh-free air in syringes, and after 24 hours the full 3ml was injected into a Sable System (Las Vegas, Nevada) flow-through respirometry system including a LI-COR (Lincoln, NE) LI 7000 CO2 sensor. Standard bolus integration calculations accounting for CO2 levels in empty, control syringes were performed to estimate metabolic rate in units pi CCkfmg/h)"1, Sets of pupae were sealed and measured in blocks of 30 syringes (plus 4 controls). Replicate measures were taken over a time series (details of sampling intervals below) to characterize trajectories that fit the three discrete shapes depicted in Fig. 2. Most trajectories (~ 85 - 95%; Appendix A) could clearly be assigned to one of the three shapes/phenotypes; we discarded data from individuals with ambiguous trajectories.
Host race comparison study
Pupae sampled in 2008 from apple and hawthorn fruits collected from Grant, MI were phenotyped using the metabolic rate method to compare the proportion of diapause intensity phenotypes between host races. The experiment was originally designed to provide a host race comparison and adequate sample sizes for a genetic association study in the haw host race; thus, we measured three times more pupae in the haw relative to apple population. However, pupae
10


were overwintered following measurements, and mortality during winter limited sample sizes, particularly for the rarest phenotype (shallow diapause). Here, data from this experiment were used solely to compare phenotypic proportions among host races. We measured 3 blocks of 30 apple population pupae (90 total), and 9 blocks of 30 haw population pupae (270 total) twice weekly from 5 to 33 days post-pupariation. After accounting for mortality (some caused by handling), ambiguous trajectories, and parasitism, total sample sizes were 72 and 217 for apple and haw, respectively (Appendix A).
Genetic association study
Pupae collected in 2009 from hawthorn fruits at Grant, MI were phenotyped for diapause intensity as part of a genetic association study carried out in the hawthorn host race. To ensure adequate sample sizes for the rarer phenotypes, two parallel experiments were performed, one based on metabolic phenotyping using stop-flow respirometry conducted at the University of Florida, and one based on eclosion conducted at the University of Notre Dame, (hereafter the UF-MET and ND-ECL experiments). In the UF-MET experiment we used stop-flow respirometry to quantify metabolic rate of 450 pupae (15 blocks of 30 pupae), measuring each pupa once per week from 5 to 75 days post pupariation, or until fly emergence. We assessed unemerged pupae for parasitism, then froze all samples including the emerged flies. After accounting for mortality (n=64), parasitism (n=161; parasitism rate was relatively high for this population in 2009), and ambiguous metabolic rate trajectories (n=5), we retained phenotypes for 197 total pupae or emerged flies (Appendix A, Fig. 2).
In the ND-ECL experiment, freshly pupariated pupae were held in moist vermiculite in petri dishes at 24°C and were observed three times per week for emerging flies (frozen on the day of emergence), from day 5 to day 90 post-pupariation. The frequency distribution of
11


emergence times was then used to determine the diapause intensity phenotype (ND, SD, or DIA). Non-diapause flies typically emerge at about 30 days post pupariation (Dambroski & Feder,
2007; Ragland etal., 2009), and the frequency distribution of emergence times showed a clear peak at around 30 days, followed by a pronounced drop-off and a broad, second mode (Appendix A) similar to that observed by Dambroski and Feder (2007). To minimize errors in classification for the genetic association study, we only sampled ND phenotypes emerging at or earlier than 31 days, and shallow-diapause phenotypes emerging at or later than 50 days. At day 90, remaining pupae were frozen, then later the top of the puparium was removed to identify parasitoids. Fly pupae showing no visual markers of development were considered to be in diapause (Ragland et al., 2009).
Genotyping diapause intensity phenotypes
Genotyping of phenotyped flies was carried out following the GBS approach described above. Total genotyped sample sizes were n = 64 for each diapause class phenotyped in this study (ND, SD, DIA). Of these individuals, 37 ND flies, 31 SD flies, and 37 DIA flies were metabolically phenotyped in the UF-MET experiment and the rest were phenotyped based on emergence timing as scored in the ND-ECL study. Sequencing was performed at the Beijing Genomics Institute Americas on the Illumina HiSeq 2000 platform (2 full lanes), generating > 317 million 100 bp reads. Following data processing, we identified a common set of 7,265 variable SNPs passing quality filters that were also present in the previously published data sets on geographic variation, GWA for diapause termination, and response to laboratory selection (Egan et al. 2015; Ragland et al. 2017; Doellman et al. 2018a, b). Quality filters included: 1) a minimum of 400x total coverage depth (across all samples), Minimum Alternate Allele (MAF) frequency > 0.05, Phred-scaled Genotype Quality (GQ) score > 2, and a non-significant test for
12


deviations from equal representation of alleles in heterozygotes (Egan et al., 2015).
The analyses presented below were performed on these 7,265 SNPs, 3,175 of which have been mapped to the five major chromosomes of the R pomonella genome (Egan et al., 2015; Ragland et al., 2017). Genotypes were polarized such that the reference allele was the allele most common in the hawthorn-associated population at Grant, MI.
Data analysis
Linkage disequilibrium and inversion polymorphism
Rhagoletispomonella has a highly structured genome that complicates genetic analysis.
In particular, previous studies present evidence for inversion polymorphism on all of the five major chromosomes of the R. pomonella genome that produce distinct blocks of loci in high linkage disequilibrium (LD) with each other (Feder et al., 2003c; Michel et al., 2010; Egan et al., 2015; Ragland etal., 2017). In addition to the locus-by-locus analyses described below, we also separately analyzed three different classes of linked SNPs on each chromosome categorized as displaying high (r2 > 0.6 with one another), intermediate (0.15 < r2 < 0.6), or low (r2 < 0.15 with all other SNPs) levels of composite LD identified in Ragland et al. (2017). Chromosomes 1, 3, 4, and 5 each have a single high LD group of loci, while chromosome 2 contains eight distinct LD clusters.
Genetic architecture of diapause intensity
To determine what proportion of the phenotypic variation in diapause intensity is explained by heritable genetic variation, and how much of that genetic variation is accounted for by loci of major effect, we estimated a Bayesian Sparse Linear Mixed Model (BSLMM) as implemented in the GEMMA program (Zhou et al., 2013). The BSLMM consists of the following equation:
13


y = pL + Xfi + u+ e
where y is the vector of phenotypic measurements, p is a vector of random effects modeling the infinitesimal effects of each locus, X is ap x n matrix of mean genotypes (p loci, n individuals), P is the vector of ‘measurable’ effect sizes for each locus in X, u models random, infinitesimal effects, and e is the error term (more details in Appendix B). Bayesian model fitting allows the estimation of hyperparameters including the Proportion of the Variance in the phenotype Explained by the genotype (PVE) and the Proportion of the Genetic Variance explained by the ‘measurable’ effects (PGE). Because the diapause classes that were phenotyped in this study were categorical, we initially ran the BSLMM on pairwise comparisons of diapause classes, SD vs. DIA, SD vs. ND, and DIA vs. ND (phenotype equals one or zero) to determine how much variation between phenotypes is attributable to genetic variation. We subsequently modeled the variation among pools of phenotypes based on the initial results (see Results section below). Mean allele frequency for geographic cline analysis
Diapause intensity and diapause termination are both traits that respond to seasonal selection pressures. Given that seasonality also shifts with latitude, we also expected to see changes in allele frequencies across the 4 sympatric sites examined in this study. To measure geographic shifts in allele frequencies, we calculated the mean allele frequencies across loci that were significantly associated with either diapause intensity or diapause termination for each host race at all sympatric sites similar to Doellman et al. (2019; see Appendix B for more details). Tests for allele frequency differences
The magnitude of allele frequency differences among groups of genotypes is proportional to the strength of genetic association (comparison among phenotype bulks) or population differentiation (comparison between random population samples). We estimated allele frequency
14


differences between groups from genotype probabilities following methods described in Egan et al. (2015), including a non-parametric, permutation-based analysis testing whether allele frequency differences were greater (absolute value) than expected by chance (nominal alpha =
0.05; Appendix B). Briefly, point estimates of allele frequency differences between two groups were compared to a null distribution generated by randomly assigning group membership of each individual, thus preserving LD relationships among loci. We used a similar permutation approach to test whether the number of SNPs with nominally significant allele frequency differences on a chromosome or in a particular LD cluster was greater than expected by chance alone (Ragland et al. 2017; Appendix B)
Correlations of allele frequency differences
We estimated correlation relationships between various allele frequency difference estimates to assess whether loci associated with a trait (diapause termination or initiation) also tended to associate with another trait, differed between host races, across geography, or pre- and post-laboratory selection. These analyses underlie the triangulation approach of combining evidence for the role of sets of loci in the process of adaptation and host race differentiation, and include all combinations detailed in table I. We used a permutation approach similar to above, comparing the point estimate of Spearman’s rank correlation against a null distribution of permuted whole fly genotypes (Doellman et al. 2018; Appendix B).
X-fold tests of parallel allelic variation between GWAS
If sets of loci are strongly differentiated in two comparisons but at relatively uniform magnitudes (e.g., associated with diapause termination and initiation), the above correlation analysis may fail to detect a relationship. To account for this, we also implemented the X-fold test as described in Chaturvedi et al. (2018; Appendix B). This approach tests whether more loci
15


than chance expectations exhibit the same or opposite sign allele frequency differences for two comparisons (here, differences between eclosion bulks and differences between diapause intensity classes), using permuted whole fly genotypes to generate the null distribution. Significant values falling in the lower/upper 2.5/97.5% quantiles of the null distribution suggest that loci within the set tend to be associated with, in this case, both diapause traits (termination and intensity).
Results
Diapause intensity differs between host races
Three discreet diapause intensity phenotypes were apparent from metabolic rate trajectories and differed in frequency between the apple and haw host races collected from Grant, MI (Fig. 2). As observed in Ragland et al. (2009), diapausing pupae (DIA) display a rapid decrease in metabolic rate post-pupariation down to a stable baseline (Fig. 2a,b, green dashed lines), whereas non-diapause pupae (ND) never drop to the low diapause baselines, and eventually increase in metabolic rate as pharate adult development progresses (Fig. 2a,b, orange solid lines). We also found a third, shallow diapausing (SD) class that drops to the low, diapause baseline, apparently initiating diapause, then increases metabolic rate in a pattern consistent with diapause termination (Fig. 2a,b, blue dashed lines). This latter, shallow diapause phenotype occurs at a markedly, and significantly higher proportion in the apple compared to the haw host race at Grant, MI (Fig. 2 c.; x1 = 47.85, df = 2,p< 0.0001).
16


Strong genetic associations with the shallow diapause intensity phenotype
Phenotypic classes for metabolically phenotyped pupae were assigned as above (Appendix B) and combined with flies phenotyped based on emergence patterns as described in the methods.
Comparing the genetic variance explained (PVE) by BSLMMs contrasting all pairwise combinations of the DIA, SD, and ND phenotypes suggested that the SD phenotype was the most genetically distinct, while DIA and ND were genetically most similar. The 95% credible interval for estimates of percent variance in the phenotype explained by variation in all SNPs (PVE) for the SD vs. DIA and SD vs. ND comparisons was 0.53 - 0.99, centered on 0.87, and
0.57 - 0.99, centered on 0.88, respectively. In contrast, the 95% credible interval for estimates of PVE in the DIA vs. ND comparison was 0.005 - 0.85, centered on 0.24 (Fig. 3a).
Estimating the distribution of polygenic scores, the mean proportion of an individual fly’s genome that contains the allele more common in flies expressing the SD phenotype (Egan et al. 2015), also supported the SD phenotype as genetically distinct from DIA and ND phenotypes. Only loci that had a posterior inclusion probability (PIP) above 0.01% in at least one of the three pairwise comparison BSLMMs were used to calculate the polygenic scores, whose distributions for each phenotype are illustrated in Fig. 3b. Consistent with the results of the pairwise BSLMM models described above, the distribution of polygenic scores for the SD phenotype was shifted towards higher values, while distributions for the DIA and ND phenotypes were largely overlapping.
Both of the above analyses supported SD as a genetically distinct phenotype compared to a relatively genetically homogeneous group of DIA and ND phenotypes. Furthermore, as stated
17


above, the proportion of the SD phenotype clearly differs between the host races (Fig. 2a,b). Thus, all subsequent analyses of genetic associations compared SD to a combined group of ND and DIA phenotypes (DIA+ND).
Chromosomal distribution of diapause intensity-associated loci
Significant allele frequency differences between the SD and DIA+ND groups were largely confined to chromosomes 2, 3, and 5, with a substantial portion of that variation falling within high LD regions (Fig. 4a). But, a significant excess of SNPs associated with diapause intensity was localized on chromosomes 2, 3, and 5, in high, intermediate, and low LD regions. Chromosomes 1 and 4 had comparably little variation associated with diapause intensity (Fig. 4 a).
Ragland et al. (2017) reported an excess of SNPs associated with diapause termination on chromosomes 1, 2 and 3. These SNPs were also largely located within high LD regions (Fig. 4b). Thus, loci on chromosomes 2 and 3 were associated with both diapause intensity and diapause termination (particularly in the high LD regions), whereas loci on chromosome 1 were associated with diapause termination, but not with diapause intensity.
Host Race Divergence for Diapause-associated loci
Loci associated with diapause intensity also tended to be divergent between sympatric host races at Grant, MI, though in a chromosome-dependent manner. These host race versus diapause intensity analyses used data from Grant, MI because diapause intensity was phenotyped for the haw population at this location (see methods). Allele frequency differences between the SD and DIA+ND diapause classes were significantly positively associated with host race differences (Table ID). Here, a positive relationship indicates an association between the SD
18


phenotype and the apple host race (and DIA+ND and haw host race; Fig. 5a-c). The variation underlying this relationship was largely confined to chromosomes 1-3 (Fig. 5a-c; Appendix C for chromosomes 4 and 5). For each of those chromosomes, only the intermediate LD groups exhibited a significant relationship between diapause intensity and host race (Table 1 D). In contrast, the results of Ragland et al. (2017) suggest a negative correlation between associations with diapause termination and with host race (Table II). This relationship also varied across chromosomes, with the strongest relationships between phenotypic- and host-associations present on chromosomes 1 and 3 (Table II).
Genetic associations between diapause intensity and diapause termination
Genetic variation associated with diapause intensity was significantly and negatively related to the pattern of genetic variation in diapause termination across all 7,265 SNPs examined in this study (Table I A). Here a negative relationship indicates an association between SD and late diapause termination timing (and an association between CD+ND and early eclosion). The overall relationship across all loci was primarily driven by variation in loci located on chromosomes 2 and 3 in high (chromosome 2) and intermediate (chromosomes 2 and 3) LD groups (Fig. 5e,f; Table I A). X-fold enrichment tests also supported an excess of loci associated with both phenotypes on chromosomes 1, 2, 3, and 5, though primarily for loci located in high and intermediate LD groups (Fig. 6). Though the X-fold test suggests that loci associated with diapause intensity also tend to be associated with diapause termination on chromosome 1, there are many more loci on chromosome 1 associated with diapause termination (444) compared to just a few associated with diapause intensity (15; Fig. 7).
19


Clinal variation for diapause associated loci
Frequencies of alleles significantly associated with diapause intensity (SD vs DIA+ND) on chromosome 1 did not change appreciably with geography (Fig. 7), while those on chromosomes 2 and 3 decreased with increasing latitude for both haw and apple races (Fig. 7). Note that alleles were polarized such that the reference was whichever allele was most common in the hawthorn race at Grant, MF Thus, frequencies of the SD-associated alleles generally declined with increasing latitude. Allele frequencies for loci on chromosomes 1-3 significantly associated with diapause termination also changed with geography, with the frequency of the allele associated with late eclosion generally decreasing with increasing latitude. Clines were not completely linear, with notable ‘bumps’ of increased allele frequency at the Fennville, MI site. Moreover, clines were not identical in both host races. In particular, clines tended to converge with increasing latitude (termination-associated loci on chromosome 1 and 3, and intensity-associated loci on chromosome 3) such that differences between host races were most pronounced at Urbana, IL, the lowest latitude site (see below).
The clinal variation in allele frequencies is further supported by the significant negative relationship between diapause intensity and geographic differences within host races between the Grant, MI and Urbana, IL sympatric sites (Table IE, F). Here a negative relationship indicates an association between SD and the southern sympatric site Urbana, IL and DIA and ND with the norther sympatric site Grant, MI. For both host races, loci on chromosomes 2, 3, and 5 exhibited the strongest relationships between diapause intensity and geography (Table IE, F).
Selection response of diapause-associated loci
Allele frequency differences between the SD and DIA+ND diapause classes were significantly positively related to the differences between the 7-day and 32-day treatments in the
20


hawthorn fly pre-winter selection experiment (Fig. 5h-j, table IB, D), but significantly negatively related to allele frequency differences in the apple selection experiment (Fig. 5k-m, Table I). Here, a negative relationship indicates an association between the SD phenotype and the 32-day prewinter treatment (and an association between the DIA+ND phenotype and the 7 day treatment), while a positive relationship indicates the reverse. For both experiments, loci on chromosome 2 largely drove the significant correlation (Fig. 5 g-m, Table 1), and to a lesser extent, loci on chromosome 3 (Fig. 5 g-m). As with the relationship between diapause intensity and diapause termination, loci in high and intermediate LD groups were most strongly associated with both diapause intensity and the response to selection (Table 1).
Discussion
Evidence for historic, clinal selection and antagonistic pleiotropy in Rhagoletis pomonella
Our results support the hypothesis that correlated selection on diapause intensity in R. pomonella partially explains why frequencies of alleles associated with diapause termination (emergence) timing vary between host races in a direction opposite to that predicted based on observed phenotypic differences between the host races. Below, we combine inferences related to the four main questions posed in the introduction to discuss the different levels of support for this hypothesis.
First, our results confirm that, in addition to previously described variation in diapause termination, there is segregating variation for diapause intensity. Results from the BSLMM model suggested the existence of genetic variance underlying the trait but did not support measurable contributions of loci of major effect, a result consistent with polygenic genetic architecture. Locus-by-locus tests suggested that genetic variants associated with diapause
21


intensity were distributed across previously identified linkage groups and across 3 of the 5 R. pomonella chromosomes (Ragland eta/., 2017). We found a significant excess of SNPs associated with diapause intensity localizing in high and intermediate LD regions on Chromosomes 2, 3, and 5.
Second, diapause intensity phenotypes varied between the host races (Fig. 2), as did the frequencies of alleles at loci associated with diapause intensity. Genome-wide, host race differences for all 7,256 SNPs were correlated with the strength of the association with the phenotype. Moreover, the SD phenotype as well as alleles associated with the SD phenotype occurred at higher frequencies in the apple host race. Correlations between diapause intensity and host race differences were particularly strong on the intermediate LD regions on chromosomes 2 and 3, which also harbored excesses of diapause intensity-associated loci.
Third, loci associated with diapause intensity also tended to be associated with diapause termination, suggesting either pleiotropy or strong LD among the genetic elements controlling these traits. We found significant relationships between genetic variation in diapause intensity and diapause termination across all SNP loci. The strength of this relationship appears to be largely caused by the overlap and colocalization of genetic variants associated with these diapause traits in the high and intermediate regions on chromosomes 2 and 3. These strong correlations and high x-fold values suggest that diapause intensity and diapause termination are not genetically independent. These results contradict previous findings suggesting that diapause intensity and diapause termination are genetically modular (Ragland et al. 2017). However, the previous study used survival in a pre-winter selection experiment on the hawthorn population as a proxy for diapause intensity, while we directly measured the diapause phenotype, both physiologically and genetically. In comparison to the high concentration of allelic variation in
22


specific genomic regions that we observed between diapause classes, the hawthorn pre-winter selection experiment primarily influenced low LD variants across all five chromosomes and did not have any significant excess of SNPs in high LD regions (Egan et al., 2015; Ragland et al., 2017).
Fourth, allele frequencies at loci associated with diapause intensity and termination varied with latitude in directions consistent with geographically variable, correlational selection. Based on phenotypic variation for both traits across geography (Feder et al., 1994; Dambroski & Feder, 2007), we hypothesized that alleles associated with more intense diapause and later diapause termination would be favored in the south, with the alternative alleles conferring less intense diapause and earlier diapause termination in the north. Our genetic results largely follow this prediction, with mean frequencies of alleles associated with the SD and late termination (emergence time) phenotypes decreasing with increasing latitude, including loci on chromosomes 2 and 3 that associate with both phenotypes (Fig. 7, Table IE, F). This observation is further buttressed by the significant associations between geographic variation and diapause intensity on chromosomes 2, 3, and 5 for both host races (Table IE, F).
These results contradict previous findings that diapause intensity and diapause termination are genetically modular (Ragland et al., 2017). However, the prior study used survival in a pre-winter selection experiment on the hawthorn host race as a proxy for diapause intensity, while we directly measured the diapause phenotype, both physiologically and genetically. Genetic variation in diapause intensity was still associated with the results of prewinter laboratory selection experiments, as allele frequencies change at loci associated with diapause intensity when both apple and haw races are exposed to long pre-wintering treatments in the lab (Fig. 5, Table IB, C). The results of the two selection experiments are not concordant,
23


however, with the sign of the correlation with diapause intensity differing between host races exposed to the selection experiment. Specifically, SD alleles appear to be favored in apple flies treated with long, 32-day pre-winters, whereas they appear disadvantaged in haw flies exposed to the same conditions. A potential explanation is the SD phenotype is rare in hawthorn-infesting populations, as evidenced by only 9 of 207 individuals phenotyped in this study exhibiting shallow diapause. Thus, there may have been very little variation in diapause intensity to select upon in the pre-winter selection experiment on the hawthorn race. By contrast, the SD phenotype is much more common in the apple race, and the SD-associated alleles are clearly more favored in the long 32 day, long pre-winter treatment (Fig. Fig. 5 K-M; negative relationship suggests associations between SD-like alleles and the 32 day treatment).
At sympatric sites natural selection appears to favor a more intense diapause and later diapause termination in apple compared to hawthorn-associated populations. From this perspective, the observed pleiotropy and/or linkage relationships on chromosomes 2 and 3 are antagonistic to the direction of selection on the apple host race (Fig 1 A). Thus, selection imposed by infesting apple vs. hawthorn fruit would be expected to either break up phenotypic correlations favored by selection across geography, or to select for alleles that confer a more suitable phenotype for one trait, but a maladaptive phenotype for the other. Evidence for maladaptive variation in diapause termination has been documented in previous studies (Feder et al., 1993; Michel eta/., 2010; Ragland eta/., 2017), and the current study shows that loci on chromosomes 2 and 3 that associate with both phenotypes exhibit higher frequencies of alleles that associate with the SD phenotype and later diapause termination in apple-infesting populations. Based on the observed geographic patterns (Fig. 7, Table IE, F), we would expect SD-associated allele to be selected for in the apple host race, though the phenotype itself is
24


somewhat surprising (see additional discussion below). Thus, selection for SD-associated alleles in apple could explain higher frequencies of apparently maladaptive variation associated with later diapause termination.
In contrast, loci on chromosome 1 appear to associate with diapause termination and not with diapause intensity, and the patterns of genetic variation at these loci are consistent with an adaptive response to selection for diapause termination that does not affect diapause intensity. Phenotypic evidence clearly shows that apple-associated populations have managed to evolve earlier diapause termination (Feder etal., 1994), and the effects of non-pleiotropic (or non-linked) loci such as those on chromosome 1 may overwhelm the maladaptive effects of pleiotropic/linked loci on chromosomes 2 and 3, assuming an additive model. However, loci on chromosome 1 cannot universally account for earlier diapause termination in apple flies, as the mean frequencies of the early-associated allele are only at a higher frequency in apple flies at 2 of the 4 geographic sites (clines in mean allele frequency cross in Fig. 7). The RAD loci in this study represent only a portion of the genome and are likely biased to detect associations in higher LD regions (Lowry et al., 2017). Thus, unidentified loci in more collinear regions of the genome may play an important role.
Laboratory measures ofphenotypes versus field selection
There is often some uncertainty in the relationship between a phenotype that we can measure in the lab versus phenotypes that are expressed and experience selection in the field (Orsini et al., 2012; Soria-Carrasco et al., 2014; Chaturvedi et al., 2018; Barrett et al., 2019). Here, the SD diapause intensity phenotype would appear to be maladaptive, as premature diapause termination prior to winter leads to zero fitness (Feder et al., 1997a). However, SD-associated alleles reduced the probability of an ND phenotype (strong genetic associations
25


distinguishing these two phenotypes; Fig. 3), which is clearly maladaptive under warm prewinter conditions. In the field, conditions become progressively cooler during the fall when diapause is initiated, and thus the SD phenotype as we have measured in the lab (under constant warm temperatures) may rarely be expressed in nature. The clinal data also suggest that the SD phenotype is favored under warmer, more southern conditions. Further studies monitoring development in the field will be necessary to better understand the true targets of natural selection.
Antagonistic pleiotropy and genomic divergence
Why does the directionality of allele frequency differences between ecologically divergent populations often fail to follow predictions? There are many possibilities, including 1) selection acts on highly polygenic traits wherein many genetic combinations can produce similar phenotypes (Yeaman, 2015; Boyle eta/., 2017), 2) epistatic effects, e.g., where single-locus effects depend on the genetic background (Chandler eta/., 2014; Taylor & Ehrenreich, 2015), or 3) changing LD relationships between marker and target loci (Butlin & Smadja, 2018). Our data suggest that antagonistic pleiotropy and multivariate selection may also play a role.
Though there is not enough empirical evidence to quantify the relative importance of antagonistic pleiotropy versus these other explanations to the lack of harmony between field and laboratory studies, there are other empirical examples that suggest a role for antagonistic pleiotropy in shaping genomic divergence and producing initially confusing patterns. For example, an experiment in natural populations of the monkeyflower, Mimulus gattutus, initially suggested a counterintuitive, negative relationship between flower size (a proxy for seed set and fitness) and viability (Mojica and Kelly 2010). Later work found that substantial pleiotropy exists for genes controlling flower size and development rate and that strong viability selection in
26


the form of summer drought onset led to fast development times at the expense of producing smaller, less fecund flowers (Mojica et al. 2012; Troth et al. 2018). Furthermore, seasonal variation in drought onset can lead to large fluctuations in the relative fitness benefits of fast developing, small flower phenotypes, and slow developing, large flower phenotypes (Troth et al. 2018). This example illustrates how antagonistic relationships among genetic loci controlling multiple traits can severely limit the ability to predict evolutionary response when only one trait is studied. It also shows how specific types of selection, temporally variable selection in this case, can shape the extant standing variation within a population that is available to respond to future selection pressures.
As is the case for many studies based on genetic association approaches, we cannot definitively distinguish between the pleiotropic action of a single allele and tight LD between that allele and an allele at another locus in R. pomonella. Given that both traits are related to diapause regulation, pleiotropic effects of genes acting through highly pleotropic developmental pathways such as insulin (Sim & Denlinger, 2013) and wnt (Wodarz & Nusse, 1998; Meyers et al., 2016) signaling are plausible. However, R. pomonella also has a highly structured genome with blocks of very high LD that may be associated with chromosomal inversions (Feder et al., 2003c; Ragland etal., 2017). Most of the genetic variation that appeared pleiotropic occurred in high to intermediate LD regions (Fig. 6), and past studies have suggested that ancestral inversions from disjunct populations in Mexico have spread north via the same geographically variable selection that favors more intense diapause and later diapause termination in the south (Feder et al., 2003a, 2005). Further work to identify physical locations of inversion breakpoints is ongoing, and should provide more explicit tests for the role of LD in building up and breaking phenotypic correlations in R pomonella.
27


In general, the results of the current study provide a snapshot of how natural selection may produce multivariate trait responses that do not align with existing (but incomplete) genetic correlations. We have not directly measured genetic correlations as they are typically defined in quantitative genetics, or QG (Lande & Arnold, 1983), but the molecular evidence does support a partial (incomplete) correlation driven largely by loci on chromosomes 2 and 3 (Fig. 6, point_plot) The QG theory and empirical data illustrating the breakdown of genetic correlations is well established (Futuyma, 2010). Here, we provide some insight into how individual loci may contribute to this process for traits that appear to fit a polygenic model.
Summary
In this study, we have provided strong evidence that the consistently-recorded, paradoxical pattern of the apple host race harboring increased levels of late diapause termination timing alleles is a result of linked selection for diapause intensity. In doing, we have also advanced our understanding of the process of adaptation to novel fruit hosts within the R. pomonella species complex. Geographic clinal variation in genetic loci associated with diapause intensity and diapause termination supports the hypothesis that historic, geographic selection in the ancestral hawthorn race has favored trait combinations and shaped genetic variation that is antagonistic to the direction of selection during formation of the apple race. These findings suggest that incomplete knowledge on the multivariate trait combinations responding to selection can sometimes limit the ability to accurately predict evolution. Future work will need to carefully quantify the contribution of antagonistic pleiotropy (or linked selection) to estimates of genomic predictability and evaluate what genetic mechanisms within R. pomonella have allowed it to evolve around this apparent genetic constraint.
28


Tables
Table I. Correlation coefficients (r) of SNP allele frequency differences between the SD compared To DIA and ND classes in the respirometry experiment versus the genetic responses in the eclosion time GWAS (late-early), and hawthorn and apple prewinter selection experiments (32d-7d), apple and haw differences at Grant, MI, and geographic differences within host races between the Grant, MI and Urbana, IL sympatric sites. Results are given for all SNPs, and the High, Intermediate (Int.), and Low LD classes of loci for each chromosome considered separately, as well as for the five together (chr 1-5). * = P<0.01; ** = P < 0.01; *** = p< 0.001;
P < 0.0001; significant relationships, all positive in sign, are highlighted in grey shaded boxes, as determined by Monte Carlo simulations. See the Appendix C for number of SNPs in each group
29


chr 1 chr 2 chr 3 chr 4 chr 5 chrl-5
A) Diapause termination
All SNPs -0.29* -0.86***
High LD -0.12 _0 39***
Int. LD 0.21* -0.85***
Low LD 0.12 _0 42***
-0.67 0.17 0.34*
0.00 -0.05 0.05
-0.53**** -0.28 0.29*
-0.23** -0.04 0.20*
Q
-0.46*
Or s' -i* -i* -i* -i*
.56
Q ^ ^ ^ ^ ^
B) Apple selection experiment.
All SNPs 0.078 -0.82**** a s' a -i* -i* -i* -0.62 -0.15* 0.06* -0.28****
High LD 0.03 -0.15* -0.19 Q -0.67*
Int. LD 0.14* -0 43**** -0.12 -0.07 -0 43****
Low LD 0.24* -0.19 -0.11 -0.09 -0.07 -0.11*
C) Haw selection experiment
All SNPs -0.07 Q
High LD 0.03 Q
Int. LD -0.05
Low LD -0.03 -0.12
0.03 0.20*** -0.03
-0.07 0.18 r\ s' s' -i* -i* -i* -i* -0.66 0.02
-0.05 0.20* _0 24*** -0.08
-0.14 0.00 0.09 0.02
D) Host Race
Low LD
All SNPs Q 2^**** q ^ ^ ^ Q ^ ^ ^ ^ ^
High LD 0.001 0.20 -0.02
Int. LD 0.16** Q ^ ^ #
-0.11
0.03
0.09
0.11
0.25
0.15
0.02
0.01
0.14
0.16
0.02
-0.4 0.14
0.001 0.00
30


Table I cont’d
E) Apple Geographic cline
All SNPs -0.10* Q ^ ^ ^ ^ ^ r\ s~ s~ -i* -i* -i* -i* -0.66 Q ^ <| ♦### -0.29
High LD 0.02 Q ^^#'1'#'!' -0.12 0.43* -0.58
Int. LD -0.04 0 Q ^ ^ ^ ^ ^ -0.06
Low LD -0.12 -0.36** -0.18 0.06 0.10
F) Haw Geographic cline
All SNPs High LD Int. LD Low LD

-0.02
0/^ -i* -i* -i* -i*
.26
-0.07
Q ^ ^ ^ ^ ^
Q ^^^'1'#'!'
q
-0.30*
-0.58****
-0.09
Q /| ^****
-0.16
0.10
0.50**
0.18
-0.07
Q ^ ^ ^ ^ ^
0S~ /"\ *1*
.69
-0.13**
0.03
Q
-0.05
0A S~ Sfc ^ ^ ^
.46
0
Q ^ ^ ^ ^ ^
-0.08
31


Table II. Correlation coefficients (r) of SNP allele frequency differences between the Eclosion Early - late bulks from Ragland et al. (2017) versus host race differentiation at the sympatric site in Grant, MI. Results are given for all SNPs, and the High, Intermediate (Int.), and Low LD classes of loci for each chromosome considered separately, as well as for the five together (chr 1-5).
* = P < 0.01; ** = P < 0.01; *** = p < 0.001; **** =P < 0.0001; significant relationships, all positive in sign, are highlighted in grey shaded boxes, as determined by Monte Carlo simulations.
chr 1 chr 2 chr 3 chr 4 chr 5 chr 1-5
All SNPs -0.63* -0.08 -0.46** 0.07 0.02 _0 42***
High LD -0.08 -0.09 -0.09 -0.14 0.07 -0.56*
Int. LD -0.50*** -0.05 -0.40** 0.18 0.03 -0.28***
Low LD -0.27* 0.05 -0.06 -0.02 0.03 -0.06
32


Figures
A) Historical and contemporary selection within Rhagoletis pomonella
Diapause intensity
B) Diapause termination phenotype in Rhagoletis pomonella
C) Diapause Intensity phenotype in Rhagoletis pomonella
Time exposed to consistent warmth
Figure 1: Conceptual diagram of historical and contemporary selection within R. pomonella and diapause life history traits. A) R. pomonella is a fall breeding species because its life cycle tracks
33


the availability of fruits that mature in the fall. In the Midwestern range of R. pomonella, growing seasons shorten and winters increase in intensity with latitude. As a result, within the ancestral hawthorn race, phenotypic combinations of a more warm-adapted diapause intensity and late diapause termination for southern populations and more cold-adapted diapause intensity and early diapause termination for northern population are favored. Meanwhile, contemporary selection for formation of the apple race favors a relatively warmer adapted diapause intensity and earlier diapause termination at each sympatric site. Here, selection is perpendicular to trait combinations geographically favored within haw. B) The timing of diapause termination, and adult emergence time, is shown by a rapid, biphasic increase in metabolic rate (Ragland et al., 2009). Colors indicate that there is substantial variation in diapause termination within and between host races. C) Initial diapause intensity is measured at the propensity to forgo diapause and develop into an adult when exposed to artificially warm conditions simulating long prewinter periods.
34


A. Hawthorn Fly
10 20 30
Days post pupariation
Days post pupariation
C. Phenotype Freq.
o
Q.
O
CL
1.00
n = 26 n = 149
0.75
0.50 n = 23
0.25 n = 23
n = 49
0.00 n = 9

Apple Haw
Host Race
â–  DIA
â–  ND
â–  SD
Figure 2: Metabolic rate trajectories of diapausing (DIA), non-diapausing (ND), and shallow diapausing (SD) phenotypes for A) hawthorn and B) apple race individuals and C) comparison of diapause class proportions between the apple and haw host races. Sample sizes (n) for each phenotype are also reported.
35


A) BSLMM results
B) Diapause class polygeic scores
Figure 3: Genetic differences between diapause intensity classes SD, DIA, and ND estimated using a) the proportion of phenotypic variance explained by total genetic variance (PVE) parameter of three alternative sparse linear mixed models (BSLMMs) of combinations of the diapause (DIA), shallow diapause (SD) and non-diapause (ND) phenotypes, and b) distributions of individual polygenic scores for diapause intensity. The left panel (a) is a violin plot of the posterior probability distribution of PVE for three BSLMMs incorporating only data for two phenotypes at a time: 1) ND vs. SD, 2) DIA vs. SD, and 3) ND. Vs. DIA, including boxplots of the 1st, 2nd, and 3rd quartiles surrounded by a kernel density function. The right panel (b) displays kernel density plots of the distributions of individual polygenic scores (mean proportion of SD-like alleles that an individual has in their genome) incorporating only loci that had posterior inclusion probability (PIP) above 0.01% in at least one of the three BSLMM.
36


Chromosomes
â–¡_
o
n
o
Cl
O
CL
Chromosomes
Figure 4: Proportion of SNPs significantly associated with diapause intensity (a) and diapause termination (b) on each LD on each chromosome. A star indicates a significant excess of significantly associated SNPs compared to null expectations.
37


Chromosome 1
Host race versus diapause intensity
Chromosome 2
Chromosome 3
Diapause termination versus diapause intensity
0.4
< 0.2 O
I
o
S' 0-2
0)
0)
= -0.4
d)
-0.4 -0.2 0.0 0.2 0.4
Allele freq. dif. early-late
e)
0.4 0.4

•/ .'
.. 0.2 0.2
0.0 jgL;. 0.0
• « -*3 -0.2 *> iV/. -0.2
. •
-0.4 -0.4
-0.4 -0.2 0.0 0.2 0.4
Allele freq. dif. early-late
LD
Allele freq. dif. early-late
Haw race pre-winter selection versus diapause intensity
Apple race pre-winter selection versus diapause intensity
38


Figure 5: Relationships between the strength of genetic associations (magnitude of allele frequency differences) with diapause phenotypes and host race differences, including diapause intensity (SD - DIA+ND) vs. host race differences (apple host race - haw host race; A - C), diapause termination (early - late; D - F), hawthorn fly selection experiment (7 day - 32 day; G -1), and apple fly selection experiment (7 day - 32 day; J -L). Light grey dots represent all 7,265 genotyped SNPs while Orange dots are low LD loci, red dots are intermediate LD loci, and purple dots are high LD loci on chromosome 1 (1st column; A, D, H, K), chromosome 2 (2nd column; B, E, I, L), and chromosome 3 (3rd column; C, F, J, M). All loci were polarized to the allele at the highest frequency in the hawthorn fly population at Grant, MI; thus, host race differences in allele frequency were all positive.
39


*
1 2 3 4 5
Chromosomes
Figure 6: X-fold enrichments for shared signs of allele frequency differences (sign concordance) between diapause intensity associations (allele frequency differences; SD - DIA+ND) and diapause termination associations (allele frequency differences; early - late emergence bulks). Results are shown for each LD group (low, intermediate, and high) for each of the 5 chromosomes. The null expectation is shown with a solid horizontal line. Stars indicate an
40


indicate an overlap of loci associated with both diapause phenotypes for respective chromosomes and LD groups
41


Chromosome 1
â–  Diapause termination â–¡ Diapause intensity
Chromosome 2
Chromosome 3
Sites
Urbana Dowagiac Fennville Grant Sites
Urbana Dowagiac Fennville Grant Sites
Figure 7: Overlap between and mean allele frequencies of loci significantly associated with diapause intensity and diapause termination on chromosomes 1, 2, and 3. Venn Diagrams display overlap between loci significantly associated with diapause intensity and those associated with diapause termination. The middle row of line plots displays clinal variation in mean allele frequency with loci significantly associated with diapause intensity for chromosomes 1, 2, and 3. Genetic loci were polarized such the allele associated with the SD phenotype was ‘counted.’ The bottom row of line plots displays clinal variation in mean allele frequency with loci significantly
42


associated with diapause termination for chromosomes 1, 2, and 3. Genetic loci were polarized such that allele associated with late diapause termination were ‘counted’.
43


II.
Consistency of the genetic architecture of a geographically
VARYING SEASONAL TRAIT AND ITS CONTRIBUTION TO SPECIATION
Introduction
Organisms living in temperate regions often experience large amounts of environmental heterogeneity and must respond to multiple selection pressures throughout their life. This is particularly relevant for short lived organisms, such as insects, with one or more generations per year because they must possess life cycle adaptations to withstand cold conditions and exploit warmer ones (Tauber & Tauber, 1976; Kostal, 2006; Kostal eta/., 2017). When the degree or intensity of environmental selection shifts spatially or temporally it results in genotypes exhibiting differential fitness through time and across geography (Ewing, 1979; Grant & Grant, 2002; Nosil et al., 2018; Troth et al., 2018). This phenomena, also referred to as balancing selection, can produce large stores of fitness associated genetic variation that can facilitate rapid population level responses to environmental shifts and catalyze speciation (Barrett & Schluter, 2008).
Within the context of short lived animals, like insects, balancing selection in the form of inter-annual environmental variability can generate variation in life history traits (Hoffmann & Weeks, 2006). This can, in-turn, hasten the speed at which populations are capable of responding to changing conditions or novel niches as exemplified by numerous phytophagous (plant feeding) insect species groups that have diversified to utilize hosts with different phonologies (Wood & Guttman, 1982; Smith, 1988; Langor, 1989; Homer et al., 1999; Dres & Mallet, 2002). But, it should be noted that divergence in response to phenology is not limited to just insects (Cole & Sheldon, 2017). Host switching events often occur in sympatry and in the face of gene flow, so a lingering question for evolutionary biologists is what genetic architectures facilitate
44


divergence and maintain distinct population during sympatric speciation? Furthermore, the sympatric ranges of diverging populations are often large, so in addition to phenology and life history traits varying locally between sympatric population pairs, they may also vary over large geographic areas. This raises a second question; if the traits contributing to sympatric divergence vary over larger spatial scales, does the genomic architecture of sympatric population divergence and speciation vary with geography as well?
With the advent of NGS, genome scans have found considerable variability across species in patterns of genomic divergence (Seehausen etal., 2014). In some cases, a few large genomic regions appear to separate populations, while in others divergence is widespread across the genome. Examples of large regions of divergence dominate much of the speciation literature (Turner et al., 2005; Consortium et al., 2012; Jones et al., 2012; Martin et al., 2013), and within these examples, the genomic landscape of divergence is often remarkably consistent across geography and the continuum of sympatric to parapatric populations pairs (Reed et al., 2011; Renaut et al., 2013; Soria-Carrasco et al., 2014; Marques et al., 2018). These findings have led to an understanding that speciation and adaptive divergence can, and often will, involve the same genomic regions across independent divergence events within a clade (Burri etal., 2015; Stankowski etal., 2018). However, such an idea may be at odds with how adaptive divergence and speciation progresses when traits with highly polygenic architectures are involved (Rockman, 2012). In such situations, theory predicts that many thousands to possibly millions of variants contribute infinitesimal effects on the phenotype (Rockman, 2012; Boyle etal., 2017), and that numerous, distinct allelic combinations can produce similar phenotypes across individuals (Yeaman, 2015). Thus, there is theoretical support for the hypothesis that speciation
45


within the same population pair can arise from multiple distinct combinations of alleles and genetic loci rather than a conserved group of variants.
The conservation of genetic loci and architectures underlying specific traits has been well studied within Drosophila spp. (Schmidt et al., 2005b; Schmidt & Paaby, 2008; Bergland el al., 2014, 2016; Machado etal., 2016, 2018). Here, latitudinal transects over which environmental variables fluctuate predictability have been used to study adaptive variation in phenotypic and genotypic characters. In these studies, correlations between a specific trait and latitude (or other environmental forces) are taken as evidence of local adaptation. Sampling across geographic gradients for genetic variation associated with environmental adaptation also generally alleviates the confounding effects of demographic processes that could limit inference over shorter distances (Adrion etal., 2015). Classic insights from clinal studies include observations of shifts in life span, body size, stress tolerances, and diapause incidence in Drosophila spp. and other ectotherms (Schmidt etal., 2005a; Schmidt & Paaby, 2008; Munch & Salinas, 2009), as well as broad scale shifts in dormancy, flowering time, and other phenological events in plants (e.g. Borchert etal., 2015). Decades of research has also uncovered striking shifts in allele and inversion frequencies across geography. While more recent genomic research has shown common overlap single nucleotide polymorphisms (SNPs) over large geographic areas responding to seasonal changes.
Despite clear evidence of evolved environmental adaptation in numerous systems, we still have a limited understanding of the genotype-phenotype link for traits responding to environmental and seasonal variation. For instance, there is considerable overlap in the genomic regions that respond to seasonal variation across geography within Drosophila melanogaster, but the allele frequency shifts at those loci can be highly unpredictable (Machado et al., 2018).
46


Therefore, it is unclear whether variants unique to a specific geographic location are a result of locally unique selection pressures or other evolutionary processes. Without clear knowledge on which genomic regions underpin specific traits, it will remain difficult to accurately predict evolution and fully address questions about the consistency of adaptive genomic change between population pairs.
To gain some insight into these basic questions, we conducted a pair of genome wide association (GWA) studies for a seasonal trait, diapause termination, across geography in the apple maggot fly Rhagoletispomonella using pooled whole genome sequencing (pool-seq). We also performed a GWA study for diapause intensity at a single geographic location. In R. pomonella there is abundant evidence, both genetic and phenotypic, of differential seasonal adaptation to specific fruit hosts (Bush, 1969; Feder et al., 1988, 1997a; Egan et al., 2015; Doellman etal., 2018). Early research observed marked differences in the emergence times of apple and hawthorn associated populations, initially indicating genetic control of traits influencing seasonal emergence and evolved differences between populations (Bush, 1969). A genetic basis for host race differentiation at two sympatric sites was later discovered by showing clear and consistent allele frequency differences between populations (Feder etal., 1988; McPheron et al., 1988). Genetic loci identified in GWA studies for traits known to be under selection during host adaptation, specifically diapause intensity and diapause termination, also strongly overlap with loci associated with host race variation indicating a strong genetic link between life cycle adaptation and population divergence (Michel etal., 2010; Egan et al., 2015; Ragland et al., 2017; Doellman et al., 2019). Moreover, research presented in Chapter 1, showed a high degree of overlap in the loci associated with diapause intensity and diapause termination and indicated their genetic basis is non-independent. That research, along with Doellman et al.,
47


(2019), also found that allelic variation for diapause termination and intensity varied in accordance with expectation across geography. However, those studies used reduced representation methods (RAD-seq) and may have missed many adaptive variants. Additionally, diapause termination was only phenotyped at one location, so it’s unknown if variants unique to other locations also contribute to local seasonal adaptation and if the genetic architecture of divergence shifts with geography.
The research presented here does not contain an exhaustive analysis of all of the data collected but provides evidence for broad patterns that will continue to be explored in future work. We address four basic questions with this dataset: 1) Is the genomic clustering of loci (i.e. genetic architecture) associated with diapause termination at the two sympatric sites studied here consistent? 2) Do we see evidence of loci that appear to additively compensate for the antagonistic pleiotropy identified in Chapter 1? 3) Are there differences in the genetic relationship between geography and diapause termination at each geographic site genotyped. 4) Do the genetic associations between diapause termination and diapause intensity remain consistent across host races and with the results of Chapter 1?
Materials and Methods
sample collection
Unless otherwise noted, standardized collection and rearing methods were used for the current study (Egan etal., 2015). Flies were collected as larvae in infested hawthorn and apple fruits gathered from the field and reared to pupariation at 21°C with a 14:10 light:dark cycle. Infested fruit were held over wire mesh racks on top of plastic collecting trays which were checked for pupae a minimum of 3 times per week. For emergence timing and diapause intensity phenotyping, we cleared trays in the early evening and only used flies in the experiment that
48


exited from fruit and formed puparia in the intervening period from early evening to the next morning to synchronize development. Collected pupae were placed in petri dishes with moist vermiculite, then transferred to the desired experimental conditions.
Diapause termination GW AS
Adult flies belonging to both host races were sampled from Grant, MI and Urbana, IL in the fall of 2012 and were reared from field collected pupae as described above, overwintered for 20 weeks, then held at 21°C, 14:10 L:D until adult eclosion. The earliest and latest eclosing flies in each host race were sequenced in a pooled, bulked segregant design. Basesline samples consisting of a random subsample of all eclosed adults were also generated for each host race at each sympatric site. DNA was isolated from the heads of individual adults using a modified PureGene protocol (Quiagen; Appendix D). DNA concentrations were quantified using a Quant-iT PicoGreen dsDNA assay kit (Thermo-Fisher Scientific). Pools consisted of between 47 and 50 individuals and were produced using equimolar concentrations of DNA from each individual to avoid bias in sequencing.
Diapause Intensity GWAS
Adult flies belonging to both host races were sampled from Grant, MI in the fall of 2018 and were reared from field collected pupae as described above and held at 21°C, 14:10 L:D until adult eclosion. Individuals were assigned a diapause intensity class based on emergence patterns as in Chapter 1 and initially established in Dambroski & Feder (2007). Briefly, individuals emerging 40 days post-pupation and earlier were classed as non-diapausing (ND), individuals emerging 45 days and later were classed as shallow-diapausing (SD), and individuals who failed to emerge as diapausing (DIA). A baseline pool was established by freezing pupae 10 days post emergence from their host fruit. We dissected the pupae to make sure they were alive prior to
49


freezing. We isolated DNA from both pupae, in the case of the baseline individuals, and adult heads, in the case of the emerged adults, using the same modified PureGene protocol as in the diapause termination GWAS (Quiagen; Appendix D). DNA concentrations were quantified using a Quant-iT PicoGreen dsDNA assay kit (Thermo-Fisher Scientific). Pools consisted of between 78 and 80 individuals and were produced using equimolar concentrations of DNA from each individual to avoid bias in sequencing. In this study we only report comparisons between the baseline population and the SD diapause class. Future work may involve research with deeper analysis with the ND and DIA classes.
Sequencing and Bioinformatics
DNA sequencing was performed at the University of Colorado Denver Genomics and MircoArray Core on an Illumina HiSeq 4000, for the diapause termination GWAS, and an Illumina NovaSeq, for the diapause intensity GWAS. Pools in the diapause termination GWAS generated approximately 180 million 150 bp reads each, while pools in the diapause intensity GWAS generated approximately 350 million 150 bp reads each. No serious issues in the raw sequences were flagged by FastQC 0.11.5, a program that preforms sequence quality control by examining per base quality scores, GC content, and sequence duplication among other metrics. We trimmed raw reads of adaptor sequence and low quality reads using Trimmomatic 0.36 (Bolger et al., 2014). The Remaining reads were aligned to the reference genome using BWA 0.7.12 with the default parameters, which utilizes the Burrows Wheeler Transform to align short reads similar to other alignment programs such as Bowtie and SOAPv2 (Li & Durbin, 2009). We produced alignment summary statistics on the resulting BAM files (BWA outputs SAM which we converted to the binary format, BAM, to save space) using the samtools 0.1.5 command flagstat and the Picard 2.15 command CollectAlignmentSummaryMetrics (Li et al., 2009). The
50


resulting output revealed good alignment scores, with each pool containing more than 95% mapped reads. We removed duplicates were removed using the Picard command MarkDuplicates, which uses an algorithm that differentiates between base quality scores of duplicate reads to select a primary read. Next, we measured genome wide coverage using the bedtools command genomecov (Quinlan & Hall, 2010). For downstream analysis with tools such as GATK and bcftools, we added read groups to files, which tag individual alignments in a SAM/BAM file with sample name, using the Picard command AddorReplaceReadGroups, and then sorted and indexed each pool using samtools index and sort. These commands produced indices that allow programs to search through sequence files with more ease, saving on computation time.
Before variants were called, we realigned the reads around indels. First, the bcftools call command with the option -skip-variants snps was used to generate a list of indels across all of the of the pools, bcftools only accepts an mpileup file as input, which we created using the samtools mpileup command. Mpileup files contain much of the same information as a sam file but in a different format: each line corresponds to a position in the genome and provides information for the nucleotide, indel, coverage, quality, and source of each read covering that position. However, the process of producing an mpileup file with many whole genome sequence files can be computationally expensive, so we performed an array job that created mpileup files for different portions of the Rhagoletis zephyria genome. An array job is simply a method to run the exact same script on an “array” or series of similar files. Bcftools will produce a vcf file containing all of the indels from each pool. This is sorted and indexed in Picard using the command SortVcf, before being put through GATK’s RealignerTargetCreator and IndelRealigner to realign the original bam files around indels. GATK utilizes a local alignment
51


algorithm that is computationally expensive and thus, slow. To get around this, we again ran array job with each version of the script realigning indels for a separate bam file. At this point each of the pools was ready for variant calling.
We used angsd 0.919 to call variants and collect allele counts (Korneliussen et al., 2014). Specifically, we employed angsd’s genotype likelihood approach, which is called by the command -doMajorMinor 1 and -GL 2, to find variant sites and determine the major and minor alleles. It should be noted that pooled sequencing designs preclude the use of haplotype and genotype based methods of analysis because the individual source of each read is unknown. The genotype likelihood approach was used here because it is much faster than using allele count data alone to find variable sites. Once the variable sites were located, they were fed back into angsd using the -sites command, which tells angsd to only collect variant statistics on those sites. To get allele counts for each variable site fed into angsd, I used the -doCounts 1 and -dumpCounts 4 commands. This was performed for each pool in the analysis to get major and minor allele counts for each variant across all pools.
A common set of 27,200,972 SNPs were variant in each pooled and used for later statistical analysis.
Assignment to Linkage Groups
As evidenced by the findings in in chapter 1, Rhagoletispomonella has a highly structured genome that complicates genetic analysis. In particular, previous studies present evidence for inversion polymorphism on all of the five major chromosomes of the R. pomonella genome that produce distinct blocks of loci in high linkage disequilibrium (LD) with each other (Feder et al., 2003c; Michel et al., 2010; Egan et al., 2015; Ragland et al., 2017). Previous
52


research using RAD markers categorized variants as displaying high (r2 > 0.6 with one another), intermediate (0.15 < r2 < 0.6), or low (r2 <0.15 with all other SNPs) levels of composite LD identified in Ragland et al. (2017). SNPs that fell within 200bp of a RAD marker previously assigned to an LD class were also assigned that class. Of the approximately 27 million SNPs shared across all experiments described here, 81,835 were assigned to an LD group using this method.
Genetic architecture of diapause termination and intensity
The use of pooled-sequencing data prevented us from using many of the techniques of Chapter 1 to infer genetic architecture, such as the Bayesian Sparse Linear Mixed Model (BSLMM) and polygenic scores. To indirectly infer genetic architecture, I examined the distribution of SNPs significantly associated with a diapause phenotype or host race and evaluated whether an excess of SNPs occurred on any chromosome or LD group. The degree of excess of significant SNPs was determined by evaluating the number of significant SNPs observed in a specific chromosome and LD group compared to the expected amount given the total number of SNPs in that group relative to all SNPs assigned to a chromosome and LD group.
This same method of evaluating excess of significant SNPs was also used to determine if there was genomic clustering of loci significantly associated with host race and diapause termination in ‘expected’ versus ‘opposite’ orientations. By ‘expected’ orientation, we mean a locus that has an association with the apple race and early diapause termination or an association with the haw race and late diapause termination. By ‘opposite’ orientation, we mean a locus that has an association with the haw race and early diapause termination or an association with the apple race and late diapause termination. The goal of this analysis is two-fold; 1) to determine if
53


loci that may be compensating for the antagonistic relationship discovered in Chapter 1 exist and 2) if they are clustered in specific regions across host races and geography.
Calculation of allele frequency differences
Custom bash, python, and R scripts were used to perform allele frequency estimates and Fisher exact tests for the following pairwise comparisons between pools: Grant, MI early emerging haw flies vs. late emerging haw flies (to find loci associated with diapause termination in haw flies), Grant, MI early emerging apple flies vs. late emerging apple flies (to find loci associated with diapause termination in apple flies), and Grant host race comparisons (to find loci associated with host race differences). These comparisons were repeated for Urbana, and performed across geography to determine if the same loci underlie diapause termination and host race differences at the two sympatric sites. Pairwise comparisons using Fisher exact tests were also used to evaluate differences between a Grant baseline population sample and SD pools in both host races.
Correlations of allele frequency differences
We estimated correlation relationships between various allele frequency difference estimates to assess whether loci associated with a trait (diapause termination or intensity) also tended to associate with another trait, differed between host races or across geography. These analyses underlie the triangulation approach of combining evidence for the role of sets of loci in the process of adaptation. In Chapter 1, permutation tests using whole fly genotypes were used to test for significance of correlations and to account for the violation of the assumption of random sampling. I was unable to perform such a test with the pool-seq data because it lacks individual genotypes. We are still actively developing a statistical method to rigorously test genetic associations across experiments that incorporates read depth at a site and accounts for LD relationships that violate the assumption of random sampling. In this study, we used the Pearson product moment correlation as implemented in base R (3.4.4).
54


Results
Polygenic Architecture
The number of SNPs significantly associated with diapause intensity were relatively evenly distributed across the R. pomonella genome in accordance with expectation for both host races (Fig. la,b). That is, the number of SNPs significantly associated with diapause intensity on a given chromosomal LD group roughly matched the expected number of significant SNPs in that group give the relative proportion of all SNPs that it harbored. Within the apple race, there was one exception in that chromosome 1 appears to be more enriched for SNPs associated with diapause intensity than would be expected by chance (Fig. lb).
For diapause termination in the apple race at the Grant, MI site, concentrations of SNPs above the expected amount occurred on chromosome 3, especially in the high LD group, and to a lesser extent on chromosome 2 (Fig. Id). While, for the haw race, chromosome 2 and the high LD group in particular was enriched for loci associated with diapause termination (Fig. lc). At the Urbana, IL site, a large excess of SNPs was again located on chromosome 3, but also on chromosome 1 within the apple race (Fig. 2). In the haw raw, an excess of SNPs was confined to chromosome 1 (Fig. 2).
There was an excess of loci significantly associated with both diapause termination and diapause intensity on chromosome 2 and the high LD group on chromosome 3 in the apple race. In the haw race there was an excess in all LD groups on both chromosomes 2 and 3 (Fig. 3).
Orientation of loci association with diapause intensity and host race
At the Grant, MI sympatric site, the number of loci with allelic association in the expected orientation in the haw race (haw - late diapause termination) largely matched
55


expectation, with the exception of chromosome 3, that had more loci than expected, and chromosome 5, which had less (Fig. 4A) . Meanwhile, loci with allelic associations in the opposite orientation in the haw race (haw - early diapause termination) were highly overrepresented on 2 and under represented on the rest of the chromosomes (Fig. 4B). For the apple race, loci with allelic associations in the expected orientation (apple - early diapause termination) were overrepresented on chromosome 3, and under represented on chromosomes 1, and 2 (Fig. 4C). Loci with allelic associations in the opposite orientation (apple - late) were over represented on chromosomes 1, and 2, and under represented on the other three (Fig. 4D).
At the Urbana, IL sympatric site, there was a slight overrepresentation of loci with allelic associations in the expected orientation in the haw race on chromosome 1, 2, and 3, and underrepresentation on chromosomes 4, and 5 (Fig. 5 A). There was a strong excess of loci with allelic associations in the opposite orientation in the haw race on chromosome 1, and an underrepresentation on the rest of the chromosomes (Fig. 5B). In the apple race, overrepresentations of loci with allelic variation in the expected orientation was observed on chromosomes 2, and 3, and underrepresentation of those loci on chromosomes 1, 4, and 5 (Fig. 4 C). For loci with allelic associations in the opposite orientation, there was an overrepresentation on chromosome 1, and underrepresentation on chromosomes 2,4, and 5 (Fig. 5 A).
Association between diapause intensity and diapause termination
For all of the 81,835 SNPs that were positioned within 200 bp of a mapped and LD classified RAD marker, there was a weak association between diapause termination and diapause intensity in both host races (Fig. 6; Table I). Despite the weak association over all loci, there were still strong associations on chromosomes 2, 3, and 5 and to a lesser extent 1, in both host races (Table I). Moreover, the sign of the association was the same across all chromosomes, with
56


the exception of chromosome 5. The associations were also different for chromosomes 2 and 3; on chromosome 2, there appeared to be a genetic association between the SD phenotype and late diapause termination and on chromosome 3, there was a genetic association between the SD phenotype and early diapause termination. On chromosome 5, the genetic relationships flipped, such that in the apple race, there was an association between SD and late diapause termination, but in the haw race there was an association between SD and early diapause termination.
Clinal variation in diapause intensity and diapause termination
To assess any clinal variation in the loci associated with diapause termination and diapause intensity, we measured correlations between allele frequency differences across the two sympatric sites and both allele frequency differences for diapause termination (at both geographic locations) and diapause intensity. This analysis also allowed us to loosely infer which phenotype that selection is acting up for loci on chromosomes 2 and 3, which have opposite genetic associations for the diapause termination and intensity phenotypes. In other words, if clinal variation for loci underpinning diapause intensity has an association with geography in the expected direction (e.g. SD and Urbana, IL) and the association between diapause termination and geography at those same loci is opposite of the expectation (e.g. early diapause termination and Urbana, IL), then it suggests that selection for diapause intensity is overriding the response in diapause termination and dragging “maladaptive” variation with it.
When comparing variation in diapause termination recorded from Grant, MI populations with geographic variation, there was a strong association across chromosomes 1, 2, and 3 in the haw race (Fig. 7; Table II). In the apple race there was an association on chromosome 3, but weak associations on chromosomes 1 and 2. When correlating diapause termination recorded from Urbana, IL populations with geographic variation, there were strong associations on
57


chromosome 1 and 3, within the haw race, but not on 2 (Fig. 7; Table III). In the apple race, as with Grant, MI, there was a strong association on chromosome 3, but weak associations on 1 and
2. From the perspective of diapause termination, whenever there was a strong association, it was always in the predicted allelic direction. That is, at Grant, MI there is a higher frequency of early diapause termination associated alleles, and at Urbana, IL there is a higher frequency of late diapause termination associated alleles.
For the relationship between variation in diapause intensity and geographic variation within the haw race, there were strong associations on chromosomes 1 and 2. Similar patters were observed within the apple race (Fig. 8, Table IV). However, the sign of the association between diapause intensity and geography was different on chromosome 3 compared to 1 and 2. On chromosome 3, there is a genetic association between the SD phenotype and Grant, MI, which is opposite to the predicted relationship.
Relationship of diapause intensity and termination to host race differences
At the Grant, MI site, there were strong associations between diapause termination within the hawthorn race and host race differences on chromosomes 1 and 2 (Fig. 9, Table V). Whereas in the apple race, there were strong associations between diapause termination and host race differences on chromosomes 2 and 3 and to a lesser extent, chromosome 1. However, the association is in a direction opposite to expectation, such that there was a higher frequency of late diapause termination associated alleles in the apple race. There were very weak associations between diapause termination and host race differences at Urbana, IL (Fig. 10, Table VI).
There were also clear associations between diapause intensity and host race differences, albeit, not as a strong as diapause termination (Fig. 9, Table VII). Associations were observed on
58


chromosomes 1, 2, and 3 for both host races. Moreover, the association occurred in the expected direction, with higher frequencies of SD alleles observed within the apple race.
Discussion
In this chapter, we studied the genomic signals of adaptation to seasonal variation, both within a specific geographic site and across latitude. The aim of this research was to address basic questions in the consistency of genomic responses to selection on a trait that varies with geography. Within the context of R. pomonella, the answers to these questions will also shed light on whether the genomic architectures of population divergence and speciation shift with geography. The ability to compressively address these questions requires precise inference of allele frequency change genome wide from paired, geographic GWA studies. The work presented here is by no means exhaustive but suggests directions for future analysis. We respond to the four questions outlined in the introduction below.
Our first question addressed whether the genomic clustering of loci significantly associated with diapause termination changed across the two sympatric sites, Grant, MI and Ubrana, IL, studied here. Our results first confirmed previous studies that found this trait to be highly polygenic (Ragland eta/., 2017). Both host races at each sympatric site harbored significant variation associated with diapause termination on chromosome 3, particularly in the high LD group, suggesting at least some conservation in the genomic basis of diapause termination across geography. However, there were also some clear differences in the level of genomic clustering between sympatric sites, with chromosome 2 harboring an excess of diapause termination associated loci at Grant, MI and chromosome 1 harboring an excess at Urbana, IL. For the moment, it is unclear why different chromosomal regions appear to exert differential effects on the phenotype across geography. One potential explanation is simply that the genomic
59


architecture of diapause termination shifts with geography and the relative effects of genomic variants associated with diapause termination, particularly those on chromosomes 1 and 2, shift with geography as proposed in the introduction.
Further evidence for a shifting genomic architecture of diapause termination is the observation of differential clustering of loci with allelic association in the ‘expected’ and ‘opposite’ orientations for diapause termination and host race differentiation. Here, loci in the ‘expected’ orientation are those that are associated with either the haw race and late diapause termination or the apple race and early diapause termination. We observed little overlap across geography in the chromosomes that are enriched for the ‘expected’ and ‘opposite’ orientation loci. This indicates that, in addition to a shifting genomic architecture associated with diapause termination, there may also be variability in the architectures that underlie host race divergence across geography. However, we recognize that more robust statistical analyses need to be conducted before definitive conclusions about shifting genomic architectures are drawn. Future work on this question will involve alignment of raw pool-seq reads to a recently completed Dovetail genome assembly of R. pomonella, which consists of consolidated and larger scaffolds compared to the genome assembly used in this analysis. Sliding window analyses will be performed to look for similarities in genomic clustering of loci and signatures of selection associated with diapause termination between host races and across geography.
Our third question asked whether the genetic associations between diapause termination and diapause intensity were consistent with the results from Chapter 1. In comparison to the genomic distribution of loci associated with diapause termination in Chapter 1, the variation associated with diapause intensity in the pool-seq dataset was relatively evenly distributed across all chromosomes and LD groups. When sub-setting to loci that were significant in both the
60


diapause termination GWAS at Grant, MI and the diapause intensity GWAS, large excesses of SNPs were observed in both the apple and hawthorn host races within the intermediate and high LD groups on chromosome 2 and the high LD group on chromosome 3 consistent with the results of Chapter 1. Furthermore, there were clear associations between diapause termination and diapause intensity loci on chromosomes 2, 3, and 5. The associations between diapause intensity and diapause termination on chromosomes 2, 3, and 5 were in the same direction for both host races. On chromosomes 2 and 5, this correlation was positive indicating an association between SD and late diapause termination, whereas on chromosome 3 it was negative pointing to an association between SD and early diapause termination. The association on chromosome 2 is the same as the results of Chapter 1, while the association on chromosome 3 is not.
The genetic associations on Chromosome 3 are consistent with expectation for apple race formation (e.g. we expect to see a genetic association between SD and early diapause termination). But it is not clear why such an association would be favored or maintained in the haw race. As discussed extensively in chapter 1, the association between SD and late diapause termination (and DIA/ND and early diapause termination) observed on chromosome 2 and 3 in that study is aligned with expectations from long term geographic selection within the hawthorn race. That study also provided evidence that strong selection for diapause intensity was ‘dragging’ along maladaptive variation in diapause termination through antagonistic pleiotropy. These results appear to contest that finding, at least for chromosome 3. Evidence from geographic variation and host race variation all suggest that selection for diapause termination is actually dragging along the variation in diapause intensity. A possible explanation is that interannual variation in fruit availability may select for different diapause termination times across years. For instance, in some years haw may fruit earlier than average, leading to increased fitness
61


for early diapause termination. More longitudinal studies would be needed to address whether interannual variation is maintaining this association within the hawthorn population.
Our final question, which is in some ways a follow up on question 1, asked whether the association between diapause termination and geographic variation were similar for both sympatric sites. In other words, is the sign of the correlation between allele frequency differences in the Grant, MI diapause termination GWAS and geography the same as the correlation between allele frequency differences in the Urbana, IL diapause termination GWAS? We observed clear correlations between allele frequency differences in diapause termination and allele frequency differences between Grant and Urbana on chromosome 1, 2, and 3 in the haw race and on chromosome 3 in the apple race. Research from Chapter 1 and from Doellman et al., (2019) also showed variation in the same region. However, there were differences in the strength of the association on chromosome 2 between the Grant, MI diapause termination-geography comparison versus the Urbana, IL diapause termination-geography comparison, again suggesting that the genomic basis of diapause termination is not entirely conserved across the range.
Overall, our work indicates that the genomic basis of seasonal adaptation within geographic locations is partially conserved, but that there is also a substantial amount of seasonal variation that appears uniquely adapted to each geographic location. An overarching trend is that loci residing in high LD regions appear to be more clinal than those more freely recombining loci. The high LD regions within the R. pomonella genome may reside within chromosomal inversions (Ragland et al., 2017). Thus, consistent clustering of putatively adaptive loci in the high LD region within chromosome 3 lends support to the hypothesis that regions with reduced recombination can facilitate rapid adaptation (Kirkpatrick & Barton, 2006; Wellenreuther & Bematchez, 2018). Furthermore, it has been hypothesized that inversions segregating within R.
62


pomonella are the result of ancient introgression events stemming from secondary contact with Mexican haw fly populations (Feder et al., 2003b, 2005). Thus, high LD loci may represent clusters of ancient genetic loci associated with diapause and have been shaped by thousands of years of selection. In line with this hypothesis, the locally adaptive loci (loci significant at one location, but not others) might be younger and may have formed though the slow accumulation of mutations as interannual variation in selection pressures at sites favored larger stores of standing genetic variation within the haw race. This idea can be tested by collecting whole genome sequence data from ancestral Mexican fly populations and looking for regions of shared divergence with the United States apple and haw populations. Any SNPs unique to United States populations are likely relatively younger. Answering such a question will further inform theories that suggest rapid adaptation is usually the result of a reorganizing of ancient and more recent adaptive variation in ancestral populations (Marques etal., 2019).
63


Tables
Table I: Correlation coefficients (r) of SNP allele frequency differences between the SD pool compared to baseline pool in the diapause intensity GWAS versus the genetic responses in the diapause termination pool-seq GWAS (late-early) within both the apple and hawthorn populations at Grant, MI. Results are given for all SNPs mapped within a 200 bp of High, Intermediate (Int.), and Low LD classes mapped in Ragland et al. (2017). The total number of loci in each group is reported in Appendix E.
chr 1 chr 2 chr 3 chr 4 chr 5 chr1-5
A) Apple race
All SNPs 0.09 0.24 -0.38 -0.00 0.18 -0.01
High LD 0.12 0.28 -0.62 -0.09 0.32 0.00
Int. LD 0.09 0.25 -0.32 -0.04 0.11 0.00
Low LD 0.06 0.15 -0.23 0.03 0.10 -0.08
B) Haw race
All SNPs 0.03 0.22 -0.19 0.01 -0.18 0.18
High LD 0.07 0.28 -0.41 -0.05 -0.28 0.32
Int. LD 0.00 0.22 -0.14 0.06 -0.12 0.11
Low LD 0.07 0.09 -0.12 0.00 -0.13 0.19
64


Table II: Correlation coefficients (r) of SNP allele frequency differences between the genetic responses in the diapause termination pool-seq GWAS (late-early) at Grant, MI versus geography (Grant, MI - Urbana, IL) within both the apple and hawthorn populations at Grant, MI. Results are given for all SNPs mapped within a 200 bp of High, Intermediate (Int.), and Low LD classes mapped in Ragland et al. (2017). The total number of loci in each group is reported in Appendix E.
chr 1 chr 2 chr 3 chr 4 chr 5 chr1-5
A) Apple race
All SNPs 0.05 0.16 0.53 0.01 0.11 0.27
High LD 0.12 0.22 0.74 -0.04 0.11 0.46
Int. LD 0.02 0.16 0.45 0.00 0.11 0.23
Low LD 0.08 0.06 0.38 0.03 0.09 0.15
B) Haw race
All SNPs 0.46 0.63 0.47 0.01 0.16 0.44
High LD 0.55 0.71 0.66 -0.28 0.20 0.52
Int. LD 0.45 0.63 0.38 0.17 0.17 0.44
Low LD 0.33 0.47 0.39 0.04 0.05 0.27
65


Table III: Correlation coefficients (r) of SNP allele frequency differences between the genetic responses in the diapause termination pool-seq GWAS (late-early) at Urbana, IL versus geography (Grant, MI - Urbana, IL) within both the apple and hawthorn populations at Grant, MI. Results are given for all SNPs mapped within a 200 bp of High, Intermediate (Int.), and Low LD classes mapped in Ragland et al. (2017). The total number of loci in each group is reported in Appendix E.
chr 1 chr 2 chr 3 chr 4 chr 5 chr1-5
A) Apple race
All SNPs 0.25 -0.05 0.56 0.03 0.14 0.32
High LD 0.33 -0.06 0.74 0.08 0.19 0.52
Int. LD 0.22 -0.03 0.49 -0.02 0.11 0.28
Low LD 0.18 -0.11 0.43 0.04 0.06 0.18
B) Haw race
All SNPs 0.63 0.17 0.50 0.00 0.09 0.40
High LD 0.75 0.27 0.68 -0.02 0.11 0.61
Int. LD 0.59 0.15 0.41 0.05 0.08 0.36
Low LD 0.50 0.08 0.46 -0.01 0.03 0.26
66


Table IV: Correlation coefficients (r) of SNP allele frequency differences between the genetic responses in the diapause intensity pool-seq GWAS (Base - SD) versus geography (Grant, MI -Urbana, IL) within both the apple and hawthorn populations at Urbana, IL. Results are given for all SNPs mapped within a 200 bp of High, Intermediate (Int.), and Low LD classes mapped in Ragland et al. (2017). The total number of loci in each group is reported in Appendix E.
chr 1 chr 2 chr 3 chr 4 chr 5 chr1-5
A) Apple race
All SNPs 0.25 0.04 -0.36 0.07 0.09 -0.02
High LD 0.33 0.00 -0.60 0.06 0.14 -0.05
Int. LD 0.22 0.06 -0.29 0.12 0.05 -0.01
Low LD 0.21 -0.03 -0.24 0.04 0.05 -0.00
B) Haw race
All SNPs 0.13 0.35 -0.30 0.03 -0.11 0.01
High LD 0.18 0.44 -0.52 0.10 -0.18 -0.17
Int. LD 0.12 0.35 -0.26 0.04 -0.08 0.05
Low LD 0.08 0.18 -0.20 0.02 -0.06 -0.02
67


Table V: Correlation coefficients (r) of SNP allele frequency differences between the genetic responses in the diapause termination pool-seq GWAS (early - late) for both host races versus host race differentiation (apple - haw) at Grant, MI. Results are given for all SNPs mapped within a 200 bp of High, Intermediate (Int.), and Low LD classes mapped in Ragland et al. (2017). The total number of loci in each group is reported in Appendix E.
chr 1 chr 2 chr 3 chr 4 chr 5 chr1-5
A) Apple race
All SNPs -0.11 -0.49 -0.10 -0.01 -0.06 -0.19
High LD -0.03 -0.51 -0.19 0.02 -0.11 -0.12
Int. LD -0.14 -0.49 -0.09 -0.06 -0.02 -0.21
Low LD -0.12 -0.43 -0.04 0.02 -0.07 -0.10
B) Haw race
All SNPs -0.45 -0.63 -0.07 -0.03 -0.08 -0.34
High LD -0.55 -0.69 -0.08 0.18 -0.14 -0.31
Int. LD -0.43 -0.63 -0.08 -0.04 -0.05 -0.36
Low LD -0.30 -0.48 -0.02 -0.05 -0.05 -0.18
68


Table VI: Correlation coefficients (r) of SNP allele frequency differences between the genetic responses in the diapause termination pool-seq GWAS (early - late) for both host races versus host race differentiation (apple - haw) at Urbana, IL. Results are given for all SNPs mapped within a 200 bp of High, Intermediate (Int.), and Low LD classes mapped in Ragland et al. (2017). The total number of loci in each group is reported in Appendix E.
chr 1 chr 2 chr 3 chr 4 chr 5 chr1-5
A) Apple race
All SNPs -0.14 0.11 0.07 0.02 -0.07 -0.01
High LD -0.19 0.11 0.10 -0.05 -0.07 -0.05
Int. LD -0.14 -0.13 0.04 0.03 -0.05 -0.01
Low LD -0.08 0.02 0.11 0.02 -0.09 0.00
B) Haw race
All SNPs -0.13 -0.00 0.09 0.01 -0.05 -0.02
High LD -0.17 -0.02 0.12 -0.14 -0.07 -0.06
Int. LD -0.12 -0.02 0.08 0.08 -0.05 -0.02
Low LD -0.08 -0.03 0.07 -0.00 -0.00 -0.06
69


Table VII: Correlation coefficients (r) of SNP allele frequency differences between the genetic responses in the diapause intensity pool-seq GWAS (Base - SD) for both host races versus host race differentiation (apple - haw) at Urbana, IL. Results are given for all SNPs mapped within a 200 bp of High, Intermediate (Int.), and Low LD classes mapped in Ragland et al. (2017). The total number of loci in each group is reported in Appendix E.
chr 1 chr 2 chr 3 chr 4 chr 5 chr1-5
A) Apple race
All SNPs -0.58 -0.33 0.07 -0.06 -0.05 -0.28
High LD -0.44 -0.42 0.13 -0.05 -0.16 -0.44
Int. LD -0.26 -0.32 0.07 -0.09 0.02 -0.26
Low LD -0.17 -0.26 0.04 -0.03 -0.06 -0.17
B) Haw race
All SNPs -0.09 -0.31 0.06 -0.02 0.05 -0.09
High LD -0.16 -0.39 0.11 -0.09 0.14 -0.02
Int. LD -0.11 -0.31 0.04 -0.02 0.01 -0.11
Low LD -0.02 -0.16 0.06 -0.00 0.04 -0.02
70


Figures
A) Haw Race enrichment of diapause intesity associated alleles
Obs. vs. Exp.
obs
exp
B) Apple Race enrichment of diapause intesity associated alleles
C) Haw race enrichment of diapause termination associated alleles
D) Apple race enrichment of diapause termination associated alleles
Jli
L
hL
^ ^ ^ ////
O c> c>
O O C> c>
Chromosome and LD Groups
Figure 1: Enrichment of loci significantly associated (FDR < 0.05) with diapause intensity in the A) haw race and B) apple race and diapause termination in the C) haw race and D) apple race and the Grant, MI sympatric site. This analysis was performed across chromosomes and LD groups (LDL = low LD groups, LDM = intermediated LD group, and LDH = high LD groups. Red bars represent number of loci significantly associated with phenotype observed in the dataset and blue bars indicate the expected number of significant loci given the proportion of all variants that exist within a given LD and chromosome group.
71


A) Haw race enrichment of diapause termination associated alleles
B) Apple race enrichment of diapause termination associated alleles
Chromosome and LD Groups
Figure 2: Enrichment of loci significantly associated (FDR < 0.05) with diapause termination in the A) haw race and B) apple race at the Urbana, IL sympatric site. This analysis was performed across chromosomes and LD groups (LDL = low LD groups, LDM = intermediated LD group, and LDH = high LD groups). Red bars represent number of loci significantly associated with phenotype observed in the dataset and blue bars indicate the expected number of significant loci given the proportion of all variants that exist within a given LD and chromosome group.
72


A) Haw race enrichment of diapause intesity and diapause termination associated alleles
B) Apple race enrichment of diapause intesity and diapause termination associated alleles
Chromosome and LD Groups
Figure 3: Enrichment of loci significantly associated (FDR < 0.05) with both diapause intensity and diapause termination in the A) haw race and B) apple race at the Grant, MI sympatric site. This analysis was performed across chromosomes and LD groups (LDL = low LD groups, LDM = intermediated LD group, and LDH = high LD groups). Red bars represent number of loci significantly associated with phenotype observed in the dataset and blue bars indicate the expected number of significant loci given the proportion of all variants that exist within a given LD and chromosome group.
73


A. Haw Associations B. Haw Associations
Expected Orientation Opposite Orientation
obs
exp
IV V
C. Apple Associations D. Apple Associations Expected Orientation Opposite Orientation
c
o
o
IV V |
Chromosome
IV v
Figure 4: Enrichment of loci across chromosomes significantly associated (FDR < 0.05) with both diapause termination and host race differences at Grant, ML The list of significant loci was further divided by phenotype and host race associations: A) Haw - late diapause termination B) Haw - early diapause termination C) Apple - early diapause termination D) Apple - late
74


diapause termination. Panels A and C display the enrichment of loci with allelic associations in the expected orientation given emergence phenotypes observed in the field. Panels B and D display the enrichment of loci with allelic associations in the opposite orientation given emergence phenotypes observed in the field.
75


A Haw Associations B Haw Associations
Expected Orientation Opposite Orientation
C Apple Associations D Apple Associations Expected Orientation Opposite Orientation
I II III IV V I II III IV V
Chromosome
Figure 5: Enrichment of loci across chromosomes significantly associated (FDR < 0.05) with diapause termination and host race differences at Urbana, IL. Sets are divided by phenotype and host race associations: A) Haw - late diapause termination B) Haw - early diapause termination
76


C) Apple - early diapause termination D) Apple - late diapause termination. Panels A and C display the enrichment of loci with allelic associations in the expected orientation given emergence phenotypes observed in the field. Panels B and D display the enrichment of loci with allelic associations in the opposite orientation given emergence phenotypes observed in the field.
77


Chromosome 1
Chromosome 2
Chromosome 3
Haw race - diapause intesnity vs. diapause termination
-0.4
-0.5 0.0 0.5 1.0
Allele freq. dif. early - late
•0.5 0.0 0.5 1.0
Allele freq. dif. early - late
-0.4
Apple race - diapause intesnity vs. diapause termination
0 50
-0.8 -0.4 0.0 0.4
Allele freq. dif. early-late
-0.8 -0.4 0.0 0.4
Allele freq. dif. early-late
0.50 0.25 0.00 0 25
0.4
0.0
-0.4
-0.5 0.0 0.5 1.0
Allele freq. dif. early - late
0.50 0.25 0.00 -0.25
-0.8 -0.4 00 0!4
Allele freq. dif. early-late
Figure 6: Relationships between the strength of genetic associations between diapause intensity (Base - SD) vs. diapause termination in the apple race (a-c) and haw race (d-f). Correlations coefficients are reported in Table I. Light grey dots represent all 81,835 genotyped SNPs while Orange dots are low LD loci, red dots are intermediate LD loci, and purple dots are high LD loci on chromosome 1 (1st column; a, d), chromosome 2 (2nd column; b, e), and chromosome 3 (3rd column; c, f).
78


Chromosome 1
Chromosome 2
Chromosome 3
Haw race - diapause termination (Grant, Ml) vs. geography
-0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0
Allele freq. dif. early - late Allele freq. dif. early - late Allele freq. dif. early - late
Apple race - diapause termination (Grant, Ml) vs. geography
< _____________________________________
- 0.8 -0.4 0.0 0.4
Allele freq. dif. early-late
-0.8 -0.4 0.0 0.4
Allele freq. dif. early-late
-(â– 8-----TO------075------01------
Allele freq. dif. early-late
Haw race - diapause termination (Urbana, IL) vs. geography
-1.0 -0.5 no 0.5
Allele freq. dif. early - late
Allele freq. dif. early - late
Apple race - diapause termination (Urbana, IL) vs. geography
-0.5 0.0 0.5
Allele freq. dif. early - late
LD
Bhigh int low
Figure 7: Relationships between the strength of genetic associations between diapause termination (early-late) recorded at Grant, MI (a-f) and Urbana, IL (h-m) vs. geography (Grant -Urbana) in the apple race (d-f, j-1) and haw race (a-c, g-i). Correlations coefficients for the data
79


from Grant, MI and Urbana, IL is presented in Tables II and III, respectively. Light grey dots represent all 81,835 genotyped SNPs while Orange dots are low LD loci, red dots are intermediate LD loci, and purple dots are high LD loci on chromosome 1 (1st column; a, d, g, j), chromosome 2 (2nd column; b, e, h, k), and chromosome 3 (3rd column; c, f, i, 1).
80


Chromosome 1
Chromosome 2
Chromosome 3
Haw race -
diapause intesnity vs. geography
a> „ b)
-0.5
-0.4 0.0 0.4
Allele freq. dif. Base-SD
-0.4 0.0 0.4
Allele freq. dif. Base-SD
Apple race - diapause intesnity vs. geography
high
int
low
-0.4 0.0 0.4
Allele freq. dif. Base-SD
-0.25 0.00 0.25 0.50
Allele freq. dif. Base-SD
Figure 8: Relationships between the strength of genetic associations between diapause intensity (Base - SD) vs. geography (Grant - Urbana) in the apple race (a-c) and haw race (d-f). Correlation coefficients are reported in Table IV. Light grey dots represent all 81,835 genotyped SNPs while Orange dots are low LD loci, red dots are intermediate LD loci, and purple dots are high LD loci on chromosome 1 (1st column; A, D), chromosome 2 (2nd column; B, E), and chromosome 3 (3rd column; C, F).
81


Chromosome 1
Chromosome 2
Chromosome 3
Haw race - diapause termination (Grant, Ml) vs. Host race differences (Grant, Ml)
CT
£ -0.5
a>
a>
<
-0.5 0.0 0.5 1.0
Allele freq. dif. early - late
-0.5
-0.5 0.0 0.5 1.0
Allele freq. dif. early - late
•0.5 0.0 0.5 1.0
Allele freq. dif. early - late
Apple race - diapause termination (Grant, Ml) vs. Host race differences (Grant, Ml)
-o'? TO 51! 51
Allele freq. dif. early-late
-0 8 -0.4 0.0 0.4
Allele freq. dif. early-late
-(.6 -6.4 6.6 6.4
Allele freq. dif. early-late
Haw race - diapause intensity vs.
g)
Host race differences (Grant, Ml) h) i)
-0.4 0.0 0.4
Allele freq. dif. base - SD
-0.4 0.0 0.4
Allele freq. dif. base - SD
Apple race - diapause intensity vs. Host race differences (Grant, Ml)
-0.4 0.0 0.4
Allele freq. dif. base - SD
LD
Bhigh int low
Figure 9: Relationships between the strength of genetic associations between diapause termination (early-late) (a-f) and diapause intensity (h-m) vs. host race differences (Apple Haw) in the apple race (d-f, j-1) and haw race (d-f, k-m). Correlation coefficients for the


comparison between host race and diapause intensity and the comparison between host race and diapause termination are reported in Tables V and VI, respectively. Light grey dots represent all 81,835 genotyped SNPs while Orange dots are low LD loci, red dots are intermediate LD loci, and purple dots are high LD loci on chromosome 1 (1st column; A, D, H, K), chromosome 2 (2nd column; B, E, I, L), and chromosome 3 (3rd column; C, F, J, M).
83


Chromosome 1
Chromosome 2
Chromosome 3
Haw race - diapause termination (Urbana, IL) vs. Host race differences (Urbana, IL)
0.8
a)
0.8
b)
0.8
C)
-0 4
-1.0 -0.5 0.0 0.5
Allele freq. dif. early - late
-0.4
-1.0 -0.5 0.0 0.5
Allele freq. dif. early - late
-0.4
-1.0 -0.5 0.0 0.5
Allele freq. dif. early - late
LD
Bhigh
"t
low
Apple race - diapause termination (Urbana, IL) vs. Host race differences (Urbana, IL)
-0.5 0.0 0.5
Allele freq. dif. early-late
TT5------5S------5-5----- ---------—--------------------
Allele freq. dif. early-late Allele freq. dif. early-late
high
int
low
-0.4
-0.4
Figure 10: Relationships between the strength of genetic associations between diapause termination (early - late) in the apple race (a-c) and haw race (d-f) vs. host race differences (Apple - Haw) at Urbana, IL. Correlation coefficients for these comparisons are reported in table VII. Light grey dots represent all 81,835 genotyped SNPs while Orange dots are low LD loci, red dots are intermediate LD loci, and purple dots are high LD loci on chromosome 1 (1st column; a, d), chromosome 2 (2nd column; b, e), and chromosome 3 (3rd column; c, f).
84


References
Adrion, J.R., Hahn, M.W. & Cooper, B.S. 2015. Revisiting classic clines in Drosophila melanogaster in the age of genomics. Trends in Genetics 31: 434-444.
Ayala, D., Zhang, S., Chateau, M., Fouet, C., Morlais, I., Costantini, C., et al. 2018. Association mapping desiccation resistance within chromosomal inversions in the African malaria vector Anopheles gambiae. Molecular Ecology 0.
Barrett, R. & Schluter, D. 2008. Adaptation from standing genetic variation. Trends in Ecology & Evolution 23: 38-44.
Barrett, R.D.H., Laurent, S., Mallarino, R., Pfeifer, S.P., Xu, C.C.Y., Foil, M., et al. 2019. Linking a mutation to survival in wild mice. Science 363: 499-504.
Barrett, R.D.H., Rogers, S.M. & Schluter, D. 2008. Natural Selection on a Major Armor Gene in Threespine Stickleback. Science 322: 255-257.
Berg, J.J. & Coop, G. 2014. A Population Genetic Signal of Polygenic Adaptation. PLOS Genetics 10: el004412.
Bergland, A.O., Behrman, E.L., O’Brien, K.R., Schmidt, P.S. & Petrov, D.A. 2014. Genomic Evidence of Rapid and Stable Adaptive Oscillations over Seasonal Time Scales in Drosophila. PLOS Genetics 10: el004775.
Bergland, A.O., Tobler, R., Gonzalez, J., Schmidt, P. & Petrov, D. 2016. Secondary contact and local adaptation contribute to genome-wide patterns of clinal variation in Drosophila melanogaster. Molecular Ecology 25: 1157-1174.
Bierne, N., Welch, J., Loire, E., Bonhomme, F. & David, P. 2011. The coupling hypothesis: why genome scans may fail to map local adaptation genes: THE COUPLING HYPOTHESIS. Molecular Ecology 20: 2044-2072.
Bolger, A.M., Lohse, M. & Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114-2120.
Borchert, R., Calle, Z., Strahler, A.H., Baertschi, A., Magill, R.E., Broadhead, J.S., et al. 2015. Insolation and photoperiodic control of tree development near the equator. New Phytologist 205: 7-13.
Boyle, E.A., Li, Y.I. & Pritchard, J.K. 2017. An Expanded View of Complex Traits: From Polygenic to Omnigenic. Cell 169: 1177-1186.
Bradshaw, W.E., Emerson, K.J., Catchen, J.M., Cresko, W.A. & Holzapfel, C.M. 2012.
Footprints in time: comparative quantitative trait loci mapping of the pitcher-plant mosquito, Wyeomyia smithii. Proceedings of the Royal Society B: Biological Sciences 279:4551-4558.
85


Brennan, R.S., Healy, T.M., Bryant, H.J., La, M.V., Schulte, P.M. & Whitehead, A. 2018.
Integrative Population and Physiological Genomics Reveals Mechanisms of Adaptation in Killifish. Mol Biol Evol 35: 2639-2653.
Burri, R., Nater, A., Kawakami, T., Mugal, C.F., Olason, P.I., Smeds, L., etal. 2015. Linked
selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of Ficedula flycatchers. Genome Res. 25:1656-1665.
Bush, G.L. 1969. Sympatric Host Race Formation and Speciation in Frugivorous Flies of the Genus Rhagoletis (diptera, Tephritidae). Evolution 23: 237-251.
Butlin, R.K. & Smadja, C.M. 2018. Coupling, Reinforcement, and Speciation. The American Naturalist 192: 000-000.
Chandler, C.H., Chari, S., Tack, D. & Dworkin, I. 2014. Causes and Consequences of Genetic Background Effects Illuminated by Integrative Genomic Analysis. Genetics 196: 1321— 1336.
Chaturvedi, S., Lucas, L.K., Nice, C.C., Fordyce, J.A., Forister, M.L. & Gompert, Z. 2018. The predictability of genomic changes underlying a recent host shift in Melissa blue butterflies. Molecular Ecology 27: 2651-2666.
Cole, E.F. & Sheldon, B.C. 2017. The shifting phenological landscape: Within- and between-species variation in leaf emergence in a mixed-deciduous woodland. Ecology and Evolution 7: 1135-1147.
Consortium, T.H.G., Dasmahapatra, K.K., Walters, J.R., Briscoe, A.D., Davey, J.W., Whibley, A., etal. 2012. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487: 94.
Coughlan, J.M. & Willis, J.H. 2018. Dissecting the role of a large chromosomal inversion in life history divergence throughout the Mimulus guttatus species complex. Molecular Ecology 0.
Dambroski, H.R. & Feder, J.L. 2007. Host plant and latitude-related diapause variation in
Rhagoletis pomonella: a test for multifaceted life history adaptation on different stages of diapause development. Journal of Evolutionary Biology 20: 2101-2112.
Doellman, M.M., Egan, S.P., Ragland, G.J., Meyers, P.J., Hood, G.R., Powell, T.H.Q., etal. 2019. Standing geographic variation in eclosion time and the genomics of host race formation in Rhagoletis pomonella fruit flies. Ecology and Evolution 9: 393-409.
Doellman, M.M., Ragland, G.J., Hood, G.R., Meyers, P.J., Egan, S.P., Powell, T.H.Q., etal. 2018. Genomic Differentiation during Speciation-with-Gene-Flow: Comparing Geographic and Host-Related Variation in Divergent Life History Adaptation in Rhagoletis pomonella. Genes 9: 262.
86


Dres, M. & Mallet, J. 2002. Host races in plant-feeding insects and their importance in sympatric speciation. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 357: 471-492.
Egan, S.P., Ragland, G.J., Assour, L., Powell, T.H.Q., Hood, G.R., Emrich, S., etal. 2015.
Experimental evidence of genome-wide impact of ecological selection during early stages of speciation-with-gene-flow. Ecology Letters 18: 817-825.
Etges, W.J., Oliveira, C.C.D., Noor, M.A.F. & Ritchie, M.G. 2010. Genetics of Incipient Speciation in Drosophila Mojavensis. Iii. Life-History Divergence in Allopatry and Reproductive Isolation. Evolution 64: 3549-3569.
Ewing, E.P. 1979. Genetic Variation in a Heterogeneous Environment VII. Temporal and Spatial Heterogeneity in Infinite Populations. The American Naturalist 114: 197-212.
Feder, J.L., Berlocher, S.H., Roethele, J.B., Dambroski, H., Smith, J.J., Perry, W.L., etal. 2003a. Allopatric genetic origins for sympatric host-plant shifts and race formation in Rhagoletis. Proceedings of the National Academy of Sciences 100: 10314-10319.
Feder, J.L., Berlocher, S.H., Roethele, J.B., Dambroski, H., Smith, J.J., Perry, W.L., etal. 2003b. Allopatric genetic origins for sympatric host-plant shifts and race formation in Rhagoletis. PNAS 100: 10314-10319.
Feder, J.L. & Bush, G.L. 1989. Gene frequency clines for host races of Rhagoletis pomonella in the Midwestern United States. Heredity 63: 245-266.
Feder, J.L., Chilcote, C.A. & Bush, G.L. 1988. Genetic differentiation between sympatric host races of the apple maggot fly Rhagoletis pomonella. Nature 336: 61-64.
Feder, J.L., Egan, S.P. & Nosil, P. 2012. The genomics of speciation-with-gene-flow. Trends in Genetics 28: 342-350.
Feder, J.L., Hunt, T.A. & Bush, L. 1993. The effects of climate, host plant phenology and host fidelity on the genetics of apple and hawthorn infesting races of Rhagoletis pomonella. Entomologia experimentalis et applicata 69: 117-135.
Feder, J.L. & Nosil, P. 2009. Chromosomal inversions and species differences: when are genes affecting adaptive divergence and reproductive isolation expected to reside within inversions? Evolution 63: 3061-3075.
Feder, J.L., Opp, S.B., Wlazlo, B., Reynolds, K., Go, W. & Spisak, S. 1994. Host fidelity is an
effective premating barrier between sympatric races of the apple maggot fly. Proceedings of the National Academy of Sciences 91: 7990-7994.
Feder, J.L., Roethele, J.B., Filchak, K.E., Niedbalski, J. & Romero-Severson, J. 2003c. Evidence for inversion polymorphism related to sympatric host race formation in the apple maggot fly, Rhagoletis pomonella . Genetics 163: 939-953.i
87


Full Text

PAGE 1

!"#$%#&'()*$ +,-)-$'.$ /),0,1-#$,&/$)!-$)&.21#&*#$'&$&'3#2$ "'-!$ ,/,0!,!)'&$)&$!"#$,002#$(,%%'!$.24$ !"#$%&'()*+,%-%.'&&# $ 56 $ (7*,22$+,)&$*,23#8! $ +9-9:$+;<=>?$*=<<;@;:$ABCD $ $ ,$?E;F>F$FG5H>??;I$?=$?E;$ $ .J7GN;LF>?6$=K$*=<=LJI =$>M$OJL?>J<$KG<L;H;M?F$K=L$?E;$I;@L;;$=K$ $ (JF?;L$=K$-7>;M7;$ $ +>=<=@6$0L=@LJH $ ABCQ $ $ $ $ $ $

PAGE 2

! ! >> ! !E>F$?E;F>F$K=L$?E;$(JF?;L$=K$-7>;M7;$ 56$ $ (7*J<<$+J>M$*J=<=@6$0L=@LJH $ 56$ $ $ %L;@=L6$8J@L $ (>7E J;<$%L;; M $ #L>7J$2JLF=M $ $ /J ?;R$(J6$ C S :$ABCQ $ $ $ $ $ $ $

PAGE 3

! ! >>> ! *JM$ T(9-9:$+>=<=@6$0L=@LJHU $ $ ! "#$%#&'()*$8#2,!)'&")0$+#!V##&$!V'$/),0 ,1-#$!8,)!-$,&/$!"#) 8$)&.21#&*#$'&$8,0)/ $ "'-!$,/,0!,!)'&$)&$! "#$,002#$(,%%'!$.24$ ! "#$%&'()*+,%-%.'&& # $ !E;F>F$I>L;7?;I$56$,FF>F?J M?$0L=K;FF=L$%L;@=L6$8J@M@$J$7<;JL$GMI;LF?JMI>M@$=K$LJO>I$JIJO?> N;$;N==M$L;PG>L;F$WM=X<;I@;$=M$ MJ?GLJ<$F;<;7?>=M:$L;=MFE>OF$5;?X;;M$@;M=?6O;$JMI$OE;M=?6O;:$JMI$F?JMI>M@$NJL>J?>=M$>M$?LJ>?F$ OG?J?>N; <6$GMI;L$F;<;7?>=M9$"=X;N;L: $ L;7;M?$F?GI>;F$?EJ?$EJN;$JHJFF;I$?E;F;$O>;7;F$=K$ >MK=LHJ?>=M$EJN;$F?><<$F?LG@@<;I$ ?=$J 77GLJ?;<6$OL;I>7?$;>?E;L$?E;$@;M;?>7$<=7>$L;FO=MI>M@$?=$ F;<;7?>=M$=L$?E;$I>L;7?>=M$=K$J<<;<>7$7EJM@;$J?$?E=F;$<=7>9$+6$OL;I>7?J5><>?6$=K$;N=< G?>=M:$X;$H;JM$ ?E;$I;@L;;$=K $ 7=M7=LIJM7;$?EJ?$;Y>F?F$ CU$ 5;?X;;M $ ;F$JMI$ NJL>J?>=M$>M$MJ?GLJ<$O=OG=MF$=L$AU$ JH=M@$HGO<;$MJ?GLJ<$O=OG=MF$L;FO=MI>M@$?=$?E;$FJH;$ F;<;7?>=M$OL;FFGL;F9$)M$7EJO?;L$C$=K$?E>F $ X=LW :$X; $ FE=X$?EJ?$J$O=FF>5<;$L;JF=M $ K=L$?E;$ >M7=M@LG;M76$5;?X;;M$;;F$H>@E?$5;$JM$>M7=HO<;?;$WM=X<;I@;$=K$?E;$ HGNJL>J?;$?LJ>?$7=H5>MJ?>=MF$?EJ?$L;FO=MI$?=$F;<;7?>=M$>M$J$7=LL;;F$>M$?E;$JOO<;$HJ@@=?$K<6$ ! /01234567+8292:4330 $ EJN;$=5F ;LN;I$J$OJLJI=Y>7J<$L;=MFE>O$ 5; ?X;;M$@;M;?>7$NJL>J?>=M$GMI;LO>MM>M@$I>KK;L;M?>J?>=M$5;?X;;M$E=F? Z JFF=7>J?;I$O=OG=MF$JMI$ J$W;6 $ <>K;$E>F?=L6$?LJ>? $ 7=M?L>5G?>M@$?=$E=F?$JIJO?J?>=M: $ I>JOJGF;$?;LH>MJ?>=M9$ V; $ K=GMI$?EJ?$ NJL>J? >=M$>M$I>JOJGF;$?;LH>MJ?>=M$ >F$7<=F;<6$L;K;$ E>F?=L6$?LJ>?$OG?J?>N;<6$GMI;L$ F;<;7?>=M:$I>JOJGF;$>M?;MF>?6:$;>?E;L$?EL=G@E$<>MWJ@;$=L$O<;>=?L=O69$ .GL?E;LH=L;: $ E>F?=L>7J<:$ @;=@LJOE>7$F;<;7?>=M$>M + !;+8292:4330+ EJF $ <>W;<6 $ FEJO;I$?E;$JNJ>7$NJL>J?>=M$>M$J$ I>L; 7?>=M$JM?J@=M>F?>7$?=$KJN=L;I$?LJ>? $ 7=H5>MJ?>=M$>M$M;X<6$I;L>N;I$E=F? Z JFF=7>J?;I$O=OG=MF9 $

PAGE 4

! ! >N ! *EJO?;L$A$K=<<=XF$GO$=M$?E;$K>MI>M@F$=K$*EJO?;L$C$56$JIIL;FF>M@$XE;?E;L$?E;$ @;M;?>7$NJL>J?>=M$ JMI$JL7E>?;7?GL;$=K$I>JOJGF;$?;LH>MJ?>=M :$JMI$>M$?GLM:$O=OG=M$I> N;L@;M7;$>F$7=MF>F?;M?$J7L=FF$ @;=@L JOE69$!E;$IJ?J$7=<<;7?;I$K=L$*EJO?;L$A$M;;IF$KGL?E;L$JMJ<6F>F:$5G?$K>MI>M@F$L;O=L?;I$E;L;$ FG@@;F?$?EJ?$F=H;$@;M;?>7$7EJLJ7?;LF$JFF=7>J?;I$X>?E$I>JOJGF;$?;LH>MJ?>=M$JL;$7=MF;LN;I$X>?E$ @;=@LJOE6 : $ XE><;$=?E;LF$JL;$E>@E<6$GM> PG;$?=$J$@>N;M$ F>?; 9$!E;$@;M;?>7$JL 7E>?;7?GL;$=K$O=OG=M$ I>N;L@;M7;:$>M$?GLM:$JOO;JLF$?=$5;$GM>PG;$?=$J$@>N;M$O=OG=M$OJ>L9$ V;$I>F7GFF$I>L;7?>=MF$K=L$ KG?GL;$JMJ<6F>F$JMI$OL=N>I;$F=H;$FO;7G=M$=M$GMI;L<6>M@$H;7EJM>FHF9$ $ !E;$K=LH$JMI$7=M?;M?$=K$?E>F $ J5F?LJ7?$JL;$JOOL=N;I9$)$L;7=HH;MI$>?F$OG5<>7J?>=M9$ $ ,OOL=N;IR$ %L;@=L6$8J@
PAGE 5

! ! N ! $ $ $ $ $ $ $ $ $ $ $ $ $ <2=+>4052: + + $ $

PAGE 6

! ! N> ! ! &()*+,-./-0-)$# ' ' $ )$XJF$E;F9$)$X=GW;$?=$?EJMW$JMI$ J7WM=X<;I@;R$ $ $ %L;@$8J@M@$>M?=$E >F$I>M@$FGOO=L?$>M$F=$HJM6$JFO;7?F$=K$?E;$ OL=[;7?$7=M?J>M;I$X>?E>M$?E>F$?E;F>F:$JMI$H;M?=L>M@$H;$ =M$FW><M@$X=MI;LKG<$JMI$FGOO=L?>N;$7=<<;J@G;FR$ (JL>JMM;$/JN;MO=L?:$#II6$/=X<;:$#L> MJ$8JI;L:$2J<>?6J$,MIJ<==L>:$JMI$\JM?>MJ$!=Y=O;GF 9$ $ $ 'GL$7=<?E$/=;<?E9 $ $ ,<<$=K$?E;$=?E;L$KJ7GM$?E;$/;OJL?H;M?$=K$)M?;@L J?>N;$+>=<=@69$)M$ OJL?>7G7EJ;<$ %L;;M$K=L$OL=N>I>M@$GF;KG<$>M?;<<;7?GJ<$K;;I5J7W$IGL>M@$OL=[;7?$I;F>@ M$JMI$K=L$F;LN>M@$=M$H6$ 7=HH>??;; :$ (>7EJ<$VGMI;L$K=L$ >MF?LG7?>M@$?X=$;M<>@E?;M>M@$F?J?>F?>7F$7=GLF;F$?EJ?$>MKL;7?>=M$?E>F$X=LW$?==W:$,M M>WJ$(=F>;L$K=L$J<<$=K$?E;$>M?;<<;7?GJ<$K;;I5J7W$)$L;7;>N;I$>M$E;L;$ +>=<=@>7J<$V=LWFE=O$7=GLF;F:$JMI$\=EM$XJ<<=X$K=L$OL=N>I>M@$7=MF?LG7?>N; $ K;;I5J7W$IGL>M@$ OL=[;7?$I;F>@M9$ $ $ (JM6$F?GI;M?F$X>?E>M$?E;$I;OJL?H;M?$=K$)M?;@LJ?>N;$5>=<=@6$K=L$>M?;<<;7?GJ<$JMI$; H=?>=MJ<$ FGOO=L?:$;FO;7>J<<6$?E=F;$;M@J@;I$X>?E$H;$I;;O<6$=M$FO;7>K>7$?=O>7F$X>?E>M$?E>F$?E;F>F$JMI$[GF?$ 5; 6=MIR$&>7W$+JLI:$,MIL;X$(7/;N>??: $ 2>556$0JMF>M@:$,<<>$0>;L7;:$#L>M$-JMI;LF:$#H><6$-7=??:$ -7=??$4JM7=:$JMI$JM6=M;$;=M 9$ $ ! #L>7J$2JLF=M$K=L$F;LN>M@$=M$H6$(JF?;L]F$7=HH>??;;$JMI$OL=N>I>M@$;Y7;<<;M?$K;;I5J7W:$ JMI$HJM6$=?E;L$KJ7G M$?E;$/;OJL?H;M ?$=K$+>=<=@6$J?$?E;$1M>N;LF>?6$=K$/;MN;L$ K=L$OL=N>I>M@$KGM$7=MN;LFJ?>=M$IGL>M@$<=7J<$7=MK;L;M7;F$<>W;$?E;$%G>M$ #7=<=@>F?F$JMI$#N==MJL6$+>=<=@>F?F$T%8##+FU9 $

PAGE 7

! ! N>> ! $ (6$0JL;M?F:$^J?E6$+J>M$JMI$%;=KK$*JL$GM;MI>M@$FGOO=L?$JMI$<=N ;9 $ $ ,MI$;M7; :$JMI$FGOO=L?$?EL=G@E$;N;L6$ F?;O$=K$J7E>;N>M@$H6$(JF? ;L]F$I;@L;;9$ $ $ ! ! !

PAGE 8

! ! N>>> ! )9 ! ! "#$%#&'()*-$'.$(12!) 3,8),!#$!8,)!$*'(+)& ,!)'&-$,&/$!"#)8$)&. 21#&*#$'&$!"#$ 08#/)*!,+)2)!4$'.$#3 '21!)'& $ 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999 $ C ! )M?L=IG7?>=M $ 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 99 $ C ! (;?E=IF$_$HJ?;L>J=M$JMI$L;JL>M@ $ 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 999999999 $ ` ! %;M=?6O>M@ Z 56 Z F;PG;M7>M@ $ 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 999999 $ S ! 0L;N>=GF<6$OG5<>FE;I$%+-$F?GI>;F $ 99999999999999999999999999999999 99999999999999999999999999999999 999999999999999999999999999 $ S ! />JOJGF;$>M?;MF>?6$OE;M=?6O>M@ $ 99999999999999999999999999999999 99999999999999999999999999999999 9999999999999999999999999999999 $ Q ! %;M=?6O>M@ $ I>JOJGF;$>M?;MF>?6$OE;M=?6O;F $ 99999999999999999999999999999999 99999999999999999999999999999999 999999999999 $ CA ! /J?J$JMJ<6F>F $ 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999 $ Ca ! 8;FGJOJGF;$>M?;MF>?6$I>KK;LF$5;?X;;M$E=F?$LJ7;F $ 99999999999999999999999999999999 99999999999999999999999999999999 99999999 $ Cb ! -?L=M@$@;M;?>7$JFF=7>J?>=MF$X>?E$ ?E;$FE J<<=X$I>JOJGF;$>M?;MF>?6$OE;M=?6O; $ 9999999999999999999999999 $ C` ! *EL=H=F=HJ<$I>F?L>5G?>=M$=K$I>JOJGF;$>M?;MF>?6 Z JFF=7>J?;I$<=7> $ 99999999999999999999999999999999 99999999999 $ CS ! "=F?$8J7;$/>N;L@;M7;$K=L$/>JOJGF; Z JFF=7>J?;I$<=7> $ 99999999999999999999999999999999 999999999999999999999999999999 $ CS ! %;M;?>7 $ J FF=7>J?>=MF$5;?X;;M$I>JOJGF;$>M?;MF>?6$JMI$I>JOJGF;$?;LH>MJ?>=M $ 99999999999999999999999999 $ CQ ! *<>MJ<$NJL>J?>=M$K=L$I>JOJGF;$JFF=7>J?;I$<=7> $ 99999999999999999999999999999999 99999999999999999999999999999999 9999999999 $ AB ! -;<;7?>=M$L;FO=MF;$=K$I>JOJGF; Z JFF=7>J?;I$<=7> $ 99999999999999999999999999999999 99999999999999999999999999999999 999999 $ AB ! />F7GF F>=M $ 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 99 $ AC ! #N>I;M7;$K=L$E>F?=L>7:$7<>MJ<$F;<;7?>=M$JMI$JM?J@=M>F?>7$O<;>=?L=O6$>M$ 8EJ@=<;?>F$O=H=M;<;=M $ 99999999999999999999999999999999 99999999999999999999 $ AD ! ,M?J@=M>F ?>7$O<;>=?L=O6$JMI$@;M=H>7$I>N;L@;M7; $ 99999999999999999999999999999999 99999999999999999999999999999999 99 $ Ab ! -GHHJL6 $ 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 $ AS !

PAGE 9

! ! >Y ! ))9 ! * '&-)-!#&*4$'.$!"#$%# &#!)*$,8*")!#*!18#$' .$,$%#'%8,0")*,224$3 ,84)&%$-#,-'&, 2$ !8,)!$,&/$)!-$*'&!8) +1!)'&$!'$-0#*),!)'& $ 99999999999999999999999999999999 99999999999999999999999999999999 99 $ cc ! )M?L=IG7?>=M $ 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 $ cc ! (J?;L>J=M $ 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999 $ cS ! />JOJGF;$?;LH>MJ?>=M$%V,$ 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 9 $ cQ ! />JOJGF;$)M?;MF>?6$%V,$ 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 99999 $ cQ ! -;PG;M7>M@$JMI$+>=>MK=LHJ?>7F $ 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999 $ DB ! ,FF>@MH;M?$?=$2>MWJ@;$%L=GOF $ 99999999999999999999999999999999 99999999999999999999999999999999 999999999999999999999999999999 $ DA ! %;M;?>7$JL7E>?;7?GL;$=K$I>JOJGF;$?;LH>MJ?>=M$JMI$>M?;MF>?6 $ 99999999999999999999999999999999 9999999999999999999 $ Da ! *J<7G=M$=K$J<<;<;$KL;PG;M76$I>KK;L ;M7;F $ 99999999999999999999999999999999 99999999999999999999999999999999 999999999999 $ Dc ! *=LL;=MF$=K$J<<;<;$KL;PG;M76$I>KK;L;M7;F $ 99999999999999999999999999999999 99999999999999999999999999999999 9999999999 $ Dc ! 8;FG7$,L7E>?;7?GL; $ 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 99999999999 $ DD ! 'L>;M?J?>=M$=K$<=7>$JFF=7>J?>=M$X>?E$I>JOJGF;$>M?; MF>?6$JMI$E=F?$LJ7; $ 99999999999999999999999999999999 9999 $ DD ! ,FF=7>J?>=M$5;?X;;M$I>JOJGF;$>M?;MF>?6$JMI$I>JOJGF;$?;LH>MJ?>=M $ 99999999999999999999999999999999 99999999 $ Db ! *<>MJ<$NJL>J?>=M$>M$I>JOJGF;$>M?;MF>?6$JMI$I>JOJGF;$?;LH>MJ?>=M $ 99999999999999999999999999999999 999999999999 $ D` ! 8;=MFE>O$=K $ I>JOJGF;$>M?;MF>?6$JMI$?;LH>MJ?>=M$?=$E=F?$LJ7;$I>KK;L;M7;F $ 9999999999999999999999999 $ DS ! / >F7GFF>=M $ 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 99 $ DQ ! 8 #.#8#&*#$ 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999 $ SD ! , 00#&/)d $ ,9 ! *EJO?;L$C$/>JOJGF;$>M?;MF>?6$OE;M=?6O>7$IJ?J $ 99999999999999999999999999999999 99999999999999999999999999999999 99 $ Qc $

PAGE 10

! ! Y ! +9 ! *EJO?;L$C $ FGOO<;H;M?J<$H;? E=IF $ 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999 $ Q` $ *9 ! *EJO?;L$C$FGOO<;H;M?J<$L;FG=M$OL=?=7=< $ 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 9 $ CBb $ #9 ! *EJO?;L$A$FGOO<;H;M?J<$L;FG
PAGE 11

! ! Y> ! , 1#$'*2' $ !",-# ' C9 ! *=LL; =M$7=;KK>7>;M?F$=K$J<<;<;$KL;PG;M76$I>KK;L;M7;$7=HOJL>F=MF$T*EJO?;L$C:$!J5<;$CU $ 999999999999 $ AQ $ A9 ! *=L L;=M$7=;KK>7>;M?F$K=L$J<<;<;$KL;PG;M76$I>KK;L;M7;F$5;?X;;M$I>JOJGF;$?;LH>MJ?>=M$JMI$E=F?$ LJ7;$I>KK;L;M? >J?>=M$T*EJO?;L$C:$!J5<;$AU $ 99999999999999999999999999999999 99999999999999999999999999999999 999999999999999999999999 $ aA $ $ a9 ! *=LL;=M$7=;KK>7>;M?F$=K$I>JOJGF; $ >M?;MF>?6$NF9$I>JOJGF;$?;LH>MJ?>=M$$T*EJO?;L$A:$?J5<;$CU $ 9999999 $ bc $ c9 ! *=LL;=M$7=;KK>7>;M?F$=K$I>JOJGF;$?;LH>MJ?>=M$J?$%LJM?:$()$NF9$@;=@LJOE6$T*EJO?;L$A:$!J5<;$AU $ 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 999999999999999999999999 $ bD $ D9 ! *=LL;=M$7=;KK>7>;M?F$=K$I>JOJGF;$?;LH>MJ?>=M$J?$1L5JMJ:$)2$NF9$@;=@LJO E6$T*EJO?;L$A:$!J5<;$aU $ 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 999999999999999999999999 $ bb $ b9 ! *=LL;=M$7=;KK>7>;M?F$=K$I>JOJGF; $ >M?;MF>?6$NF9$@;=@LJOE6$T*EJO?;L$A:$ !J5<;$cU $ 99999999999999999999999 $ b` $ `9 ! *=LL;=M$7=;KK>7>;M?F$= K$I>JOJGF;$?;LH>MJ?>=M$NF9$E=F?$LJ7;$I>KK;L;M7;F$J?$%LJM?:$()$T*EJO?;L$A:$ !J5<;$DU $ 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 99999999999 $ bS $ S9 ! *=LL;=M$7= ;KK>7>;M?F$=K$I>JOJGF;$?;LH>MJ?>=M$NF9$E=F?$LJ7;$I>KK;L;M?>J?>=M$J?$1L5JMJ:$)2$ T*EJO?;L$A:$!J5<;$ bU $ 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 999999999999999999999999 $ bQ $ Q9 ! *=LL;=M$ 7=;KK>7>;M?F$=K$I>JOJGF;$>M?;MF>?6$NF9$E=F?$L J7;$I>KK;L;M?>J?>=M$T*EJO?;L$A:$!J5<; $ `U $ 99 $ `B $ $ $ $

PAGE 12

! ! Y>> ! $ , 1#$'*2' 2 1/3%-# ' C9 ! *=M7;O?GJ<$K>@GL;$=K$E>F?=L>7J<$JMI$7=M?;HO=LJL6$F;<;7?>=M$JMI$I>JOJGF;$OE;M=?6O;F$T*EJO?;L$C:$$ .> @GL;$CU $ 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 999999999 $ aa $ A9 ! (;?J5=<>7$LJ?;$?LJ[;7?=L>;F$JMI$I>JOJGF;$7;F$T*EJO ?;L$C:$.>@GL;$AU $ 99999999999999999999999999 $ aD $ a9 ! 8;FGMI>N>IGJ<$O=<6@;M>7$ F 7=L;F$T*EJO?;L$C:$.>@GL;$aU $ 99999999999999999999999999999999 99 $ ab $ c9 ! F>@M>K>7JM?$-&0F$J7L=FF$?E;$8EJ@=<;?>F$O=H=M ;<@GL;$cU $ 999999999999999999999999 $ a` $ D9 ! 8;=MFE>OF$5;?X;;M$?E;$ F?L;M@?E$=K$@;M;?>7$JFF=7>J?>=MF$>M$%+-$;YO;L> H;M?F$T*EJO?;L$C:$.>@GL;$ DU $ 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 999999999999999999999 $ aQ $ b9 ! d Z K=@GL;$bU $ 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999 $ cB $ `9 ! 'N;LMJ <$NJL>J?> =M$>M$J<<;<;F$F>@M>K>7JM?<6$JFF=7>J?> =M$X>?E$I>JOJGF;$?;LH>MJ?>=M$JMI$ I>JOJGF;$>M?;MF>?6T*EJO?;L$C:$.>@GL;$`U $ 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999 $ cA $ S9 ! #ML>7EH;M?$=K$<=7>$F>@M>K>7JM?<6$JFF=7>J?; I$X>?E$I>JOJGF;$>M?;MF>?6$T*EJO?;L$A:.>@GL;$CU $ `C $ Q9 ! #ML>7EH;M?$=K$ <=7>$F>@M>K >7JM?<6$JFF=7>J?;I$X>?E$I>JOJGF;$?;LH>MJ?>=M$J?$1L5JMJ:$)2$T*EJO?;L$A:$ .>@GL;$AU $ 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 999999999 $ `A $ CB9 ! #ML>7EH;M?$=K$<=7>$ F>@M>K>7JM?<6$JFF= 7>J?;I$X>?E$5=?E$I>JOJGF;$>M?;MF>?6$JMI$I>JOJGF;$?;LH>MJ?>=M$ T*EJO?;LA:$.>@G L;$aU $ 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999 $ `a $ CC9 ! #ML>7EH;M?$=K$<=7>$X>?E$J<<;<>7$ JFF=7>J?>=M$>M$5=?E$I> JOJGF;$?;LH>MJ?>=M$JMI$E=F?$LJ7;$J?$%LJM?:$ ()$T*EJO?;LA:$. >@GL;$cU $ 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 999999999999999999 $ `c $ CA9 ! #ML>7 EH;M?$=K$<=7>$X>?E$J<<;<>7$JFF=7>J?>=M$ >M$5=?E$I>JOJGF;$?;LH>MJ?>=M$JMI$E=F?$LJ7;$J?$%LJM?:$ ()$T*EJO?;LA:$.>@GL;$DU $ 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 999999999999999999 $ `b $ Ca9 ! 8; =MFE>O$5;?X;;M$I>JOJGF;$>M?;MF>?6$JMI$I>JOJGF;$?;L H>MJ?>=M$T*EJO?;L$A:$. >@GL;$bU $ 999999999999 $ `S $ Cc9 ! 8;=MFE>O$5;?X;;M$I>JOJGF;$?;LH>MJ?>=M$JMI$@;=@L JOE6$T*EJO?;L$A:$.>@GL;$`U $ 999999999999999999999999 $ `Q $ CD9 ! 8;=MFE>O$5;?X;;M$I>JOJGF;$>M?;MF>?6$JMI$@ ;=@LJOE6$T*EJO?;L$A:$.>@GL;$SU $ 9999999999999999999999999999 $ SC $

PAGE 13

! ! Y>>> ! Cb9 ! 8;=MFE>O$5;?X;;M$I>JOJGF; $ OE;M=?6O;F$JMI$E=F?$LJ7;$I>KK;L;M7;F$J?$%LJM?:$()$T*EJO?; LA:$ .>@GL;$QU $ 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 999999999 $ SA $ C`9 ! 8;=MFE>O$5;?X;;M$I>JOJGF;$?;LH>MJ?>=M$JMI$E=F?$LJ7;$I>KK;L;M7;F$J?$1L5JMJ:$)2$T*EJO?;L$A:$ .>@GL;$CBU $ 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 99999999999999999999999999999999 9999999 $ Sc $

PAGE 14

$ ! ! C ! )9 ! ! "#$%#&'()*-$'.$(12!) 3,8),!#$!8,)!$*'(+)& ,!)'&-$,&/$!"#)8$ )&.21#&*#$'&$!"#$08# /)*!,+)2)!4$'.$#3'21 !)'& $ ' 14 56789:5;74 ' ,$7=HH=M$@=J<$JH=M@$;N==MJL6$5>=<=@>F?F$>F$?=$;NJ7$5JF>F$=K$ JIJO?J?>=M$ T-?>M7E7=H5;$_$"=;WF?LJ:$ABB`e$.G?G6HJ:$ABCBU 9 $ /; N;<=O>M@$J$7=HOL;E;MF>N;$ GMI;LF?JMI>M@$=K$JIJO?J?>=M$L;PG>L;F$WM=X<;I @;$=K$MJ?GLJ<$F;<;7?>=M:$?E;$@;M=?6O; Z ?= Z OE;M=?6O;$ L;=MFE>OF$ K=L$?LJ>?F$ L;FO=MI>M@$?=$F;<;7?>=M:$JMI$F?JMI>M@$@;M;?>7$NJL>J?>=M$K=L$?E=F;$?LJ>?F$ T0KL;MI;L:$ABCAU 9$!E;$7<;JL;F?$I; F7L>O?>=MF$ = K$?E;$@;M=H>7$5JF>F$=K$JIJO?J?>=M$EJN;$5;;M$HJI;$>M$ F6F?;HF$XE;L;$X;<<$I;K>M;I:$I>L;7?>=MJ<$F;<;7?>=M$=O;LJ?;F $ =M$?LJ>?F$7=M?L=<<;I$56$J$EJMIKG<$=K$ <=7>$=K$HJ[=L$;KK;7?$ T#?@;F$ 45+03; :$ABCBe$3>J$ 45+03; :$ABCAe$-=L>J Z *JLLJF7=$ 45+03; :$ABCce $ 0;>7E;<$_$ (JLPG;F:$ABC`e$*EJ?GLN;I>$ 45+03; :$ABCSU 9$ 'K?;M:$?E;F;$F?GI>;F$EJN;$7=MK>LH;I$ 0 ? 8=62=6 $ ;YO;7?J?>=MF $ =K$?E;$L;=MFE>OF$JH=M@$@;M=?6O;:$OE;M=?6O;:$JMI$F;<;7?>=Me$@;M;?>7$NJL>J?>=M$>M$ J$FO;7>K>7$?LJ>?$L;FO=M I>M@$?=$F;<;7?>=M$7<=F;<6$H>LL=L;I$@;M ;?>7$NJL>J?>=M$5;?X;;M$O=OG=MF$ L;FO=MI>M@$?=$I>N;L@;M?$F;<;7?>=M9$*7$;YJHO<;F$>M7I;M?>K>7J?>=M$ JMI$7EJLJ7?;L>fJ?>=M$=K$ ?E;$ '@52AB783076:+ @;M;$K=L$M$F?>7W<;5J7W$K>FE:$?E;$ #&CD+ E JO<=?6O;$ JFF=7>J?;I$X>?E$5;JW$F>f;$>M$ /JLX>M]F$K>M7E;F:$?E;$ 2856E+ @;M;F$K=L$X>M@$7=<=L$O=<6H=LOE>FH$>M$ "436@2:6F7 $ 5G??;LK<>;F:$JMI$?E;$ 012F56 $ @;M;$K =L$7=J?$7=<=L + >M$K>;7;$ T-?;>M;L$ 45+03; :$ABB`e$ +JLL;??$ 45+03; :$ABBS:$ABCQe$8;;I$ 45+03; :$ABCCe$2JH>7EEJM; 6$ 45+03; :$ABCDU 9$ $ ,F$@;M=H>7$?;7EM> PG;F$EJN;$5;7=H;$F?L;JH<>M;I$JMI$K>MJM7>J<<6$J77;FF>5<;:$H=L;$F?GI>;F$ EJN;$;YO<=L;I$?E;$@;M;?>7$5JF>F$=K$JIJO? J?>=M$>M$PGJM?>?J?>N;$JMI$O=<6@;M>7$?LJ>?F$ T+LJIFEJX$ 45+ 03; :$ABCAe$#@JM$ 45+03; :$ABCDe$+L;MMJM$ 45+03; :$ABCSe$*EJ?GLN;I>$ 45+03 ; :$ABCSU 9$ 1MI;L$O=<6@;M>7$ H=I;=M:$EGMIL;IF$?=$?E=GFJMIF$=K$@;M;?>7$<=7>$7=M?L>5G?;$?=$NJL>J?>=M$>M$J$?LJ>?$

PAGE 15

$ ! ! A ! GMI;L$F;<;7?>=M$JMI:$?E; L;K=L;:$?E;$;KK;7?$=K$JM6$F>M@<;$<=7GF$>F$;YO;7?;I$?=$5;$FHJ<<$ T8=7WHJM:$ ABCAe$+=6<;$ 45 + 03; :$ABC`U 9$!E;$X;JW$F>@MJ<$=K$JM6$@>N;M$NJL>JM?$>F$I>KK>7G=M$7JM$JOO;J L$JF$@;M=H; Z X>I;$FE>K?F$>M$J<<;<;$KL;PG;M7> ;F$=L$I;7L;JF;F$>M$ MG7<;=?>I;$I>N;LF>?6$FG@@;F?>N;$=K$F=K?$F;<;7?>N;$FX;;OF$ T";LH>FF=M$_$0;MM>M@F:$ABBDe$+;L@$_$ *==O:$ABCcU 9$!E;$J5><>?6$?=$>I;M?>K6$7JGFJ<$NJL>JM?F$JMI$JL7E>?;7?GL;F$=K$JIJO?J?>=M$>F$ F?L;M@?E;M;I$XE;M$@;M=H;$X>I;$JFF=7>J?>=M$T%V,U$F?GI>;F$K=L$?LJ>?F$OG?J?>N;<6$GMI;L$F;<;7?>=M$ JL;$7=H5>M;I$X>?E$@;M=H ; $ F7JMF$K=L$I>N;L@;M?$<=7>$5;?X;;M$O=OG=MF$ T;9@9$+L;MMJM$;?$J<9$ ABCSU 9$\GF?$JF$X>?E$L;F;JL7E$=M$?E;$@;M;?>7$5JF>F$=K$JIJO?J?>=M$=M$7=HOJLJ?>N;<6$F>HO<;L$?LJ>?F$ I;F7L>5;I$J5=N;:$FG7E$JOOL=J7E;F$EJN;$=K?;M$=5F;LN;I$F?L=M@$J<>@MH;M?$5;?X;;M$?E;$<=7>$ GMI;L<6>M@$JM$ JIJO?>N;:$PGJM?>?J?>N;$?LJ>?$JMI$<=7>$7=M?L>5G?>M@$?=$O=OG=M $ I>KK;L;M?>J?>=M$ T'LF>M>$ 45+03; :$ABCAe$3>J$ 45+03; :$ABCAe$-=L>J Z *JLLJF7=$ 45+03; :$ABC ce$.=GM?J>M$ 45+03; :$ABCbe$+L;MMJM$ 45+03; :$ABCSe$!L=?E$ 45+03; :$ABCS U 9$ $ /;FO>?;$?E>F$JOOJL;M?$H;FE>M@$=K$@;M;?>7$;N>I;M7;:$?E;$I>L;7?>=M$=K$J<<;<;$KL;PG;M76$ 7EJM@;$>F$M=?$J?J?>N;$?LJ>?$<=7GF$Tg!2U$ ;YO;L>H;M?F $ JMI$@;M=H;$F7JMF$>M$MJ?GLJ<$O=OG=MF9$";L;:$?E;$;YO;7?J?>=M$ >F$?EJ?$JM$J<<;<;$ >M7L;JF>M@$?E;$JIJO?>N;$NJ?$?EJ?$>F$GMI;L$O=F>?>N;:$I>L;7?>=MJ<$F;<;7?>=M$FE=G@E;L$KL;PG;M7>;F$>M$?E;$MJ?GLJ<$O=OG=M$;YO;L>;M7>M@$F;<;7?>=M9$VE ><;$MGH;L=GF$F?GI>;F$EJN;$ =5F;LN;I$=N;LM$@;M;?>7$<=7>$L;FO= MI>M@$>M$5=?E$=M$JMI$K>;H;M?F:$ ?E;$F>@M$=K$J<<;<;$KL;PG;M76$7EJM@;$5;?X;;M$I>N;L@;M?$O=OG=MF$>M$MJ?GL;$I=;F$M=?$J=MF$I;L>N;I$KL=H$=MF9$.=L$;YJHO<;:$@;M;?>7$I>KK;L;M7;F$>M$ E=F?$O;LK=LHJ M7;$=K$E=F? Z JFF=7>J?;I$O=OG=MF$=K$(;<>FFJ$5;F$ &B@04A47+ 9 436770 $ FG77;FFKG<<6$OL;I>7?;I$HJM6$=K$?E;$<=7>$I>KK;L;M?>J?;I$5;?X;;M$MJ?GLJ<$O=OG=MF:$5G?$M=?$ J@M$=K$? E;$J<<;<;$KL;PG;M76$7EJM@;$J?$?E=F;$<=7>$ T*EJ?GLN;I>$ 45+03; :$ABCSU 9$-?GI>;F$=M$

PAGE 16

$ ! ! a ! G08/:60+ XJ?;L$K<;JF:$O;J$JOE>IF:$JMI$%<<;$KL>?><;F$EJN;$=5F;LN;I$F>H>M7=M@LG;M7;$5;?X;;M$;;F:$J<5;>?$X>?E$NJL6>M@$I;@L;;F$=K$OL;I>7?J5><>?6$ T'LF>M>$ 45+03; :$ABCAe$3>J$ 45+03; :$ABCAe$.=GM?J>M$ 45+03; :$ABCbU 9$'M;$;YO=M$>F$?EJ?$JFF=7>J?;I$ -&0F$JMI$?E;$J7?GJ<:$7JGFJ<$NJL>JM?F$EJN;$I>KK;L;M?$OEJF;h2/$L;=MFE>OF$>M$I>KK ;L;M?$ O=OG=MF$ T2>MM;M:$ABCSU 9$,$MJ?GLJ<$;Y?;MF>=M$=K$?E>F$E6O=?E;F>F$>F$?EJ?$@;M=H >7$OL;I>7?J5><>?6$ FE=GM7L;JF;$X>?E$?E;$OL=O=L?>=M$=K$?E;$@;M=H;$?EJ?$>F$F;PG;M7;I:$5G?$XE=<;$@;M=H;$ F;PG;M7;$IJ?J$KL=H$ (69490+ F?>7W$> MF;7?F$I>I$M=?$L;N;J<$;<;NJ?;I$<;N;7$OL;I>7?J5><>?6$ 5;?X;;M$I>KK;L;M?$E=F?$JFF=7>J?;I$O=OG=M F $ T-=L>J Z *JLLJF7=$ 45+03; :$ABCcU 9$ $ ,N;<6:$J$7$OL;I>7 ?J5><>?6$HJ6$F>HO<6$5;$?E;$L;FGM7=HO<;?;$ WM=X<;I@;$=K$?E;$HGNJL>J?;$?LJ>?$7=H5>MJ?>=MF$L;FO=MI>M@$?=$MJ?GLJ<$ F;<;7?>=M9$,IJO?J?>=M$?=$ M=N;<$;MN>L=MH;M?F$7JM$>MN=?$FE>K?F$J<=M@$HGO<;$;7=<=@>7J<$M>7E;$JY;F$T>9;9$HGKJL>=GF$ F;<;7?>=MU:$ JF$>F$?E;$7JF;$X>?E$2JW;$3>7?=L>J$7>7E<>I$FO;7>;F$XE>7E$NJL6$>M$I>;?:$OJLJF>?;$<=JI:$JMI$ N>FGJ<$F6F?;H$THJ<;$7=<=L$JMI$ K;HJ<;$OL;K;L;M7;U$X>?E$XJ?;L$I;O?E$ T-;;EJGF;M$ 45 + 03; :$ABBSe$ -;;EJGF;M:$ABBQU 9$(=L;=N;L:$JM6$=N;LM$?E;$@;M=H>7$L;@>=MF$7=M?L=<<>M@$I>KK;L;M?$?LJ>?F$ L;FO=MI>M@$?=$F;<;7?>=M$7=G<>?J?;$T=L$O=FF>5<6$7=MF?LJ>MU$JIJO?J?>=M$?EL=G@E$O<;>=?L=O6$=L$ <>MWJ@;$L;=MFE>OF$ T>9;9$I>N;L@;M7;$E>?7EE>W>M@e$3>J$JMI$V;F ?$ABBSe$.;I;L$;?$J<9$ABCAU 9$-;N;LJ<$ ?E;=L;?>7J<$JOOL=J7E;F$OL;I>7?$?EJ?$7= Z JIJO?;I$J<<;<;$7=HO<;Y;F:$XE;M$HJ>M?J>M;I $ 56$L;IG7;I$ L;7=H5>MJ?>=M$JMIh=L$H>@LJ?>=M:$?EJ?$GMI;L<>;$KJN=LJ5<;$?LJ>?$7=H5>MJ?>=MF$FE=G=M$JMI$FO;7>J?>=M$ T&JNJLL=$_$+JL?=M:$ABBae$^>LWOJ?L>7W$_$+JL?=M:$ABBbe$.;I;L$_$&=F><:$ ABBQU :$?E=G@E$K;X$F?GI>;F$OL=N>I;$L>@= L =GF$;HO>L>7J<$?;F?F$ T5G?:$F;;$*=G@E<<>F$M9I9e$ 8G;@@$;?$J<9$ABCce$,6J7E$<>MW;I$F;<;7?> = M$>MK7?J5><>?6$=K$;N==M:$JMI$J?$<;JF?$=M;$F?GI6$OL;F;M?F$ 7<;JL$;N>I;M7;$K=L$JM?J@=M>F?>7$O<;>=?L=O6$H;I>J?>M@$?E;$OL;I>7?J5><>?6$=K$;N==MJL6$L;FO=MF;$

PAGE 17

$ ! ! c ! T!L=?E$ 45+03; :$ABCSU 9$ $ ,II>?>=MJ<$F?GI>;F$OL=N>I;$7@ > MF$=K$7= Z JIJO?;I$@;M;$7=HO<;Y;F$?EJ?$HJ6$ 7=MF?LJ>M$JIJO?>N;$;N==M9$,HO<;$@;M;?>7$NJL>J?>=M$>F$=K?;M$HJ>M?J>M;I$>M$O=OG=MF$XE;M$ F;<;7?>=M$NJL>;F$HJLW;I<6$=N;L$?>H;$JMI$FOJ7;$ T(J7EJI=$ 45+03; :$ABCbe$0;JF; $ 45+03; :$ABCbe$ /=;<7?J5<;:$FOJ?>J<$NJL>J?>=M$J<=M@$;MN>L=MH;M?J<$7<>M;F$ 7JM$7JGF;$FO;7>K>7$J<<;<>7$7=H5>MJ?>=MF$J7L=FF$<=7>$?=$;YO;L>;M7;$>M?;MF;$I>L;7?>=MJ<$TJMI$ 7=LL;=MJ=M$<=7J<<6:$X>?E$?E;$KJN=L;I$ I >L;7?>=M$NJL6>M@$@;=@LJOE>7J<<6$ T+;L@M;F$ 45+03; :$ABCbU 9$!EGF:$F;<;7?>=M$X><<$KJN=L$<>MWJ@;$I>F;PG><>5L>GH$JH=M@$<=7>$J7L=FF$ ;MN>L=MH;M?F$ T&JNJLL=$_$+JL?=M:$ABBae$^>LWOJ?L>7W$_$ +JL?=M:$ABBbU :$?E=G@E$?E;$FO;7>K>7$J<<;<>7$ 7=H5>MJ?>=MF$KJN=L;I$>M$J$@>N;M$;MN>L=MH;M?$HJ6$NJL6$ T+>;LM;$ 45+03; :$ABCCe$+G?<>M$_$-HJI[J:$ ABCSU 9$0JF?$OJ??;LMF$=K$F;<;7?>=M$JMI$;N==M$K=L$?LJ>?$7=H5>MJ?>=MF$HJ6$?E;L;K=L;$5G>7$7=NJL>JM7;:$?E;L;56$7= MF?LJ>M>M@$?E;$I>L;7?>=MF$?EJ?$KG?GL;$;N==M$7JM$? JW;$ T-7E7$JOO L=J7E;F$EJN;$F;7$7=MF?LJ>M?:$E>@E<>@E?>M@$JM$ JOOJL;M?$I>F7=MM;7?$5;?X;;M$?E;$;H;L@;M?$K>;=M$@;M=H>7F$JMI$77J<$ PGJM?>?J?>N;$@;M;?>7F$ T-;;EJ GF;M$ 45+03; :$ABCcU 9 $ )M$?E>F$F?GI6:$X;$?;F?$XE;?E;L$E >F?=L>7J<<6$JIJO?>N;$2/$L;=MFE>OF$JH=M@$<=7>$ JFF=7>J?;I$X>?E$?X=$>HO=L?JM?$JMI$L;K;$E>F?=L6$?LJ>?F$>M$?E;$JOO<;$HJ@@=?$K<6:$ !/01234567+ 8292:4330 :$HJ6$;YOM$J$<=M@ Z F?JMI>M@$;N==MJL6$OJLJ I=Y$XE;L;$H>FJ<>@MH;M?$5;?X;;M$ OL;I>7?>=MF$5JF;I$=M$J <<;<>7$NJL>J?>=M$>M$H;M?F$JMI$J<<;<>7$NJL>J?>=M$>M$ MJ?GLJ<$O=OG=MF$EJF$5;;M$7=MF>F?;M?<6$JMI$L;O;J?;I<6$I;H=MF?LJ?;I$ T.;I;L$ 45+03; :$CQQa:$ CQQ`Je$(>7E;<$ 45+03; :$ABCBe$8J@F$J$@L=GO$=K$7<=F;<6$L;7JM$KLG>? Z K;;I>M@$FO;7>;F:$;J7E$GM>PG;<6$ JIJO?;I$?=$J$I>KK;L;M?$KLG>?$E=F?F$I;FO>?;$FEJ<<=X$@;M;?>7$I>KK;L;M7;F$ T.;I;L$ 45+03; :$CQSSU 9$"=F? Z

PAGE 18

$ ! ! D ! JFF=7>J?;I$O=OG=M:$JI<6e$@; M;?>7J<<6$I>F?>M7?:$JOO<;$ >MK;F?>M@$O=OG= MF$K=LH;I$JOOL=Y>HJ?;<6$ABB$6;JLF$J@=$KL=H$JM7;F?LJ<$EJX?E=LM Z >MK;F?>M@$ O=OG=MF$ TVJ?>=M$?=$E=F?$OL;K;L;M7;$ T2>MM$ 45+03; :$ABBa:$ABBcU :$ F;JF=MJ<$;H;L@;M7;$?>H;$EJF$LJO>I<6$;N=;L$F;JF=MJ<>?6$>M$?E;$JOO<;$E=F?$LJ7;$?=$ F6M7EL=M>f;$K<>;F$X>?E$?E;$;JL<>;L$KLG>?>M@$?>H;$=K$JOO<;F$L;N;$?=$EJXF$J?$F 6HOJ?L>7$F>?;F$ T.;I;L $ 45+03; :$CQQce$/=;<;F:$K>LF?$GF>M@$J<<=f6H;$HJLW;LF:$?E;M$ H>7L=FJ?;<<>?;F:$JMI$@;M=H; Z X>I;$T8,/U$@;M;?>7$HJLW;LF$EJN;$J<<$K=GMI$<=7>$F?L=M@<6$JFF=7>J?;I$ X>?E$JIGH>M@$JMI$X>?E$E=F?$LJ7;$I>KK;L;M?>J?>=M$ T.;I;L$ 45+03; :$CQQae$(>7E;<$ 45+03; :$ ABCBe$8J@;F$JL;7?>=M$=K$J<<;<>7$ NJL>J?>=M$>M$?E;$L;7;M?<6$I;L>N;I$JOO<;$E=F ?$LJ7;$XJF$7=MF>F?;M?<6$=OO=F>?;$?=$?E;$;YO;7 ?;I$ I>L;7?>=M$FG7E$?EJ?$?E;$;JL<>;L$;H;L@>M@$JOO<;$E=F?$LJ7;$EJL5=L;I$E>@E;L$KL;PG;M7>;F$=K$J<<;<;F$ JFF=7>J?;I$X>?E$F$?EJ?$E>F?=L>7J<$JMI$7GLL;M?$F;<;7?>=M$=M$JM$JII>?>=MJ<$?LJ>?$ L;=M$? =$KLG>?$E=F?F$HJ6$;YOM$?E>F$7=GM?;L>M?G>?>N;$L;=MFE>O$ 5;?X;;M$@;M;?>7$NJL>J?>=M$K=L$;H;L@;M7;$?>H>M@$JMI$E=F?$LJ7;$I>N;L@;M7;$> M$ !;+8292:4330 + T .>@9$C $ ,U 9$,IGH>M@$>F$I;?;LH>M;I$56$?E;$?>H>M@$=K$?E;$?;LH>MJ?>=M$=K$OGOJ<$I>JOJGF;:$J$ F?J? ;$=K$I;N;<=OH;M?J<$JLL;F?$>M$XE>7E$?E;$>MF;7?F$=N;LX>M?;L $ T .>@9$C $ +U 9$V;$E6O=?E;F>f;$?EJ?$ F;<;7?>=M$K=L$J$?LJ>?$X;$?;LH$ I>JOJGF;$>M?;MF>?6$>F$iILJ@@>M@$J<=M@]$HJN;$NJL>J?>=M$>M$ I>JOJGF;$?;LH>MJ?>=M$?>H>M@$?EL=G@E$O<;>=?L=O6:$<>MWJ@;$I>F;PG><>5L>GH:$ =L$J$7=H5>MJ?>=M$=K$?E;$ ?X=9$$V;$I;K>M;$I>JOJGF;$>M?;MF>?6$JF$?E;$L;7J<7>?LJM7;$?=$OL; Z X>M?;L$7G;F$?EJ?$>M>?>J?;$OL;HJ?G L;$ I>JOJGF;$?;LH>MJ?>=M $ T .>@9$C $ *U $ T/JH5L=FW>$_$.;I;L:$ABB`e$2;EHJMM$ 45+03; :$ABCbU 9$,F$J$KJ<< Z 5L;;I>M@$FO;7>;F:$H;JM$;H;L@;M7;$?>H;$=K$@;=@LJOE>7$O=OG=MF$=K$ !;+8292:4330 $ >M7L;JF;F$ X>?E$I;7L;JF>M@$?GI;$?=$?LJ7W$?>M@$?>H; F $ =K$?E;>L$KJ<< Z KLG>?>M@$E=F?$O@9$C $ ,U $

PAGE 19

$ ! ! b ! T.;I;L$_$+GFE:$CQSQe$/JH5L=FW>$_$.;I;L:$ABB`U 9$ %;=@LJOE>7J<<6$NJL >J5<;$F;<;7?>=M$JM?;MF;$I>JOJGF;$X>?E$I;7L;JF>M@$?GI;:$OL;FGHJ5<6$>M$L;FO=MF;$?=$@;M;LJ<<6$XJLH;L$ 7=MI>?>=MF$>M$?E;$M?;L$?EJ?$7=GJOJGF;$?;LH>MJ?>=M $ T .>@9$ C ,U $ T/JH5L=FW>$_$.;I;L:$ABB`U 9$ !EGF:$E>F?=L>7:$7=LL;=MJ<$F;<;7?>=M$J<=M@$@;=@LJOE>7$7<>M;F$ >M$JM7;F?LJ<:$EJX?E=LM Z >MK;F?>M@$O=OG=MF $ EJF$KJN=L;I$7=H5>MJ?>=MF$=K$JOJGF;$ ?;LH>MJ?>=M$?>H>M@$JMI$H=L;$>M?;MF;$I>JOJGF;$>M$?E;$F= G?E$JMI$;JL<6$I>JO JGF;$?;LH>MJ?>=M$?>H>M@$ JMI$<;FF$>M?;MF;$I>JOJGF;$>M$?E;$M=L?E $ T .>@9$C ,U 9$)M$7=M?LJF?:$F;<;7?>=M$=M$JOO<; Z >MK;F?>M@$ 7=HOJL;I$?=$EJX?E=LM Z >MK;F?>M@$LJ7;F$J?$J$@>N;M:$F6HOJ?L>7$F>?;$KJN=LF$L;N;<6$;JL<>;L$I>JOJGF;$ ?;LH>MJ?>=M$?>H>M@$JMI$ H=L;$>M?;MF;$I>JOJ GF;$>M$JOO<;$K<>;F$>M$L;FO=MF;$?=$;JL<>;L$KLG>?>M@$JOO<;$ ?L;;F$?EJ?$JM?;L$O;L>=IF$ T.;I;L$ 45+03; :$CQQ`5e$#@JM$ 45+03; :$ABCDe$ 8J@J?;I$F;<;7?>=M$>F$?E;L;K=L;$J7?>M@$?=$ KJN=L$?LJ>?$7=H5>MJ?>=MF$ ?E J?$EJN;$5;;M$E>F?=L>7J<<6$I>FKJN=L;I$56$@;=@LJOE>7J<<6$NJL>J5<;$F;<;7?>=M$>M$?E;$JM7;F?LJ<$E=F?$ LJ7; $ T .>@9$C ,U 9$V;$E6O=?E;F>f;$?EJ?$?E>F$E>F?=L>7J<:$@;=@LJOE>7J<<6$NJL>J5<;$F;<;7?>=M$EJF$KJN=L;I$ ;>?E;L$CU$>M7L;JF;I$<>MWJ@;$I>F;PG ><>5L>GH$T2/U$5;?X;;M$<=7>$ >MKM@$?E;$?X=$I>JOJGF;$?LJ>?F$ XE;L;>M$J<<;<;F$JFF=7>J?;I$X>?E$JOJGF;$?;LH>MJ?>=M$?>H>M@$JMI$H=L;$>M?;MF;$I>JOJGF;$JL;$>M$ OEJF;:$=L$AU$J<<;<;F$J?$<=7>$?EJ?$O<;>=?L=O>7J<<6$JKK;7?$5=?E$?LJ>?F$FG7E$?EJ?$JM$J<<;<;$>M7L;J F>M@$ ;H;L@;M7;$?>H>M@$JM7L;JF;F$I>JOJGF;$>M?;MF>?69$)K$;>?E;L$=K$?E;F;$E6O=?E;F;F$JL;$?LG;:$?E;M$ F;<;7?>=M$=M$I>JOJGF;$>M?;MF>?6$>M$?E;$JOO<;$E=F?$LJ7;$HJ6$5;$IL>N>M@$?E;$=5F;LN;I:$7=GM?;L Z >M?G>?>N;$>M7L;JF;$>M$J<<;<;F$JFF=7>J?;I$X>?E$JOJGF;$?;LH>MJ?>=MU9$ $ $ )M $ ?E>F$F?GI6:$X;$7=H5>M;$M;X$IJ?J$=M$@;M=?6O; Z ?= Z OE;M=?6O;$L;=MFE>OF$K=L$I>JOJGF;$ >M?;MF>?6$X>?E$OG5<>FE;I$IJ?J$=M$@;M=?6O; Z ?= Z OE;M=?6O;$L;=MFE>OF$K=L$I>JOJGF;$?;LH>MJ?>=M:$ O=OG=M$@;M;?>7$NJL>J?>=M$JH=M@$E=F?$LJ7;F$JMI $ J7L=FF$@;=@LJOE6:$JMI$@;M; ?>7$L;FO=MF;F$?=$ =M$?EJ?$H>H>7F$K>;?69$V;$JFW;I$K=GL$PG;F?>=MF$L;
PAGE 20

$ ! ! ` ! E6O=?E;F;F$J5=G?$?E;$>MK=?L=O6$JMIh=L$2/$=M$=5F;LN;I$@;M;?>7$I>KK;L;M7;F$5;?X;;M$ ?E;$ !;+8292:4330 $ E=F ?$LJ7;FR$>U$)F$?E;L;$>F$F;@ L;@J?>M@$@;M;?>7$NJL>J?>=M$K=L$I>JOJGF;$>M?;MF>?6$>M$ JM$JM7;F?LJ<:$EJX?E=LM Z >MK;F?>M@$O=OG=Mj$>>U$/=$@;M;?>7$NJL>JM?F$JFF=7>J?;I$X>?E$I>JOJGF;$ >M?;MF>?6$JJ?;$X>?E$E=F?$LJ7;$I>N;L@;M7;j$>>>U$/=$@;M;?>7$NJL>JM?F$JFF=7 >J?;I$X>?E$ I>JOJGF;$>M?;MF> ?6$JJ?;$X>?E$I>JOJGF;$?;LH>MJ?>=Mj$>NU$/=$@;M;?>7$NJL>JM?F$JFF=7>J?;I$ X>?E$I>JOJGF;$>M?;MF>?6$JMJ<6$J7L=FF$@;=@LJOE6:$JMI$L;FO=MI$?=$=M$ =M$F;JF=MJ<>?6j$ $ 0<5=78>'?'@A5<6;AB> ' H3B+@2334@562:+0 :A+=40=6:1+ + 1M<;FF$=?E;LX>F ;$M=?;I:$F?JMIJLI>f;I$7=<<;7?>=M$JMI$L;JL>M@$H;?E=IF$X;L;$GF;I$K=L$?E;$ 7GLL;M?$F?GI6$JMI$?=$@;M;LJ?;$J<<$=?E;L:$OL;N>=GF<6$OG5<>FE;I$IJ?J$>M7M$?E;$JMJ<6F;F $ T#@JM$ 45+03; :$ABCDU 9$.<>;F$X;L;$7=<<;7?;I$JF$M$>MK;F?;I$KLG>?F$@J?E;L;I$KL=H$?E;$K>;J?>=M$J?$AC = *$X>?E $ J$CcRCB$<>@E?RIJLW$767<;9$)MK;F?;I$KLG>?$X;L;$E;L;$H;FE$LJ7WF$ =M$?=O$=K$O7$7= <<;7?>M@$?LJ6F$XE>7E$X;L;$7E;7W;I$K=L$OGOJ;$J$H>M>HGH$=K$a$?>H;F$O;L$X;;W9$ .=L$;H;L@;M7;$?>H>M@$JMI$I>JOJGF;$>M?;MF>?6$OE;M=?6O>M@:$X;$7<;JL;I$?LJ6F$>M$?E;$;JL<6$; N;M>M@$ JMI$=M<6$GF;I$K<>;F$>M$?E;$;YO;L>H;M?$?EJ?$;Y>?; I$KL=H$KLG>?$JMI$K=LH;I$OGOJL>J $ >M$?E; $ >M?;LN;M>M@$ O;L>=I$KL=H$;JL<6$;N;M>M@$?=$?E;$M;Y?$H=LM>M@$?=$F6M7EL=M>f;$ I;N;<=OH;M? 9$'M<6$K<>;F$?EJ?$EJI$ 5;;M$>M$?E;$ M $ ?E;$;YO;L>H;M?$?=$F?JMIJLI>f; $ L=MH;M?J<$L;JL>M@$7=MI>?>=MF9$*=<<;7?;I$OGOJ;$X;L;$ OM$O;?L>$I>FE;F$X>?E$H=>F?$ N;LH>7G<>?;:$?E;M$?LJMFK;LL;I$?=$?E;$I;F>L;I$;YO;L>H;M?J<$7=MI>?>=MF9 $ 1M<;FF$=?E;LX>F;$M=?;I:$ =N;LX>M?;L>M@$?L;J?H;M?F$K=L$J<<$;Y O;L>H;M?F$X;L;$7=MIG7?;I$J?$c = *$JMI$7=MF?JM?$IJLWM;FF9$$ + +

PAGE 21

$ ! ! S ! $4:25B86:1 ? IB ? 74JF4:@6:1+ + ->M@<;$&G 7 <;=?>I;$0=<6H=LOE>FH$T-&0U$@;M=?6O;F$K=L$?E;$7GLL;M?$F?GI6$JMI$K=L$ J<<$=?E;L:$ OL;N>=GF<6$OG5<>FE;I$IJ?J$>M7M$?E;$JMJ<6F;F $ X;L;$@;M;LJ?;I$GF>M@$J$7=HH=M$@;M= ?6O>M@ Z 56 Z F;PG;M7>M@$T%+-U$JOOL=J7E9$%;M;LJ?>=M $ =K$>MI>N>IGJ<<6$5JL7=I;I$I=G5<;$I>@;F?$L;F?L > 7?>=M$ JHO<>K>;I$/&,$TII8,/U$<>5LJL>;F:$ A4+:2K2 $ @;M=H;$JFF;H5<6$=K$7=M?>@F:$NJL>JM?$-&0$7J<<>M@:$ JMI$J<<;<;$KL;PG;M76$;F?>HJ?>=M$X;L;$ O;LK=LH;I $ K=<<=X>M@$ #@JM$;?$J<9$TABCD U 9$-;PG;M7>M @ $ XJF$ O;LK=LH;I$=M$ )<MJ$ ">-;P$OO?F$JMI$?E;$%;M=H;$,MJ<6F>F$!==?$ T%,!^$N;LF>=M$A9D Z Ae $ (7^;MMJ$;?$J<9$ABCBU $ X;L;$GF;I$ ?=$ ;F?>HJ?;$?E;$@;M=?6O;$OL=5J5><>?>;F$ GF;I$JF$>MOG?$K=L$?E;$JMJ<6F;F$I;F7L>5;I$5;<=X:$XE>7E$J77=GM?$K=L$@;M=?6O;$GM7;L?J>M?69$ $ ,=4K62F 7 3B+8FI367/4A+$L*+75FA647 + %;=@LJOE>7$FGLN;6 $ %+-$IJ? J$7=HOJL>M@$F6HOJ?L>7$E=F?$LJ7;F$J?$HGO<;$@;=@LJOE>7$F>?;F$KL=H$ /=;<MN;F?>@J?;$E=X$<=7>$JFF=7>J?;I$X>?E$I>JOJGF;$?LJ>?F$NJL6$J7L=FF$ @;=@LJOE>7$@LJI>; M ?F$>M$F;JF=MJ<>?69$ )M$ /=;<;F$KL=H$5=?E$E=F?$LJ7;F$ X;L;$L;JL;I$KL=H$K>;?F$@J?E;L;I$J?$ F6HOJ?L>7$F>?;F$>M$%LJM?:$()$T <<;:$()$TcA9b $ &:$lSb9CD $ VU:$/=XJ@>J7 : $ ()$TcC9SS $ & :$ lSb9Aa $ V U:$JMI$1L5JMJ:$)2$ TcB9BS $ & :$lSS9CQ $ VU9 $$ !E;F;$F>?;F$L=G@E<6$K=<<=X$J$M=L?E$ m $ F=G?E$ 7<>M;$>M$?E;$(>IX;F?;LM$1M>?;I$-?J?;F9$2JLNJ;$?EJ?$;H;L@;I$KL=H$KLG>?$JMI $ OGOJ ?;I$X;L; $ =N;LX>M?;L;I$JMI$L;JL;I$?=$JIGM@$?E; $ H;?E=IF$=K$ #@JM$;?$J<9$TABCDU 9 $ />JOJGF;$?;LH>MJ?>=M$%V,$ %+-$IJ?J$GF;I$?=$JFF=7>J?;$-&0$@;M=?6O;F$X>?E$I>JOJGF;$?;LH>MJ?>=M$T ;H;L@;M7; $ ? > H;U$ OE;M=?6O;F$JL;$KL=H$ 8J@H;M?J< $ I;F>@M $ 7 J M$5;$K=GMI$ ?E;L;9$+L>;K<6:$JIG;F$5;<=M@>M@$?=$5=?E$E=F?$LJ7;F$FJHO<;I$KL=H$.;MM;N><<;:$()$X;L;$L;JL;I$

PAGE 22

$ ! ! Q ! KL=H$K>;5;I$J5=N;: $ =N;LX>M?;L;I$K=L$ Cb $ X;;WF :$?E;M$E;<$JIG=M 9$!E;$;JL<>;F?$JMI$M@$K<>;F$>M$;J7E$E=F?$LJ7;$X;L;$ F;PG;M7;I$>M$J$5G@M:$XE;L;>M$?E;$F?L;M@?E$=K$@;M;?>7$JFF=7>J?>=M$X>?E$;7<=F>=M$ ?>H;$XJF$I;?;LH>M;I$56$?E;$HJ@M>?GI;$=K$J<<;<;$KL;PG;M76$I>KK;L;M7;F$5;?X;;M$?E;$5G7E;K K;L;M7;F$5;?X;;M$;JL<6$JMI$=M$K<>;F$X;L;$E>@E<6$7=LL;M@ $ JN;LJ@;I$-&0F$5;?X;;M$?E;$E=F?$LJ7;F$?=$;F?>HJ?;$?E;$H;JM$ J<<;<;$KL;PG;M76$I>KK;L;M7;F$5;?X;;M$;7 <=F>=M$5GM?;L$F;<;7?>=M$;YO;L>H;M?F $ %+-$IJ?J$KL=H$OL; Z X>M?;L$F;<;7?>=M$;YO;L>H;M?F$>M$?E;$EJX?E=LM$JMI$JOO<;$E=F?$LJ7;F$ KL=H$ #@JM$;?$J<9$TABCDU $ JMI$ /=;<N;<6 :$X;L;$GF;I$?=$?;F?$XE;?E;L$<=7>$ JFF=7>J?;I$X>?E$I>JOJGF;$OE;M=?6O ;F$J=M9$ +=?E$F?GI>;F $ @;M;?>7J<<6$7=HOJL;I$K<>;F$FGLN>N>M@$I>KK; L;M?$OL; Z X>M?;L$?L;J?H;M?F$>M$?E;$;K<6:$JOO<;$JMI$ EJX$LJ7;$OGOJ;$X;L;$L;JL;I$KL=H$K>;MK;F?;I$KLG>?$>M$%LJM?:$()$JMI$;YO=F;I$?=$ ;>?E;L$J $ FE=L?$T` Z IJ6U$=L$<=M@$TaA Z IJ6U$OL; Z X>M?;L$XJLH>M@$?L;J?H;M? $ TAbn*:$CDRQ$2R/U$F?JL?>M@$ =M$?E;$IJ6$ =K$OGOJL>J?>=M 9$ !E;F;$?L;J?H;M?F$H>H>7$7=MI>?>=MF$H=L;$?6O>7J<<6$;YO;L>;M7;I$56$ EJX?E=LM$K<>;F$TFE=L?$OL; Z X>M?;LU$JMI$JOO<;$K<>;F$T<=M@$OL; Z X>M?;LU$>M$?E;$K>; M@ $ ?E; $ OL; Z X>M?;L$?L;J?H;M?:$OGOJ;$X;L;$ =N;LX>M?;L;I$K=L$aB$X;;WF:$?E;M$E;<$ ;7<=F>=M 9$ 8JMI=H$FJHO<;F$=K$FG77;FFKG<<6$;H;L@>M@$K<>;F$KL=H$;J7E$?L;J?H;M?$ X;L;$F;PG;M7;I9$ $ G6080F74+6:54:765B+8/4:25B86:1 + V;$GF; I $ ?X=$H;?E=IF $ >M$?E;$;YO;L>H;M?F$I;F7L>5;I $ >M$H=L;$I;?J>< $ 5;<=X$?=$JFF>@M$J$ I>JOJGF;$>M?;MF>?6$i7MI>N>IGJ<$K<69$!E;$K>LF?$>F$5JF;I$=M$;H;L@;M7;$OJ??;LMF$XE;M$

PAGE 23

$ ! ! CB ! OGOJ;$JL;$;YO=F;I$?=$XJLH$?;HO;LJ?GL;F$X>?E=G?$7E><<>M@:$JF$;F?J5<>FE;I$>M$ /JH5L=FW>$JMI$ .;I;L$ TABB`U 9$+L>;K<6:$?E>F$JOOL=J7E$>F$5JF;I$=M$JM$=5F;LN;I:$5> Z H=IJ<$I>F?L>5G?>=M$=K$;H;L@;M7;$ ?>H>M@:$X>?E$?E;$;JL<6$JMI$H>M@$H=I;F$7=LL;FO=MI>M@$?=$M=M Z I>JOJGF;$T&/U $ JMI$ FEJ<<=X Z I>JOJGF; $ T -/U $ OE;M=?6O;F: $ L;FO;7?>N;<6: $ XE><;$>MI>N>IG JM@$JL;$7K>;I$JF$ I>JOJGF; $ T/),U $ OE;M=?6O;F $ T!E>F$/),$OE;M=?6O;$EJF$OL;N>=GF<6$5;;M$L;K;LL;I$?=$JF$7E><< Z I;O;MI;M?$p*/q$>M$ !;+8292:4330 $ T/JH5L=FW>$_$.;I;L:$ABB` U U9$ !E;$F;7=MI$H;?E=I$>F$5JF;I$=M$ H;?J5=<>7 $ LJ?;$H;JFGL;I$N>J$F?=O Z K<=X$L;FO>L=H;?L6:$XE>7E$F;LN;$JF$J$5>=HJLW;L$K=L$I>JOJGF;$ F?J?GF$ T8J@;K<6:$>MI>N>IGJ<$OGOJ;$X;L;$F;J<;I$X>?E$aH<$*' A Z KL;;$J>L$>M$ F6L>M@;F:$JMI$JK?;L$Ac$E=GLF$?E;$KG<<$aH<$XJF$>M[;7?;I$>M?=$J$-J5<;$-6F?;H$T2JF$3 ;@JF:$&;NJIJU$ K<=X Z ?EL=G@E$ L;FO>L=H;?L6$F6F?;H$>M7M@$J$2) Z *'8$T2>M7=M?;@LJ?>=M$7J<7G=MF$J77=GM?>M@$K=L$*' A $ <;N;M$;HO?6:$7=M?L=<$F6L>M@;F$ X;L;$O;LK=LH;I$?=$;F?>HJ?;$H;?J5=<>7$LJ?;$>M$GM>?F$ r <$*' A TH@ h EU Z C 9$-;?F$=K$OGOJ;$X;L;$F;J< ;I$JMI$ H;JFGL;I$>M$5<=7WF$=K$aB$F6L>M@;F$TO7J?;$H;JFGL;F$X;L;$?JW;M$=N;L$J$?>H;$ F;L>;F$TI;?J>M@$>M?;LNJf;$?LJ[;7?=L>;F$?EJ?$K>?$?E;$?EL;;$I>F7L;?;$ FEJO;F$I;O>7 ?;I$>M$ .>@9$A 9$(=F?$?LJ[;7?=L>;F$Ts$SD$ m $ QDte$ ,OO;MI>Y$, U$7=G@M;I$ ?=$=M;$=K$?E;$?EL;;$FEJO;FhOE;M=?6O;Fe$X;$I>F7JLI;I$IJ?J$KL=H$>MI>N>IGJ?E$JH5>@G=GF$ ?LJ[;7?=L>;F9 $ "=F?$LJ7;$7=HOJL>F=M$F?GI6 $ 0GOJ;$ FJHO<;I $ >M$ABBS$KL=H$JOO<;$JMI$EJX?E =LM$KLG>?F$7=<<;7?;I$KL=H$%LJM?:$()$X;L ;$ OE;M=?6O;I$GF>M@$?E;$H;?J5=<>7$LJ?;$H;?E=I$?=$7=HOJL;$?E;$OL=O=L?>=M$=K$I>JOJGF;$>M?;MF>?6$ OE;M=?6O;F$5;?X;;M$E=F?$LJ7;F9$!E;$;YO;L>H;M?$XJF$=L>@>MJ<<6$I;F>@M;I$?=$OL=N>I;$J$E=F?$LJ7;$ 7=HOJL>F=M$JMI$JI;PGJ?;$FJHO<;$ F>f;F$K=L$J$@;M;?>7$JFF=7>J?>=M$F?GI6$> M$?E;$EJX$E=F?$LJ7;e$?EGF:$ X;$H;JFGL; I $ ?EL;;$?>H;F$H=L;$OGOJ;$>M$?E;$EJX$L;N;$?=$JOO<;$O=OG=M9$"=X;N;L:$OGOJ;$

PAGE 24

$ ! ! CC ! X;L;$=N;LX>M?;L;I$K=<<=X>M@$H;JFGL;H;M?F:$JMI$H=L?J<>?6$IGL>M@$X>M?;L$<>H>?;I$FJHO<;$F>f;F:$ OJL?>7G JOJGF;U9$";L;:$IJ?J$KL=H$?E>F$;YO;L>H;M?$ X;L; $ GF;I$F=<;<6$?=$7=HOJL;$OE;M=?6O>7$OL=O=L?>=MF$JH=M@$E=F?$LJ7;F9$V;$H;JFGL;I$a$5<=7WF$=K$aB$ JOO<;$O=OG=M$OGOJ;$TQB$?=?J=M$OGOJ;$TA `B$?=?J7;$ X;;W<6$KL=H$D$?=$aa$IJ6 F$O=F? Z OGOJL>J?>=M9$,K?;L$J77=GM?>M@$K=L$H=L?J<>?6$TF=H;$7JGF;I$56$ EJMI<>M@U:$JH5>@G=GF$?LJ[;7?=L>;F:$JMI$OJLJF>?>FH:$?=?J<$FJHO<;$F>f;F$X;L;$`A$JMI$AC`$K=L$JOO<;$ JMI$EJX:$L;FO;7?>N;<6$T ,OO;MI>Y$, U9 $ %;M;?>7$JFF=7>J?>= M$F?GI6 $ 0GOJ;$7=<<;7?;I$>M$ABBQ$KL=H$EJX?E=LM$KLG>?F$ J? $ %LJM?:$()$X;L;$OE;M=?6O;I$ K=L$I>JOJGF;$ >M?;MF>?6$ JF$OJL?$=K$J$@;M;?>7$JFF=7>J?>=M$F?GI6$7JLL>;I$=G?$>M$?E;$EJX?E=LM$E=F?$LJ7;9$!=$;MFGL;$ JI;PGJ?;$FJHO<;$F>f;F$K=L$?E;$LJL;L$OE;M=?6O;F:$?X=$OJLJ<<;<$;Y O;L>H;M? F$X;L;$O;LK=LH;I:$=M;$ 5JF;I$=M$H;?J5=<>7$OE;M=?6O>M@ $ GF>M@$F?=O Z K<=X$L;FO>L=H;?L6 $ 7=MIG7?;I$J?$?E;$1M>N;LF>?6$=K$ .<=L>IJ:$JMI$=M;$5JF;I$=M$;7<=F>=M$7=MIG7?;I$J?$?E;$1M>N;LF>?6$=K$&=?L;$/JH;:$TE;L;JK?;L$?E;$ 1. Z (#!$JMI$&/ Z #*2$;YO;L>H;M?FU9$)M$?E;$1. Z (#!$;YO; L>H;M?$X;$GF;I$F?=O Z K<=X$ L;FO>L=H;?L6$?=$PGJM?>K6$H;?J5=<>7$LJ?;$=K$cDB$OGOJ;$TCD$5<=7WF$=K$aB$OGOJ;U:$H;JFGL>M@$;J7E$ OGOJ$=M7;$O;L$X;;W$KL=H$D$?=$`D$IJ6F$O=F?$OGOJL>J?>=M:$=L$GM?><$K<6$;H;L@;M7;9$V;$JFF;FF;I$GM Z ;H;L@;I $ OGOJ;$K=L$OJLJF>?>FH:$?E;M$K L=f;$J<< $ FJHO<;F$>M7M@$?E;$ ;H;L@;I $ K<>;F9$,K?;L$ J77=GM?>M@$K=L$H=L?J<>?6$TMk bc U:$OJLJF>?>FH$TMk CbC e$OJLJF>?>FH$LJ?;$XJF$L;N;<6$E>@E$K=L$?E>F$ O=OG=M$>M$ABBQU:$JMI$JH5>@G=GF$H;?J5=<>7$LJ?;$?LJ[;7?=L>;F$TMk D U:$X;$L;?J>M;I$OE;M=?6O;F$K=L$ CQ` $ ?=?J<$ OGOJ;$=L $ ;H;L@;I$K<>;F$T ,OO;MI>Y$, : $ .>@9$A U9$ $ )M$?E;$&/ Z #*2$;YO;L>H;M?:$KL;FE<6$OGOJL>J?;I$OGOJ;$X;L;$E;M$H=>F?$N;LH>7G<>?;$>M$ O;?L>$I>FE;F$J?$Ac n *$JMI$X;L;$=5F;LN;I$?EL;;$?>H;F$O;L$X;;W$K=L$;H;L@>M@$K<>;F$TKL=f;M$=M$?E;$ IJ6$=K$;H;L@;M7;U:$KL=H$IJ6$D$? =$IJ6$QB $ O=F? Z OGOJL>J?>=M9$!E;$KL;PG;M76$I>F?L>5G?>=M$=K$

PAGE 25

$ ! ! CA ! ;H;L@;M7;$?>H;F$XJF$?E;M$GF;I$?=$I;?;LH>M;$?E;$I>JOJGF;$>M?;MF>?6$OE;M=?6O;$T &/:$-/:$=L$/), U9$ &=M Z I>JOJGF;$K<>;F$?6O>7J<<6$;H;L@;$J?$J5=G?$aB$IJ6F$O=F?$OGOJL>J?>=M$ T/JH5L=FW> $ _$.;I;L:$ ABB`e$8J@F?L>5G?>=M$=K$;H;L@;M7;$?>H;F$FE=X;I$J$7<;JL$ O;JW$J?$JL=GMI$aB$IJ6F:$K=<<=X;I$56$J$OL=M=GM7;I$IL=O Z =KK$JMI$J$5L=JI:$F;7=MI$H=I;$T ,OO;MI>Y$ , U$F>H>$JMI$.;I;L$TABB`U 9$ !=$H>M>H>f;$;LL=LF$>M$7K>7J?>=M$ K=L$?E;$@;M;?>7$JFF=7>J?>=M$F?GI6:$X;$=M<6$FJHO<;I$ &/ $ OE;M=?6O;F$;H;L@>M@ $ J?$=L $ ;JL<>;L$?EJM$ aC $ IJ6F:$JMI $ FEJ<<=X Z I>JOJGF;$OE;M=?6O;F$;H;L@>M@ $ J? $ =L$M>M@$ OGOJ;$X;L;$KL=f;M:$?E;M$GH$XJF$L;H=N;I$?=$>I;M?>K6$OJLJF>?=>IF9$.<6$ OGOJ;$FE=X>M@$M=$N>FGJ<$HJLW;LF$=K$I;N;<=OH;M?$X;L;$7=MF>I;L;I$?=$5;$>M$I>JO JGF; $ T8J@M@$=K$OE;M=?6O; I$K<>;F$XJF$7JLL>;I$=G?$K=<<=X>M@$?E;$%+-$JOOL=J7E$I;F7L>5;I$ J5=N;9$ !=?J<$@;M=?6O;I$FJHO<;$F>f;F$X;L;$M$k$bc$K=L$;J7E$I>JOJGF;$7M$?E>F$ F?GI6$T&/:$-/:$/),U9$'K$?E;F;$>MI>N>IGJ;F:$aC$-/$K<>;F:$JMI$a`$/),$K<>;F$X;L;$ H;?J5=<>7J<<6 $ OE;M=?6O;I$>M$?E;$1. Z (#!$;YO;L>H;M?$JMI$?E;$L;F?$X;L;$OE;M=?6O;I$5JF;I$=M$ ;H;L@;M7;$?>H>M@$JF$F7=L;I$>M$?E;$&/ Z #*2$F?GI69$ -;PG;M7>M@$XJF$O;LK= LH;I$J?$?E;$+;>[>M@$ %;M=H>7F$)MF?>?G?;$,H;L>7JF$=M$?E;$)<MJ$ ">-;P$ABBB$OM@$u$ aC`$H><<>=M$CBB$5O$L;JIF9$.=<<=X>M@$IJ?J$OL=7;FF>M@:$X;$>I;M?>K>;I$J$7=HH=M$F;?$=K$`:AbD$ NJL>J5<;$-&0F$OJFF>M@$PGJ<>?6$K>M$?E;$OL;N>=GF<6$OG5<>FE;I$IJ?J$F;?F$ =M$@;=@LJOE>7$NJL>J?>=M:$%V,$K=L$I>JOJGF;$?;LH>MJ?>=M:$JMI$L;FO=MF;$ ?=$=M$ T #@JM$;?$J<9$ABCDe$8J@?6$K>M7M>HGH$=K$cBBY$?=?J<$7=N;LJ@;$I;O?E$TJ7L=FF$J<<$FJHO<;FU:$(>M>HGH$,?6$T%gU$F7=L;$u$A:$JMI$J$M=M Z F>@M>K>7JM?$?;F?$K=L$

PAGE 26

$ ! ! Ca ! I;N>J?>=MF$KL=H$;PGJ<$L;OL;F;M?J?>=M$ =K$J<<;<;F$>M$E;?;L=f6@=?;F$ T#@JM$ 45+03; :$ABCD U 9 $ !E;$JMJ<6F;F$OL;F;M?;I$5;<=X$X;L;$O;LK=LH;I$=M$?E;F;$`:AbD$-&0F:$a:C`D$=K$XE>7E$EJN; $ 5;;M$HJOO;I$?=$?E;$K>N;$HJ[=L$7EL=H=F=H;F$=K$?E;$ !;+8292:4330 $ @;M=H;$ T#@JM$ 45+03; :$ABCDe$ 8J@f;I$FG7E$?EJ?$?E;$L;K;L;M7;$J<<;<;$XJF$?E;$J<<;<; $ H=F?$ 7=HH=M$>M$?E;$EJX?E=LM Z JFF=7>J?;I$O=OG=M$J?$%LJM?:$()9 $ G050+0:03B767 + 2>MWJ@;$I>F;PG><>5L>GH$JMI$>MN;LF>=M$O=<6H=LOE>FH $ !/01234567 + 8292:4330 $ EJF$J$E>@E<6$F?LG7 ?GL;I$@;M=H;$?EJ?$7=HO<>7J?;F$@;M;?>7$JMJ<6F>F9$ )M$OJL?>7G=GF$F?GI>;F$ OL;F;M? $ ;N>I;M7;$K=L$>MN;LF>=M$O=<6H=LOE>FH$=M$J<<$=K$?E;$K>N;$ HJ[=L$7EL=H=F=H;F$=K$?E;$ !;+8292:4330+ @;M=H; $ ?EJ?$OL=IG7;$I>F?>M7?$5<=7WF$=K$<=7>$>M$E>@E$ <>MW J@;$I>F;PG><>5L>GH$ T2/U$X>?E$;J7E$=?E;L $ T.;I;L$ 45+03; :$ABBa7e$(>7E;<$ 45+03; :$ABCBe$#@JM$ 45+03; :$ ABCDe$8J@?>=M$?=$ ?E;$<=7GF Z 56 Z <=7GF$JMJ<6F;F$I;F7L>5;I$5;<=X :$X;$JKK;L;M?$7MW;I$-&0F$=M$;J7E$ 7EL=H=F=H;$7J?;@=L>f;I$JF$ I>FOM@$E>@E$TL A $ u $ B9b$X>?E$=M;$JM=?E;LU:$>M?;LH;I>J?;$TB9CD$ o $ L A $ o$B9bU:$=L$<=X$TL A $ o$B9CD$X>?E$ J<<$=?E;L$-&0FU$<;N;?;$2/$ >I;M?>K>;I $ >M$8J@M@<;$E>@E$2/$ @L=GO$=K$<=7>:$ XE><;$7EL=H=F=H;$A$7=M?J>MF$;>@E?$I>F?>M7?$2/$ 77$JL7E>?;7?GL;$=K$I>JOJGF;$>M?;MF>?6 $ !=$I;?;LH>M;$XEJ?$OL=O=L?>=M$=K$?E;$OE;M=?6O>7$NJL>J?>=M$>M$I>JOJGF;$>M?;MF>?6$>F $ ;YOM;I$56$E;L>?J5<;$@;M;?>7$NJL>J?>=M:$JMI$E=X$HG7E$=K$?E J?$@;M;?>7$NJL>J?>=M$>F$J77=GM?;I$K=L$ 56$<=7>$=K$HJ[=L$;KK;7?:$X;$;F?>HJ?;I$J$+J6;F>JM$-OJLF;$2>M;JL$(>Y;I$(=I;<$T+-2((U$JF$ >HO<;H;M?;I$>M$?E;$%#((,$OL=@LJH$ TvE=G$ 45+03; :$ABCaU 9$!E;$+-2(($7=MF>F?F$=K$?E;$ K=<<=X>M@$;PGJ?>=MR $

PAGE 27

$ ! ! Cc ! ! " # $ % & ' % ( % # ) $ XE;L;$ B $ >F$?E;$N;7?=L$=K$OE;M=?6O>7$H;JFGL;H;M?F:$r$>F$J$N;7?=L$=K$LJMI=H$;KK;7?F$H=I;<>M@$?E;$ >MK>M>?;F>HJ<$;KK;7?F$=K$;J7E$<=7GF:$ ! $ >F$J$ 8 $ Y$ : $ HJ?L>Y$=K$H;JM$@;M=?6O;F$T 8 $ <=7>:$ : $ >MI>N>IGJF$?E;$N;7?=L$=K$iH;JFGLJ5<;]$;KK;7?$F> f;F$K=L$;J7E$<=7GF$>M$ C :$ F $ H=I;MK>M>?;F>HJ<$ ;KK;7?F:$JMI$ ) $ >F$?E;$;LL=L$?;LH$TH=L;$I;?J>M$ ,OO;MI>Y$+ U9$+J6;F>JM$H=I;<$K>??>M@$J<<=XF$?E;$ ;F?>HJ?>=M$=K$E6O;LOJLJH;?;LF$>M7M@$?E;$0L=O=L?>=M$=K$?E;$3JL>JM7;$>M$?E;$OE;M=?6O;$ #YOM;I$56$? E;$@;M=?6O;$T03#U$JMI$?E;$0L=O=L?>=M$=K$?E;$%;M;?>7$3JL>JM7;$;YOM;I$56$?E;$ iH;JFGLJ5<;]$;KK;7?F$T0%#U9$+;7JGF;$?E; $ I>JOJGF;$7M$?E>F$F?GI6$ X;L;$7J?;@=L>7J<:$X;$>M>?>J<<6$LJM$?E;$+-2(($=M$OJ>LX>F;$7=HOJL>F=MF$=K$I>JOJGF;$7M;$E=X$HG7E$ NJL>J?>=M$5;?X;;M$OE;M =?6O;F$>F$J??L>5G?J5<;$?=$@;M;?>7$NJL>J?>=M9$V;$FG5F;PG;M?<6$H=I;<;I$?E;$ NJL>J?>=M$JH=M@$O==M>?>J<$L;FG=M$5;<=XU9 $ (;JM$J<<;<;$KL;PG;M76$K=L$@;=@LJOE>7$7<>M;$JMJ<6F>F $ $ />JOJGF;$>M?;MF>?6$JMI$I>JOJGF;$?;LH >MJ?>=M$JL;$5=?E$?LJ>?F$?EJ?$L;FO=MI$?=$F;JF=MJ<$ F;<;7?>=M$OL;FFGL;F9$%>N;M$?EJ?$F;JF=MJ<>?6$JK?F$X>?E$?GI;:$X;$JM$J<<;<;$KL;PG;M7>;F$J7L=FF$?E;$c$F6HOJ?L>7$F>?;F$;YJH>M;I$>M$?E>F$F?GI69$!=$H;JFGL;$ @;=@LJOE>7$FE>K?F$ >M$J<<;<;$KL;PG;M7>;F:$X;$7J<7G;F$J7L=FF$<=7>$?EJ?$ X;L;$F>@M>K>7JM?<6$JFF=7>J?;I$X>?E$;>?E;L$I>JOJGF;$>M?;MF >?6$=L$I>JOJGF;$?;LH>MJ?>=M$K=L$;J7E$E=F?$ LJ7;$J?$J<<$F6HOJ?L>7$F>?;F$F>H>Y$+$K=L$H=L;$ I;?J>KK;L;M7;F $ $ !E;$HJ@M>?GI;$=K$J<<;<;$KL;PG;M76$I>KK;L;M7;F$JH=M@$@L=GOF$=K$@;M=?6O;F$>F$OL=O=L?>=M J<$ ?=$?E;$F?L;M@?E$=K$@;M;?>7$JFF=7>J?>=M$T7=HOJL>F=M$JH=M@$OE;M=?6O;$5G=M$ I>KK;L;M?>J?>=M$T7=HOJL>F= M$5;?X;;M$LJMI=H$O=OG=M$FJHO<;FU9$V;$;F?>HJ?;I$J<<;<;$KL;PG;M76$

PAGE 28

$ ! ! CD ! I>KK;L;M7;F$5;?X;;M$@L=GOF$KL=H$@;M=?6O;$OL=5J5><>?>;F$K=<<=X>M@$H;?E=I F$I;F7L>5;I$>M$#@JM$;?$ J<9$TABCDU:$>M7M@$J$M=M Z OJLJH;?L>7:$O;LHG?J?>=M Z 5JF;I$JMJ<6F>F$?;F?>M@$XE;?E;L$J<<;<;$ KL;P G;M76$I>KK;L;M7;F$X;L;$@L;J?;L$TJ5F=MJ<$JY$+ U9$+L>;K<6:$O=>M?$;F?>HJ?;F$=K$J<< ;<;$KL;PG;M76$I>KK;L;M7;F$5;?X;;M$?X=$@L=GOF$ X;L;$7=HOJL;I$?=$J$MG<<$I>F?L>5G?>=M$@;M;LJ?;I$56$LJMI=H<6$JFF>@M>M@$@L= GO$H;H5;LFE>O$=K$;J7E$ >MI>N>IGJ<:$?EGF$OL;F;LN>M@$2/$L;=MFE>OF$JH=M@$<=7>9$V;$GF;I$J$F>H>=M$ JOOL=J7E$?=$?;F?$XE;?E;L$?E;$M GH5;L$=K$-&0F$X>?E$M=H>MJ<<6$F>@M>K>7JM?$J<<;<;$KL;PG;M76$ I>KK;L;M7;F$=M$J$7EL=H=F=H;$=L$>M$J$OJL?>7GY$+U $ *=LL;=MF$=K$J<<;<;$KL;PG;M76$I>KK;L;M7;F $ V;$;F?>HJ?;I$7=LL;< J?>=M$L;=MFE>OF$5;?X;;M$NJL>=GF$J<<;<;$KL;PG;M76$I>KK;L;M7;$ ;F?>HJ?;F$?=$JFF;FF$XE;?E;L$<=7>$JFF=7>J?;I$X>?E$J$?L J>?$TI>JOJGF;$?;LH>MJ?>=M$=L$>M>?>J?>=MU$JJ?;$X>?E$JM=?E;L$?LJ>?:$I>KK;L;I$5;?X;;M$E=F?$LJ7;F:$J7L=FF$@;=@LJOE6:$=L$OL; Z $ JMI$ O=F? Z =M9$!E;F;$JMJ<6F;F$GMI;L<>;$?E;$?L>JM@G=M$JOOL=J7E$=K$7=H5>M>M@$ ;N>I;M7;$K=L$?E;$L=< ;$=K$F;?F$=K$<=7>$>M$?E;$OL=7;FF$=K$JIJO?J?>=M$JMI$E=F?$LJ7;$I>KK;L;M?>J?>=M:$JMI$ >M7MJ?>=MF$I;?J><;I$>M$?J5<;$)9$V;$GF;I$J$O ;LHG?J?>=M$JOOL=J7E$F>H>M@$?E;$O=>M?$;F?>HJ?;$=K$-O;JLHJM]F$LJMW$7=LL;=M$J@J>MF?$J$MG<<$I>F? L>5G?>=M$=K$ O;LHG?;I$XE=<;$K<6$@;M=?6O;F$ T/=;<Y$+ U9$$$ $ d Z K=7$NJL>J?>= M$5;?X;;M$%V,$ $ )K$F;?F$=K$<=7>$JL;$F?L=M@<6$I>KK;L;M?>J?;I$>M$?X=$7=HOJL>F=MF$5G?$J?$L;N;<6$GM>K=LH$ HJ@M>?GI;F$T;9@9:$JFF=7>J?;I$X>?E$I>JOJGF;$?;LH>MJ?>=M$JMI$>M>?>J?>=MU:$?E;$J5=N;$7=LL;=M$ JMJ<6F>F$HJ6$KJ><$?=$I;?;7?$J$L;=MFE>O 9 $ !=$J77=GM?$K= L$?E>F:$X;$JHO<;H;M?;I$?E;$d Z K=5;I$>M$ *EJ?GLN;I>$;?$J<9$TABCSe$ ,OO;MI>Y$+ U 9$!E>F$JOOL=J7E$?;F?F$XE;?E;L$H=L;$<= 7>$

PAGE 29

$ ! ! Cb ! ?EJM$7EJM7;$;YO;7?J?>=MF$;YE>5>?$?E;$FJH;$=L$=OO=F>?;$F>@M$J<<;<;$KL;PG;M76$I>KK;L;M7;F$K=L$?X=$ 7=HOJL >F=MF$TE;L;:$I>KK;L;M7;F$5;?X;;M$;7<=F>=M$5GKK;L;M7;F$5;?X;;M$I>JOJGF;$ >M?;MF>?6$7M@$O;LHG?;I$XE=<;$K<6$@;M=?6O;F$?=$@;M;LJ?;$?E; $ MG<<$I>F?L>5G?>=M9$ ->@M>K>7JM?$NJM@$>M$?E;$<=X;LhGOO;L$A9DhQ`9Dt$PGJM?><;F$=K$?E;$MG<<$I>F?L>5 G?>=M$FG@@;F?$ ?EJ?$<=7>$X>?E>M$?E;$F;?$?;MI$?=$5;$JFF=7>J?;I$X>?E:$>M$?E>F$7JF;:$5=?E$I>JOJGF;$?LJ>?F$T?;LH>MJ?>=M$ JMI$>M?;MF>?6U9$ $ %<>9B5>' ' G6080F74+6 :54:765B+ A6<<4=7 + I45M44:+/275+=0@47 + !EL;;$I>F7L;;?$I>JOJGF;$>M?;MF>?6$OE;M=?6O;F$X;L;$JOOJL;M?$KL=H$ H;?J5=<>7$LJ?;$ ?LJ[;7?=L>;F$JMI$I>KK;L;I$>M$KL;PG;M76$5;?X;;M$?E;$JOO<;$JMI$EJX$E=F?$LJ7;F$7=<<;7?;I$KL=H$%LJM?:$ ()$T .>@9$A U9$,F$=5F;LN;I$>M$8J@JOJGF>M@$OGOJ;$T/),U$I>FOI$ I;7L;JF;$>M$H;?J5=<>7$LJ?;$O=F? Z OGOJL>J?>=M$I=XM$?=$J $ F?J5<;$5JF;<>M;$T .>@9$A J:5:$@L;;M$IJFE;I$ <>M;FU:$XE;L;JF$M=M Z I>JOJGF;$OGOJ;$T&/U$M;N;L$IL=O$?=$?E;$<=X$I>JOJGF;$5JF;<>M;F:$JMI$ ;N;M?GJ<<6$>M7L;JF;$>M$H;?J5 =<>7$LJ?;$JF$OEJLJ?;$JIG@9$A J:5:$=LJM@;$ F=<>I$<>M;FU9$V;$JLI:$FEJ<<=X$I>JOJGF>M@$T-/U$7JOJGF;$ 5JF;<>M;:$JOOJL;M?<6$>M>?>J?>M@$I>JOJGF;:$?E;M$>M7L;JF;F$H;?J5=<>7$LJ?;$>M$J$OJ??;LM$7=M F>F?;M?$X>?E$ I>JOJGF;$?;LH>MJ?>=M$T .>@9$A J:5:$5M;FU9$!E>F$JOJGF;$OE;M =?6O;$ =77GLF$J?$J$HJLW;I<6:$JMI$F>@M>K>7JM?<6$E>@E;L$OL=O=L?>=M$>M$?E;$JOO<;$7=HOJL;I$?=$?E;$EJX$E=F?$ LJ7;$J?$%LJM?:$()$T .>@9$A $ 79e$ + A $ k$ c`9SD:$IK$k$A:$ 8+N + B9BBBCU9 $ + + +

PAGE 30

$ ! ! C` ! *5=2:1+14:456@+0772@60562:7+M65/+5/4+7/0332M+A6080F74+6:54:765B+8/4:25B84 + 0E;M=?6O>7$77J<<6$OE;M=?6O;I$OGOJ;$X;L;$JFF>@M;I$JF$J5=N;$ T ,OO;MI>Y$+U $ JMI$7=H5>M;I$X>?E$K<>;F$OE;M=?6O;I$5JF;I$=M$;H;L@;M7;$OJ??;LMF$JF$I;F7L>5;I$>M$ ?E; $ H;?E=IF9$ $ *=HOJL>M@$?E;$@;M;?>7$NJL>JM7;$;YOM;I $ T03#U $ 56$+-2(( F $ 7=M?LJF?>M@$J<<$ OJ>LX>F;$ 7=H5>MJ?>=MF$=K$?E;$ /), :$-/:$JMI$&/$OE;M=?6O;F$FG@@;F?;I$?EJ?$?E;$-/$OE;M=?6O;$ XJF $ ?E;$ H=F?$@;M;?>7J<<6$I>F?>M7?:$XE><;$ /), $ JMI$&/$X;L;$@;M;?>7J<<6$H=F?$F>H>5<;$ >M?;LNJ<$K=L$;F?>HJ?;F$=K$O;L7;M?$NJL>JM7;$>M$?E;$OE;M=?6O;$;YOM; I$56$NJL>J?>=M$>M$J<<$-&0F$ T03#U$K=L$?E;$-/$NF9$ /), $ JMI$-/$NF9$&/$7=HOJL>F=MF$XJF$B9Da$ m $ B9QQ:$7;M?;L;I$=M$B9S`:$JMI$ B9D`$ m $ B9QQ:$7;M?;L;I$=M$B9SS:$L;FO;7?>N;<69$)M$7=M? LJF ?:$?E;$QDt$7L;I>5<;$>M?;LNJ<$K=L$;F?>HJ?;F$=K$ 03#$>M$?E;$ /), $ NF9$&/$7=HOJL>F=M$XJF$B 9BBD$ m $ B9SD:$7;M?;L;I$=M$B9Ac $ T .>@9$a JU 9 $ #F?>HJ?>M@$?E;$I>F?L>5G?>=M$=K$O=<6@;M>7$F7=L;F:$?E;$H;JM$OL=O=L?>=M$=K$JM$>MI>N>IGJ<$K<6]F$ @;M=H;$?EJ?$7=M?J>MF$?E;$J<<;<;$H=L; $ 7= HH=M$>M$K<>;F$;YOL;FF>M@$?E;$-/$OE;M=?6O;$T #@JM$;?$J<9$ ABCDU :$J7J<<6$I>F?>M7?$KL= H$ / ), $ JMI$&/$OE;M=?6O;F9$ 'M<6$<=7>$?EJ?$EJI$J$O=F?;L>=L$>M7=M$OL=5J5><>?6$T0)0U$J5=N;$B9BCt$>M$ J?$<;JF?$=M;$=K$?E;$?EL;;$ OJ>LX>F;$7=HOJL>F=M$+-2((F $ X;L;$GF;I$?=$7J<7G7$F7=L;F:$XE=F;$I>F?L>5G?>=MF$ K=L$;J7E$OE;M=?6O;$JL;$><M$ . >@9 $ a 5 9$*=MF>F?;M?$X>?E$?E;$L;FGLX>F;$+-2(($ H=I;5;I$J5=N;:$?E;$I>F?L>5G?>=M$=K$O=<6@;M>7$F7=L;F$K=L$?E;$-/$OE;M=?6O;$XJF$FE>K?;I$ ?=XJLIF$E>@E;L$NJ<;$I>F?L>5G?>=MF$K=L$?E;$ /), $ JMI$&/$OE;M=?6O;F$X;L;$M@9$ $ +=?E $ =K $ ? E;$J5=N;$JMJ<6F;F$FGOO=L? ;I $ -/$JF$J$@;M;?>7J<<6$I>F?>M7?$OE;M=?6O;$7=HOJL;I$?=$ J$ L;N;<6$ @;M;?>7J<<6$E=H=@;M;=GF$@L=GO$=K$ /), $ JMI$&/$OE;M=?6O;F9 $ .GL?E;LH=L;:$JF$F?J?;I$

PAGE 31

$ ! ! CS ! J5=N;:$?E;$OL=O=L?>=M$=K$?E;$-/$OE;M=?6O;$7<;JL<6$I>KK;LF$5;?X;;M$?E;$E=F?$LJ7;F $ T . >@ 9$AJ :5U9 $ !EGF:$J<<$FG5F;PG;M?$JMJ<6F;F$=K$@;M;?>7$JFF=7>J?>=MF$7=HOJL; I $ -/$?=$J$7=H5>M;I$@L=GO$=K$&/$ JMI$ /), $ OE;M=?6O;F$T /),w&/ U9 $ O/=29272903+A 675=6IF562:+2<+A6080F74+6:54:765B ? 0772@6054A+32@6 + ->@M>K>7JM?$J<<;<;$KL;PG;M76$I>KK;L;M7;F$5;?X;;M$?E;$-/$JM I$ / ), w&/ $ @L=GOF$X;L;$ M;I$?=$7EL=H=F=H;F$A:$a:$JMI$D:$X>?E$J$FG5F?JM?>J<$O=L?>=M$=K$?EJ?$NJL>J?>=M$KJ<<>M@$ X>?E>M$E>@E$2/$L;@>=MF$T .>@9$c JU9$+G?:$J$F>@M>K>7JM?$;Y7;FF$=K$-&0F$JFF=7>J?;I$X>?E$I>JOJGF;$ >M?;MF>?6$ XJF$<=7J<>f;I$ =M$7EL=H=F=H;F$A:$a: $ JM I$ D:$>M$E>@E:$>M?;LH;I>J?;:$JMI$<=X$2/$L;@>=MF9$ *EL=H=F=H;F$C$JMI$c$EJI$7=HOJLJ5<6$<>??<;$NJL>J?>=M$JFF=7>J?;I$X>?E$I>JOJGF;$>M?;MF>?6$T .>@9$c $ JU9$ $ 8J@J?;I$X>?E$I>JOJGF;$?;LH>MJ?>=M $ =M$ 7EL=H=F=H;F$C:$A$JMI$a9$!E;F;$-&0F$X;L;$J?E>M$E>@E$2/$L;@>=MF$T .>@9$c 5U9 $ !EGF:$<= 7>$ =M$7EL=H=F=H;F$A$JMI$a$X;L;$JFF=7>J?;I$X>?E$5=?E$I>JOJGF;$>M?;MF>?6$JMI$I>JOJGF;$ ?;LH>MJ?>=M$TOJL?>7GM$?E;$E>@E$2/$L;@>=MFU:$XE;L;JF$<=7>$= M$7EL=H=F=H;$C$X;L;$JFF=7>J?;I$ X>?E$I>JOJGF;$?;LH>MJ?>=M:$5G?$M=?$X>?E$I>JOJGF;$>M?;MF>?69 $ "275+!0@4+G6K4=1 4:@ 4+<2=+G6080F74 ? 0772@6054A+32@6 + $ 2=7>$JFF=7>J?;I$X>?E$I>JOJGF;$>M?;MF>?6$JN;L@;M?$5;?X;;M$F6HOJ?L>7$ E=F?$LJ7;F$J?$%LJM?:$():$?E= G@E$>M$J$7EL=H=F=H; Z I;O;MI;M?$HJMM;L9$!E;F; $ E=F?$LJ7;$N;LFGF$ I>JOJGF;$>M?;MF>?6 $ JMJ<6F;F$GF;I$IJ?J$KL=H$%LJ M?: $ ()$5;7JGF;$I>JOJGF;$>M?;MF>?6$XJF$OE;M=?6O;I$ K=L$?E;$EJX$O=OG=M$J?$?E>F$<=7J?>=M$TF;;$H;?E=IFU9$,<<;<;$KL;PG;M76$I>KK;L;M7;F$5;?X;;M$?E;$ -/$J MI$ /), w&/$I>JOJGF;$7@M>K>7JM?<6$O=F>?>N;<6$JFF=7>J?;I$X>?E$E=F?$LJ7;$ I>KK;L;M7;F $ T!J5<; $ )$/ U9 $ "; L;:$J$O=F>?>N;$L;=MFE>O$>MI>7J?;F$JM$JFF=7>J?>=M$5;?X;;M$?E;$-/$

PAGE 32

$ ! ! CQ ! OE;M=?6O;$JMI$?E;$JOO<;$E=F?$LJ7;$TJMI$ /), w&/$JMI$EJX$E=F?$LJ7;e$ .>@9$D J Z 7U9$! E;$NJL>J?>=M$ GMI;L<6>M@$?E>F$L;=MFE>O$XJF$M;I$?=$7EL=H=F=H;F$C$ Z $ a$T .>@9$D J Z 7 e$ ,OO;MI>Y$* $ K=L $ 7EL=H=F=H;F$c$JMI$DU9$.=L$;J7E$=K$?E=F;$7EL=H=F=H;F:$=M<6$?E;$>M?;LH;I>J?;$2/$@L=GOF$ ;YE>5>?;I$J$F>@M>K>7JM?$L;=MFE>O$5;?X;;M$I>JOJGF;$>M?;MF >?6$JMI$E=F?$LJ7;$T!J5<;$C $ / U9$)M$ 7=M?LJF?:$?E;$L;FGN;$7=LL;= M$5;?X;;M$JFF=7>J?>=MF$ X>?E$I>JOJGF;$?;LH>MJ?>=M$JMI$X>?E$E=F?$LJ7; $ T!J5<;$))U9$ !E>F$L;=MFE>O$J;I$J7L=FF$ 7EL=H=F=H;F :$X>?E$?E;$F?L=M@; F?$L;=MFE>OF$5;?X;;M$OE;M=?6O>7 Z $ JMI$E=F? Z JFF=7>J?>=MF$ OL;F;M?$=M$7EL=H=F=H;F$C$JMI$a$T!J5<;$))U9$ $ $4:4 56@ + 0772@60562:7+I45M44:+A6080F74+6:54:765B+0:A+A6080F74+54=96:0562: + %;M;?>7$NJL>J?>=M$JFF=7>J?;I$X>?E$I>JOJGF;$>M?;MF>?6$XJF$F>@M>K>7JM?<6$JMI$M;@J? >N;<6$ L;7$NJL>J?>=M$>M$ I>JOJGF;$?;LH>MJ?>=M $ J7L=FF$J<<$`:AbD$-&0F$ ;YJH>M;I$>M $ ?E >F$F?GI6$T!J5<;$ )$, U9$";L;$J$M;@J?>N;$L;=MFE>O$>MI>7J?;F$JM$JFF=7>J?>=M$5;?X;;M$ -/$JMI$JOJGF;$?;LH>MJ?>=M$?>H>M@ $ TJMI$JM$JFF=7>J?>=M$5;?X;;M$*/w&/$JMI$;JL<6$ ;7<=F>=MU9$!E;$=N;LJ<<$L;=MFE>O$J7L=FF$J<<$<=7>$XJF$OL>HJL><6$IL>N;M$56$NJL>J?>=M $ >M $ <=7>$ <=7J?;I$ =M$7EL=H=F=H;F$A$JMI$a$>M$ E>@E $ T 7EL=H=F=H;$A U$JMI$ >M?;LH;I>J?; $ T7EL=H =F=H;F$A$JMI$ a U$2/$@L=GOF$T .>@9$D ; : K e$$! J5<;$ )$, U9$$d Z K=7EH;M?$?;F?F$J$ JFF=7>J?;I$X>?E$5=?E$OE;M=?6O;F$=M$7EL=H=F=H;F$C:$A:$a:$JMI$D :$? E=G@E$OL>HJL><6$K=L$<=7>$ <=7J?;I$>M$E>@E$JMI$>M?;LH;I>J?;$2/$@L=GOF $ T .>@9$b U9 $ !E=G@E$?E;$d Z K=$ JFF =7>J?;I$X>?E$I>JOJGF;$>M?;MF>?6$JJ?;I$X>?E$I>JOJGF;$?;LH>MJ?>=M$=M$ 7EL=H=F=H;$C:$?E;L;$JL;$HJM6$H=L;$<=7>$=M$ 7EL =H=F=H;$C$JFF=7>J?;I$X>?E$I>JOJGF;$?;LH>MJ?>=M$ TcccU$7=HOJL;I$?=$[GF?$J$K;X$JFF=7>J?;I$X>?E$I>JOJGF;$>M?;MF>?6$TCDe$ .>@9$` U 9$ $ +

PAGE 33

$ ! ! AB ! O36:03+K0=60562:+<2=+A6080F74+0772@6054A+32@6 + .L;PG;M7>;F$=K$J<<;<;F$F>@M>K>7JM?<6$JFF=7>J?;I$X>?E$I>JOJGF;$>M?;MF>?6$T-/$NF$ / ), w& /U$ =M$7EL=H=F=H;$C$I>I$M=?$7EJM@;$JOOL;7>J5<6$X>?E$@;=@LJOE6$T .>@9$` U:$XE><;$?E=F;$=M$ 7EL=H=F=H;F$A$JMI$a$I;7L;JF;I$X>?E$ >M 7L;JF>M@$ ?GI;$K=L$5=?E$EJX$JMI$JOO<;$LJ7;F$T .>@9$` U9$ &=?;$?EJ?$ J<<;<;F$X;L;$O=f;I$FG7E$?EJ?$?E;$L;K;L;M7;$XJF$XE>7E;N;L$J <<;< ;$XJF$H=F?$7=HH=M$ >M$?E;$EJX?E=LM$LJ7;$J?$%LJM?:$ ()9 $ !EGF:$KL;PG;M7>;F$=K$?E;$-/ Z JFF=7>J?;I$J<<;<;F$@;M;LJ<<6$ I;7<>M;I$X>?E $ >M7L;JF>M@$?GI;9$ ,<<;<;$KL;PG;M7>;F$K=L$<=7>$=M$7EL=H=F=H;F$C$ Z $ a$F>@M>K>7JM?<6$ JFF=7>J?;I$X>?E$I>JOJGF;$?;LH>MJ?>=M$J?E$@;=@LJOE6:$X>?E$?E;$KL;PG;M76$=K$?E;$ J<<;<;$JFF=7>J?;I$X>?E$=M$@;M;LJ<<6$I;7L;JF>M@$X>?E$>M7L;JF>M@$? GI;9$*<>M;F$X;L;$M=?$ 7=HO<;?;<6$<>M;JL:$X>?E$M=?J5<;$i5GHOF]$=K$>M7L;JF;I$J<<;<;$KL;PG;M76$J?$?E;$.;MMN><<;:$()$F>?;9$ (=L;=N;L:$7 <>M; F$X;L;$M=?$>I;M?>7J<$>M$5=?E$E=F?$LJ7;F9$)M$OJL?>7GM;F$?;MI;I$?=$7=MN;L@;$ X>?E$>M7L;JF>M@$?GI;$T?;LH>MJ?>=M Z JFF =7>J?;I$<=7>$=M$7EL=H=F=H;$C$JMI$a:$JMI$>M?;MF>?6 Z JFF=7>J?;I$<=7>$=M$7EL=H=F=H;$aU$FG7E$?EJ?$I>KK;L;M7;F$5;?X;;M$E=F?$LJ7;F$X;L;$ H=F? $ OL=M=GM7;I$J?$1L5JMJ:$)2:$?E;$<=X;F?$?GI;$F>?;$TF;;$5;<=XU9$ $ !E;$7<>MJ<$NJL>J?>=M$>M$J<<;<;$KL;PG;M7>;F$>F$KGL?E;L$FGO O=L?;I$56$?E;$F>@M>K>7JM?$M;@J?>N;$ L;=MFE>O$5;?X;;M$I>JOJGF;$>M?;MF>?6$JMI$@;=@LJOE>7$I>KK;L;M7;F$X>?E>M$E=F?$LJ7;F$5;?X;;M$? E;$ % LJM?:$()$JMI$1L5JMJ:$)2$F6HOJ?L>7$F>?;F$T!J5<;$)$#:$.U9$";L;$J$M;@J?>N;$L;=MFE>O$>MI>7J?;F$JM$ JFF=7>J?>=M$5;?X;;M$-/$JM I$?E;$F=G?E;LM$F6HOJ?L>7$F>?;$1L5JMJ:$)2$JMI$/),$JMI$&/$X>?E$?E;$ M=L?E;L$F6HOJ?L>7$F>?;$%LJM?:$()9$.=L$5=?E$E=F?$LJ7;F:$<=7>$=M$7 EL=H =F=H;F$A:$a:$JMI$D$;YE>5>?;I$ ?E;$F?L=M@;F?$L;=MFE>OF$5;?X;;M$I>JOJGF;$>M?;MF>?6$JMI$@;=@LJOE6$T!J5<;$)$#:$.U9$$$ $ *434@5 62:+=4782:74+2<+A6080F74 ? 0772@6054A+32@6 + ,<<;<;$KL;PG;M76$I>KK;L;M7;F$5;?X;;M$?E;$-/$JMI$ /), w&/$I>JOJGF;$7@M>K>7JM? <6$O =F>?>N;<6$L;KK;L;M7;F$5;?X;;M$?E;$` Z IJ6$JMI$aA Z IJ6$?L;J?H;M?F$>M$?E;$

PAGE 34

$ ! ! AC ! EJX?E=LM$K<6$OL; Z X>M?;L$ F;<;7?>=M$;YO;L>H;M?$T .>@9$D E Z [ :$?J5<;$ )$+:$/ U:$5G?$F>@M>K>7JM?<6$ M;@J?>N;<6$L;KK;L;M7;F$>M$?E;$JOO<;$F;<;7?>=M$;YO; L>H; M?$T .>@9$D W Z H :$ !J5<;$ ) U9$";L;:$J$M;@J?>N;$L;=MFE>O$>MI>7J?;F$JM$JFF=7>J?>=M$5;?X;;M$?E;$-/$OE;M=?6O;$JMI $ ?E;$aA Z IJ6$OL;X>M?;L$?L;J?H;M?$TJMI$JM$JFF=7>J?>=M$5;?X;;M$?E;$ /), w&/$OE;M=?6O;$JMI$?E;$`$ IJ6$?L;J?H;M?U :$X E><;$J$O=F>?>N;$L;=MFE>O$>MI>7J? ;F$? E;$L;N;LF;9$.=L$5=?E$;YO;L>H;M?F:$<=7>$=M$ 7EL=H=F=H;$A$@M>K>7JM?$7=LL;=M$T .>@9$D $ @ Z H :$ !J5<;$CU:$JMI$?=$J$<;FF;L$ ;Y?;M? : $ <=7>$=M$ 7EL=H=F=H;$a$T .>@9$D $ @ Z H U9$,F$X>?E$?E;$L;=MFE>O$5;?X;;M$I>JOJGF;$>M?;MF>?6$ JMI$I>JOJGF;$?;LH>MJ? >=M: $ <=7>$>M$ E>@E$JMI$>M?;LH;I>J?;$2/$@L=GOF$ X;L;$H=F?$F?L=M@<6$JFF=7>J?;I$ X>?E$5=?E$I>JOJGF;$>M?;MF>?6$JMI$?E;$ L;FO=MF;$?=$F;<;7?>=M $ T!J5<;$CU9 $ .;>:9>>;74 ' 'K6A4:@4+<2=+/6752=6@P+@36:03+7434@562:+0:A+0:5012:6756@+834625=28B+6:+ 8EJ@=<;?>F$O=H=M;<F$?EJ?$7=LL;=M$=M$ I>JOJGF;$>M?;MF>?6 $ >M$ !;+ 8292:4330+ OJL?>J<<6$;YOMF$XE6$KL;PG;M7>;F$=K$J<<;<;F$JFF=7>J?;I$X>?E$I>JOJGF;$?;LH>MJ?>=M$ T;H;L@;M7;U$?>H>M@$NJL6$5;?X;;M$E=F?$LJ7;F$>M$J$I>L;7?>=M$=OO=F>?;$?=$?EJ? $ OL;I>7 ?;I$ 5JF;I$=M$ =5F;LN;I$OE;M=?6O>7$I>KK;L;M7;F$5;?X;;M$?E;$E=F?$LJ7;F9$+;<=X:$X;$7=H5>M;$>MK;L;M7;F$L;M$PG;F?>=MF$O=F;I$>M$?E;$>M?L=IG7?>=M$?=$I>F7GFF$?E;$I>KK;L;M?$<;N;F$E6O=?E;F>F9 $ .>LF?:$=GL$L;FGLH $ ?EJ?:$ >M$J II>?>=M$?=$OL;N>=GF<6$I;F7L>5;I$NJL>J?>=M$>M$I>JOJGF;$ ?;LH>MJ?>=M:$?E;L;$>F$F;@L;@J?>M@$NJL>J?>=M$K=L$I>JOJGF;$>M?;MF>?6 9 $ 8;FGF?;M7;$=K$@;M;?>7$NJL>JM7;$GMI;L<6>M@$?E;$?LJ>?$5G?$I>I$M=?$FGOO=L?$ H;JFGLJ5< ;$7=M?L >5G? >=MF$=K$<=7>$=K$HJ[=L$;KK;7?:$J$L;FGF?;M?$X>?E$O=<6@;M>7$@;M;?>7$ JL7E>?;7?GL;9$2=7GF Z 56 Z <=7GF$?;F?F$FG@@;F?;I$?EJ?$@;M;?>7$NJL>JM?F$JFF=7>J?;I$X>?E$I>JOJGF;$

PAGE 35

$ ! ! AA ! >M?;MF>?6$X;L;$I>F?L>5G?;I$J7L=FF$OL;N>=GF<6$>I;M?>K>;I$<>MWJ@;$@L=GOF$JMI$J7L=F F$a$=K$ ?E;$ D$ !;+ 8292:4330 $ 7EL=H=F=H;F $ T8J@@M>K>7JM?$;Y7;FF$=K$-&0F$ JFF =7>J ?;I$X>?E$I>JOJGF;$>M?;MF>?6$<=7J<>f>M@$>M$E>@E$JMI$>M?;LH;I>J?;$2/$L;@>=MF$=M$ *EL=H=F=H;F$A:$a:$JMI$D9$ $ $ -;7=MI:$I>JOJGF;$>M?;MF>?6$OE;M=?6O;F$NJL>;I$5;?X;;M$?E;$E=F?$LJ7;F$T .>@9$A U:$JF$I>I$?E;$ KL;PG;M7>;F$=K$J< <;<;F$J?$<=7>$JFF=7>J?;I$X>?E$I>JOJGF;$>M ?;MF >?69$%;M=H; Z X>I;:$E=F?$LJ7;$ I>KK;L;M7;F$K=L$J<<$`:ADb$-&0F$X;L;$7=LL;?E$?E;$F?L;M@?E$=K$?E;$JFF=7>J?>=M$X>?E$?E;$ OE;M=?6O;9$(=L;=N;L: $ ?E;$-/$OE;M=?6O;$JF$X;<<$JF $ J<<;<;F$JFF=7>J?;I$X>?E$?E;$-/$OE;M=?6O;$ =77GLL;I$J?$E>@E;L$KL;PG;M7>;F$>M$?E;$JOO <;$E =F?$LJ7;9$*=LL;=MF$5;?X;;M$I>JOJGF;$>M?;MF>?6$ JMI$E=F?$LJ7;$I>KK;L;M7;F$X;L;$OJL?>7GM?;LH;I>J?;$2/$L;@>=MF$=M$ 7EL=H=F=H;F$A$JMI$a:$XE>7E$JJOJGF;$>M?;MF>?6 Z JFF= 7>J?;I$<=7>9$ $ $ !E>LI:$<=7>$JFF=7>J?;I$X>? E$I> JOJGF;$>M?;MF>?6$JJ?;I$X>?E$I>JOJGF;$ ?;LH>MJ?>=M:$FG@@;F?>M@$;>?E;L$O<;>=?L=O6$=L$F?L=M@$2/$JH=M@$?E;$@;M;?>7$;<;H;M?F$7=M?L=<<>M@$ ?E;F;$?LJ>?F9$V;$K=GMI$F>@M>K>7JM?$L;=MFE>OF$5;?X;;M$ @;M;?>7$NJL>J?>=M$>M$I>JOJGF;$>M?;MF>?6$ J MI$I >JOJGF;$?;LH>MJ?>=M$J7L=FF$J<<$-&0$<=7>9$!E;$F?L;M@?E$=K$?E>F$L;=MFE>O$JOO;JLF$?=$5;$ fJ?>=M$=K$@;M;?>7$NJL>JM?F$JFF=7>J?;I$X>?E$?E;F;$ I>JOJGF;$?LJ>?F$>M$?E;$E>@E$JMI $ >M?;LH;I>J?;$L;@>=MF$=M$7EL=H=F=H;F$A$JM I$a9 $ !E;F;$F?L=M@$ 7=LL;=MF$JMI$E>@E$Y Z K=JOJGF;$>M?;MF>?6$JMI$I>JOJGF;$?;LH>MJ?>=M$JL;$ M=?$@;M;?>7J<<6$>MI;O;MI;M?9$!E;F;$L;FG7?$OL;N>=GF$K>MI>M@F$FG@@;F?>M@$?EJ?$I>JOJGF;$ >M? ;MF>?6$JMI$I>JOJGF;$?;LH>MJ?>=M$JL;$@;M;? >7J< <6$H=IG=GF$F?GI6$GF;I$FGLN>NJ<$>M$J$OL; Z X>M?;L$F;<;7?>=M$;YO;L>H;M?$=M$?E;$EJX?E=LM$O=OG=M$JF$ J$OL=Y6$K=L$I>JOJGF;$>M?;MF>?6:$XE><;$X;$I>L;7?<6$H;JFGL;I$?E;$I>JOJ GF;$OE;M=?6O;:$5=?E$ OE6F>=<=@>7J<<6$JMI$@ ;M;? >7J<<69$)M$7=HOJL>F=M$?=$?E;$E>@E$7=M7;M?LJ?>=M$=K$J<<;<>7$NJL>J?>=M$>M$

PAGE 36

$ ! ! Aa ! FO;7>K>7$@;M=H>7$L;@>=MF$?EJ?$X;$=5F;LN;I$5;?X;;M$I>JOJGF;$7M?;L$ F;<;7?>=M$;YO;L>H;M?$OL>HJL><6$>MKJM?F$J7L=FF$J<<$K>N;$7EL=H=F=H;F$JM I$I> I$ M=?$EJN;$JM6$F>@M>K>7JM?$;Y7;FF$=K$-&0F$>M$E>@E$2/$L;@>=MF$ T#@JM$ 45+03; :$ABCDe$8J@;F$J?$<= 7>$JFF=7>J?;I$X>?E$I>JOJGF;$>M?;MF>?6$JMI $ ?;L H>MJ?>=M$ NJL>;I$X>?E$?GI;$>M$I>L;7?>=MF$7=MF>F?;M?$X>?E$@;=@LJOE>7J<<6$NJL>J5<;:$7=LL;=MJ<$F;<;7?>=M9$ +JF;I$=M$OE;M=?6O>7$NJL>J?>=M$K=L$5=?E$?LJ>?F$J7L=FF$@;=@LJOE6$ T.;I;L $ 45+03; :$CQQce$/JH5L=FW>$_$ .;I;L:$ABB`U :$X ;$E6O=?E;F>f;I$?EJ?$J<<;<;F$JFF=7>J?;I$X>?E$H=L;$>M?;MF;$I>JOJGF;$JMI$JOJGF;$?;LH>MJ?>=M$X=GM$?E;$F=G?E:$X>?E$?E;$JN;$J<<;<;F$7=MK;LL>M@$<;FF$ >M?;MF;$I>JOJGF;$JMI$;JL<>;L$I>JOJGF;$ ?;LH>MJ?>=M$>M$?E;$M=L?E9$'GL$@;M;?>7$L;F GF$OL;I>7?>=M:$X>?E$H;JM$KL;PG;M7>;F$=K$J<<;<;F$JFF=7>J?;I$X>?E$?E;$-/$JMI$MJ?>=M$ T;H;L@;M7;$?>H;U$OE;M=?6O;F$I;7L;JF>M@$X>?E$>M7L;JF>M@$?GI;:$>M7M@$<=7>$=M$ 7EL=H=F=H;F$A$JMI$ a$?EJ?$JFF=7>J?;$X>?E$5=?E$OE;M=?6O;F$T .> @9$` :$!J5<;$)$#:$.U9$!E>F$=5F;LNJ?>=M$ >F$KGL?E;L$5G??L;FF;I$56$?E;$F>@M>K>7JM?$JFF=7>J?>=MF$5;?X;;M$@;=@LJOE>7$NJL>J?>=M$JMI$I>JOJGF;$ >M?;MF>?6$=M$7EL=H=F=H;F$A:$a:$JMI$D$K=L$5=?E$E=F?$LJ7;F$T!J5<;$)$#:$.U9$ $ !E;F;$L;FG7?$OL;N>=GF$K>MI>M@F$?EJ?$ I>JO JGF;$>M?;MF>?6$JMI$I>JOJGF;$ ?;LH>MJ?>=M$JL;$@;M;?>7J<<6$H=IG=L$F?GI6$GF;I$ FGLN>NJ<$>M$J$OL; Z X>M?;L$F;<;7?>=M$;YO;L>H;M?$=M$?E;$EJX?E=LM$E=F?$LJ7;$JF$J$OL=Y6$K=L$I>JOJGF;$ >M?;MF>?6:$XE><;$X;$I>L;7?<6$H;JFGL;I$?E;$I>JOJGF;$OE;M=?6O;:$5=?E$OE6F>=<=@>7J<<6$JMI $ @;M;?>7J<<69$%;M;?>7$NJL>J?>=M$>M$I>JOJGF;$>M?; MF>? 6$XJF$F?><<$JFF=7>J?;I$X>?E$?E;$L;FGM?;L$=M$;YO;L>H;M?F:$JF$J<<;<;$KL;PG;M7>;F$7EJM@;$J?$<=7>$JFF=7>J?;I$X>?E$ I>JOJGF;$>M?;MF>?6$XE;M$5=?E$JOO<;$JMI$EJX$LJ7;F$JL;$;YO=F;I$?= $ <=M@$OL; Z X>M?;L>M@$?L;J?H;M?F$ >M$?E;$@9$ D :$! J5<;$)$+:$*U9$!E;$L;FG=M$;YO;L>H;M?F$JL;$M=?$7=M7=LIJM?:$

PAGE 37

$ ! ! Ac ! E=X;N;L:$X>?E$?E;$F>@M$=K$?E;$7=LL;=M$X>?E$I>JOJGF;$>M?;MF>?6$I>KK;L>M@$5;?X;;M$E=F?$LJ7;F$ ;YO=F;I$?=$?E;$F;<;7?>=M$;YO;L >H;M?9$-O;7>K>7J<<6:$-/$J<<;<;F$JOO;JL$?=$5;$KJN =L;I $ >M$JOO<;$K<>;F$ ?L;J?;I$X>?E$<=M@:$aA Z IJ6$OL; Z X>M?;LF:$XE;L;JF$?E;6$JOO;JL$I>FJINJM?J@;I$>M$EJX$K<>;F$;YO=F;I$?=$ ?E;$FJH;$7=MI>?>=MF9$,$O=?;M?>J<$;YO=M$>F$?E;$-/$OE;M=?6O;$>F$LJL;$>M$EJX?E=LM Z >MK;F? >M@$ O=OG=MF:$JF$;N>I;M7;I$56$=M<6$Q$=K$AB`$> MI>N >IGJM$?E>F$F?GI6$;YE>5>?>M@$ FEJ<<=X$I>JOJGF;9$!EGF:$?E;L;$HJ6$EJN;$5;;M$N;L6$<>??<;$NJL>J?>=M$>M$I>JOJGF;$>M?;MF>?6$?=$F;<;7?$ GO=M$>M$?E;$OL; Z X>M?;L$F;<;7?>=M$;YO;L>H;M?$=M$?E;$EJX?E=LM$LJ7 ;9$+6$7=M?LJF?:$?E;$-/$OE;M=?6O;$ >F$HG7E$H=L;$7= HH=M $ >M$?E;$JOO<;$LJ7;:$JMI$?E;$-/ Z JFF=7>J?;I$J<<;<;F$JL;$7<;JL<6$H=L;$KJN=L;I$ >M$?E;$<=M@$aA$IJ6:$<=M@$OL; Z X>M?;L$?L;J?H;M?$T.>@9$ .>@9$D $ ^ Z (e$M;@J?>N;$L;=MFE>O$FG@@;F?F$ JFF=7>J?>=MF$5;?X;;M$-/ Z <>W;$J<<;< ;F$JMI$?E;$aA$IJ6$?L;J?H;M?U9 $ $ ,?$F6HOJ?L>7$F>?; F$MJ ?GLJ<$F;<;7?>=M$JOO;JLF$?=$KJN=L$J$H=L;$>M?;MF;$I>JOJGF;$JMI$JOJGF;$?;LH>MJ?>=M$>M$JOO<;$7=HOJL;I$?=$EJX?E=LM Z JFF=7>J?;I$O=OG=MF9$.L=H$?E>F$ O;LFO;7?>N;:$?E;$=5F;LN;I$O<;>=?L=O6$JMIh=L$<>MWJ@;$ L;=MFE>OF$=M$7EL=H=F=H;F$A$JMI$a$JL;$ JM?J@=M >F?> 7$?=$?E;$I>L;7?>=M$=K$F;<;7?>=M$=M$?E;$JOO<;$E=F?$LJ7; $ T.>@$C,U 9$!EGF:$F;<;7?>=M$>HO=F;I$ 56$>MK;F?>M@$JOO<;$NF9$EJX?E=LM$KLG>?$X=G?E;L$5L;JW$GO$OE;M=?6O>7$ 7=LL;=MF$KJN=L;I$56$F;<;7 ?>=M$J7L=FF$@;=@LJOE6:$=L$?=$F;<;7?$K=L$J<<;<;F$ ?EJ? $ 7=MK;L$J$H=L;$ FG>?J5<;$OE;M=?6O;$K=L$=M;$?LJ>?:$5G?$J$HJN;$OE;M=?6O;$K=L$?E;$=?E;L9$#N>I;M7;$K=L$ HJN;$NJL>J?>=M$>M$I>JOJGF;$?;LH>MJ?>=M$EJF$5;;M$I=7GH;M?;I$>M$OL;N>=GF$F?GI>;F$ T.;I;L$ 45+ 03; :$CQQae$(>7E;<$ 45+03; :$ABCBe$8J@$=M$ 7EL=H=F=H;F$A$JMI$a$?EJ?$JFF=7>J?;$X>?E$5=?E$OE;M=?6O;F$;YE>5>?$E>@E;L$K L;PG;M7>;F$=K$J<<;<;F$ ?EJ?$JFF=7>J?;$X>?E$?E;$-/ $ OE; M=?6O;$JMI$JOJGF;$?;LH>MJ?>=M$>M$JOO<; Z >MK;F?>M@$ O=OG=MF9$+JF;I$=M$?E;$=5F;LN;I$@;=@LJOE>7$OJ??;LMF$T .>@9$` :$!J5<;$)$#:$.U:$X;$X=GJ?;I$J<<;<;$?=$5;$F;<;7?;I$K=L$>M$?E;$JOO<; $ E=F?$LJ7;:$?E=G@E$?E;$OE;M=?6O;$>?F;F$

PAGE 38

$ ! ! AD ! F=H;X EJ?$ FGLOL>F>M@$TF;;$JII>?>=MJ<$I>F7GFF>=M$5;<=XU9$!EGF:$F;<;7?>=M$K=L$-/ Z JFF=7>J?;I$J<<;<;F$ >M$JOO<;$7=GM$E>@E;L$KL;PG;M7>;F$=K$JOOJL;M?<6$HJN;$NJL>J?>=M$JFF=7>J?;I$X>?E$ JOJGF;$?;LH>MJ ?>=M9 $ $ )M$7=M?LJF?:$<=7>$=M$7EL=H=F=H;$C$JOO;JL$ ?=$J FF=7>J?;$X>?E$I>JOJGF;$?;LH>MJ?>=M$JMI$M=?$ X>?E$I>JOJGF;$>M?;MF>?6:$JMI$?E;$OJ??;LMF$=K$@;M;?>7$NJL>J?>=M$J?$?E;F;$<=7>$JL;$7=MF>F?;M?$X>?E$JM$ JIJO?>N;$L;FO=MF;$?=$F;<;7?>=M$K=L$I>JOJGF;$?;LH>MJ?>=M$?EJ?$ I=;F$M=?$JKK;7?$I>JOJGF;$>M?;MF>?69$ 0E;M=?6O>7$; N>I; M7;$7<;JL<6$FE=XF$?EJ?$JOO<; Z JFF=7>J?;I$O=OG=MF$EJN;$HJMJ@;I$?=$;N=;L$I>JOJGF;$?;LH>MJ?>=M$ T.;I;L$ 45+03; :$CQQcU :$JMI$?E;$;KK;7?F$=K$M=M Z O<;>=?L=O>7$T=L$M=M Z <>MW;IU$<=7>$FG7E$JF$?E=F;$=M$7EL=H=F=H;$C$HJ6$=N;LXE;N;$;KK;7?F$= K$ O<;>=?L=O>7h<>MW;I$<=7>$=M$7EL=H=F=H;F$A$JMI$a :$JF FGH>M@$JM$JII>?>N;$H=I;<9$"=X;N;L:$<=7>$=M$ 7EL=H=F=H;$C$7JMM=?$GM>N;LFJ<<6$J77=GM?$K=L$;JL<>;L$I>JOJGF;$?;LH>MJ?>=M$>M$JOO<;$K<>;F:$JF$?E;$ H;JM$KL;PG;M7>;F$=K$?E;$;JL<6 Z JFF=7>J?;I$J<<;<;$JL;$=M<6$J?$J$E>@ E;L$KL;PG;M76$>M$JOO<;$K<>;F$J?$A$ =K$?E;$c$@;=@L JOE> 7$F>?;F$T7<>M;F$>M$H;JM$J<<;<;$KL;PG;M76$7L=FF$>M$ .>@9$` U9$!E;$8,/$<=7>$>M$?E>F$ F?GI6$L;OL;F;M?$=M<6$J$O=L?>=M$=K$?E;$@;M=H;$JMI$JL;$<>W;<6$5>JF;I$?=$I;?;7?$JFF=7>J?>=MF$>M$E>@E;L$ 2/$L;@>=MF$ T2=XL6$ 45+03; :$ABC`U 9$!EGF:$GM>I;M?>K>; I$<=7>$>M$H=L;$7=<<>M;JL$L;@>=MF$=K$?E;$@;M=H;$ H J6$O HO=L?JM?$L=<;9 $ &0I2=052=B+9407F=47+2<+8/4:25B847+K4=7F7+<643A+7434@562: + $ !E;L;$>F$=K?;M$F=H;$GM7;L?J>M?6$>M$?E;$L;=MFE>O$5;?X;;M$J$OE;M=?6O;$?EJ?$X;$7JM$ H;JFGL;$>M$?E;$;M7;$F;<;7?>=M$>M$?E; $ K>; M>$ 45+03; :$ABCAe$-=L>J Z *JLLJF7=$ 45+03; :$ABCce$*EJ?GLN;I>$ 45+03; :$ABCSe$+JLL;?? $ 45+ 03; :$ABCQU 9$ ";L;:$?E;$-/$I>JOJGF;$>M?;MF>?6$OE;M=?6O;$X=GN;:$JF$OL;HJ?GL;$ I>JOJGF;$?;LH>MJ?>=M$OL>=L$?=$X>M?;L$<;JIF$?=$f;L=$K>?M;FF$ T.;I;L$ 45+03; :$CQQ`JU 9$"= X;N;L:$-/ Z JFF=7>J?;I$J<<;<;F$L;IG7;I$?E;$OL=5J5><>?6$=K$JM$&/$OE;M=?6O;$TF?L=M@$@;M;?>7$JFF=7>J?>=MF$

PAGE 39

$ ! ! Ab ! I>F?>M@G>FE>M@$?E;F;$?X=$OE;M=?6O;Fe$ .>@9$a U:$XE>7E$>F$7<;JL<6$HJN; $ GMI;L$XJLH$OL; Z X>M?;L$7=MI>?>=MF9$)M$?E;$K>;?>=MF$5;7=H;$OL=@L;FF>N;<6$ 7==<;L$IGL>M@$?E;$KJ<<$XE;M$ I>JOJGF;$>F$>M>?>J?;I:$JMI$?EGF$?E;$-/$OE;M=?6O;$JF$X;$EJN;$H;JFGL;I$>M$?E;$M$M J?GL ;9$!E;$7<>MJ<$IJ?J$JF$KJN=L;I$GMI;L$XJLH;L:$H= L;$F=G?E;LM$7=MI>?>=MF9$.GL?E;L$F?GI>;F$H=M>?=L>M@$ I;N;<=OH;M?$>M$?E;$K>;<<$5;$M;7;FFJL6$?=$5;??;L$GMI;LF?JMI$?E;$?LG;$?JL@;?F$=K$MJ?GLJ<$ F;<;7?>=M9 $ #:5012:6756@+8346 25=2 8B+0:A+14:296@+A6K4=14:@4 + $ VE6$I=;F$?E;$I>L;7?>=MJ<>?6$=K$J<<;<;$KL;PG;M76$I>KK;L ;M7;F$5;?X;;M$;7=<=@>7J<<6$ I>N;L@;M?$O=OG=MF$=K?;M$KJ><$?=$K=<<=X$OL;I>7?>=MFj$!E;L;$JL;$HJM6$O=FF>5><>?>;F:$>M7M@$CU$ F;<;7?>=M$J7?F$=M$E>@E<6$O=<6@;M>7$?LJ>?F$XE; L;>M $ HJM6$@;M;?>7$7=H5>MJ?>=MF$7JM$OL=IG7;$F>H>F?J?>7$;KK;7?F:$;9@9:$XE;L;$F>M@<; Z <=7GF$ ;KK;7?F$I;O;MI$=M$?E;$@;M;?>7$5J7W@L=GMI$ T*EJMI<;L$ 45+03; :$ABCce$!J6<=L$_$#EL;ML;>7E:$ABCDU :$=L$ aU$7EJM@>M@$2/$L;=MFE>OF$5;?X;;M$HJLW;L$JMI$?JL@;?$<= 7>$ T+G?<>M$_$-HJI[J:$ABCSU 9$'GL$IJ?J$ FG@@;F?$?EJ?$JM?J@=M>F?>7$O<;>=?L=O6$JMI$HGNJL>J?;$F;<;7?>= M$HJ 6$JF$M=?$;M=G@E$;HO>L>7J<$;N>I;M7;$?=$ PGJM?>K6$?E;$L;N;$>HO=L?JM7;$=K$ JM?J@=M>F?>7$O<;>=?L=O6$N;LFGF$?E;F;$=?E;L$;YO=MF$?=$?E;$;;F:$?E;L;$JL;$=?E;L$;HO>L>7J<$;YJ HO<; F$?EJ?$FG@@;F?$J$L=<;$K=L$JM?J@=M>F?>7$ O<;>=?L=O6$>M$FEJO>M@$@;M=H>7$I >N;L@;M7;$JMI$OL=IG7>M@$>M>?>J<<6$7=MKGF>M@$OJ??;LMF9$.=L$ ;YJHO<;:$JM$;YO;L>H;M?$>M$MJ?GLJ<$O=OG=MF$=K $ ?E;$H=MW;6K<=X;L:$ -69F3F7+1055F5F7P+ >M>?>J<<6$ FG@@;F?;I$J$7=GM?;L>M?G>?>N;: $ M;@ J?>N;$L;=MFE>O$5;?X;;M$K<=X;L$F>f;$TJ$OL=Y6$K=L$F;;I$F;?$JMI$ K>?M; FFU$JMI$N>J5><>?6$T(=[>7J$JMI$^;<<6$ABCBU9$2J?;L$X=LW$K=GMI$?EJ?$FG5F?JM?>J<$O<;>=?L=O6$ ;Y>F?F$ K=L$ @;M;F$7=M?L=<<>M@$K<=X;L$F>f;$JMI$I;N;<=OH;M? $ LJ?; $ JMI$?EJ?$F?L=M@$N>J5><>?6$F;<;7? >=M$ >M$

PAGE 40

$ ! ! A` ! ?E;$K=LH$=K$FGHH;L$IL=G@E?$=MF;?$<;I$?=$KJF?$I;N;<=OH;M?$?>H;F$J?$? E;$;YO;MF;$=K $ OL=IG7>M@ $ FHJ<<;L :$<;FF$K;7GMI $ K<=X;LF$T(=[>7J$;?$J<9$ABCAe$!L=?E$;?$J<9$ABCSU9$$.GL?E;LH=L;:$F;JF=MJ<$ NJL>J?>=M$>M$IL=G@E?$=MF;?$7JM$<;JI$?=$=MF$>M$?E;$ L;N;$K>?M;FF$5;M;K>?F$=K$KJF?$ I;N;<=O>M@: $ FHJ<<$K<=X;L$OE;M=?6O;F:$JMI $ F<=X$I;N;<= O>M@ :$F$;YJHO<;$><F?>7$L;=MFE>OF$JH=M@$@;M;?>7$ <=7> $ 7=M?L=<<>M@$ HGO<;$?LJ>?F$7JM$F;N;L;<6$<>H >?$? E;$J5><>?6$?=$OL;I>7?$;N==MJL6$L;FO=MF;$XE;M$=M<6$=M;$?LJ>?$ >F$F?G I>;I9$)?$JK>7$?6O;F$=K$F;<;7?>=M:$?;HO=LJ<<6$NJL>J5<;$F;<;7?>=M$>M$?E>F$ 7JF;:$7JM$FEJO;$?E;$;Y?JM?$F?JMI>M@$NJL>J?>=M$X>?E>M$J$O=OG=M$?EJ?$>F$JNJ>=M$OL;FFGL;F9 $ $ ,F$>F$?E;$7JF;$K=L$HJM6$F?GI>;F$5JF;I$ =M$@;M;?>7$JFF=7>J?>=M$JOOL=J7E;F:$X;$7JMM=?$ I;K>M>?>N;<6$I>F?>M@G>FE$5;?X;;M$?E;$O<;>=?L=O>7$J7?>=M$=K$J$F>M@<;$J<<;<;$JMI$?>@E?$2/$5;?X;;M$ ?EJ?$J<<;<;$JMI$JM$J<<;<;$J?$JM=?E;L$<=7G F$>M $ !;+8292:4330 9$%>N;M$?EJ?$5=?E$?LJ>?F$JL;$L;JOJGF;$L;@G =M:$O<;>=?L=O>7$;KK;7?F$=K$@;M;F$J7?>M@$?EL=G@E$E>@E<6$O<;=?L=O>7$I;N;<=OH;M?J<$ OJ?EXJ6F$FG7E$JF$>MFG<>M$ T->H$_$/;M<>M@;L:$ABCaU $ JMI$XM?$ TV=IJLf$_$&GFF;:$CQQSe$(;6;LF$ 45+ 03; :$ABCbU $ F>@MJ<>M@$JL;$O5<;9$"=X;N;L:$ !;+8292:4330 $ J@E<6$F?LG7?GL;I$@;M=H;$ X>?E$5<=7WF$=K$N;L6$E>@E$2/$?EJ?$HJ6$5;$JFF=7>J?;I$X>?E$7EL=H=F=HJ < $ >MN;LF>=MF$ T.;I;L$ 45+03; :$ ABBa7e$8J@7$NJL>J?>=M$?EJ?$JOO;JL;I$O<;>=?L=O>7$=77GLL;I$>M$ E>@E$?=$ >M?;LH;I>J?;$2/$L ;@>=MF$T .>@9$b U:$JMI$OJF?$F?GI>;F$EJN;$FG@@;F?;I$?EJ?$JM7;F?LJ<$ >MN;LF>=MF$KL=H$I>F[GM7?$O=OG=MF$>M$(;Y>7=$EJN;$FOL;JI$M=L?E$N>J$?E;$FJH;$@;=@LJOE>7J<<6$ NJL>J5<;$F;<;7?>=M$?EJ?$KJN=LF$H=L;$>M?;MF;$I>JOJGF;$JMI$JOJGF;$?;LH>MJ?>= M$>M$?E;$F=G?E$ T.;I;L$ 45+03; :$ABBaJ:$ABBDU 9$.GL?E;L$X=LW$?=$>I;M?>K6$OE6F>7J<$<=7J?>=MF$=K$>MN;LF>=M$5L;JWO=>M?F$ >F$=M@=>M@:$JMI$FE=GI;$H=L;$;YO<>7>?$?;F?F$K=L$?E;$L=<;$=K$2/$>M$5G>M@$GO$JMI$5L;JW>M@$ OE;M=?6O>7$7=LL;=MF$>M$ !;+829 2:4330 9$ $

PAGE 41

$ ! ! AS ! )M$@;M;L J<:$?E;$L;FGI;$J$FMJOFE=?$=K$E=X$MJ?GLJ<$F;<;7?>=M$ HJ6$OL=IG7;$HGNJL>J?;$?LJ>?$L;FO=MF;F$?EJ?$I=$M=?$J<>@M$X>?E$;Y>F?>M@$T5G?$>M7=HO<;?;U$@;M;?>7$ 7=LL;=MF9$V;$EJN;$M=?$I>L;7?<6$H;JFGL;I$@;M;?>7$7=LL;=MF$JF$?E;6$JL;$ ?6O>7J<<6$I;K>M;I$>M$ PGJM?>?J?>N;$@;M;?>7F:$=L$g%$ T2JMI;$_$,LM=I;M7;$I=;F$FGOO=L?$J$ OJL?>J<$T>M7=HO<;?;U$7=LL;=M$IL>N;M$ $ =M$7EL=H=F=H;F$A $ JMI$a$T .>@9$b :$ O=>M?xO<=?U$!E;$g%$?E;=L6$JMI$;HO>L>7J<$IJ?J$><M@$?E;$5L;JWI=XM$=K$@;M;?>7$7=LL;=MF$ >F$X;<<$;F?J5<>FE;I$ T.G?G6HJ:$ABCBU 9$";L;:$X;$OL=N>I;$F=H;$>MF>@E?$>M?=$E=X$>MI>N>IGJ<$<=7>$HJ6$ 7=M?L>5G?;$?=$?E>F$OL=7;FF$K=L$?LJ>?F$?EJ?$JOO;JL$?=$K>?$J$O=<6@;M>7$H=I;<9 $ *F9 90=B + $ )M$?E>F$F?G I6:$X;$EJN;$OL=N>I;I$F?L=M@$;N>I;M7;$?EJ?$?E;$7=MF>F?;M?<6 Z L;7=LI;I:$ OJLJI=Y>7J<$OJ??;LM$=K$?E;$JOO<;$E=F?$LJ7;$EJL5=L>M@$>M7L;JF;I$<;N;JOJGF;$?;LH>MJ?>=M$ ?>H>M@$J<<;<;F$>F$J$L;FGMW;I$F;<;7?>=M$K=L$I>JOJGF;$>M?;MF>?69$)M$I=> M@:$X;$EJN; $ JM@$=K$?E;$OL=7;FF$=K$JIJO?J?>=M$?=$M=N;<$KLG>?$E=F?F$X>?E>M$?E;$ !;+ 8292:4330+ FO;7>;F$7=HO<;Y9$%;=@LJOE>7$7<>MJ<$NJL>J?>=M$>M$@;M;?>7$<=7>$JFF=7>J?;I$X>?E$I>JOJGF;$ >M?;MF>?6$JMI$I>JOJGF;$?;LH>MJ?>=M$FGOO=L?F$?E;$E6O= ?E;F>F$?EJ? $ E>F?=L>7:$@;=@LJOE>7$F;<;7?>=M$>M$ ?E;$JM7;F?LJ<$EJX?E=LM$LJ7;$EJF$KJN=L;I$?LJ>?$7=H5>MJ?>=MF$JMI$FEJO;I$@;M;?>7$NJL>J?>=M$?EJ?$>F$ JM?J@=M>F?>7$?=$?E;$I>L;7?>=M$=K$F;<;7?>=M$IGL>M@$K=LHJ?>=M$=K$?E;$JOO<;$LJ7;9$!E;F;$K>MI>M@F$ FG@@;F?$?EJ?$>M7=HO< ;?;$WM=X<;I @;$=M$?E;$HGNJL>J?;$?LJ>?$7=H5>MJ?>=MF$L;FO=MI>M@$?=$F;<;7?>=M$ 7JM$F=H;?>H;F$<>H>?$?E;$J5><>?6$?=$J77GLJ?;<6$OL;I>7?$;N==M9$.G?GL;$X=LW$X><<$M;;I$?=$7JL;KG<<6$ PGJM?>K6$?E;$7=M?L>5G?>=M$=K$JM?J@=M>F?>7$O<;>=?L=O6$T=L$<>MW;I$F;<;7?>=MU$?=$; F?>HJ?;F$=K $ @;M=H>7$ OL;I>7?J5><>?6$JMI$;NJ7$H;7EJM>FHF$X>?E>M$ !;+8292:4330+ EJN;$J<<=X;I$>?$?=$ ;N=F$JOOJL;M?$@;M;?>7$7=MF?LJ>M?9$ $ '

PAGE 42

$ ! ! AQ ! ! ,+2#$ $ *=LL;=M$7=;KK>7>;M?F$=K$J<<;<;$KL;PG;M76$I>KK;L;M7;$7=HOJL>F=MF$T*EJO?;L$C:$ !J5<;$ C U $ $ADB<'1E' *=LL;=M $ 7=;KK>7>;M?F$TLU$=K$ -&0$ J<<;<;$KL;PG;M76$ I>KK;L;M7;F $ 5;?X;;M $ ?E;$-/$ 7=HOJL;I$ !=$/),$JMI$&/$7M$?E;$L;FO>L=H;?L6$;YO;L>H;M?$ N;LFGF$?E;$@;M;?>7$L;FO=MF;F$>M$ ?E;$;7<=F>=M$?>H;$%V,-$TM?;L$F;<;7?>=M$;YO;L>H;M?F$ TaAI Z `IU:$JOO<;$JMI$EJX$I>KK;L;M7;F$J?$%LJM?:$():$JMI$@;=@LJOE>7$I>KK;L;M7;F$X> ?E>M$E=F?$LJ7;F$ 5;?X;;M$?E;$%LJM?:$()$JMI$1L5JMJ:$)2$F6HOJ?L>7$F>?;F9$8;FGN;M$K=L$J<<$-&0F:$JMI$?E;$ ">@E:$)M?;LH;I>J?;$T)M?9U:$JMI $ 2= X$2/$7$K=L$;J7E$7EL=H=F=H;$7=MF>I;L;I$ F;OJLJ?;<6:$JF$X;<<$JF$K=L$?E;$K>N;$?=@;?E;L$T7EL$C Z DU9$ y$ F' 0 $ o $ B9BC e$ y y $ k$0$ o $ B9BCe ' y yy $ k ' 0$ o $ B9BB C e ' yyyy $ k$ 0 $ o $ B9BBBC e$F>@M>K>7JM?$L;=MFE>OF:$J<<$O=F>?>N;$>M$F>@M:$JL;$E>@E<>@E?;I$>M$ @L;6$FEJI;I$ 5=Y ;F:$JF$I;?;LH>M;I$56$(=M?;$*JL<=$F>HG=MF9$ -;;$?E;$,OO;MI>Y$ *$K=L$MGH5;L$=K$-&0F$>M$ ;J7E$@L=GO $

PAGE 43

$ ! ! aB ! $ $ 7EL$C$ $ $ $$ 7EL$A$ $ $ $$ 7EL$a$ $ $ $$ 7EL$c$ $ $$$$ $ $$ 7EL$D $ $ $ 7ELC Z D$ $ $ !G ! .;AHA9><'5<6@;4A5;74 ' $ $ $ $ $ $ $ ' $ $ $ $ $ $$$$ ,<<$-&0F $ $ $ Z B9AQ y $ ' B$$ Z B9Sb yyy $ ' Z B9b` yyyy $ ' B9C` $ $ $ B9 ac y $ $ $ Z B9DA yyyy $ $$$$ ">@E$2/ $ $$ Z B9CA $ ' ' $$$$ Z B 9 SQ yyy $ ' B9BB $ ' Z B9BD $ $ $ B9BD $ $ $ Z B9cb y $ $$$$ )M?9 $ 2/ $ $$ B 9 AC y $ ' $$$$ Z B9SD yyy $ ' Z B9Da yyyy $ ' Z B9AS $ $ $ B9AQ y $ $ $ Z B9Db yyyy $ $$$$ 2=X$2/ $ $ B9CA $ ' Z B9cC yyy $ ' Z B 9 Aa yy $ ' Z B9Bc $ $ $ B9AB y $ $ $ Z B9CS yyyy $ "G ! !HHB<' >@E$2/ $ $ B 9 Ba $ ' Z B 9 SQ yyyy $ ' $ Z B 9 CD y $ $$$$$ ' Z B 9 CQ $ $$$ $ B9aA yyyy $ $ $ Z B 9 b` y $ $$$$ )M?9 $ 2/ $ $ B9Cc y $ ' Z B 9 `Q yyyy $ ' $ Z B 9 cS yyyy $ ' $ Z B9CA $ $$ $ $ $ Z B9B` $ $ $ Z B 9 cS yyyy $ $$$$ 2=X$2/ $ $ B9Ac y $ ' $$$$ Z B 9 CQ $ ' $ Z B9CC $ ' $ Z B9BQ $ $ $ Z B9B` $ $ Z B9CC y $ &G ! JAK'>@E$2/ $ B9Ba $ $ B9`c yyyy $ $ Z B9B` $ $ B9CS $ $ Z B9bb yyyy $ $ B 9 BA $ $$$$ )M?9 $ 2/ $ Z B9BD $ ' B9a` yyyy $ ' Z B9BD $ ' B9AB y $ $ Z B9Cc yyy $ $ Z B 9 BS $ $$ $$ 2 =X$2/ $ Z B 9 Ba $ $ Z B9CA $ $ Z B9Cc $ $ B9BB $ $ B9BQ $ $ B9BA $ .G ! J7>5'%A:<' ' $ $ $ $ $ $ $ $ $ $ $ ,<<$-&0F$ $ B9Ac yyyy $ $ B9CQ yyyy $ $ B9aC yyyy $ $ B9CC $ $ B9BC $ $ B9C b $ ">@E$2/ $ B9BBC $ $ B9AB $ $ Z B9BA $ $ B9AD $ $ B9Cc y $ $ B9BA y $ )M?9$2/ $ B9Aa yyyy $ $ B9Cb yy $ $ B9AD yyyy $ $ B9CD $ $ Z B9c $ $ B9Cc $ 2=X$2/$ $ Z B9CC $ $ B9Ba $ $ B9BQ $ $ B 9BA $ $ B9BBC $ $ B9BB $ ' $ $ $ $ $ $ $ $ $ $ $

PAGE 44

$ ! ! aC ! $ ' ' $ADB<'1 ' :745 L 8 ' -G ! !HHB<'/<7M6AH=;:':B;4< ' $ $ $ $ $ $ $ $ $ $ $ ,<<$-&0F$ $ Z B9CB y $ $ Z B9SC yyyy $ $ Z B9bb yyyy $ $ B9cC yyyy $ $ Z B9AQ yyyy $ $ Z B9ca yyyy $ ">@E$2/ $ B9BA $ $ Z B9SQ yyyy $ $ Z B9CA $ $ B9ca y $ $ Z B9DS yyyy $ $ Z B9Dc yyyy $ )M?9$2/ $ Z B9Bc $ $ Z B9`` yyyy $ $ Z B9DC yyyy $ $ B9DQ y yyy $ $ Z B9Bb $ $ Z B9a` yyyy $ 2=X$2/$ $ Z B9CA $ $ Z B9ab yy $ $ Z B9CS $ $ B9Bb $ $ B9CB $ $ Z B9BD $ ' $ $ $ $ $ $ $ $ $ $ $ 2G ! JAK'/<7M6AH=;:':B;4< ' $ $ $ $ $ $ $ $ $ $ $ ,<<$-&0F$ $ Z B9aC yyyy $ $ Z B9SC yyyy $ $ Z B9DS yyyy $ $ B9CB $ $ Z B9cC yyyy $ $ Z B9cb yyyy $ ">@E$2/ $ Z B9BA $ $ Z B9SS yyyy $ $ Z B9BQ $ $ B9DB yy $ $ Z B9bQ yyyy $ $ Z B9A` yyyy $ )M? 9$2/ $ Z B9Ab y yyy $ $ Z B9`` yyyy $ $ Z B9cA yyyy $ $ B9CS $ $ Z B9Ca yy $ $ Z B9cC yyyy $ 2=X$2/$ $ Z B9B` $ $ Z B9aB y $ $ Z B9Cb $ $ Z B9B` $ $ B9Ba $ $ Z B9BS $

PAGE 45

$ ! ! aA ! *=LL;=M$ 7=;KK>7>;M?F $ K=L$J<<;<;$KL;PG;M76$I>KK;L;M7;F $ 5;?X;;M$I>JOJGF;$?;LH>MJ?>=M$JMI$E=F?$ LJ7;$I>KK;L;M?>J?>=M$ T*EJO?;L$C:$ !J5<;$ A U $ ! J5<;$)) 9$ *=LL;=M $ 7=;KK>7>;M?F$TLU$=K$ -&0$ J<<;<;$KL;PG;M76$ I>KK;L;M7;F $ 5;?X;;M $ ?E;$#7<=F>=M$ $ #JL<6$ m $ KK;L;M?>J?>=M$J?$?E;$F6HOJ?L>7$F>?;$>M$$ $ %LJM?:$()9$8;FGN;M $ K=L$J<<$-&0F:$JMI$?E ;$">@E:$)M?;LH;I>J?;$T)M?9U:$JMI$2=X$2/$7$K=L$;J7E$7EL=H=F=H; $ 7=MF>I;L;I$F;OJLJ?;<6:$ JF$X;<<$JF$K=L$?E;$K>N;$?=@;?E;L$T7EL$C Z DU9 $ y$ F' 0$ o $ B9BC e$ y y $ k$0$ o $ B9BCe ' y yy $ k ' 0$ o $ B9BB C e ' yyyy $ k$ 0 $ o $ B9BBBC e$F>@M>K>7JM?$L;=MFE>OF :$J<<$O=F>?>N;$>M$F>@ M: $ JL;$E>@E<>@E?;I$>M$@L;6$FEJI;I$5=Y;F:$JF$I;?;LH>M;I$56$(=M?;$*JL<=$F>HG=MF9 $ $ $ 7EL$C$ $ $ $$ 7EL$A$ $ $ $$ 7EL$a$ $ $ $$ 7EL$c$ $ $$$$ $ $$ 7EL$D $ $ $ 7ELC Z D$ $ $ $ $ $ $ $ $ $ ' $ $ $ $ $ $$$$ ,<<$-&0F $ $ $ Z B9ba y $ ' B$$ Z B9BS $ ' Z B9cb yy $ ' B9B` $ $ $ B9BA $ $ $ Z B9cC yyy $ $$$$ ">@ E$2/ $ $$ Z B9BS $ ' ' $$$$ Z B 9 BQ $ ' Z B9BQ $ ' Z B9Cc $ $ $ B9B` $ $ $ Z B9Db y $ $$$$ )M?9 $ 2/ $ $$ Z B9DB yyy $ ' $$$$ Z B9BD $ ' Z B9cB yy $ ' B9CS $ $ $ B9Ba $ $ $ Z B9AS yyy $ $$$$ 2=X$2/ $ $$ Z B9A` y $ ' $$ B9 BD $ ' Z B 9 Bb $ ' Z B9BA $ $ $ B9Ba $ $ $ Z B9Bb $ $ $ ' $ ' $ ' $ $ $ $ $ ! ' '

PAGE 46

$ ! ! aa ! . )%18#$ ! ! O2:@485F03+<61F=4+2<+/6752=6@03+0:A+@2:54982=0= B+7434@562:+0:A+A6080 F74+8/4:25B847+QO/0854=+DP++ H61F=4+ D R + 2;M96<'N R$*=M7;O?GJ<$ I>J@LJH $ =K$ E>F?=L>7J<$ JMI$7=M?;HO=LJL6$F;<;7?>=M$X>?E>M$ !;+8292:4330+ JMI$ I>JOJGF;$<>K;$E>F?=L6$?LJ>?F9$,U$ !;+8292:4330 $ >F$J$KJ<<$5L;;I>M@$FO;7>;F$5;7JG F;$>?F$<>K;$767<;$?LJ 7WF$

PAGE 47

$ ! ! ac ! ?E;$JNJ><>?6$=K$KLG>?F$?EJ?$HJ?GL;$>M$?E;$KJ<<9$)M$?E;$(>IX;F?;LM$LJM@;$=K$ !;+8292:4330 :$ @L=X>M@$F;JF=MF$FE=L?;M$JMI$X>M?;LF$>M7L;JF;$>M$>M?;MF>? 6$X>?E$?GI;9$,F$J$L;FG?E>M$?E;$ JM7;F?LJ<$EJX?E=LM$LJ7;:$OE;M=?6O>7$7=H5> MJ?>=MF$=K$J$H=L;$XJL H Z JIJO?;I$I>JOJGF;$>M?;MF>?6$ JMI$JOJGF;$ ?;LH>MJ?>=M$K=L$F=G?E;LM$O=OG=MF$JMI$H=L;$7=JOJGF;$>M?;MF>?6$ JMI$;JL<6$I>JOJGF;$?;LH>MJ?> =M$K=L$M=L?E;LM$O=OG=M$ JL; $ KJN=L;I9$ (;JMXE><;:$7=M?;HO=LJL6$ F;<;7?>=M$K=L$K=LH J?>=M$=K$?E;$JOO<;$LJ 7;$KJN=LF$J$L;N;<6$ XJLH;L $ JIJO?;I$I>JOJGF;$>M?;MF>?6$ JMI$;JL<>;L$I>JOJGF;$?;LH>MJ?>=M$J?$;J7E$F6HOJ?L>7$F>?; 9$";L;:$F;<;7?>=M$>F$O;LO;MI>7G?$ 7=H5>MJ?>=MF$@;=@LJOE>7J<<6$KJN=L;I$X>?E>M$EJX9$+U$!E;$?>H>M@$=K$I>JOJGF;$ ?;LH> MJ?>=M:$JMI$ JIGH;:$>F$FE=XM$56$J$LJO>I:$5>OEJF>7$>M7L;JF;$>M$H;?J5=<>7$LJ?;$ T8J@MI>7J?;$?EJ?$?E;L;$>F$FG5F?JM?>J<$NJL>J?>=M$>M$I>JOJGF;$?;LH>MJ?>=M$X>?E>M$JMI$ 5;?X;;M$E=F?$LJ7;F 9$*U$ )M>?>J<$I>JOJGF;$>M?;MF>?6$>F $ H;JFGL;I$J?$?E;$OL=O;MF>?6$?=$K=L@=$I>JOJGF;$ JM I$I;N;<=O$>M?=$JM$JIG K>7>J<<6$XJLH$7=MI>?>=MF$F>HGM@$<=M@$OL; Z X>M?;L$O;L>=IF9$ ! ! ! !

PAGE 48

$ ! ! aD ! ! ! (;?J5=<>7$LJ?;$?LJ[;7?=L>;F$JMI$I>JOJGF;$7;F$T*EJO?;L$C:$ .>@GL;$ A U + $ $ 2;M96<'OP' (;?J5=<>7$LJ?;$?LJ[;7?=L>; F$=K$I>JOJGF>M@$T/),U :$M=M Z I>JOJGF>M@$T&/U:$JMI$FEJ<<=X$ I>JOJGF>M@$T-/U$OE;M=?6O;F$K=L$,U$EJX?E=LM$JMI$+U$JOO<;$ LJ7;$>MI>N>IGJF=M$=K$ I>JOJGF;$7=MF$5;?X;;M$?E;$JOO<;$JMI$EJX$E=F?$LJ7;F9$-JHO<;$F>f;F$TMU$K=L$;J7E$ OE;M=?6O;$JL;$J .9:68> 4?@A/.0$3 B4A/.0$% C4A/.0$% =*>.9:68> 4?@A/.0#21 B4A/.021 C4A/.01 @,/D5E:*9+./FG6/ H+5I>J:9+<>7 &,/=*>.9:68>/F+>K, L,/@88G>/FG6/ H+5I>J:9+<>7 4567/897:/8;85+<5:<9. &'$()(*+ =+989+:<9. D97:/M5J> @88G> D5E 4?@ B4 C4

PAGE 49

$ ! ! ab ! ! 8;F GMI>N>IGJ<$O=<6@;M>7$F7=L;F$T*EJO?;L$C:$ .>@GL;$ a U $ 2;M96<'QP' %;M;?>7$I>KK;L;M7;F$5;?X;;M$I>JOJGF;$>M?;MF>?6$7HJ?;I$ GF>M@$JU$?E;$OL=O=L?>=M$=K$OE;M=?6O>7$NJL>JM7;$;YO< J>M;I$56$?=?J<$@;M ;?> 7$NJL>JM7;$T03#U$ OJLJH;?;L$=K$?EL;;$JN;$FOJLF;$<>M;JL$H>Y;I$H=I;MJ?>=MF$=K$?E;$ I>JOJGF;$T/),U:$FEJ<<=X$I>JOJGF;$T-/U$JMI$M=M Z I>JOJGF;$T&/U$OE;M=?6O;F:$JMI$5U$I>F?L>5G?>=MF$ =K$>MI>N>IGJ<$O=<6@;M>7$F7=L;F$K=L$ I>JOJGF;$>M?;MF>?6 9$! E;$<;K?$OJM;<$TJU$>F$J$N>=<>M$O<=?$=K$?E;$ O=F?;L>=L$OL=5J5><>?6$I>F?L>5G?>=M$=K$03#$K=L$?EL;;$+-2(( F $ >M7=LO=LJ?>M@$=M<6$IJ?J$K=L$?X=$ OE;M=?6O;F$J?$J$?>H;R$CU$&/$NF9$-/:$AU$/),$NF9$-/:$JMI$aU$&/9$3F9$/),:$>M7M@$5=YO<=?F$=K$ ?E;$C F? :$ A MI :$JMI$a LI $ PGJL?><; F$FGLL=GMI;I$56$J$W;LM;<$I;MF>?6$KGM7?>=M9$!E;$L>@E?$OJM;<$T5U$I>FO?6$O<=?F$=K$?E;$I>F?L>5G?>=MF$=K$>MI>N>IGJ<$O=<6@;M>7$F7=L;F$TH;JM$OL=O=L?>=M$=K$-/ Z <>W;$J<<;<;F$?EJ?$JM$>MI>N>IGJ<$EJF$>M$?E;>L$@;M=H;U$>M7=LO=LJ?>M@$ =M<6$<=7>$?E J?$EJI$O= F?;L>=L$ >M7=M$OL=5J5><>?6$T0)0U$J5=N;$B9BCt$>M$J?$<;JF?$=M;$=K$?E;$?EL;;$+-2((9 $ $ $

PAGE 50

$ ! ! a` ! $ ! 761:6<6@0:5+*.,7+0@=277+5/4+!/01234567+8292:4330+14:294+ QO/0854=+DP+ H61F=4+ S R + 2;M96<'RP $ 0L=O=L?>=M$=K$-&0F$F>@M>K>7JM?<6$ JFF=7 >J?;I$X>?E$I>JOJGF;$>M?;MF>?6$TJU$JMI$I>JOJGF;$ ?;LH>MJ?>=M$T5U$=M$;J7E$2/$=M$;J7E$7EL=H=F=H;9$,$F?JL$>MI>7J?;F$J$F>@M>K>7JM?$;Y7;FF$=K$ F>@M>K>7JM?<6$JFF=7>J?;I$-&0F$7=HOJL;I$?=$MG<<$;YO;7?J?>=MF9$ $ $ $ * * * * * * * * 0.00 0.25 0.50 0.75 1.00 1 2 3 4 5 !"#$%$&$%'& () "*+" *,. $ / * * * * * * * * * 0100 0123 0130 0143 5100 5 2 6 7 3 !"#$%$&$%'& 8#$9$#-*$,:$;:<=8&:-">-:/'#':&*+,*;*?>,@A:!"#$%$&$%>.:B*&-#*CD-*$,:$;:&*+,*;*?>,-: :::::<=8&:;#$%:-"':B*>9>D&':*,-',&*-E:FG@< !"#HB*&-H;*+IIJ:8#$9$#-*$,:$;:<=8&:&*+,*;*?>,-.E:>&&$?*>-'B:/*-":B*>9>D&':*,-',&*-E:K>A:>,B:B*>9>D&':-'#%*,>-*$,:KCA:$,:'>?":():$,:'>?": ?"#$%$&$%'1:@:&->#:*,B*?>-'&:>:&*+,*;*?>,-:'I?'&&:$;:&*+,*;*?>,-.E:>&&$?*>-'B:<=8&:?$%9>#'B:-$:,D..:'I9'?->-*$,&1:: () high int l o w 8#$9$#-*$,:$;:<=8&:-">-:/'#':&*+,*;*?>,@A:!"#$%$&$%>.:B*&-#*CD-*$,:$;:&*+,*;*?>,-: :::::<=8&:;#$%:-"':B*>9>D&':-'#%*,>-*$,:FG@<

PAGE 51

$ ! ! aS ! $

PAGE 52

$ ! ! aQ ! 8;=MFE>OF$5;?X;;M$?E;$F?L;M@?E$=K$@;M;?>7$JFF= 7>J?> =MF$>M$%+-$;YO;L>H;M?F$T*EJO?;L$C:$ .>@GL;$ D U $ 2;M96<'SP $ 8;=MFE>OF$5;?X;;M$?E;$F?L;M@?E$=K$@;M;?>7$JFF=7>J?>=MF$THJ@M>?GI;$=K$J<<;<;$ KL;PG;M76$I>KK;L;M7;FU$X>?E$I>JOJGF;$OE;M=?6O;F$JMI$E=F?$LJ7;$I>KK;L;M7;F:$>M7M@$I>JOJG F;$ >M ?;MF>?6$T-/$ m $ /),w&/U$NF9$E=F?$LJ7;$I>KK;L;M7;F$TJOO<;$E=F?$LJ7;$ m $ EJX$E=F?$LJ7 ;e$,$ m $ *U:$ I>JOJGF;$?;LH>MJ?>=M$T;JL<6$ m $ =M$;YO;L>H;M?$T`$IJ6$ m $ aA$IJ6e$%$ m $ )U:$JMI$JOO<;$K<6$F;<;7?>=M$;YO;L>H;M?$T`$IJ6$ m $ aA$IJ6e$\$ m 2U9 $ 2>@E ?$@L;6$I=?F$L;OL;F;M? $ J<<$ `:AbD$@;M=?6O;I$-&0F$ XE><;$ 'LJM@;$I=?F$JL;$<=X$2/$<=7 >:$L;I$I=?F$JL;$>M?;LH;I>J?;$2/$<=7>:$JMI$ OGLO<;$I=?F$JL;$E>@E$2/$<=7> $ =M$7EL=H=F=H;$C$TC F? $ 7=$X;L;$O=f;I$?=$?E;$ J<<;<;$J?$?E;$E>@E;F?$KL;PG;M7 6$>M$?E;$EJX?E=LM$K<6$O=OG=M$J?$%LJM?:$()e$?EGF:$E=F?$LJ7;$ I>KK;L;M7;F$>M$J<<;<;$KL;PG;M76$X;L;$J<<$O=F>?>N;9 $ $ $

PAGE 53

$ ! ! cB ! $ d Z K=@GL;$ b U $ 2;M96<'TP $ d Z K=7EH;M?F$K=L$FEJL;I$ F>@MF$=K$ J<<;<;$KL;PG;M76$ I>KK;L;M7;F $ TF>@M$7=M7=LIJM7;U $ 5;?X;;M$I>JOJGF;$>M?;MF>?6$JFF=7>J?>=MF$TJ<<;<;$KL;PG;M76$I>KK;L;M7;Fe$-/$ m $ /),w&/U$JMI$ I>JOJGF;$?;LH>MJ?>=M$JFF=7>J?>=MF$TJ<<;<;$KL;PG;M76$I>KK;L; M7;Fe $ ;JL<6$ m $ M?;LH;I>J?;:$JMI$E>@EU$K=L$;J7E$=K$?E;$D $ 7EL=H=F=H; F 9$!E;$MG<<$;YO;7?J?>=M$>F$FE=XM$X>?E $ J$F=<>I$E=L>f=M?J<$<>M;9 $ -?JLF$>MI>7J?;$JM$

PAGE 54

$ ! ! cC ! >MI>7J?;$JM$=N;L$JFF=7>J?;I$X>?E$ 5=?E$ I>JOJGF;$OE;M=?6O;F$K=L$L;FO;7?>N;$7EL=H=F=H;F$ JMI$2/$@L =GOF $ $ $

PAGE 55

$ ! ! cA ! $ ! 'N;LMJ<$NJL>J?>=M$>M$J<<;<;F$F>@M>K>7JM?<6$JFF=7>J?>=M$X>?E$I>JOJGF;$?;LH>MJ?>=M$JMI$ I>JOJGF;$>M?;MF>?6T*EJO?;L$C:$ .>@GL;$ ` U $ 2;M96<'U R $ 'N;L;F$=K$<=7>$F>@M>K>7JM?<6$JFF=7>J?;I$X>?E$ I>JOJGF;$>M?;MF>?6$JMI$I>JOJGF;$?;LH>MJ?>=M$=M$7EL=H=F=H;F$C:$A:$JMI$a9$3;MM$/>J@LJHF$I>FO$F>@M>K>7JM?<6$JFF=7>J?;I$X>?E$I>JOJGF;$>M?;MF>?6$JMI$?E=F;$ JFF=7>J?;I$X>? E$ I>J OJGF;$?;LH>MJ?>=M9$!E;$H>II<;$L=X$=K$<>M;$O<=?F$I>FOMJ<$NJL>J?>=M$>M$H;JM$J<<;<;$ KL;PG;M76$X>?E$<=7>$F>@M>K>7JM?<6$JFF=7>J?;I$X>?E$I>JOJGF;$>M?;MF>?6$K=L$7EL=H=F=H;F$C:$A:$JMI$a9$ %;M;?>7$<=7>$X;L;$O=f;I$FG7E$?E;$J<<;<;$JFF=7> J?;I$X>?E$?E;$ -/$OE ;M=?6O;$XJF$i7=GM?;I9]$!E;$ 5=??=H$L=X$=K$<>M;$O<=?F$I>FOMJ<$NJL>J?>=M$>M$H;JM$J<<;<;$KL;PG;M76$X>?E$<=7>$F>@M>K>7JM?<6$

PAGE 56

$ ! ! ca ! JFF=7>J?;I$X>?E$I>JOJGF;$?;LH>MJ?>=M$K=L$7EL=H=F=H;F$C:$A:$JMI$a9$%;M;?>7$<=7>$X;L;$O=f;I$ FG7E$?EJ?$J<<;<; $ JFF=7>J?;I$X> ?E$JOJGF;$?;LH>MJ?>=M$X;L;$i7=GM?;I]9$ $ ! $ ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

PAGE 57

$ ! ! cc ! ))9 ! $ * '&-)-!#&*4$'.$!"#$%# &#!)*$,8*")!#*!18#$' .$,$%#'%8,0")*,224$ 3,84)&%$-#,-'&,2$!8, )!$,&/$)!-$*'&!8)+1! )'&$!'$-0#*),!)'& $ 1456789:5;74 ' 'L@JM>FHF$<>N>M@$>M$?;HO;LJ?;$L;@>=MF$ =K?;M$ ;YO;L>; M7; $ < JL@;$JH=GM?F$=K $ ;MN>L=MH;M?J<$ E;?;L=@;M;>?6$JMI$HGF? $ L;FO=MI$?=$HGO<;$F;<;7?>=M$OL;FFGL;F$?EL=G@E=G?$ ?E;>L $ <>K;9$!E>F$>F$ OJL?>7GN;I $ =L@JM>FHF:$FG7E$JF$>MF;7?F: $ X>?E$=M;$= L$ H=L;$ @;M;LJ?>=MF$O;L$ 6;JL $ 5;7JGF; $ ?E;6$ HGF?$O=FF; FF$<> K;$767<;$JIJO?J?>=MF$?=$X>?EF?JMI$7=?>=MF$JMI$;YO<=>?$ XJLH;L$=M;F $ T!JG5;L$_$!JG5;L:$CQ`be$^=z?{<:$ABBbe$^=z?{<$ 45+03; :$ABC`U 9$VE;M$?E;$I;@L;;$=L$ >M?;MF>?6$=K$;MN>L=MH;M?J<$F;<;7 ?>=M$ FE>K?F$FOJ?>J<<6$=L$?;HO=LJ<<6$>?$ L;FGM$@;M=?6O;F$ ;YE>5>?>M@$I>KK;L;M ?>J<$K>?M;FF$?EL=G@E$?>H;$JMI$J7L=FF$@;=@LJOE6 $ T#X>M@:$CQ`Qe$%LJM?$_$%LJM?:$ ABBAe$&=F><$ 45+03; :$ABCSe$!L=?E$ 45+03; :$ABCSU 9$ !E>F$OE;M=H;MJ:$JM@$ F;<;7?>=M: $ 7JM $ OL=IG7;$?M;FF$JFF=7>J?;I$@;M;?>7$NJL>J?>=M$?EJ?$7JM$KJ7><>?J?;$LJO>I$ O=OG=M$<;N;<$L;FO=MF;F$?=$;MN>L=MH;M?J<$FE>K?F$JMI$7J?J<6f;$FO;7>J?>=M $ T+JLL;??$_$-7E< G?;L: $ ABBSU 9 $ $ V>?E>M$?E;$7=M?;Y?$=K$FE=L?$<>N;I$JM>HJ< F :$<>W;$>MF;7?F:$5JM@$F;<;7?>=M$>M$?E;$K=LH$=K$ >M?;L Z JMMGJ<$;MN>L=MH;M?J<$NJL>J5><>?6$7JM$@;M;LJ?;$NJL>J?>=M$>M$<>K;$E>F?=L6$?LJ>?F$ T"=KKHJMM$_$ V;;WF:$ABBbU 9$ !E>F $ 7JM :$>M Z ?GLM: $ EJF?;M$?E;$FO;;I$J?$XE>7E$O=OG=MF$ JL;$7JOJ5<;$=K$ L;FO=MI >M@ $ ?=$ 7EJM@>M@$7=MI>?>=MF$=L$ M=N;<$M>7E;F $ JF $ ; Y;HO< >K>;I$56$MGH;L=GF$OE6?=OEJ@=GF $ TOM@U $ >MF;7?$FO;7>;F$@L=GOF$?EJ?$EJN;$I>N;LF>K>;I$?=$G?><>f;$E=F?F$X>?E$I>KK;L;M?$OE=M=<=@>;F$ TV==I$_$%G??HJM:$CQSAe$-H> ?E:$C QSSe$2JM@=L:$CQSQe$"=LM;L$ 45+03; :$CQQQe$/L|F$_$(J<<;?:$ABBAU 9 $ +G?:$>?$FE=GN;L@;M7;$>M$L;FO=MF;$?=$OE;M=<=@6$>F$M=?$<>H>?;I$?= $ [GF? $ >MF;7?F$ T*=<;$_$-E;?7E>M@$;N;M?F$=K?;M$=77GL$>M$F6HOJ?L6 $ JMI$>M$?E;$KJ7;$=K$@;M;$ K<=X :$F=$J $ <> M@;L> M@$PG;F?>=M$K=L$;N==MJL6$5>=<=@>F?F$>F$XEJ?$@;M;?>7$JL7E>?;7?GL; F$KJ7><>?J?;$

PAGE 58

$ ! ! cD ! I>N;L@;M7;$JMI $ HJ>M?J>M$I>F?>M7?$O=OG=M$IGL>M@$F6HOJ?L>7$FO;7>J?>=Mj$.GL?E;LH=L;:$?E;$ F6HOJ?L>7$LJM@;F$=K$I>N;L@>M@$O=OG=MF$JL;$=K?;M$M$JII>?>=M$?=$ OE; M=<=@ 6$JMI$<>K;$ E>F?=L6$?LJ>?F$NJL6>M@$<=7J<<6$5;?X;;M$F6HOJ?L>7$O=OG=M$OJ>LF:$?E;6$HJ6$J7$JL;JF 9$!E>F$LJ>F;F$J$F;7=MI$PG;F?>=M e$>K$?E;$?LJ>?F$7=M?L>5G?>M@$?=$F6HOJ?L>7$I>N;L@;M7;$ NJL6$=N;L$J<$F7J<;F:$I=;F$?E; $ @ ;M=H> 7$JL7E>?;7?GL;$=K$F6HOJ?L>7$O=OG=M$I>N;L@;M7;$ JMI$FO;7>J?>=M$ NJL6$X>?E$@;=@LJOE6$JF$X;<?E$?E;$JIN;M?$=K$&%-:$@;M=H;$F7JMF$EJN;$K=GMI$7=MF>I;LJ5<;$NJL>J5><>?6$J7L=FF$ FO;7>;F$>M$OJ??;LMF$=K$@;M=H>7$I>N;L@;M7;$ T-;;EJGF;M$ 45+03; :$ABC cU 9$ )M$F=H;$7JF;F:$J$K;X$7$L;@>=MF$JOO;JL$?=$F;OJLJ?;$O=OG=MF:$XE><;$>M$=?E;LF$I>N; L@;M7;$>F$X>I;FOL;JI $ J7L=FF$ ?E;$@;M=H; 9$#YJHO<;F$=K$=MF$=K$I>N;L@;M7;$I=H>MJ?;$HG7E$=K$?E;$FO;7>J?>=M$<>?;LJ?GL;$ T!GLM;L$ 45+03; :$ABBDe$*=MF=L?>GH$ 45+03; :$ABCAe$\=M;F$ 45+03; :$ABCAe$(JL?>M$ 45+03; :$ABCaU :$JMI$ X>?E >M$ ?E;F;$ ;YJHO<;F :$?E;$ @;M=H> 7$N;L@;M7;$ >F $ =K?;M$L;HJLWJ5<6$7=MF>F?;M?$J7L=FF$ @;=@LJOE6$JMI$?E;$7=M?>MGGH$=K$F6HOJ?L>7$?=$OJLJOJ?L>7$O=OG=MF$OJ>LF$ T8;;I$ 45+03; :$ABCCe$ 8;MJG?$ 45+03; :$ABCae$-=L>J Z *JLLJF7=$ 45+03; :$ABCce$(JLPG;F$ 45+03; :$ABCSU 9 $ !E;F;$K>MI>M@F$EJN;$<;I$ ?=$JM$GMI;LF?JMI>M@$?E J? $ FO; 7>J?> =M$JMI$JIJO?>N;$I>N;L@; M7;$7JM:$JMI$=K?;M$X><<:$>MN=7$L;@>=MF$J7L=FF$>MI;O;MI;M?$I>N;L@;M7;$;N;M?F$X>?E>M$J$7$ 45+03; :$ABCDe$ -?JMW=XFW>$ 45+03; :$ABCSU 9$"=X;N;L:$FG7E$JM$>I;J$ HJ6$5;$J?$=IIF$X>?E$E=X$JIJO?>N;$I>N;L@;M7;$ JMI$FO;7>J?>=M$OL=@L;FF;F$XE;M$?LJ>?F$X>?E$E>@E<6$O=<6@;M>7$JL7E>?;7?GL;F$JL;$>MN=?GJ?>=M F :$?E;=L6$OL;I>7?F$?EJ?$HJM6$ ?E=GFJMIF $ ?=$O=FF>5<6$H><<>=MF$=K$ NJL>JM?F$7=M?L>5G?;$>MK>M >?;F> HJ<$;KK;7?F$=M$?E;$ OE;M=?6O;$ T8=7W HJM:$ABCAe$+=6<;$ 45+03; :$ABC`U : $ JMI$?EJ?$MGH;L= GF : $ I >F?>M7?$J<<;<>7$7=H5>MJ?>=MF$7JM$OL=IG7;$F>H>MI>N>IGJF$ ?E;=L;?>7J< $ FGOO=L?$K=L$?E;$ E6O=?E;F>F$?EJ?$FO;7>J?>=M$

PAGE 59

$ ! ! cb ! X>?E>M$?E;$FJH;$O=OG=M$OJ>L$7JM$JL>F;$KL=H$HGO<;$ I>F?> M7?$7=H5>MJ?>=MF$=K$J<<;<;F$JMI$ @;M;?>7$<=7>$LJ?E;L$?EJM$ J$7=MF;LN;I$@L=GO$=K$NJL>JM?F9 $ $ !E;$7=MF;LNJ?>=M$=K$@;M;?>7$<=7>$JMI$JL7E>?;7?GL;F$ GMI;L<6>M@$FO;7>K>7$?LJ>?F$E JF$5;;M$X;<<$ F?GI>;I$X>?E>M$ G=2728/630+ FOO 9 $ T-7EH>I?$ 45+03; :$ABBD5e$-7EH>I?$_$0JJ 56:$ABBSe$+;L@?G I>MJ< $ ?LJMF;7?F$=N;L$XE>7E$;MN>L=MH;M?J<$ NJL>J5<;F$ K7?J5><>?6$EJN;$5;;M$GF;I$?=$F?GI6$JIJO?>N;$NJL>J?>=M$>M$OE;M=?6O>7$JMI$ @;M=?6O>7$7EJLJ7?;LF 9$ )M$?E;F;$F?GI > ;F:$7=LL;=MF$5;?X;;M$J$FO;7>K>7$?LJ>?$JMI$?GI;$T=L$=?E;L$ ;MN>L=MH;M?J<$K=L7 ; F U$J L;$?JW;M$JF$;N>I;M7;$=K$<=7J<$JIJO?J?>=M9$-JHO<>M@$J7L= FF$@;=@LJOE>7$ @LJI>;M?F$ K=L$@;M;?>7$NJL>J?>=M$JFF=7>J?;I$X>?E$ ;MN>L=MH;M?J< $ JIJO?J?>=M$JJ?;F$ ?E;$7=MK=GMI>M@$;KK;7?F$=K$I;H=@LJOE>7$OL=7;FF;F$?EJ?$7=GH>?$>MK;L;M7;$=N;L$FE =L?;L $ I>F?JM7;F$ T,IL>=M$ 45+03; :$ABCDU 9$*7$>MF>@E?F$KL=H$7<>MJ<$F?GI>;F$>M7=MF$=K$FE>K?F$ >M$<>K;$ FOJM :$5=I6$F>f;:$F?L ;FF$? =<;LJM7;F:$JMI$I>JOJGF;$>M7>I;M7;$>M$ G=2728/630+ FOO 9 $ JMI$=?E;L$ ;7?=?E;LHF$ T-7EH>I?$ 45+03; :$ABBDJe$-7 EH>I?$_$0JJ56:$ABBSe$(GM7E$_$-J<>MJF:$ABBQU :$JF$X;<<$JF$ 5L=JI$F7J<;$FE>K?F$>M$I=LHJM76:$K<=X;L>M@$?>H;:$JMI$=?E;L$OE;M=<=@>7J<$;N;M?F$>M$ OW>M@$FE>K?F$>M$J<<;<;$JMI$ >MN;LF>=M$KL;PG;M7>;F$J7L=FF$@;=@LJOE69 $ VE><;$H =L;$L;7;M?$@;M=H>7$L;F;JL7E$EJF$FE=XM$ 7=H H=M$= N;LM@<;$MG7<;=?>I;$O=<6H=LOE>FHF$T-&0FU$ =N;L $ 7$JL;JF$ L;FO=MI>M@$?=$F;JF=MJ<$7EJM@;F 9 $ /;FO>?;$7<;JL$;N>I;M7;$=K$;N=L=MH;M?J<$JIJO?J?>=M$>M$MGH;L=GF$F6F?;HF:$X;$ F?><<$EJN;$J$<>H>?;I$GMI;LF?JMI>M@$=K$?E;$@;M=?6O; Z OE;M=?6O;$< >MW$K =L$?LJ> ?F$L;FO=MI>M@$?=$ ;MN>L=MH;M?J<$JMI$F;JF=MJ<$NJL>J?>=M9$.=L$>MF?JM7;:$ ?E;L;$>F$7=MF>I;LJ5<;$=N;LM$?E; $ @;M=H>7$ L;@>=MF$?EJ?$L;FO=MI$?=$F;JF=MJ<$NJL>J?>=M $ J7L=FF$@;=@LJOE6 $ X>?E>M$ G=2728/630+9430:210754= :$5G?$ ?E;$J<<;<;$KL;PG;M76$FE>K?F$J?$?E= F;$<= 7>$ 7JM$5;$E>@E<6$GMOL;I>7?J5<; $ T(J7EJI=$ 45+03; :$ABCSU 9$

PAGE 60

$ ! ! c` ! !E;L;K=L;:$>? $ > F$GM7<;JL$XE;?E;L$NJL>JM?F$GM>PG;$?=$J$FO;7>K>7$@;=@LJOE>7$<=7J ?>=M$ JL; $ J$L;FGPG;$F;<;7?>=M$OL;FFGL;F$=L$=?E;L$;N==MJL6$OL=7;FF;F9$ V>?E=G?$7<;JL$WM=X<;I@;$=M$ XE>7E$@;M=H>7$L;@>=MF$GMI;LO>M$ FO;7>K>7 $ ?LJ>?F:$>?$X><<$L;HJ>M$I>KK>7G7?$ ;N==M $ JMI$KG<<6$JIIL;FF$PG;F?>=MF$J5=G?$? E;$7= MF>F?;M76$=K$JIJO?>N;$@;M=H>7$7EJM@; $ 5;?X;;M$ O=OG=M$OJ>LF 9$ $ !=$@J>M$F=H;$>MF>@E?$>M ?= $ ?E;F;$5JF>7$PG;F?>=MF:$X;$7=MIG7?;I$J$ OJ>L$=K$@;M=H;$X>I;$ JF F=7>J?>=M$T%V,U$F?GI>;F$K=L$J$F;JF=MJ<$?LJ>?:$I>JOJGF;$?;LH>MJ?>=M: $ J7L=FF$@;=@LJOE6 $ >M$?E;$ JOO<;$HJ@ @=?$K <6$ !/01234567+8292:4330 $ GF>M@$O==<;I$XE=<;$@;M=H;$F;PG;M7>M@ $ TO==< Z F;PU 9$ V;$ JJOJGF;$>M?;MF>?6$ J?$J$F>M@<;$@;=@LJOE>7$< =7J?>=M9 $ )M$ ! ; + 8292:4330+ ?E;L;$>F$J5GMIJM?$;N>I;M7;:$5=?E$@;M;?>7$JMI$OE;M=?6O>7:$=K$I>KK;L;M?>J<$F;J F=MJ< $ JIJO?J?>=M$?=$FO;7>K>7$KLG>?$E=F?F $ T+GFE:$CQbQe$.;I;L$ 45+03; :$CQSS:$CQQ`Je$#@JM$ 45+03; :$ABCDe$ /=;<KK;L;M7;F$>M$?E;$;H;L@ ;M7;$?>H;F$=K$ JOO<;$JMI$EJX?E=LM$JFF=7>J?;I$O=OG=MF:$>M>?>J<<6$>MI>7J?>M@$@;M;?>7$7=M?L=<$=K$?LJ>?F$ >MKM@$F;JF=MJ<$;H;L@;M7;$JMI$;N=KK;L;M7;F$5;?X;;M$O=OG=MF$ T+GFE:$CQbQU 9$,$ @;M;?>7$5JF>F$K=L$E=F?$LJ7;$I>KK;L;M?>J?>=M$J ? $ ?X=$F6HOJ?L>7$F>?;F$XJF$F7=N;L;I$56$FE=X>M@$ 7<;JL$JMI$7=MF>F?;M?$J<<;<;$KL;PG;M76$I>KK;L;M7;F$5;?X;;M$O=OG=MF$ T.;I;L$ 45+03; :$CQSSe$ (70E;L=M$ 45+03; :$CQSSU 9$%;M;?>7$<=7>$>I;M?>K>;I$>M$ %V, $ F?GI>;F$K=L$?LJ>?F$WM=XM$?=$5;$GMI;L$ F;<;7?>=M$IGL>M@$E=F?$JIJO?J?>=M:$FO;7>K>7J<<6$I>JOJGF;$>M?;MF>?6$JMI$I>JOJGF;$?;LH>MJ?>=M:$J?E$<= 7>$JF F=7>J?;I$X>?E$E=F?$LJ7;$NJL>J?>=M$> MI>7J?>M@$J$F?L=M@$@;M;?>7$<>MW$ 5;?X;;M$<>K;$767<;$JIJO?J?>=M$JMI$O=OG=M$I>N;L@;M7;$ T(>7E;<$ 45+03; :$ABCBe$#@JM$ 45+0 3; :$A BCDe$ 8J@M$*EJO?;L$C:$FE=X;I$ J$E>@E$I;@L;;$=K$=N;LM$?E;$<=7>$JFF=7>J?;I$X>?E$I>JOJGF;$>M?;MF>?6$JMI$I>JOJGF;$?;LH>MJ?>=M$ JMI$>MI>7J?;I$?E;>L$@;M;?>7$5JF>F$>F$M=M Z >MI;O;MI;M? 9$!EJ ?$L;F;JL7E:$J<=M@$X>?E$ /=;<
PAGE 61

$ ! ! cS ! TABCQU : $ J7$NJL>J?>=M$K=L$I>JOJGF;$?;LH>MJ?>=M$JMI$>M?;MF>?6$NJL>;I$>M$ J77=LIJM7;$X>?E$;YO;7?J?>=M$J7L=FF$@;=@LJOE69$"=X;N;L:$ ?E=F;$F?GI>;F$GF;I$L;IG7;I$ L;OL;F;M?J?>=M$H;?E=IF $ T8,/ Z F;PU $ JMI$HJ6$EJN;$H>FF;I$HJM6$JIJO?>N;$NJL>JM?F9$,II>?>=MJ<<6:$ I>JOJGF;$?;LH>MJ?>=M$XJF$=M<6$OE;M=?6O;I$J?$=M;$<=7J?>=M:$F=$>?]F$GMWM=XM$>K$NJL>JM?F$GM>PG;$?=$ =?E;L$<=7J?>=MF$J5G?;$?=$<=7J<$F;JF=MJ<$JIJO?J?>=M $ JMI$>K$?E;$@;M;?>7$JL7E>?;7?GL;$=K$ I>N;L @;M7;$FE>K?F$X>?E$@;=@LJOE6 9$ $ !E;$L;F;JL7E$OL;F;M?;I$E;L;$I =;F$M=?$7=M?J>M$JM$;YEJGF?>N;$JMJ<6F>F$=K$J<<$=K$?E;$IJ?J $ 7=<<;7?;I $ 5G? $ OL=N>I;F$;N>I;M7;$K=L$5L=JI$OJ??;LMF$?EJ?$X><<$7=M?>MG;$?=$5;$;YO<=L;I $ >M$KG?GL;$ X=LW 9 $ V;$JIIL;FF$K=GL$5JF>7$PG;F?>=MF$X >?E$? E>F$IJ?JF;?R $ CU$)F$?E;$@;M=H>7$7M@$=K$<=7>$T>9;9$ @;M ;?>7$JL7E>?;7?GL;U$JFF=7>J?;I$X>?E$I>JOJGF;$?;LH>MJ?>=M$J?$?E;$?X=$F6HOJ?L>7$F>?;F$F?GI>;I$E;L;$ 7=MF>F?;M?j$AU$ /=$X;$F;;$;N>I;M7;$=K$<=7>$?EJ?$JOO;JL$?=$JII>?>N;<6$7=HO;MFJ?;$K=L$?E;$ JM?J@=M>F ?>7$O <;>=?L=O6$>I;M?>K>;I$>M$*EJO?;L$Cj$ aU$,L;$?E;L;$I>KK;L;M7;F $ >M$?E;$@;M;?>7$ L;=MFE>O$5;?X;;M$@;=@LJOE6$JMI$I>JOJGF;$?;LH>MJ?>=M$J?$;J7E$@;=@LJOE>7$F>?;$@;M=?6O;I9$c U$ /=$?E;$@;M;?>7$JFF=7>J?>=M F $ 5;?X;;M$I>JOJGF;$?;LH>MJ?>=M$JMI$I>JOJGF;$>M?;MF>?6$L; HJ>M$ 7=MF>F?;M?$J7L=FF$E=F?$LJ7;F$JMI$X>?E$?E;$L;FG'A48'0<5=78>' ' 709834+@2334@562: + ! 1M<;FF$=?E;LX>F;$M=?;I:$F?JMIJLI>f;I$7=<<;7?>=M$JMI$L;JL>M@$H;?E=IF$X;L;$GF;I$K=L$?E;$7GLL;M?$ F?GI6$ T#@JM$ 45+03; :$ABCDU 9 $ .<>;F$X;L;$7=<<;7?;I$JF$M$>MK;F?;I $ EJX?E=LM$JMI$JOO<; $ KLG>?F$ @J?E;L;I$KL=H$?E;$K>;J?>=M$J?$AC = *$X>?E$J$CcRCB$<>@E?RIJLW$767<; 9$)MK ;F?;I$ KLG>?$X;L;$E;L;$H;FE$LJ7WF$=M$?=O$=K$O7$7=<<;7?>M@$?LJ6F$XE>7E$X;L;$7E;7W;I$K=L$ OGOJ;$J$H>M>HGH$=K$a$?>H;F$O;L$X;;W9$.=L$;H;L@;M7;$?>H>M@$JMI$I>JOJGF;$>M?;MF>?6$ OE;M=?6O>M@:$X;$7<;JL;I$? LJ6F$>M$?E;$;JL<6$;N;M>M@$JMI$=M<6$GF;I$K<>; F$>M$ ?E;$;YO;L>H;M?$?EJ?$

PAGE 62

$ ! ! cQ ! ;Y>?; I$KL=H$KLG>?$JMI$K=LH;I$OGOJL>J $ >M$?E;$>M?;LN;M>M@$O;L>=I$KL=H$;JL<6$;N;M>M@$?=$?E;$M;Y?$ H=LM>M@$?=$F6M7EL=M>f;$ I;N;<=OH;M? 9$*=<<;7?;I$OGOJ;$X;L;$OM$O;?L>$I>FE;F$X>?E$H=>F?$ N; LH>7G<>?;:$?E;M$?LJMFK;LL;I$?=$?E;$I;F>L;I$; YO;L> H;M?J<$7=MI>?>=MF9 $ G6080F74+54=96:0562:+$T#* + $ ,IG;F$5;<=M@>M@$?=$5=?E$E=F?$LJ7;F$X;L;$FJHO<; I $ KL=H$%LJM?:$() $ JMI$1L5JMJ:$)2 $ >M$ ?E;$KJ<<$=K$ABCA$JMI$X;L;$L;JL ;I $ KL=H$K>;5;I$J5=N;:$=N;LX>M?;L;I$K=L$ AB $ X;;WF:$?E;M$E;<$JIG=M 9 $ !E;$;JL<>;F?$JMI$M@$K<>;F$ >M$;J7E$E=F?$LJ7;$X;L;$F;PG;M7;I$>M $ J$O==<;I: $ 5G@M 9$+JF;F<>M;$FJHO<;F $ 7= MF>F?>M@$=K$J$LJMI=H$FG5FJHO<;$=K$J<<$ ;7<=F;I $ JIG7$F>?;9$/&,$XJF$>F=MI>N>IGJ<$JIGM@$J$H=I>K>;I$ 0GL;%;M;$OL=?=7=<$TgG>J@;Me $ ,OO;MI>Y$/ U9$/&,$7=M7;M?LJ?>=MF$X;L;$ PGJM?>K>;I $ GF>M@$J$gGJM? Z >!$0>7=%L;;M$IF/&,$JFFJ6$W>?$T!E;LH= Z .>FE;L$-7>;M?>K>7U9$ 0==F?; I$=K$5;?X;;M$c`$JMI$DB$ >MI>N>IGJM@$;PG>H==MF$=K$/&,$KL=H$;J7E$>MI>N>IGJ<$?=$ JN=>I$5>JF$>M$F;PG;M7>M@9 $ $ G6080F74+):54:765B + $T#* + $ ,IG;F$5;<=M@>M@$?=$5=?E$E=F?$LJ7;F$X;L;$FJHO<; I $ KL=H$%LJM?:$()$>M$?E;$KJ<<$=K$ ABC S $ JMI$X;L;$L;JL;I$KL=H$K>;5;I$J5=N;$JMI$E;<$ JIG=M 9 $ )MI>N>IGJ@M;I$J$I>JOJGF; $ >M?;MF>?6 $ 7 M$*EJO?;L$C$JMI$>M>?>J<<6$;F?J5<>FE;I$>M$ /JH5L=FW>$_$.;I;L$TABB`U 9$+L>;K<6:$>MI>N>IGJM@$ cB$IJ6F$O=F? Z OGOJ?>=M$JMI$;JL<>;L$X;L;$7JOJGF>M@$T&/U:$>MI>N>IGJM@$cD$IJ6F$JMI$JOJGF>M@$T-/U:$JMI$>MI> N>IGJ <;I$ ?=$ ;H;L@; $ JF$I>JOJGF>M@$T/),U9$ ,$5JF;<>M;$O==<$XJF$;F?J5<>FE;I$56$KL;;f>M@$OGO J;$CB$IJ6F$O=F?$ ;H;L@;M7;$KL=H$?E;>L$E=F?$KLG>?9$ V;$I>FF;7?;I$?E;$OGOJ;$?=$HJW;$FGL;$?E;6$X;L;$J<>N;$OL>=L$?=$

PAGE 63

$ ! ! DB ! KL;;f>M@9$V;$>F=M$?E; $ 7JF; $ =K$?E;$5JF;<>M;$>MI>N>IGJM$?E;$7JF;$=K$?E;$;H;L@;I$JIGM@$?E;$ FJH;$H=I>K>;I$0GL;%;M;$OL=?=7=<$JF$>M$?E;$ I>JOJGF;$?;LH>MJ?>=M$%V,-$TgG>J@;Me$,OO;MI>Y$/U9 $ /&,$7=M7;M?LJ?>=MF$X;L;$PGJM?>K>;I$GF>M@$ J$gGJM? Z >!$0>7=%L;;M$IF/&,$ JFFJ6 $ W>?$T!E;LH= Z .>FE;L$-7>;M?>K>7U9$ 0==F?;I$=K$5;?X;;M$ `S$JMI$SB $ >MI>N>IGJM@$;PG>H==MF$=K$/&,$KL=H$;J7E$ >MI>N>IGJ<$?=$JN=>I$5>JF$>M$F;PG;M7>M@9 $ )M$?E>F$F?GI6$X;$=M<6$L;O=L?$7=HOJL>F=MF$5;?X;;M$?E;$5JF;<>M;$ O =OG=M$JMI$?E;$-/$I>JOJGF;$7MN=?E$I;;O;L$JMJ<6F>F$X>?E$? E;$ &/$JMI$/),$7M@$XJF$O;LK=LH;I$J?$?E;$1M>N;LF>?6$=K$*=<=LJI=$/;MN;L$%;M=H>7F$JMI$ (>L7=,LLJ6$*=L;$=M$JM$)<< GH>MJ $ ">-;P$ cBBB:$K=L$?E;$I>JOJGF;$?;LH>MJ?>=M$%V,-:$JMI$JM$ )<MJ$&=NJ-;P:$K=L$?E;$I>JOJGF;$>M?;MF>?6$%V,9$ 0==M$?E;$I>JOJGF;$?;LH>MJ?>=M$%V,$ @;M;LJ?;I$JOOL=Y>HJ?;<6$CSB$H><<>=M$CDB$5O$L;JIF $ ;J7E:$XE><;$O==M$?E;$I>JOJGF;$>M?;MF>?6$ %V,-$@;M;LJ?; I$JOO L=Y>HJ? ;<6$aDB$H><<>=M$CDB$5O$L;JIF$;J7E 9$&=$F;L>=GF$>FFG;F$ >M$?E;$LJX$ F;PG;M7;F$ X;L;$K?6$7=M?L=<$56$ ;YJH>M>M@$O;L$5JF;$PGJ<>?6$F7=L;F:$%*$7=M?;M?:$JMI$F;PG;M7;$IGO<>7J?>=M$JH=M@$=?E;L$H;? L>7F9 $ V;$?L> HH;I$LJX$L;JIF$=K$JIJO?=L$F;PG;M7;$JMI$<=X$PGJ<>?6$L;JIF$GF>M@$!L>HH=HJ?>7$B9ab$ T+=<@;L$ 45+03; :$ABCcU 9$!E;$8;HJ>M>M@$L;JIF$X;L;$J< >@M;I $ ?=$?E; $ L;K;L;M7;$@;M=H;$GF>M@$+V,$ B9`9CA$X>?E$?E;$I;KJG7E$G?><>f;F$?E;$+GLL=XF$VE;;<;L$!LJMFK=LH$?=$J<>@M$FE=L?$ L;JIF$F>H>@MH;M?$OL=@LJHF$FG7E$JF$+=X?>;$JMI$-',0NA$ T2>$_$/GL5>M:$ABBQU 9$ V; $ OL=IG7;I$J<>@MH;M ?$FGH HJL6$F? J?>F?>7F$=M$?E;$L;FGM@$+,($K><;F$T+V,$=G?OG?F$-,($XE>7E$ X;$ 7=MN;L?;I$?=$?E;$5>MJL6$K=LHJ?:$+,(:$?=$FJN;$FOJ7;U$GF>M@$?E;$FJH?==7JLI$A9CD$7=HHJMI$ O2334@5#361:94:5*F990=B-45=6@7+ T2>$ 45+03; :$ABBQU 9$!E;$

PAGE 64

$ ! ! DC ! L;FGM@$=G?OG?$L;N;J<;I$@==I$J<>@MH;M?$F7 =L;F: $ X>?E$; J7E$O==<$7=M?J>M>M@$H=L;$?EJM$QDt$ HJOO;I$L;JIF9$ V; $ L;H=N;I$IGO<>7J?;F$X;L;$L;H=N;I$GF>M@$?E; $ 0>7JLI$7=HHJMI$ -0=UGF836@0547 :$XE>7E$GF;F$JM$J<@=L>?EH$?EJ?$I>KK;L;M?>J?;F$5;?X;;M$5JF;$PGJ<>?6$F7=L;F$=K$ IGO<>7J?;$L;JIF$?=$F;<;7?$J$OL>HJL6$L;JI9$&;Y ?:$ X; $ H;JFGL;I$@;M=H;$X>I;$7=N;LJ@;$GF>M@$?E;$ 5;I?==MF$X>?E$?==<;F:$XE>7E$?J@$>MI>N>IGJ<$J<>@MH;M?F$>M$J$ -,(h+,($K><;$X>?E$FJHO<; $ MJH; :$GF>M@$?E;$0>7JLI$7=HHJMI$ #AA2=!4830@4!40A$=2F87 :$JMI$ ?E;M$F=L?;I$JMI$>MI;Y;I$;J7E$O==<$GF>M@$FJH?==MI>7;F$?EJ?$J<<=X$OL=@LJHF$?=$F;JL7E$?EL=G@E$F;PG;M7;$K><;F$X>?E$H=L;$;JF;:$FJN>M@$=M$ 7=HOG?J?>=M$?>H;9$ $ + ;K=L; $ NJL>JM?F$X;L;$7J<<;I:$ X; $ L;J<>@M;I$?E;$ L;JIF $ JL=GMI$>MI;LF?: $ ?E; $ 57K?==?E$?E;$=O?>=M$ ZZ FW>O Z NJL>JM?F$FMOF$XJF$GF;I$?=$@;M;LJ?;$J$<>F?$=K$>MI;<;GO$K><;$JF$>MOG?:$XE >7E$ X ; $ 7L;J?;I$GF>M@$?E;$ FJH?==<;GO$K><;F$7=M?J>M$HG7E$=K$?E;$FJH;$>MK=LHJ?>=M$JF$J$FJH$K><;$ 5G?$>M$J$I>KK;L;M?$K=LHJ?R$;J7E$<>M;$7=LL;FO=MIF$?=$J$O=F>?>=M$>M$?E;$@;M=H;$JMI$ OL=N>I;F $ >MK=LHJ?>=M$K=L$?E;$MG7<;=?>I;:$>MI;<:$7=N;LJ@;:$P GJ<>? 6:$JMI$F=GL7;$=K$;J7E$L;JI$7=N;L>M@$?EJ?$ O=F>?>=M9$"=X;N;L:$?E;$OL=7;FF$=K$OL=IG7>M@$JM$HO><;GO$K><;$X>?E$HJM6$XE=<;$@;M=H;$F;PG;M7;$ K><;F$7JM$5;$7=HOG?J?>=MJ<<6$;YO;MF>N;:$F=$ X; $ O;LK=LH;I$JM$JLLJ6$[=5$?EJ?$7L;J?;I$HO><;GO$K><;F$ K=L$I>KK;L;M?$O=L?>=MF $ =K$? E;$ !/01234567+V48/B=60+ @;M=H;9 $ ,M$JLLJ6$[=5$>F$F>HO<6$J$H;?E=I$?=$LGM$ ?E;$;YJ7?$FJH;$F7L>O?$=M$JM$}JLLJ6~$=L$F;L>;F$=K$F>H><;F9$+7K?==<<$OL=IG7;$J$N7K$K><;$ 7=M?J>M>M@$J<<$=K$?E;$>MI;F$>F$F=L?;I$JMI$>MI;Y;I$>M$ 0 >7JLI$GF >M@$? E;$ 7=HHJMI$ *2=5W@< :$5;K=L;$5;>M@$OG?$?EL=G@E$%,!^]F$ !40361:4=(0=145O=4052=+ JMI$ ):A43!40361:4= $ ?=$L;J<>@M$?E;$=L>@>MJ<$5JH$K><;F$JL=GMI$>MI;<>f;F$J$<=7J<$J<>@MH;M?$

PAGE 65

$ ! ! DA ! J<@=L>?EH$?EJ?$>F$7=HOG?J?>=MJ<<6$;YO;MF>N;$JMI$?EGF:$F<=X9$!=$@;?$JL=GMI$?E >F:$ X ; $ J@J>M$LJM$ JLLJ6$[=5$X>?E$;J7E$N;LF>=M$=K$?E;$F7L>O?$L;J<>@M>M@$>MI;<;9$,?$?E>F$O=>M?$ ;J7E$=K$?E;$O==JM?$7J<<>M@ 9$ $ V; $ GF;I$JM@FI $ B9QCQ$?=$7J<<$NJL>JM?F$JMI$7=<<;7?$J<<;<;$7=GM?F$ T^=LM;<>GFF;M$ 45+03; :$ABCcU 9$ -O;7>K>7J<<6:$ X; $ ;HO<=6;I$JM@FI]F$@;M=?6O;$< >W;<>E==I$JOOL=J7E:$XE>7E$>F$7J<<;I$56$?E;$ 7=HHJMI$ m A2-0X2=-6:2=+D $ JMI$ m $&+Y : $ ?=$K >MI$NJL>JM?$F>?;F$JMI$I;?;LH>M;$?E;$HJ[=L$JMI$H>M=L$ J<<;<;F9$)?$FE=GM@ $ I;F>@MF$OL;7F$5;7JGF;$?E;$ >MI>N>IGJ<$ F=GL7;$=K$;J7E$ L;JI $ >F$GMWM=XM9$!E;$ @;M=?6O;$<>W ;<>E= =I$JOOL=J7E$XJF$GF;I$E;L;$5;7JGF;$>?$>F$HG7E$KJF?;L$?EJM$GF>M@$J<<;<;$7=GM?$ IJ?J$J<=M;$?=$K>MI$NJL>J5<;$F>?;F9$'M7;$?E;$NJL>J5<;$F>?;F$X;L;$<=7J?;I:$?E;6$X;L;$K;I$5J7W$>M?=$ J M@FI$GF>M@$?E;$ Z 76547+ 7=HHJMI:$XE>7E$?;<JM?$F?J? >F?>7 F$=M$?E=F;$F>?;F9$ !=$@;?$J<<;<;$7=GM?F$K=L$;J7E$NJL>J5<;$F>?;$K;I$>M?=$JM@FI:$)$GF;I$?E;$ m A2O2F:57+ C + JMI$ Z AF98O2F:57+ c$7=HHJMIF9$!E>F$XJF$O;LK=LH;I$K=L$;J7E$O==<$>M$?E;$JMJ<6 F>F$?=$@;?$HJ[=L$JMI$ H>M=L$J<<;<;$7=GM?F$K=L$;J7E$NJL>JM?$J7L=FF$J<<$O==JM?$>M$;J7E$O==<;I$JMI$GF;I$K=L$F?>7J<$ JMJ<6F>F 9$ $ #7761:94:5+52+&6:U014+$=2F87 + ,F$;N>I;M7;I$56$?E;$K>MI>M@ F$ >M$>M$7EJO?;L$C:$ !/01234567 + 8292:4330 $ EJF$J$E>@E<6$ F?LG7?GL;I$@;M=H;$?EJ?$7=HO<>7J?;F$@;M;?>7$JM J<6F> F9$)M$OJL?>7G=GF$F?GI>;F$ OL;F;M? $ ;N>I;M7;$K=L$>MN;LF>=M$O=<6H=LOE>FH$=M$J<<$=K$?E;$K>N;$HJ[=L$7EL=H=F=H;F$=K$?E;$ !;+8292:4330+ @;M=H; $ ?EJ?$OL=IG7; $ I>F?>M7?$5<=7WF$=K$<=7>$>M$E>@E$<>MWJ@;$I>F;PG><>5L>GH$T2/U$X>?E$;J7E$=?E;L $ T.;I; L$ 45+ 03; :$ABBa7e$(>7E;<$ 45+03; :$ABCBe$#@JM$ 45+03; :$ABCDe$8J@=GF$

PAGE 66

$ ! ! Da ! L;F;JL7E$GF>M@$8,/$HJLW;LF$7J?;@=L>f;I$NJL>JM?F $ JF$I>FOM@$E>@E$TL A $ u $ B9b$X>?E$=M;$JM=?E;LU:$ >M?;LH;I>J?;$TB9CD$ o $ L A $ o$B9bU:$=L$<=X$TL A $ o$B9CD$X>?E$J<<$=?E;L$-&0FU $ <;N; ?;$2/$ >I;M?>K>;I $ >M$8J@?E>M$ABB5O$=K$J$8,/$HJLW;L$OL;N>=GF<6$ JFF>@M;I$?=$JM$2/$7@M;I$? EJ?$7HJ?;<6$A`$H><<>=M$ -&0F$ FEJL;I$ J7L=FF$J<<$;YO;L>H;M?F$I;F7L>5;I$E;L;:$SC : SaD$ X;L;$JFF>@M;I$?=$JM$2/$@L=GO $ GF>M@$?E>F$ H;?E=I 9$ $ $4:456@+0=@/654@5F=4+2<+A6080F74+54=96:0562:+0:A+6:54:765B+ + ! !E;$GF;$=K$ O==<;I Z F;PG;M7>M@ $ IJ?J$ OL;N;M?;I$G F $ KL=H$GF>M@$HJM6$=K$?E;$?;7EM>PG;F$=K$ * EJO?;L$C$?=$>MK;L$@;M;?>7$JL7E>?;7?GL;:$FG7E$JF$?E;$+J6; F>JM$ -OJLF;$2>M;JL$(>Y;I$(=I;<$ T+-2((U$JMI$O=<6@;M>7$F7=L;F9$!=$>MI>L;7?<6$>MK;L$@;M;?>7$JL7E>?;7?GL;:$)$;YJH>M;I$?E;$ I>F?L>5G?>=M$=K$-&0F$F>@M>K>7JM?<6$JFF=7>J ?;I$X>?E$J$I>JOJGF;$OE;M=?6O;$=L$E=F?$LJ7;$ JMI$ ;NJ@M>K>7JM?$-&0F$XJF$I;?;LH>M;I$56$;NJM@$?E;$MGH5;L$=K$F>@M>K>7JM?$-&0F$ =5F;LN;I$>M$J$FO;7>K>7$7EL=H=F=H ;$JMI$2/$@L=GO$7=HOJL;I$?=$?E;$;YO;7?;I$JH=GM?$@>N;M$?E;$ ?=?J<$MGH5;L$=K$-&0F$>M$?EJ?$@L=GO$L;N;$ ?=$J<<$-&0F$JFF>@M;I$?=$J$7EL=H=F=H;$JMI$2/$@L=GO9$ $ $ !E>F$FJH;$H;?E=I$=K$;NJM@$;Y7;FF$=K$F>@M>K>7JM?$-&0F$XJF$JM;$>K$ ?E;L;$XJF $ @;M=H>7 $ 7M@$=K$<=7>$ F>@M>K>7JM?<6$JFF=7>J? ;I $ X>?E$E=F?$LJ7;$ JMI$I>JOJGF;$ ?;LH>MJ?>=M$>M$i;YO; 7?;I] $ N;LFGF$i=OO=F>?;]$=L>;M?J?>=MF9$+6$i;YO;7?;I]$=L>;M?J?>=M:$X;$H;JM$J$ <=7GF$?EJ?$EJF$JM$JFF=7>J?>=M$X>?E$?E;$JOO<;$LJ7;$JMI$;JL<6$I>JOJGF;$?;LH>MJ?>=M $ =L$JM$JFF=7>J?>=M$ X>?E$?E;$EJX$LJ7;$JMI$JOJGF;$?;LH>MJ?>=M9$+6$i =OO=F>?;] $ =L>;M?J?>=M:$X;$H;J M$J$< =7GF$?EJ?$ EJF$JM$JFF=7>J?>=M$X>?E$?E;$EJX$LJ7;$JMI$;JL<6$I>JOJGF;$?;LH>MJ?>=M$=L$JM$JFF=7>J?>=M$X>?E$?E;$ JOO<;$LJ7;$JMI$JOJGF;$?;LH>MJ?>=M9$!E; $ @=J<$=K$?E>F$JMJ<6F>F$>F$?X= Z K=M;$>K$

PAGE 67

$ ! ! Dc ! <=7>$ ?EJ?$HJ6$5;$7=HO;MFJ?>M@$ K=L$?E;$JM?J@=M> F?>7$ L;=MFE>O$I>F7=N;L;I$>M$*EJO?;L$C$;Y>F?$JMI$ AU$>K$?E;6$JL;$7M$FO;7>K>7$L;@>=MF$J7L=FF$E=F?$LJ7;F$JMI$@;=@LJOE69$ $ O03@F30562: + 2<+033434+<= 4JF4:@B+A6<<4=4:@47 + *GF?=H$5JFE : $ O6?E=M :$JMI$8 $ F7L>O?F$X;L;$GF;I$?=$O;LK=LH$J<<;<;$KL;PG;M76$;F?>HJ?; F$JMI $ .>FE;L$;YJ7?$?;F?F$K=L$?E;$K=<<=X>M@$OJ>LX>F;$7=HOJL>F=MF$5;?X;;M$O==M@ $ EJX $ K<>;F $ NF9$M@ $ EJX $ K<>;F $ T?=$K>MI$<=7>$JFF=7>J?;I$X>?E$ I>JOJGF;$?;LH>MJ?>=M $ >M$EJX$K<>;FU:$%LJM? :$() $ ;JL<6 $ ;H;L@>M@ $ JOO<;$ K<>;F$ NF9$M @ $ JOO<; $ K<>;F $ T?=$K>MI$<=7>$ JFF=7>J?;I$X>?E$ I>JOJGF;$?;LH>MJ?>=M $ >M$JOO<;$K<>;FU:$JMI$%LJM?$E=F?$LJ7;$7=HOJL>F=MF$T?=$K>MI$ <=7>$JFF=7>J?;I$X>?E$E=F?$LJ7;$I>KK;L;M7;FU9$!E;F;$7=HOJL>F=M F $ X ;L;$L;O;J?;I$K=L$1L5JMJ:$JMI$ O;LK=LH;I$J7L=FF$@;=@LJOE6$?=$I;?;L H>M;$ >K$?E;$FJH;$<=7>$GMI;L<>;$ I>JOJGF;$?;LH>MJ?>=M $ JMI$E=F?$ LJ7;$I>KK;L;M7;F$ J?$?E;$?X=$F6HOJ?L>7$F>?;F 9$0J>LX>F;$7=HOJL>F=MF$GF>M@$.>FE;L$;YJ7?$?;F?F$X;L;$ JKK;L;M7;F$5 ;?X;;M$J$%LJM?$5JF;<>M;$O=OG=M$FJHO<;$JMI$-/$O==M$ 5=?E$E =F?$L J7;F9$ $ O2==430562:7+2<+033434+<=4JF4:@B+A6<<4=4:@47 + V;$;F?>HJ?;I$7=LL;=M$L;=MFE>OF$5;?X;;M$NJL>=GF$J<<;<;$KL;PG;M76$I>KK;L;M7;$;F?>HJ?;F$?=$ JFF;FF$XE;?E;L$<=7>$JFF=7>J?;I$X>?E$J$? LJ>?$TI>JOJGF;$?;LH>MJ?>=M$=L$ >M?;MF>?6 U$JJ? ;$X>? E$ JM=?E;L$?LJ>?:$I>KK;L;I$5;?X;;M$E=F?$LJ7;F $ =L$J7L=FF$@;=@LJOE69$ !E;F;$JMJ<6F;F$GMI;L<>;$?E;$?L>JM@G=M$ JOOL=J7E$=K$7=H5>M>M@$;N>I;M7;$K=L$?E;$L=<;$=K$F;?F$=K$<=7>$>M$?E;$OL=7;FF$=K$J IJO?J?>=M 9$)M$ * EJO?;L$C:$ O;LHG?J?>=M$?;F?F$GF>M@$XE=<;$K<6$@;M=? 6O;F$ X;L;$GF;I$?=$?;F?$K=L$F>@M>K>7JM7; $ =K$7=LL;=MF $ JMI$?=$ J77=GM?$K=L$?E;$N>==M$=K$?E;$JFFGHO?>=M$=K$LJMI=H$FJHO<>M@ 9$)$XJF$GMJ5<;$?=$O;LK=LH$FG7E$J$?;F?$X>?E$ ?E;$O==< Z F;P$IJ?J$5;7JGF ;$>?$MI>N>IGJ<$@;M=?6O;F9$V;$JL;$F?><<$J7?>N;<6$I;N;<=O>M @$J$F ?J?>F?>7J<$ H;?E=I$?=$L>@=L=GF<6$?;F?$@;M;?>7$JFF=7>J?>=MF$J7L=FF$;YO;L>H;M?F$?EJ?$>M7=LO=LJ?;F$L;JI$I;O?E$J?$J$F>?;$JMI$ J77=GM?F$K=L$2/$L;=MFE>OF$?EJ?$N>==M$=K$LJMI=H $ FJHO<>M@9$)M$?E>F$F?GI6:$X;$GF;I$?E;$ 0;JLF=M$OL=IG7?$H=H;M?$7=L L;=M$JF$>HO<;H;M?;I$>M$5JF;$8$Ta9c9cU9$ $

PAGE 68

$ ! ! DD ! ' %<>9B5> ' ,23B14:6@+#=@/654@5F=4+ + ! !E;$MGH5;L$=K$-&0F$F>@M>K>7JM?<6$JFF=7>J?;I$X>?E$I>JOJGF;$>M?;MF>?6$X;L;$L;N;<6$ ;N;M<6$I>F?L>5G?;I$J7L=FF$?E;$ !;+8292:4330+ @;M=H;$>M$J77=LIJM7;$X>?E$;YO;7?J?>=M$K=L$5=?E$E=F? $ LJ7; F $ T .>@9$C J:5 U9$ !E J? $ >F:$ ?E;$MGH5;L$=K$-&0F$F>@M>K>7JM?<6$JFF=7>J?;I$X>?E$ I>JOJGF;$>M?;MF>?6$ =M $ J$@>N;M$7EL=H=F=HJ<$2/$@L=GO$L=G@E<6$HJ?7E;I$?E;$;YO;7?;I$MGH5;L$=K$F>@M>K>7JM?$-&0F$ >M$ ?EJ?$@L=GO$@>N;$?E;$L;N;$OL=O=L?>=M$=K$J<<$-&0F$?EJ?$>?$EJL5=L;I 9$V>? E>M$?E;$ J OO<;$LJ7;:$?E;L;$ XJF$=M;$;Y7;O?>=M$>M$?EJ?$7EL=H=F=H;$C$JOO;JLF$ ?=$ 5;$H=L;$;ML>7E;I$K=L $ -&0F$JFF=7>J?;I$X>?E$ I>JOJGF;$>M?;MF>?6$?EJM$X=G@9$C 5 U 9$ $ $ .=L$I>JOJGF;$?;LH>MJ?>=M $ >M$?E;$JOO<;$LJ7; $ J?$?E;$%LJM?:$()$F>?;:$7= M7;M? LJ?>=MF$=K$-&0F $ J5=N;$?E;$;YO;7?;I$JH=GM? $ =77GLL;I$=M$7EL=H=F=H;$ a :$;FO;7>J<<6$>M$?E;$E>@E$2/$@L=GO :$JMI$?=$J$ <;FF;L$;Y?;M?$=M$7EL=H=F=H;$A $ T .>@9$C I U 9$VE><;:$K=L$?E;$EJX$LJ7;:$ 7EL=H=F=H;$A$JMI$?E;$E>@E$ 2/$@L=GO$>M$OJL?>7G7E;I$K=L$<=7>$JFF= 7>J?; I$X>?E$I>JOJGF;$?;LH>MJ?>=M $ T.>@9$C7U 9$ ,? $ ?E;$1L5JMJ:$)2$F>?;:$J $ M$<=7J?;I$=M$7EL=H=F=H;$a:$5G?$J?E>M$?E;$JOO<;$LJ7; $ T .>@9$A U 9$)M$?E;$EJX$LJX:$JM$;Y7;FF$=K$-&0F$XJF$7=MK>M;I$?=$ 7EL=H=F=H;$C $ T .>@9$A U 9 $ !E; L;$XJF$JM$;Y7;FF$=K $ <=7>$F>@M>K>7JM?<6$JFF=7>J?;I$X>?E$5=?E$I>JOJGF;$?;LH>MJ?>=M$JMI$ I>JOJGF;$>M?;MF>?6 $ =M$7EL=H=F=H;$A$JMI$?E;$E>@E$2/$@L=GO$=M$7EL=H=F=H;$a$>M$?E;$JOO<;$LJ7;9$ )M$?E;$EJX$LJ7;$?E;L;$XJF$JM$;Y7;FF$>M$J<<$2/$@L=GOF$=M$5=?E$7EL=H=F=H;F$A $ JMI$ a $ T .>@9$a U 9$ $ %=64:5 0562:+2<+32@6+0772@60562:+M65/+A6080F74+6:54:765B+0:A+/275+=0@4 + $ ,?$?E;$%LJM?:$()$F6HOJ?L>7$F>? ;:$?E;$MGH5;L$=K$<=7>$ X>?E$J<<;<>7$JFF=7>J?>=M$>M$?E;$ ;YO;7?;I$=L>;M?J?>=M$>M$?E;$EJX$LJ7;$T EJX$ Z $ JOJGF;$?;LH>MJ?>=MU$
PAGE 69

$ ! ! Db ! ; YO;7?J?>=M:$X>?E$?E ;$;Y7;O?>=M$=K$7EL=H=F=H;$a:$?EJ?$EJI$H=L;$<=7>$?EJM$;YO;7?;I:$JMI$ 7EL=H=F=H;$D:$XE>7E$EJI$<;FF $ T .>@9$c ,U$ 9$(;JMXE><;: $ <=7>$X>?E $ J<<;<>7$JFF=7>J?>=M F $ >M$?E;$ =OO=F>?;$=L>;M?J?>=M$>M$?E;$EJX$LJ7;$TEJX$ m $ ;JL<6$I>JOJGF;$?;LH>MJ?>=MU$X;L ;$E>@ E<6$ =N;LL;OL;F;M?;I$=M$A$JMI$GMI;L$L;OL;F;M?;I$=M$?E;$L;F?$=K$?E;$7EL=H=F=H;F $ T .>@9$c +U 9$.=L$?E;$ JOO<;$LJ7;:$<=7>$X>?E$J<<;<>7$JFF=7>J?>=MF$>M$?E;$;YO;7?;I$=L>;M?J?>=M$TJOO<;$ m $ ;JL<6$I>JOJGF;$ ?;LH>MJ?>=MU$X;L;$=N;LL;OL;F;M?;I$=M$ 7EL=H=F=H; $ a:$JMI$GMI; L$L;O L;F; M?;I$=M$7EL=H=F=H;F$C:$ JMI$A $ T .>@9$c *U 9$2=7>$X>?E$J<<;<>7$JFF=7>J?>=MF$>M$?E;$=OO=F>?;$=L>;M?J?>=M$TJOO<;$ m $ @9$c /U 9$ $ $ ,?$?E;$1L5JMJ:$)2$F6HOJ?L>7$F>?; :$?E; L;$X JF$J$F<>@E?$=N;LL;OL;F;M?J?>=M$=K$<=7>$X>?E$J<<;<>7$ JFF=7>J?>=MF$>M$?E;$;YO;7?;I$=L>;M?J?>=M$>M$?E;$EJX$LJ7;$=M$7EL=H=F=H;$C:$A:$JMI$a:$JMI$ GMI;LL;OL;F;M?J?>=M$=M$7EL=H=F=H;F$c:$JMI$D $ T .>@9$D ,U 9$ !E;L;$XJF$J$F?L=M@$;Y7;FF$=K$<=7>$X>?E$ J<<;<>7$JFF=7 >J?>= MF$> M$?E;$=OO=F>?;$=L>;M?J?>=M$>M$?E;$EJX$LJ7;$=M$7EL=H=F=H;$C:$JMI$JM$ GMI;LL;OL;F;M?J?>=M$=M$?E;$L;F?$=K$?E;$7EL=H=F=H;F$T .>@9$D +U 9$ )M$?E;$JOO<;$LJ7;:$ =N;LL;OL;F;M?J?>=MF$=K$<=7>$X>?E$J<<;<>7$NJL>J?>=M$>M$?E;$;YO;7?;I$=L>;M?J?>=M$XJF$=5F;LN;I$=M$ 7EL= H=F=H ;F$A :$JMI$a:$JMI$GMI;LL;OL;F;M?J?>=M$=K$?E=F;$<=7>$=M$7EL=H=F=H;F$C:$c:$JMI$D$T .>@9$c $ *U 9$.=L$<=7>$X>?E$J<<;<>7$JFF=7>J?>=MF$ >M$?E;$=OO=F>?;$=L>;M?J?>=M :$?E;L;$XJF$JM$=N;LL;OL;F;M?J?>=M$ =M$7EL=H=F=H;$C:$JMI$GMI;LL;OL;F;M?J?>=M$=M$7EL=H=F=H;F$A:c:$JMI$ D$T .> @9$D $ ,U 9$ $ #772@60562:+I45M44:+A6080F74+6:54:765B+0:A+A6080F74+54=96:0562:+ + $ .=L$J<<$=K$?E;$SC:SaD$-&0F$?EJ?$X;L;$O=F>?>=M;I$X>?E>M$ABB$5O$=K$ J $ HJOO;I$JMI$2/$ 7K>;I$8,/$HJLW;L :$?E;L;$XJF$J$X;JW$JFF=7>J?>=M$5;?X;;M$I>JOJGF;$?;LH>MJ?>=M$JMI$I>JOJGF;$ >M? ;M F>?6$>M$5=?E$E=F?$LJ7;F$T .>@9$b e$!J5<;$) U9$ /;FO>?;$?E;$X;JW$JFF=7>J?>=M$=N;L$J<<$<=7>:$?E;L;$ X;L;$F?><<$F?L=M@$JFF=7>J?>=M F $ =M$7EL=H=F=H;F$A: $ a:$JMI$D$JMI$?=$J$<;FF;L$;Y?;M?$C:$>M$5=?E$E=F?$ LJ7;F $ T!J5<;$)U 9$(=L;=N;L:$?E;$F>@M$=K$?E;$JFF=7>J?>=M$XJF$?E ;$F JH ;$J7L=FF$J<<$7EL=H=F=H;F:$X>?E$

PAGE 70

$ ! ! D` ! ?E;$;Y7;O?>=M$=K$7EL=H=F=H;$D9$!E;$JFF=7>J?>=MF$X;L;$JKK;L;M?$K=L$7EL=H=F=H; F $ A$JMI$ae$ =M$7EL=H=F=H;$A:$?E;L;$JOO;JL ;I $ ?=$5; $ J $ @;M;?>7$JFF=7>J?>=M$5;?X;;M$?E;$-/$OE;M=?6O;$JMI$JOJGF;$?;LH>MJ?>=M$JMI$=M$7EL=H =F= H; $ a:$?E;L;$ XJF $ J$@;M;?>7$JFF=7>J?>=M$5;?X;;M$?E;$-/$ OE;M=?6O;$JMI$;JL<6$I>JOJGF;$?;LH>MJ?>=M9$ 'M$7EL=H=F=H;$D :$?E;$@;M;?>7$L;=MFE>OF$K<>O O;I :$ FG7E$?EJ?$>M$?E;$JOO<;$LJ7;:$?E;L;$ XJF $ JM$JFF=7>J?>=M$5;?X;;M$-/$JMI$JOJGF;$?;LH>MJ?>=M:$ 5G?$>M$?E; $ EJX$ LJ7;$?E;L;$ XJF $ JM$JFF=7>J?>=M$5;?X;;M$-/$JMI$;JL<6$I>JOJGF;$?;LH>MJ?>=M9$ $ O36:03+K0=60562:+6:+A6080F74+6:54:765B+0:A+A6080F74+54=96:0562:+ + $ !=$JFF;FF$JM6$7<>MJ<$NJL>J?>=M$>M$?E;$<=7>$ JFF=7>J?;I$X>?E$I>JOJGF;$?;LH>MJ?>=M$JMI$ I>JOJGF;$>M?;MF>?6 : $ X; $ H;JF GL;I$ 7=LL;=MF$5;?X;;M$J<<;<;$KL;PG;M76$I>KK;L;M7;F$J7L=FF$?E;$?X=$ F6HOJ?L>7$F>?;F$JMI $ 5=?E $ J<<;<;$KL;PG;M76$I>KK;L;M7;F$K=L$I>JOJGF;$?;LH>MJ?>=M $ TJ?$5=?E$ @;=@LJOE>7$<=7J?>=MFU $ JMI$I>JO JGF;$>M?;MF>?69$!E>F$JMJ<6F>F$JMK;L$XE>7E $ OE;M =?6O;$?EJ?$F;<;7?>=M$>F$J7?>M@$GO$K=L$<=7>$=M$7EL=H=F=H;F$A$JMI$a:$XE>7E$EJN;$=OO=F>?;$ @;M;?>7$JFF=7>J?>=MF$K=L$?E;$I>JOJGF;$?;LH>MJ?>=M$JMI$>M?;MF>?6$OE;M=?6O;F9$ )M$=?E;L$X=LIF:$>K$ 7 <>MJ<$NJL>J?>=M$K=L$<=7>$ GMI;LO>MM>M@ $ I>JOJGF;$>M?;MF>?6$EJF$JM$JFF= 7>J?> =M$X>?E$@;=@LJOE6$>M$?E;$ ;YO;7?;I$I>L;7?>=M$T;9@9$-/$JMI$1L5JMJ:$)2U$JMI$?E;$JFF=7>J?>=M$5;?X;;M$I>JOJGF;$?;LH>MJ?>=M$ JMI$@;=@LJOE6$J?$?E=F;$FJH;$<=7>$>F$=OO=F>?;$=K$?E;$;YO;7?J?>=M$T ;9@9$;JL<6$I>JOJGF;$?;LH>MJ?>=M$ JMI$1L5JMJ:$)2U:$?E;M$>?$FG@@;F?F$?E J?$F; <;7?>=M$K=L$I>JOJGF;$>M?;MF>?6$>F$=N;LL>I>M@$?E;$L;FO=MF;$ >M$I>JOJGF;$ ?;LH>MJ?>=M$JMI$ILJ@@>M@$}HJN;~$NJL>J?>=M$X>?E$>?9$ $ $ VE;M$7=HOJL>M@$NJL>J?>=M$>M$I>JOJGF;$?;LH>MJ?>=M$L;7= LI;I$KL=H$%LJM?:$()$O=OG=MF$ X>?E$@;=@LJOE>7$NJL>J?>=M:$?E;L;$ XJF $ J $ F? L=M@$JFF=7>J?>=M$J7L=FF$7EL=H=F=H;F$C: $ A:$JMI$a$>M$?E;$ EJX$LJ7; $ T .>@9$` e$!J5<;$))U 9$)M$?E;$JOO<;$LJ7; $ ?E;L;$ XJF $ JM$JFF=7>J?>=M$=M$7EL=H=F=H;$a:$5G?$ X;JW$JFF=7>J?>=MF$=M$7EL=H=F=H; F $ C$JMI$A9$ VE;M$7=LL;M@$I>JOJGF;$?;LH>MJ?>=M$L;7=LI;I$ KL=H$1L5JMJ:$) 2$O=O G=MF$X>?E$@;=@LJOE>7$NJL>J?>=M:$?E;L;$ X;L; $ F?L=M@$JFF=7>J?>=MF$=M$

PAGE 71

$ ! ! DS ! 7EL=H=F=H;$C$JMI$a:$X>?E>M$?E;$EJX$LJ7;:$5G?$M=?$=M$A $ T .>@9$` e$!J5<;$ ))) U 9$)M$?E;$JOO<;$LJ7;:$JF$ X>?E$%LJM?:$( ):$?E;L;$ XJF $ J$F?L=M@$JFF=7>J?>=M$=M$7EL=H=F=H;$a:$5G?$X;JW$JFF=7>J?>=M F$=M$ C$JMI$ A9$.L=H$?E;$O;LFO;7?>N;$=K$I>JOJGF;$?;LH>MJ?>=M:$XE;M;N;L$?E;L;$XJF$J$F?L=M@$JFF=7>J?>=M:$>?$XJF$ JM$?E;$OL;I>7?;I$J<<;<>7$I>L;7?>=M9$!EJ?$>F:$J?$%LJM?:$()$?E;L;$>F$J$E >@E;L$KL;PG;M76$=K$;JL<6$ I>JOJGF;$?;LH>MJ?>=M$JFF=7>J?;I$J<<;<;F:$JMI$J ?$1L5 JMJ:$ )2 $ ?E;L;$>F$J$E>@E;L$KL;PG;M76$=K$JOJGF;$?;LH>MJ?>=M$JFF=7>J?;I$J<<;<;F9$ $ $ .=L$?E;$L;=MFE>O$5;?X;;M$NJL>J?>=M$>M$I>JOJGF;$>M?;MF>?6$JMI$@;=@LJOE>7$NJL>J?>=M$ X>?E>M$ ?E;$EJX$LJ7;:$?E;L;$X;L;$F?L=M@$JFF=7>J?>=MF$ =M$7EL=H=F=H;F$C$JMI$A 9$-> H>?E>M$?E;$JOO<;$LJ7; $ T .>@9$S :$!J5<;$ ) 3U 9$"=X;N;L:$?E;$F>@M$=K$?E;$JFF=7>J?>=M$ 5;?X;;M$I>JOJGF;$>M?;MF>?6$JMI$@;=@LJOE6$XJF$I>KK;L;M?$=M$7EL=H=F=H;$a$7=HOJL; I$?=$C$JMI$A9$ 'M$7EL=H=F=H;$a:$?E;L;$>F$J$@;M;?>7$JFF=7>J?>=M$5;?X;;M$? E;$-/ $ OE;M=?6O;$JMI$%LJM?:$():$ XE>7E$>F$=OO=F>?;$?=$?E;$OL;I>7?;I$L;=MFE>O9$ $ !430562:7/68+2<+A6080F74+6:54:765B+0:A+54=96:0562:+52+/275+=0@4+A6<<4=4:@47 + $ ,?$?E;$%LJM?:$()$F>?;:$? E;L;$ X;L;$F?L=M@$JFF=7>J?>=MF$5;?X;;M$I>JOJGF;$?;LH>MJ?>=M$X>?E>M$ ?E;$EJX? E=LM$ LJ7;$JMI$E=F?$LJ7;$I>KK;L;M7;F$=M$7EL=H=F=H;F$C$JMI$A $ T .>@9$Q :$!J5<;$3 U 9$VE;L;JF$ >M$?E;$JOO<;$LJ7;:$?E;L;$X;L;$F?L=M@$JFF=7>J?>=MF$5;?X;;M$I>JOJGF;$?;LH>MJ?>=M$JMI$E=F?$LJ7;$ I>K K;L;M7;F$=M$7EL=H=F=H;F$A$JMI$a$JMI$?=$J$<;FF;L$;Y?;M?:$7EL=H=F=H;$C9$"=X; N;L:$ ?E;$ JFF=7>J?>=M$>F$>M$J$I>L;7?>=M$=OO=F>?;$?=$;YO;7?J?>=M:$FG7E$?EJ?$?E;L;$ XJF $ J$E>@E;L$KL;PG;M76$=K$ JOJGF;$?;LH>MJ?>=M$JFF=7>J?;I$J<<;<;F$ >M$?E;$JOO<;$LJ7;9$ !E;L;$X;L;$N ;L6$X;JW$JFF=7>J?>=M F $ 5;?X;;M$I>JOJGF;$?;LH>MJ?>=M$JMI$E=F?$LJ7;$I>KK;L;M7 ;F$J? $ 1L5JMJ:$)2$T .>@9$CB :$!J5<;$3)U9 $ $ !E;L;$X;L;$JJ?>=MF$5;?X;;M$I>JOJGF;$>M?;MF>?6$JMI$E=F?$LJ7;$I>KK;L;M7;F:$ J<5;>?:$M=?$JF$J$F?L=M@$JF$I>JOJGF;$?;LH>MJ?>=M $ T .>@9$ Q :$!J5<;$3)) U 9$,FF=7>J?>=MF$X;L;$=5F;LN;I$=M$

PAGE 72

$ ! ! DQ ! 7EL=H=F=H;F$C:$A:$JMI$a$K=L$5 =?E$E =F?$LJ7;F9$(=L;=N;L:$?E;$JFF=7>J?>=M$=77GLL;I$>M$?E;$;YO;7?;I$ I>L;7?>=M:$X>?E$E>@E;L$KL;PG;M7>;F$=K$-/$J<<;<;F$=5F;LN;I$X>?E>M$?E;$ J OO<;$LJ7;9$ $ . ;>:9>>;74 ' $ )M$?E >F $ 7EJO?;L:$X;$F?GI>;I$?E;$@;M=H>7$F>@MJ=M$?=$F; JF=MJ<$NJL>J?>=M:$5=?E$ X>?E>M $ J$F O;7>K>7$@;=@LJOE>7$F>?;$JMI$J7L=FF$?GI;9$ !E;$J>H$=K$?E>F$L;F;JL7E$XJF$?=$JIIL;FF$ 5JF>7$PG;F?>=MF$>M$ ?E;$7=MF>F?;M76$=K$@;M=H>7$L;FO=MF;F$?=$F;<;7?>=M$=M$J$?LJ>?$?EJ?$NJL>;F$X>?E$ @;=@LJOE6 9$V>?E>M$?E;$7=M?;Y?$=K$ !;+8292: 4330 :$?E;$JMFX;LF$?=$?E;F;$PG ;F?> =MF$X><<$J@E?$=M$XE;?E;L$?E;$@;M=H>7$JL7E>?;7?GL;F$=K$O=OG=M$I>N;L@;M7; $ JMI$FO;7>J?>=M $ FE>K?$ X>?E$ @;=@LJOE6 9$!E;$J5><>?6$?=$ 7=HOL;FF>N;<6 $ JIIL;FF$?E;F;$PG;F?>=MF$L;PG>L;F$ OL;7>F;$>MK;L;M7;$=K$ J<<;<;$KL;PG;M76 $ 7EJM@;$@;M=H;$X>I;$KL=H $ OJ>L ;I:$ @;=@LJOE>7$%V, $ F?GI>;F 9$!E;$X=LW$ OL;F;M?;I$E;L;$>F$56$M=$H;JMF$ ;YEJGF?>N;$5G? $ FG@@;F?F$I>L;7?>=MF$K=L$KG?GL;$JMJ<6F>F 9 $ V;$L;FO=MI$ ?=$?E;$K=GL$PG;F?>=MF$=G?<>M;I$>M$?E;$>M?L=IG7?>=M$5;<=X9 $ $ 'GL$K>LF?$PG;F?>=M$JIIL;FF;I$XE;?E;L$?E;$@;M=H>7$7M@ $ =K$ <=7> $ F>@M>K>7JM?<6$ JFF=7>J? ;I $ X>?E$I>JOJGF;$?;LH>MJ?>=M$7EJM@;I$J7L=FF$?E;$?X=$F6HOJ?L>7$F>?;F:$%LJM?:$()$JMI$ 15LJMJ:$)2:$ F?GI>;I $ E;L;9 $ 'GL$L;FGLF? $ 7=MK>LH;I$OL;N>=GF$F?GI>;F$?EJ?$K=GMI$?E>F$?LJ>?$?=$5;$ E>@E<6$O=<6@;M>7 $ T8J@7$F>?;$EJL5=L;I$ F>@M>K>7JM?$NJL>J?>=M$JFF=7>J?;I$X>?E$I>JOJGF;$?;LH>MJ ?>=M $ =M$7EL=H=F=H;$a:$OJL?>7GM$?E;$ E>@E$2/$@L=GO:$FG@@;F?>M@$J?$<;JF?$F=H;$7=MF;LNJ?>=M$>M$?E;$@;M=H>7$5JF>F$=K$I>J OJGF;$ ?;LH>MJ?>=M$J7L=FF$@;=@LJOE69$"=X;N;L:$?E;L;$X;L;$JKK;L;M7;F$>M$?E;$<;N;<$=K$ @;M=H>7$7M@$5;?X;;M$F6HOJ?L >7$F >?;F:$X>?E$7EL=H=F=H;$A$EJL5=L>M@$JM$;Y7;FF$=K$I>JOJGF;$ ?;LH>MJ?>=M$JFF=7>J?;I$<=7>$J?$%LJM?:$()$JMI$7EL=H=F=H;$C$EJL5 =L>M@$JM$;Y7;FF$J?$1L5JMJ:$)29$ .=L$?E;$H=H;M?:$>?$>F$GM7<;JL$XE6$I>KK;L;M?$7EL=H=F=HJ<$L;@>=MF$JOO;JL$?=$;Y;L?$I>KK;L;M?>J<$ ;KK;7?F$=M $ ?E; $ OE;M=?6O;$J7L=FF$@;=@LJOE69$'M;$O=?;M?>J<$;YO=M$>F$ F>HO<6$?EJ?$?E;$@;M=H>7$

PAGE 73

$ ! ! bB ! JL7E>?;7?GL;$=K$I>JOJGF;$?;LH>MJ?>=M $ FE>K?F$X>?E$@;=@LJOE6$JMI$?E;$L;N;$;KK;7?F$=K$@;M=H>7$ NJL>JM?F$JFF=7>J?;I$X>?E$I>JOJGF;$?;LH>MJ?>=M:$OJL?>7GK?$ X>?E$@;=@LJOE6$JF$OL=O=F;I$>M$?E;$>M?L=IG7?>=M9$ $ .GL?E;L$; N>I;M7;$K=L$J$FE>K?>M@$@;M=H>7$JL7E>?;7?GL;$=K$I>JOJGF;$?;LH>MJ?>=M$>F$?E;$ =5F;LNJ?>=M$=K$ I>KK;L;M?>J<$7M@$=K$<=7>$X>?E$J<<;<>7$JFF=7>J?>=M$>M$?E;$i;YO;7?;I]$JMI$ i=OO=F>? ;]$= L>;M?J?>=MF$K=L$I>JOJGF;$?;LH>MJ?>=M$JMI$ E=F?$LJ7;$I>KK;L;M?>J?>=M 9$";L;:$< =7>$>M$?E;$ i;YO;7?;I]$=L>;M?J?>=M$JL;$?E=F;$?EJ?$JL;$JFF=7>J?;I$X>?E$;>?E;L$?E;$EJX$LJ7;$JMI$JOJGF;$ ?;LH>MJ?>=M$=L$?E;$JOO<;$LJ7;$JMI$;JL<6$I>JOJGF;$?;LH>MJ?>=M9$ V;$=5F;L N;I$ <>??<;$=N;LM$?E;$7EL=H=F=H;F$?EJ?$JL;$;ML>7E;I$K=L$?E ;$i;YO;7?;I]$JMI$i=OO=F>?;]$=L>;M?J?>=M$ <=7>9$!E>F$>MI>7J?;F$?EJ?:$>M$JII>?>=M$?=$J$FE>K?>M@$@;M=H>7$JL7E>?;7?GL;$JFF=7>J? ;I $ X>?E$I>JOJGF;$ ?;LH>MJ?>=M:$?E;L;$HJ6$JJ5> <>?6 $ >M$?E;$JL7E>?;7?GL;F$?EJ?$GMI;L<>;$E=F?$LJ7;$I>N;L@;M7;$ J7L=FF$@;=@LJOE69$ "=X;N;L:$X;$L;7=@M>f;$?EJ?$H=L;$L=5GF?$F?J?>F?>7J<$JMJ<6F;F$M;;I$?=$5;$ 7=MIG7?;I$5;K=L;$I;K>M>?>N;$7=M7=M F $ J5=G?$FE>K?>M@$@;M=H>7$JL7E>?;7?GL;F$ JL; $ ILJXM9$.G?GL;$ X=LW$=M$?E> F$PG ;F?>=M$X><<$>MN=@MH;M?$=K$LJX$O==< Z F;P$L;JIF$?=$J$L;7;M?<6$ 7=HO<;?;I $ /=N;?J><$@;M=H;$JFF;H5<6$=K$ !;+8292:4330 :$XE>7E$7=MF>F?F $ =K $ 7=MF=<>IJ?;I$JMI$M$?E>F$JMJ<6F>F9$-<>I>M@$X>MI=X$JMJ<6F;F$X>< <$5; $ O;LK=LH;I$?=$<==W$K=L$F>H>?>;F$>M$@;M=H>7$7M@$=K$<=7> $ JMI$F>@MJ ?GL;F$=K$F;<;7?>=M $ JFF=7>J?;I$X>?E$I>JOJGF;$?;LH>MJ?>=M$5;?X;;M$E=F?$LJ7;F$JMI$J7L=FF$@;=@LJOE69$ $ 'GL$?E>LI$PG;F?>=M$JFW;I$XE;?E;L$?E;$@;M;?>7$JFF=7>J?>=MF$5;?X;;M$I>JOJGF;$?;LH >MJ? >=M$ JMI$I>JOJGF;$>M?;MF>?6$X;L;$7=MF>F?;M?$X>?E$?E;$L;FGF=M$?=$?E;$ @;M=H>7$I>F?L>5G?>=M$=K$<=7>$JFF=7>J?;I$X>?E$I>JOJGF;$?;LH>MJ?>=M$>M$*EJO?;L$C:$?E;$NJL>J?>=M$ JFF=7>J?;I$X>?E$I>JOJGF;$>M?;MF>?6$ >M$?E;$O==< Z F;P$IJ?JF;?$ XJ F$L; N;<6$;N;M<6$I>F?L>5G?;I$J7L=FF$ J<<$7EL=H=F=H;F$JMI$2/$@L=GOF 9 $ VE;M$FG5 Z F;??>M@$?=$<=7>$?EJ?$X;L;$F>@M>K>7JM?$>M$5=?E$?E;$

PAGE 74

$ ! ! bC ! I>JOJGF;$?;LH>MJ?>=M$%V,-$J?$%LJM?:$()$JMI$?E;$I>JOJGF;$>M?;MF>?6$%V,-:$M$5=?E$?E;$JOO<;$ JMI$ EJX?E=LM$E=F?$LJ7;F$X>?E>M$?E;$>M?;LH;I>J?;$JMI$E>@E$ 2/$@L=GOF$=M$7EL=H=F=H ;$A$JMI$?E;$E>@E$2/$@L=GO$=M$7EL=H=F=H;$a$7=MF>F?;M?$X>?E$?E;$ L;FGJ?>=MF$5;?X;;M$I>JOJGF;$?;LH>MJ?>=M$ JMI$I>JOJGF;$>M?;MF>? 6$<= 7>$=M$7EL=H=F=H;F$A:$a:$JMI$D9$!E;$JFF=7>J?>=MF$5;?X;;M$I>JOJGF;$ >M?;MF>?6$ JMI$I>JOJGF;$?;LH>MJ?>=M$=M$7EL=H=F=H;F$A:$a:$JMI$D$X;L;$>M$?E;$FJH;$I>L;7?>=M$K=L$ 5=?E$E=F?$LJ7;F 9 $ 'M$7EL=H=F=H;F$A$JMI$D:$?E>F$7=LL;=M$XJF$O=F>?>N;$>MI>7J?>M@$JM$JFF=7>J?> =M$ 5 ;?X;;M$-/$JMI$JOJGF;$?;LH>MJ?>=M:$XE;L;JF$=M$7EL=H=F=H;$a$>?$XJF$M;@ J?>N;$O=>M?>M@$?=$ JM$JFF=7>J?>=M$5;?X;;M$-/$JMI$;JL<6$I>JOJGF;$?;LH>MJ?>=M9$!E;$JFF=7>J?>=M$=M$7EL=H=F=H;$A$>F$ ?E;$ FJH;$ JF$?E;$L;FG<;$?E;$JFF=7>J?>=M$=M$7EL =H=F =H;$a$>F$M=?9 $ !E;$@;M;?>7$JFF=7>J?>=MF$=M$*EL=H=F=H;$a$JL;$7=MF>F?;M?$X>?E$;YO;7?J?>=M$K=L$JOO<;$LJ7;$ K=LHJ?>=M$T;9@9$X;$;YO;7?$?=$F;;$J$@;M;?>7$JFF=7>J?>=M$5;?X;;M$-/$JMI$;JL<6$I>JOJGF;$ ?;LH>MJ?>=MU9$ +G? $ >?$>F$M=?$7<;JL$XE6$FG7E$JM$JFF=7>J?>=M$X=GM? J>M;I$>M$?E;$ EJX$LJ7;9$ ,F$I>F7GFF;I$;Y?;MF>N;<6$>M$7EJO?;L$C:$?E;$JFF=7>J?>=M$5;?X;;M$-/$JMI$JOJGF;$ ?;LH>MJ?>=M$TJMI$/),h&/$JMI$;JL<6$I>JOJGF;$?;LH>MJ?>=MU$=5F;LN;I$=M$7EL=H=F=H;$A $ JMI$a$>M$ ?EJ?$F?GI6 $ >F$J<>@M;I$X>?E$;YO;7?J?>=MF$K L=H$ <=M@$?;LH$@;=@ LJOE>7$F;<;7?>=M$X>?E>M$?E;$EJX?E=LM$ LJ7;9$ !EJ?$F?GI6$JI;I $ ;N>I;M7;$?EJ?$F?L=M@$F;<;7?>=M$K=L$I>JOJGF;$>M?;MF>?6$XJF$ iILJ@@>M@]$J<=M@$HJN;$NJL>J?>=M$>M$I>JOJGF;$?;LH>MJ?>=M$?EL=G@E$JM?J@=M>F?>7$O<;>=?L=O69$ !E;F;$L;FGMI>M@:$J?$<;JF?$K=L$7EL=H=F=H;$a9$#N>I;M7;$KL=H$ @;=@LJOE>7$NJL>J?>=M$JMI$E=F?$LJ7;$NJL>J?>=M$J<<$FG@@;F?$?EJ?$F;<;7?>=M$K=L$I>JOJGF;$?;LH>MJ?>=M$>F$ J7?GJ<<6$ILJ@@>M@$J<=M@$?E;$NJL>J?>=M$>M$I>JOJGF;$>M?;MF>?69$ ,$O=FF>5<;$;YO=M$> F$?E J?$>M?;L Z JMMGJ <$NJL>J?>=M$>M$KLG>?$JNJ><>?6$HJ6$F;<;7?$K=L$I>KK;L;M?$I>JOJGF;$?;LH>MJ?>=M$?>H;F$J7L=FF$ 6;JLF9$.=L$>MF?JM7;:$>M$F=H;$6;JLF$EJX$HJ6$KLG>?$;JL<>;L$?EJM$JN;LJ@;:$<;JI>M@$?=$>M7L;JF;I$K>?M;FF$

PAGE 75

$ ! ! bA ! K=L$;JL<6$I>JOJGF;$?;LH>MJ?>=M9$(=L;$<=M@>?GI >MJ< $ F?GI>;F$X=GM?;LJMMGJ<$NJL>J?>=M$>F$HJ>M?J>M>M@$?E>F$JFF=7>J?>=M$X>?E>M$?E;$EJX?E=LM$O=OG=M9$ $ 'GL$K>MJ<$PG;F?>=M:$XE>7E$>F$>M$F=H;$XJ6F$J$K=<<=X$GO$=M$PG;F?>=M$C:$JFW;I$XE;?E;L$?E;$ JFF=7>J?>=M$5;?X;;M$I>JOJGF;$?;LH> MJ?> =M$ JMI $ @;=@LJO E>7$NJL>J?>=M$X;L;$F>H>7$ F>?;F9$)M$=?E;L$X=LIF : $ > F $ ?E;$F>@M$=K$?E;$7=LL;=M$5;?X;;M$J<<;<;$KL;PG;M76$I>KK;L;M7;F$ >M$?E;$%LJM?:$()$I>JOJGF;$?;LH>MJ?>=M$%V,-$JMI$@;=@LJOE6$?E;$FJH;$JF$?E;$7=LL;=M$5;?X;;M$ J<<;<;$ K L;PG ;M76 $ I>KK;L;M7 ;F$>M$?E;$1L5JMJ:$)2$I>JOJGF;$?;LH>MJ?>=M$%V,-j$$V;$=5F;LN;I$ 7<;JL$ 7=LL;=MF$5;?X;;M$J<<;<;$KL;PG;M76$I>KK;L;M7;F$>M$I>JOJGF;$?;LH>MJ?>=M$JMI$J<<;<;$KL;PG;M76$ I>KK;L;M7;F$5;?X;;M$%LJM?$JMI$1L5JMJ$ =M$7EL=H=F=H;$ C:$A:$JMI$ a$ >M$?E;$EJX$LJ 7;$J MI$=M$ 7EL=H=F= H;$a$>M$?E;$JOO<;$LJ7; 9$ 8;F;JL7E$KL=H$*EJO?;L$C$JMI$ KL=H$ /=;<J?>=M$>M$ ?E;$FJH;$L;@>=M 9$ "=X;N;L:$?E;L;$X;L;$I>KK;L;M7;F$>M$?E;$F?L;M@?E$=K$?E;$ JFF=7>J?>=M$=M$7EL=H=F=H;$A$5;?X;;M$?E;$%LJM?:$() $ I>J OJGF;$?;LH>MJ?>=M Z @;=@LJOE6$ 7=HOJL>F=M$N;LFGF$?E;$1L5JMJ:$)2 $ I>JOJGF;$? ;LH>MJ?>=M Z @;=@LJOE6$7=HOJL>F=M:$J@J>M$FG@@;F?>M@$ ?EJ?$?E;$@;M=H>7$5JF>F$=K$I>JOJGF;$?;LH>MJ?>=M$>F$M=?$;M?>L;<6$7=MF;LN;I$J7L=FF$?E;$LJM@;9$$ $ 'N;LJ<<:$=GL$X=LW$>MI>7J?;F$?EJ? $ ?E; $ @ ;M=H >7$5JF>F$=K$F;JF=MJ<$JIJO?J?>=M$X>?E>M$ @;=@LJOE>7$<=7J?>=MF$>F$OJL?>J<< 6$7=MF;LN;I:$5G?$?EJ?$?E;L;$>F$JJ<$JH=GM?$=K$F;JF=MJ<$ NJL>J?>=M$?EJ?$JOO;JLF$GM>PG;<6$JIJO?;I$?=$;J7E$@;=@LJOE>7$<=7J?>=M9$ ,M$=N;LJL7E>M@$?L;MI$>F$?EJ? $ <=7>$L;F>I>M@$ >M$E >@E$2/$L;@>=MF$JOO;JL$?=$5;$H=L;$7<>MJ< $ ?EJM $ ?E=F;$H=L;$KL;;<6$L;7=H5>M >M@$ <=7> 9$!E;$E>@E$2/$L;@>=MF$X>?E>M$?E;$ !;+8292:4330+ @;M=H;$HJ6$L;F>I;$X>?E>M$7EL=H=F=HJ<$ >MN;LF>=MF$ T8J@F?;M?$7M@$=K$OG?J?>N;<6$JIJO?>N;$<=7>$>M$?E;$ E>@E$2/$L ;@>=M$X>?E>M$7EL=H=F=H;$a$<;MIF$FGOO=L?$?=$?E;$E6O=?E;F>F$?EJ?$L;@>=MF$X>?E$L;I G7;I $ L;7=H5>MJ?>=M$7JM$KJ7><>?J?;$LJO>I$JIJO?J?>=M$ T^>LWOJ?L>7W$_$+JL?=M:$ABBbe$V;<<;ML;G?E;L$_$ +;LMJ?7E;f:$ABCSU 9$.GL?E;LH =L;:$>?$EJF$5;;M$E6O=?E;F>f;I$?EJ?$>MN;LF>=MF$F;@L;@J?>M@$X>?E>M$ !;+

PAGE 76

$ ! ! ba ! 8292:4330+ J L;$? E;$L;FG;M?$>M?L=@L;FF>=M$;N;M?F$F?;HH>M@$KL=H$ F;7=MIJL6 $ 7=M?J7?$X>?E$ (;Y>7JM$EJX$K<6$O=OG=MF$ T.;I;L$ 45+03; :$ABBa5:$ABBDU 9$!EGF:$ E>@E$2/$<=7>$HJ6$L;OL;F; M?$ 7 ;M?$@;M;?>7$<=7>$ JFF=7>J? ;I $ X>?E$I>JOJGF;$JMI $ EJN;$5;;M$FEJO;I$56 $ ?E=GFJMIF$=K$ 6;JLF$=K$F;<;7?>=M9$ )M$<>M;$X>?E$?E>F$E6O=?E;F>F:$ ?E; $ <=7J<<6$JIJO?>N;$<=7> $ T<= 7>$F>@M>K>7JM?$J?$=M;$ <=7J?>=M:$5G?$M=?$=?E;LFU $ H>@E?$5; $ 6=GM@;L$JMI$HJ6$EJN;$K =LH; I$?E=G@E$?E;$F<=X$J77GHG=M$ =K$HG?J?>=MF$JF$>M?;LJMMGJ<$NJL>J?>=M$>M$F;<;7?>=M$OL;FFGL;F$J?$F>?;F$ KJN=L;I$M@$@;M;?>7$NJL>J?>=M $ X>?E>M$?E;$EJX$LJ7; 9 $ !E>F$>I;J$7JM$5;$?;F?;I$56$ 7=<<;7?>M@$ XE=<;$ @;M=H;$ F;PG;M7;$ IJ?J$KL=H$JM7;F?LJ <$(; Y>7JM$K< 6$O=OG=MF$JMI $ <==W >M@ $ K=L$L;@>=MF$=K$FEJL;I$ I>N;L@;M7;$X>?E$?E;$ 1M>?;I$-?J?;F $ JOO<;$JMI$EJX$ O=OG=MF9$,M6$-&0F$GM>PG;$?=$1M>?;I$-?J?;F$ O=OG=MF$JL;$ <>W;<6$L;N;<6$6=GM@ ;L 9$,MFX;L>M@$FG7E$J$PG;F?>=M$X><<$KGL?E;L$>MK=LH$?E;=L>;F$ ?EJ? $ FG@ @;F?$LJO>I$JIJO?J?>=M$>F$GFGJ<<6$?E;$L;FGf>M@$=K$JM7>;M?$JMI$H=L;$L;7;M?$ JIJO?>N;$NJL>J?>=M$>M$JM7;F?LJ<$O=OG=MF$ T(JLPG;F$ 45+03; :$ABCQU 9$ $ $ $ $ ' '

PAGE 77

$ ! ! bc ! ! ,+2#$ *=LL;=M$7=;KK>7>;M?F$=K$I>JOJGF;$>M?;MF>?6$NF9$I>JOJGF;$?;LH>MJ?>=M$ $ T*EJO?;L$A:$?J5<;$ C U $ $ADB<'1P' *=LL;=M $ 7=;KK>7>;M?F$TLU$=K$ -& 0$ J< <;<;$KL;PG;M76$ I>KK;L;M7;F $ 5;?X;;M $ ?E;$-/$ O==<$ 7=HOJL;I$ ?=$5JF;<>M;$O==< $ >M$?E;$I>JOJGF;$>M?;MF>?6$%V,$ N;LFGF$?E;$@;M;?>7$L;FO=MF;F$>M$?E;$ I>JOJGF;$?;LH>MJ?>=M$O==< Z F;P$ %V,-$T?E>M$5=?E$?E;$JOO<;$JMI$EJX?E=LM$ O=OG=MF$J?$%LJM?:$() 9$8;F GN;M$K=L$J<<$-&0F $ HJOO;I$X>?E>M$J$ABB$5O$=K $ ">@E:$ )M?;LH;I>J?;$T)M?9U:$JMI$2=X$2/$7M$8J@$>M$;J7E$@L=GO$>F$L;O=L?;I$>M$,OO;MI>Y$#9 $ $ $ 7EL$C$ $ $ $$ 7EL$A$ $ $ $$ 7EL$a$ $ $ $$ 7EL$c$ $ $$$$ $ $$ 7EL$D $ $ $ 7EL C Z D$ $ $ !G ' !HHB<'6A:< $ ' $ ' $ ' $ $ $ $ $ $$$$ ,<<$-&0F $ B9BQ $ ' B9Ac $ ' Z B9aS $ ' Z B9B B $ $ $ B9 CS $ $ Z B9BC $ $$$$ ">@E$2/ $ B9C A $ ' ' B9A S $ ' Z B9bA $ ' Z B9 BQ $ $ $ B9 aA $ $ B9 BB $ $$$$ )M?9 $ 2/ $ B9BQ $ ' B9AD $ ' Z B9aA $ ' Z B9Bc $ $ $ B9 CC $ $ B9 BB $ $$$$ 2=X$2/ $ B9 Bb $ ' $ B9CD $ ' Z B9Aa $ ' B9B a $ $ $ B9 CB $ $ Z B9BS $ "G'JAK'6A:<' ' $ ' $ ' $ ' $ $ $ $ $ $$$$ ,<<$-&0F $ B9B a $ ' B9A A $ ' Z B9 CQ $ ' B9B C $ $ $ Z B9CS $ $ B9CS $ $$$$ ">@E$2/ $ B9 B` $ ' ' B9A S $ ' Z B9 cC $ ' Z B9B D $ $ $ Z B9AS $ $ B9aA $ $$$$ )M?9 $ 2/ $ B9 BB $ ' B9A A $ ' Z B9 Cc $ ' B9B b $ $ $ Z B9CA $ $ B9CC $ $$$$ 2=X$2/ $ B9 B ` $ ' B9BQ $ ' Z B9 CA $ ' B9B B $ $ $ Z B9Ca $ $ B9CQ $ $ $ ' $ ' $ ' $ $ $ $ $ ! ! ! !

PAGE 78

$ ! ! bD ! ! *=LL;=M$7=;KK>7>;M?F $ =K$ I>JOJGF;$?;LH>MJ?>=M$J?$%LJM?:$()$NF9$@;=@LJOE6$T*EJO?;L$A:$!J5<;$ A U $ $ADB<'11P' *=LL;=M $ 7=;KK>7>;M?F$TLU$=K$ -&0$ J<<;<;$KL;PG;M76$ I>KK;L;M7;F $ 5;?X;;M $ ?E;$@;M;?>7$ L;FO=MF;F$>M$?E;$I>JOJGF;$?;LH>MJ?>=M$O==< Z F;P$%V,-$T?E>M$5=?E$?E;$JOO<;$JMI$EJX?E=LM$O=OG=MF$J?$%LJM?:$ ()9$8;FGN;M$K=L$J<<$-&0F$HJOO;I$X>?E>M$J$ABB$5O$=K$">@E:$)M?;LH;I>J?;$T)M?9U:$JMI$2=X$ 2/$7M$8J@$>M$;J7E$@L=GO$>F$L;O=L?;I$>M$ ,OO;MI>Y$#9 $ $ $ 7EL$C$ $ $ $$ 7EL$A$ $ $ $$ 7EL$a$ $ $ $$ 7EL$c$ $ $$$$ $ $$ 7EL$D $ $ $ 7ELC Z D$ $ $ !G ' !HHB<'6A:< $ ' $ ' $ ' $ $ $ $ $ $$$$ ,<<$-&0F $ B9B D $ ' B9 Cb $ ' B9Da $ ' B9BC $ $ $ B9C C $ $ B9A` $ $$$$ ">@E$2/ $ B9C A $ ' ' B9A A $ ' B9`c $ ' Z B9B c $ $ $ B9 CC $ $ B9 cb $ $$$$ )M ?9 $ 2 / $ B9B A $ ' B9 Cb $ ' B9cD $ ' B9BB $ $ $ B9CC $ $ B9 Aa $ $$$$ 2=X$2/ $ B9 B S $ ' $ B9 Bb $ ' B9aS $ ' B9B a $ $ $ B9 BQ $ $ B9CD $ "G'JAK'6A:<' ' $ ' $ ' $ ' $ $ $ $ $ $$$$ ,<<$-&0F $ B9 cb $ ' B9 ba $ ' B9c` $ ' B9BC $ $ $ B9Cb $ $ B9 cc $ $$$$ ">@E$2/ $ B9 DD $ ' ' B9 `C $ ' B9bb $ ' Z B9 AS $ $ $ B9AB $ $ B9 DA $ $$$$ )M?9 $ 2/ $ B9 cD $ ' B9 ba $ ' B9aS $ ' B9 C` $ $ $ B 9C` $ $ B9 cc $ $$$$ 2=X$2/ $ B9 aa $ ' B9 c` $ ' B9aQ $ ' B9B c $ $ $ B9BD $ $ B9 A` $ $ $ ' $ ' $ ' $ $ $ $ $ ! ! !

PAGE 79

$ ! ! bb ! ! *=LL;=M$7=;KK>7>;M?F$=K$I>JOJGF;$?;LH>MJ?>=M$J?$1L5JMJ:$)2$NF9$@;=@LJOE6$T*EJO?;L$A:$!J5<;$ a U $ $ADB<'111P' *=LL;=M $ 7=;KK>7>;M?F$TLU$=K$ -&0$ J<<;<;$KL;PG;M 76$ I >KK;L;M7;F $ 5;?X;;M $ ?E;$@;M;?>7$ L;FO=MF;F$>M$?E;$I>JOJGF;$ ?;LH>MJ?>=M$O==< Z F;P$%V,-$T?E>M$5=?E$?E;$JOO<;$JMI$EJX?E=LM$O=OG=MF$J?$%LJM?:$ ()9$8;FGN;M$K=L$J<<$-&0F$HJOO;I$X >?E> M$J$ABB$5O$=K$">@E:$)M?;LH;I>J?;$T)M?9U:$JMI$2=X$ 2/$7M$8J@$>M$;J7E$@L=GO$>F$L;O=L?;I$>M$ ,OO;MI>Y$#9 $ $ $ 7EL$C$ $ $ $$ 7EL$A$ $ $ $$ 7EL$a$ $ $ $$ 7EL$c$ $ $$$$ $ $$ 7EL$D $ $ $ 7ELC Z D$ $ $ !G ' !HHB<'6A:< $ ' $ ' $ ' $ $ $ $ $ $$$$ ,<<$ -&0F $ B9 AD $ ' Z B9BD $ ' B9Db $ ' B9Ba $ $ $ B9Cc $ $ B9aA $ $$$$ ">@E$2/ $ B9 aa $ ' ' Z B9Bb $ ' B9`c $ ' B9BS $ $ $ B9CQ $ $ B9DA $ $$$$ )M?9 $ 2/ $ B9 AA $ ' Z B9Ba $ ' B9cQ $ ' Z B9BA $ $ $ B9CC $ $ B9AS $ $$$$ 2=X$2/ $ B9 CS $ ' $ Z B9CC $ ' B9ca $ ' B9Bc $ $ $ B9Bb $ $ B9CS $ "G'JAK'6A:<' ' $ ' $ ' $ ' $ $ $ $ $ $$$$ ,<<$-&0F $ B9 ba $ ' B9 C` $ ' B9DB $ ' B 9BB $ $ $ B9BQ $ $ B9cB $ $$$$ ">@E$2/ $ B9 `D $ ' ' B9 A` $ ' B9bS $ ' Z B9BA $ $ $ B9CC $ $ B9bC $ $$$$ )M?9 $ 2/ $ B9 DQ $ ' B9CD $ ' B9cC $ ' B9BD $ $ $ B9BS $ $ B9ab $ $$$$ 2=X$2/ $ B9 DB $ ' B9BS $ ' B9cb $ ' Z B9BC $ $ $ B9Ba $ $ B9Ab $ ! $ $ $

PAGE 80

$ ! ! b` ! $ *=LL;=M$7=;KK>7>;M?F$=K$I>JOJGF;$>M?;MF>?6$NF9$@;=@LJOE6$ T*EJO?;L$A:$!J5<;$ c U $ $ADB<'1 V P' *=LL;=M $ 7=;KK>7>;M?F$TLU$=K$ -&0$ J<<;<;$KL;PG;M76$ I>KK;L;M7;F $ 5;?X;;M $ ?E;$@;M;?>7$ L;FO=MF;F$>M$?E;$I>JOJGF;$ >M?;MF>?6$O==< Z F;P$%V,-$T+JF;$ m $ -/U $ N;LFGF$@;=@LJOE6$T%LJM?:$()$ m $ 1L5JMJ:$)2U$X>?E>M$5=?E$?E;$JOO<;$JMI$EJX?E=LM$O=O G=MF$J?$ 1L5JMJ:$)2 9$8;FGN;M$K=L$ J<<$-&0F$HJOO;I$X>?E>M$J$ABB$5O$=K$">@E:$)M?;LH;I>J?;$T)M?9U:$JMI$2=X$2/$7M$ 8J@$>M$;J7E$@L=GO$>F$L;O=L?;I$>M$,OO;MI>Y$#9 $ $ $ 7EL$C$ $ $ $$ 7EL$A$ $ $ $$ 7EL$a$ $ $ $$ 7E L$c$ $ $$$$ $ $$ 7EL$D $ $ $ 7ELC Z D$ $ $ !G ' !HHB<'6A:< $ ' $ ' $ ' $ $ $ $ $ $$$$ ,<<$-&0F $ B9 AD $ ' B9Bc $ ' Z B9ab $ ' B9B ` $ $ B9 BQ $ $ Z B9BA $ $$$$ ">@E$2/ $ B9 aa $ ' B9BB $ ' Z B9bB $ ' B9B b $ $ B9C c $ $ Z B9BD $ $$$$ )M?9 $ 2/ $ B9 AA $ ' B9Bb $ ' Z B9AQ $ ' B9 CA $ $ B9 BD $ $ Z B9BC $ $$$$ 2=X$2/ $ B9 AC $ ' Z B9 Ba $ ' Z B9Ac $ ' B9Bc $ $ B9B D $ $ Z B9 BB $ "G'JAK'6A:<' ' $ ' $ ' $ ' $ $ $ $ $ $$$$ ,<<$-&0F $ B 9Ca $ ' B9aD $ ' Z B9aB $ ' B 9Ba $ $ Z B9CC $ $ B9 BC $ $$$$ ">@E$2/ $ B9 CS $ ' ' B9 cc $ ' Z B9DA $ ' B9CB $ $ $ Z B9CS $ $ Z B9C` $ $$$$ )M?9 $ 2/ $ B9 CA $ ' B9 aD $ ' Z B9Ab $ ' B 9Bc $ $ $ Z B9BS $ $ B9BD $ $$$$ 2=X$2/ $ B9 BS $ ' B9 CS $ ' Z B9AB $ ' B9BA $ $ $ Z B9Bb $ $ Z B9BA $ ! ! ! ! ! !

PAGE 81

$ ! ! bS ! *=LL;=M$7=; KK>7 >;M?F$=K$I>JOJGF;$?;LH>MJ?>=M$NF9$E=F?$LJ7;$I>KK;L;M7;F$J?$%LJM?:$()$T*EJO?;L$ A:$!J5<;$ D U ' $ADB<'VP' *=LL;=M $ 7=;KK>7>;M?F$TLU$=K$ -&0$ J<<;<;$KL;PG;M76$ I>KK;L;M7;F $ 5;?X;;M $ ?E;$@;M;?>7$ L;FO=MF;F$>M$?E;$ I>JOJGF;$?;LH>MJ?>=M$O==< Z F;P$ %V,$ T;JL<6$ m $ KK;L;M?>J?>=M$TJOO<;$ Z $ EJXU$J?$%LJM?:$()9$8;FGN;M$K=L$J<<$-&0F$HJOO;I$ X>?E>M$J$ABB$5O$=K$">@E:$)M?;LH;I>J?;$T)M?9U:$JMI$2=X$2/$7M$8J@$>M$;J7E$@L=GO$>F$L;O=L?;I$>M$,OO;MI>Y$#9 $ $ $ 7EL$C$ $ $ $$ 7EL$A$ $ $ $$ 7EL$a$ $ $ $$ 7EL$c$ $ $$$$ $ $$ 7EL$D $ $ $ 7ELC Z D$ $ $ !G ' !HHB<'6A:< $ ' $ ' $ ' $ $ $ $ $ $$$$ ,<<$-&0F $ Z B9CC $ ' Z B9cQ $ ' Z B9 CB $ ' Z B9B C $ $ Z B9Bb $ $ Z B9 CQ $ $$$$ ">@E$2/ $ Z B9Ba $ ' Z B9DC $ ' Z B9 CQ $ ' B9B A $ $ Z B9CC $ $ Z B9 CA $ $$$$ )M?9 $ 2/ $ Z B9C c $ ' Z B9cQ $ ' Z B9 BQ $ ' Z B9Bb $ $ Z B9BA $ $ Z B9 AC $ $$$$ 2=X$2/ $ Z B9CA $ ' Z B9 ca $ ' Z B9 Bc $ ' B9B A $ $ Z B9B` $ $ Z B9 CB $ "G'JAK'6A:<' ' $ ' $ ' $ ' $ $ $ $ $ $$$$ ,<<$-&0F $ Z B9cD $ ' Z B9ba $ ' Z B9B` $ ' Z B9Ba $ $ Z B9BS $ $ Z B9ac $ $$$$ ">@E$2/ $ Z B9DD $ ' ' Z B9bQ $ ' Z B9BS $ ' B9 CS $ $ $ Z B9Cc $ $ Z B9aC $ $$$$ )M?9 $ 2/ $ Z B9ca $ ' Z B9ba $ ' Z B9BS $ ' Z B9Bc $ $ $ Z B9BD $ $ Z B9ab $ $$$$ 2=X$2/ $ Z B9aB $ ' Z B9cS $ ' Z B9BA $ ' Z B9BD $ $ $ Z B9BD $ $ Z B9CS $ ! $ $

PAGE 82

$ ! ! bQ ! *=LL;=M$7=;KK>7>;M?F$=K$I>JOJGF;$?;LH>MJ?>=M$NF9$E=F?$LJ7;$I>KK;L;M?>J?>=M$J?$1L5JMJ:$)2$ T*EJO?;L$A:$!J5<;$ b U ' $ADB<'V1P' *=LL;=M $ 7=;KK>7>;M?F$T LU$= K$ -&0$ J<<;<;$KL;PG;M76$ I>KK;L;M7;F $ 5;?X;;M $ ?E;$@;M;?>7$ L;FO=MF;F$>M$?E;$ I>JOJGF;$?;LH>MJ?>=M$O==< Z F;P$%V,-$T;JL<6$ m $ KK;L;M?>J?>=M$TJOO<;$ Z $ EJXU$J?$1L5JMJ:$)29$8;FGN;M$K=L$J<<$-&0F$HJOO;I$ X>?E>M$J$A BB$5 O$=K$">@E:$)M?;LH;I>J?;$T)M?9U:$JMI$2=X$2/$7M$8J@$>M$;J7E$@L=GO$>F$L;O=L?;I$>M$,OO;MI>Y$#9 $ $ $ 7EL$C$ $ $ $$ 7EL$A$ $ $ $$ 7EL$a$ $ $ $$ 7EL$c$ $ $$$$ $ $$ 7EL$D $ $ $ 7ELC Z D$ $ $ !G ' !HHB<'6A:< $ ' $ ' $ ' $ $ $ $ $ $$$$ ,<<$-&0F $ Z B9C c $ ' B9CC $ ' B9B` $ ' B9BA $ $ Z B9B ` $ $ Z B9 BC $ $$$$ ">@E$2/ $ Z B9 CQ $ ' B9CC $ ' B9CB $ ' Z B9BD $ $ Z B9 B` $ $ Z B9 BD $ $$$$ )M?9 $ 2/ $ Z B9Cc $ ' Z B9Ca $ ' B9Bc $ ' B9Ba $ $ Z B9B D $ $ Z B9 BC $ $$$$ 2=X$2/ $ Z B9 BS $ ' B9BA $ ' B9CC $ ' B9BA $ $ Z B9B Q $ $ B9BB $ "G'JAK'6A:<' ' $ ' $ ' $ ' $ $ $ $ $ $$$$ ,<<$-&0F $ Z B9 Ca $ ' Z B9 BB $ ' B9BQ $ ' B9BC $ $ Z B9B D $ $ Z B9BA $ $$$$ ">@E$2/ $ Z B9 C` $ ' ' Z B9 BA $ ' B9CA $ ' Z B9Cc $ $ $ Z B9 B` $ $ Z B9 Bb $ $$$$ )M?9 $ 2/ $ Z B9 CA $ ' Z B9 BA $ ' B9BS $ ' B9BS $ $ $ Z B9BD $ $ Z B9 BA $ $$$$ 2=X$2/ $ Z B9 BS $ ' Z B9 Ba $ ' B9B` $ ' Z B9B B $ $ $ Z B9B B $ $ Z B9 B b $ ! ' '

PAGE 83

$ ! ! `B ! *=LL;=M$7=;KK>7>;M?F$=K$I>JOJGF;$>M?;MF>?6$NF9$E=F?$LJ7;$I>KK;L;M?>J?>=M$T *EJO ?;L$A:$!J5<;$ ` U ' $ADB<'V11P' *=LL;=M $ 7=;KK>7>;M?F$TLU$=K$ -&0$ J<<;<;$KL;PG;M76$ I>KK;L;M7;F $ 5;?X;;M $ ?E;$@;M;?>7$ L;FO=MF;F$>M$?E;$I>JOJGF;$ >M?;MF>?6$O==< Z F;P$%V,-$T+JF;$ Z $ -/U$K=L$5=?E$E=F?$LJ7;F$N;LFGF$E=F?$ LJ7;$I>KK;L;M?>J?>=M$TJOO <;$ Z $ EJXU$J?$1L5JMJ:$)29$8;FGN;M$K=L$J<<$-&0F$HJOO;I$X>?E>M$J$ ABB$5O$=K$">@E:$)M?;LH;I>J?;$T)M?9U:$JMI$2=X$2/$7M$8J@$>M$;J7E$@L=GO$>F$L;O=L?;I$>M$,OO;MI>Y$#9 $ $ $ 7EL$C$ $ $ $$ 7EL$A$ $ $ $$ 7EL$a$ $ $ $$ 7 EL$c$ $ $$$$ $ $$ 7EL$D $ $ $ 7ELC Z D$ $ $ !G ' !HHB<'6A:< $ ' $ ' $ ' $ $ $ $ $ $$$$ ,<<$-&0F $ Z B9DS $ ' Z B9aa $ ' B9B` $ ' Z B9Bb $ $ Z B9BD $ $ Z B9AS $ $$$$ ">@E$2/ $ Z B9cc $ ' ' Z B9cA $ ' B9Ca $ ' Z B9BD $ $ $ Z B9Cb $ $ Z B9cc $ $$$$ )M?9 $ 2/ $ Z B9Ab $ ' Z B9aA $ ' B9B` $ ' Z B9BQ $ $ $ B9BA $ $ Z B9Ab $ $$$$ 2=X$2/ $ Z B9C` $ ' Z B9Ab $ ' B9Bc $ ' Z B9 Ba $ $ $ Z B9Bb $ $ Z B9C` $ "G'JAK'6A:<' ' $ ' $ ' $ ' $ $ $ $ $ $$$$ ,<<$-&0F $ Z B9BQ $ ' Z B9aC $ ' B9Bb $ ' Z B9BA $ $ B9BD $ $ Z B9BQ $ $$$$ ">@E$2/ $ Z B9Cb $ ' ' Z B9aQ $ ' B9CC $ ' Z B9BQ $ $ $ B9Cc $ $ Z B9BA $ $$$$ )M?9 $ 2/ $ Z B9CC $ ' Z B9aC $ ' B9Bc $ ' Z B9BA $ $ $ B9BC $ $ Z B9CC $ $$$$ 2=X$2/ $ Z B9BA $ ' Z B9Cb $ ' B9Bb $ ' Z B9BB $ $ $ B9Bc $ $ Z B9BA $ ! !

PAGE 84

$ ! ! `C ! . ) %18#$ ! ' $ #ML>7EH;M?$=K$<=7>$F>@M>K>7JM?<6$JFF=7>J?;I$X>?E$I>JOJGF;$>M?;MF>?6$T*EJO?;L$A:.>@GL;$ C U ' 2;M96<'N R$ #ML>7EH;M?$ =K$<=7>$F>@M>K>7JM?<6$JFF=7>J?;I$T./8$o$B9BDU$X>?E$ I>JOJGF;$>M?;MF>?6$>M$?E;$ ,U$EJX$LJ7;$JMI$+U$JOO<;$LJ7;$JMI$I >JOJ GF;$?;LH>M J?>=M$>M$?E;$*U$EJX$LJ7;$JMI$/U$JOO<;$LJ7;$ JMI$?E;$%LJM?:$()$F6HOJ?L>7$ F>?; 9 $ !E>F$JMJ<6F>F$XJF$O;LK=LH;I$ J7L=FF$7EL=H=F=H;F$JMI$2/$ @L=GOF $ T2/2$k$<=X$2/$@L=GOF:$2/($k$>M?;LH;I>J?;I$2/$@L=GO:$JMI$2/"$k$E>@E$2/$@L=GOF 9$ 8;I$5JLF$L;OL;F;M?$MGH5;L$ =K$< =7>$F>@M>K >7JM?<6$JFF=7>J?;I$X>?E$OE;M=?6O;$=5F;LN;I$>M$?E;$ IJ?JF;?$JMI$5MI>7J?;$?E;$;YO;7?;I$MGH5;L$=K$F>@M>K>7JM?$<=7>$@>N;M$?E;$ OL=O=L?>=M $ =K$J<<$ NJL>JM?F$?EJ?$;Y>F?$X>?E>M$ J$@>N;M $ 2/$JMI$7EL=H=F=H;$@L=GO9 $ $

PAGE 85

$ ! ! `A ! ! ! ! #ML>7EH;M?$=K$<=7>$F>@M>K>7J M?<6 $ JFF=7>J?;I$X>?E$I>JOJGF;$?;LH>MJ?>=M$J?$1L5JMJ:$)2$T*EJO?;L$A:$ .>@GL;$ A U $ 2;M96<'OP' #ML>7EH;M?$ =K$<=7>$F>@M>K>7JM?<6$JFF=7>J?;I$T./8$o$B9BDU$X>?E$I>JOJGF;$ ?;LH>MJ?>=M $ >M$ ?E;$,U$EJX$LJ7;$JMI$+U$JOO<;$LJ7;$ J ?$?E; $ 1L5JMJ:$)2 $ F6HOJ?L>7$ F>?; 9$!E>F$JMJ<6F>F$XJF$O;LK=LH;I$ J7L=FF$7EL=H=F=H;F$JMI$2/$@L=GOF$T2/2$k$<=X$2/$@L=GOF:$2/($k$>M?;LH;I>J?;I$2/$@L=GO:$ JMI$2/"$k$E>@E$2/$@L=GOF U 9$8;I$5JLF$L;OL;F;M?$MGH5;L$=K$<=7>$F>@M>K>7JM?<6$JFF=7>J?;I$X>?E$ OE;M=?6O;$=5F;LN;I$>M$?E;$IJ?JF;?$JMI$5M I>7J?;$?E;$;YO;7?;I$MGH5;L$=K$F>@M>K>7JM?$<=7>$ @>N;M$?E;$OL=O=L?>=M$=K$J<<$NJL>JM?F$?EJ?$;Y>F?$X>?E>M$J$@>N;M$2/$JMI$7EL=H=F=H;$@L=GO9$ $ $ $ $

PAGE 86

$ ! ! `a ! $ ! ':=6@/94:5+2<+32@6+761:6<6@0:53B+0772@6054A+M65/+I25/+A6080F74+6:54:765B+0:A+A6080F74+ 54=96:0562:+QO/0854=YP+H 61F= 4+ [ R + 2;M96<'Q P $ #ML>7EH;M? $ =K$<=7>$F>@M>K>7JM?<6$JFF=7>J?;I$T./8$o$B9BDU$X>?E$5=?E$I>JOJGF;$>M?;MF>?6$ JMI$I>JOJGF;$?;LH>MJ?>=M$>M$?E;$,U$EJX$LJ7;$JMI$+U$JOO<;$LJ7;$J?$?E;$%LJM?:$()$F6HOJ?L>7$F>?;9$ !E>F$JMJ<6F>F$XJF$O;LK=LH;I$J7L=FF$7 EL=H =F=H;F$JMI$2/$@L=GOF$T2/2$k$<=X$2/$@L=GOF:$2/( $ k$>M?;LH;I>J?;I$2/$@L=GO:$JMI$2/"$k$E>@E$2/$@L=GOFU9$8;I$5JLF$L;OL;F;M?$MGH5;L$=K$<=7>$ F>@M>K>7JM?<6$JFF=7>J?;I$X>?E$OE;M=?6O;$=5F;LN;I$>M$?E;$IJ?JF;?$JMI$5MI>7J?;$?E;$ ;YO;7?;I$MGH5;L$=K$F>@M>K>7 JM?$ <=7>$@>N;M$?E;$OL=O=L?>=M$=K$J<<$NJL>JM?F$?EJ? $ ;Y>F?$X>?E>M$J$@>N;M$ 2/$JMI$7EL=H=F=H;$@L=GO9$ $ $ $ $ $

PAGE 87

$ ! ! `c ! $ #ML>7EH;M?$=K$<=7>$X>?E$J<<;<>7$JFF=7>J?>=M$>M$5=?E$I>JOJGF;$?;LH>MJ?>=M$JMI$E=F?$LJ7;$J?$%LJM?:$ ()$T*EJO?;LA:$.>@GL;$ c U ' 2;M96<'R R ! # ML>7 EH;M?$ =K$<=7> $ J7L=FF$7EL=H=F=H;F $ F>@M>K>7JM?<6$JFF=7>J?;I$T./8$o$B9BDU$X>?E$ 5=?E$ I>JOJGF;$?;LH>MJ?>=M$ JMI$E=F?$LJ7;$I>KK;L;M7;F$J?$%LJM?:$()9$ !E;$<>F?$=K$F>@M>K>7JM?$<=7>$XJF$ KGL?E;L $ I>N>I;I$56$OE;M=?6O;$JMI$E=F?$LJ7;$JFF=7>J?>=MFR$,U$"JX$ m $ JOJG F;$? ;LH>MJ?>=M$+U $ "JX$ m $ ;JL<6$I>JOJGF;$?;LH>MJ?>=M$*U$,OO<;$ m $ ;JL<6$I>JOJGF;$?;LH>MJ?>=M$/U$,OO<;$ m $
PAGE 88

$ ! ! `D ! I>JOJGF;$?;LH>MJ?>=M9$ 0JM;FO7EH;M?$=K$<=7>$X>?E$J<<;<>7$JFF=7>J?>=MF$>M$ ?E;$;YO;7?;I$=L>;M?J?>=M$@>N;M$;H;L@;M7;$OE;M=?6O;F$=5 F;LN ;I$>M$?E;$K>; FO7EH;M?$=K$<=7>$X>?E$J<<;<>7$JFF=7>J?>=MF$>M$?E;$=OO=F>?;$=L>;M?J?>=M$@>N;M$ ;H;L@;M7;$OE;M=?6O;F$=5F;LN;I$>M$?E;$K>;
PAGE 89

$ ! ! `b ! $ ! #ML>7EH;M?$=K$<=7>$X>?E$J<<;<>7$JFF=7>J?>=M$>M$5=?E$I>JOJGF;$?;LH>MJ?>=M$JMI$E=F ?$LJ 7;$J?$%LJM?:$ ()$T*EJO?;LA:$.>@GL;$ D U ' 2;M96<'S R ! #ML>7EH;M?$ =K$<=7>$J7L=FF$7EL=H=F=H;F$F>@M>K>7JM?<6$JFF=7>J?;I$T./8$o$B9BDU$X>?E$ I>JOJGF;$?;LH>MJ?>=M$JMI$E=F?$LJ7;$I>KK;L;M7;F$J?$1L5JMJ:$)29$-;?F$JL;$I>N>I;I$56$OE;M=?6O;$JMI$ E=F?$LJ7 ;$JF F=7>J?>=MFR$,U$"JX$ m $ JOJGF;$?;LH>MJ?>=M$+U$"JX$ m $ ;JL<6$I>JOJGF;$?;LH>MJ ?>=M$

PAGE 90

$ ! ! `` ! *U$,OO<;$ m $ ;JL<6$I>JOJGF;$?;LH>MJ?>=M$/U$,OO<;$ m $ JOJGF;$?;LH>MJ?>=M9$ 0JM;FO7EH;M?$=K$<=7>$X>?E$J<<;<>7$JFF=7>J?>=MF$>M$?E;$;YO;7?;I$=L>;M ?J?> =M$@>N;M$ ;H;L@;M7;$OE;M=?6O;F$=5F;LN;I$>M$?E;$K>;FO7EH;M?$=K$<=7>$X>?E$ J<<;<>7$JFF=7>J?>=MF$>M$?E;$=OO=F>?;$=L>;M?J?>=M$@>N;M$;H;L@;M7;$OE;M=?6O;F$=5F;LN;I$>M$?E;$K>;
PAGE 91

$ ! ! `S ! $ $ ! 8;=MFE>O$5;?X;;M$I>JOJGF;$>M?;MF>?6$JMI $ I>J OJGF;$?;LH>MJ?>=M$T*EJO?;L$A:$.>@GL;$ b U $ 2;M96<'T R$8;=MFE>OF$5;?X;;M$?E;$F?L;M@?E$=K$@;M;?>7$JFF=7>J?>=MF$5;?X;;M$I>JOJGF;$>M?;MF>?6$ T+JF;$ m $ -/U$NF9$I>JOJGF;$?;LH>MJ?>=M$>M$?E;$JOO<;$LJ7;$TJ Z 7U$JMI$EJX$LJ7;$TI Z KU9$ *=LL;=MF$ 7= ;KK> 7>;M?F$JL;$L;O=L?;I$>M$!J5<;$)9$ 2>@E?$@L;6$I=?F$L;OL;F;M? $ J<<$ SC:SaD $ @;M=?6O;I$-&0F$ XE><;$ 'LJM@;$I=?F$JL;$<=X$2/$<=7>:$L;I$I=?F$JL;$>M?;LH;I>J?;$2/$<=7>:$JMI$OGLO<;$I=?F$JL;$E>@E$2/$<=7> $ =M$7EL=H=F=H;$C$TC F? $ 7=
PAGE 92

$ ! ! `Q ! $ ! ! 8;=MFE>O$5;?X;;M$I>JOJGF;$?;LH>MJ?>=M$JMI$@;=@LJOE6$T*EJO?;L$A:$.>@GL;$ ` U $ 2;M96<'U R $ 8;=MFE>OF$5;?X;;M$?E;$F?L;M@?E$=K$@;M;?>7$JFF=7>J?>=MF$5;?X;;M$I>JOJGF;$ ?;LH>MJ?>=M$T;JL<6 Z M$?E;$JOO<;$LJ7;$T I Z K :$ [ Z < U$JMI$EJX$LJ7;$T J Z 7 :$ @ Z > U9$ *=LL;=MF$7=;KK>7>;M?F$K=L$?E;$IJ?J$

PAGE 93

$ ! ! SB ! KL=H$%LJM?:$()$ JMI$1L5JMJ:$)2$>F$OL;F;M?;I$>M$!J5<;F$))$JMI$))):$L;FO;7?>N;<6 9$ 2>@ E?$@ L;6$I =?F$ L;OL;F;M? $ J<<$ SC:SaD $ @;M=?6O;I$-&0F$ XE><;$ 'LJM@;$I=?F$JL;$<=X$2/$<=7>:$L;I$I=?F$JL;$ >M?;LH;I>J?;$2/$<=7>:$JMI$OGLO<;$I=?F$JL;$E>@E$2/$<=7> $ =M$7EL=H=F=H;$C$TC F? $ 7= :$ < U 9 $ $ ! !

PAGE 94

$ ! ! SC ! ! ! 8;=MFE>O$5;?X;;M$ I>JOJGF;$>M?;MF>?6$JMI$@;=@LJOE6$ T*EJO?;L$A:$.>@GL;$ S U $ 2;M96<'W R$8;=MFE>OF$5;?X;;M$?E;$F?L;M@?E$=K$@;M;?>7$JFF=7>J?>=MF$5;?X;;M$I>JOJGF;$>M?;MF>?6$ T+JF;$ m $ -/U$NF9$ @;=@LJOE6$T%LJM?$ m $ 1L5 JMJU $ >M$?E;$JOO<;$LJ7;$TJ Z 7U$JMI$EJX$LJ7;$TI Z KU9$ *=LL;=M$7=;KK>7>;M?F$JL;$L;O=L?;I$>M$!J5<;$)39$ 2>@E?$@L;6$I=?F$L;OL;F;M? $ J<<$ SC:SaD $ @;M=?6O;I$ -&0F$ XE><;$ 'LJM@;$I=?F$JL;$<=X$2/$<=7>:$L;I$I=?F$JL;$>M?;LH;I>J?;$2/$<=7>:$JMI$OGLO<;$I=?F$JL;$ E>@E$2/$<=7> $ = M$7E L=H=F=H;$C$TC F? $ 7=
PAGE 95

$ ! ! SA ! ! 8;=MFE>O$5;?X;;M$I>JOJGF;$OE;M=?6O;F$JMI$E=F?$LJ7;$I>KK;L;M7;F$J?$%LJM?:$()$T*EJO?;LA:$ .>@GL;$ Q U $ 2;M96<'X R$8;=MFE>OF$5 ;?X; ;M$?E;$F?L;M@?E$=K$@;M;?>7$JFF=7>J?>=MF$5;?X;;M$I>JOJGF;$ ?;LH>MJ?>=M$T;JL<6 Z JOJGF;$>M?;MF>?6$TE Z HU$NF9$ E=F?$LJ7;$I>KK;L;M7;F$T,OO<;$ m $ "JXU $ >M$?E;$JOO<;$LJ7;$T I Z K :$ [ Z < U$JMI$EJX$LJ7;$TI Z K:$W Z HU9$ *=LL;=M$ 7=;KK>7>;M?F $ K=L$ ?E;$

PAGE 96

$ ! ! Sa ! 7=HOJL>F =M $ 5 ;?X;;M$ E=F?$LJ7;$JMI$I>JOJGF;$>M?;MF>?6$JMI$?E;$7=HOJL>F=M$5;?X;;M$E=F?$LJ7;$JMI$ I>JOJGF;$?;LH>MJ?>=M$JL;$L;O=L?;I$>M$!J5<;F$3$JMI$3):$L;FO;7?>N;<6 9$ 2>@E?$@L;6$I=?F$L;OL;F;M? $ J<<$ SC:SaD $ @;M=?6O;I$-&0F$ XE><;$ 'LJM@;$I=?F$JL;$<=X$2/$<=7>: $ L;I$I=?F$JL;$>M? ;LH; I>J?;$2/$<=7>:$ JMI$OGLO<;$I=?F$JL;$E>@E$2/$<=7> $ =M$7EL=H=F=H;$C$TC F? $ 7=
PAGE 97

$ ! ! Sc ! $ ! ! 8;=MFE>O$5;?X;;M$I>JOJGF;$?;LH>MJ?>=M$JMI$E=F?$LJ7;$ I>KK;L;M7;F$J?$1L 5JMJ :$)2$T*EJO?;L$A:$ .>@GL;$ CB U $ 2;M96<'NY R$8;=MFE>OF$5;?X;;M$?E;$F?L;M@?E$=K$@;M;?>7$JFF=7>J?>=MF$5;?X;;M$I>JOJGF;$ ?;LH>MJ?>=M$ T ;JL<6$ Z $ M$?E;$JOO<;$LJ7;$TJ Z 7U$JMI$EJX$LJ7;$TI Z KU $ NF9$E=F?$LJ7;$I>KK;L;M7;F$ T,OO<;$ m $ "JXU$J?$1L5J MJ:$ )2 9$ *=LL;=M$ 7=;KK>7>;M?F $ K=L$?E;F;$7=HOJL>F=MF$JL;$L;O=L?;I$>M$?J5<;$ 3))9$ 2>@E?$@L;6$I=?F$L;OL;F;M? $ J<<$ SC:SaD $ @;M=?6O;I$-&0F$ XE><;$ 'LJM@;$I=?F$JL;$<=X$2/$<=7>:$L;I$ I=?F$JL;$>M?;LH;I>J?;$2/$<=7>:$JMI$ OGLO<;$I=?F$JL;$E>@E$2/$<=7> $ =M$7EL=H=F=H;$C$TC F ? $ 7=
PAGE 98

$ ! ! SD ! 8 #.#8#&*#$ $ ,IL>=M:$\989:$"JEM:$(9V9$_$*==O;L:$+9-9$ABCD9$8;N>F>?>M@$77$7<>M;F$>M$/L =F=O E>M$?E;$J@;$=K$@;M=H>7F9$ (=4:A7+6:+$4:456@7 $ QN R$cac m ccc9 $ ,6JF:$)9:$*=F?JM?>M>:$*9:$ 45+03; $ ABCS9$,FF=7>J?>=M$ HJOO>M@$I;F>77J?>=M$L;F>F?JM7;$X>?E>M$7EL=H=F=HJ<$>MN;LF>=MF$>M$?E;$,KL>7JM$HJ J$ N;7?=L$,M=OE;<;F$@JH5>J;9$ -234@F30=+'@2321B $ Y 9 $ +JLL;??:$89$_$-7E=M$KL=H$F ?JMI>M@$@;M;?>7$NJL>J?>=M9$ (=4:A7+6:+'@2321B+ \+'K23F562: $ OQ R$aS m cc9 $ +JLL;??:$89/9"9:$2JGL;M?:$-9:$(J<M=:$89:$0K;>K;L:$-909:$dG:$*9*949:$.=<<:$(9:$ 45+ 03; $ ABCQ9$ 2>MW>M@$J$HG?J?>=M$?=$FGLN>NJ<$>M$X>7;9$ *@64:@4 $ QTQ R$cQQ m DBc9 $ +JLL;??:$89/9"9:$8=@;LF:$9(9$_$-7E=M$=M$J$(J[=L$,LH=L$%;M;$>M$ !EL;;FO>M;$-?>7W<;5J7W9$ *@64:@4 $ QOO R$ADD m AD`9 $ +;L@:$\9\9$_$*==O:$%9$ABCc9$,$0=OG= M$%; M;?>7$->@MJ<$=K$0=<6@;M>7$,IJO?J?>=M9$ ,&%*+ $4:456@7 $ NY R$;CBBccCA9 $ +;L@;M:$^989:$-7EH>I?:$09-9$_$0;?L=N:$/9,9$ABCc9$%;M=H>7$ #N>I;M7;$=K$8JO>I$JMI$-?J5<;$,IJO?>N;$'F7><=MF$=N;L$-;JF=MJ<$!>H;$-7J<;F$>M$ /L=F=OE>I?:$09$_$0;?L=N:$/9$ABCb9$-;7=MIJ L6$7=M?J7?$JMI$ <=7J<$JIJO?J?>=M$7=M?L>5G?;$?=$@;M=H; Z X>I;$OJ??;LMF$=K$7<>MJ<$NJL>J?>=M$>M$/L=F=OE>;LM ;:$& 9:$V;<7E:$\9:$2=>L;:$#9:$+=ME=HH;:$.9$_$/JN>I:$09$ABCC9$!E;$7=GO<>M@$E6O=?E;F>FR$XE6$ @;M=H;$F7JMF$H J6$KJ><$?=$HJO$<=7J<$JIJO?J?>=M$@;M;FR$!"#$*'102)&%$"40'!"#-)-9$ -234@F30=+'@2321B $ OY R$ABcc m AB`A9 $ +=<@;L:$,9(9:$2=EF;:$(9$_$1FJI;<:$+9$ABCc9$!L>HH=HJ?>7R$ J$K< ;Y>5<;$?L>HH;L$K=L$)<MJ$ F;PG;M7;$IJ?J9$ L626:<2=9056@7 $ QY R$ACCc m ACAB9 $ +=L7E;L?:$89:$*J<<;:$v9:$-?LJE<;L:$,9"9:$+J;L?F7E>:$,9:$(J@><<:$89#9:$+L=JIE;JI:$\9-9:$ 45+03; $ ABCD9$ )MF==M$JMI$OE=?=O;L>=I>7$7=M?L=<$=K$?L;;$I;N;<=OH;M?$M;JL$?E;$;PGJ?=L9$ .4M+ ,/B5 2321675 $ OYS R$` m Ca9 $ +=6<;:$#9,9:$2>:$49)9$_$0L>?7EJLI:$\9^9$ABC`9$,M$#YOJM I;I$3>;X$=K$*=HO<;Y$!LJ>?FR$.L=H$ 0=<6@;M>7$?=$'HM>@;M>79$ O433 $ NTX R$CC`` m CCSb9 $ +LJIFEJX:$V9#9:$#H;LF=M:$^9\9:$*J?7E;M:$\9(9:$*L;FW=:$V9,9$_$"=M?F$>M$?>H; R$7= HOJLJ?>N;$PGJM?>?J?>N;$?LJ>?$<=7>$HJOO>M@$=K$?E;$O>?7E;L Z O?=:$ V6;=H6>J$FH>?E>>9$ ,=2@44A6:17+2<+5/4+!2B03+*2@645B+L]+L623216@03+*@64:@47 $ OUX R$cDDC m cDDS9 $

PAGE 99

$ ! ! Sb ! +L;MMJM:$89-9:$";J<6:$!9(9:$+L6JM?:$"9\9:$2J:$(939:$-7EG?;E;JI:$,9$ABCS9$ ) M?;@ LJ?>N;$0=OG=M$JMI$0E6F>=<=@>7J<$%;M=H>7F$8;N;JFHF$=K$,IJO?J ?>=M$ >M$^><<>K>FE9$ -23+L623+'K23 $ QS R$AbaQ m AbDa9 $ +GLL>:$89:$&J?;L:$,9:$^JXJWJH>:$!9:$(G@J<:$*9.9:$'MW;I$ F;<;7?>=M$JMI$L;7=H5>MJ?>=M$LJ?;$NJL> J?>= M$IL>N;$?E;$;N==M$=K$?E;$@;M=H>7$KK;L;M?>J?>=M$J7L=FF$ ?E;$FO;7>J?>=M$7=M?>MGGH$=K$.>7;IG7$"=F?$8J7;$.=LHJ?>=M$JMI$-O;7>J?>=M$>M$.LG@>N=L=GF$.<>;F$=K$?E;$ %;MGF$8EJ@=< ;?>F $ TI>O?;LJ:$!;OEL>?>IJ;U9$ 'K23F562: $ OQ R$Aa` m ADC9 $ +G?<>M:$89^9$_$-HJI[J:$*9 (9$ABCS9$*=GO<>M@:$8;>MK=L7;H;M?:$JMI$-O;7>J?>=M9$ (/4+#94=6@0:+ .05F=03675 $ NXO R$BBB m BBB9 $ *EJMI<;L:$*9"9:$*EJL>:$-9:$!J7W:$/9$_$/X=LW>M:$)9$ABCc9$*JGF;F$JMI$*=MF;PG;M7;F$=K$%;M;?>7$ +J7W @L=GMI$#KK;7?F$)<MJ?;I$56$)M?;@LJ?>N;$%;M=H>7$,MJ<6F>F9$ $4:456@7 $ NXT R $ CaAC m Caab9 $ *EJ?GLN;I>:$-9:$2G7JF:$29^9:$&>7;:$*9*9:$.=LI67;:$\9,9:$.=L>F?;L:$(929$_$%=HO;L?:$v9$ABCS9$!E;$ OL;I>7?J5><>?6$=K$@;M=H>7$7EJM@;F$GMI;L<6>M@$J$L;7;M?$E=F?$FE>K?$>M$(;<> FFJ$ 5;F9$ -234@F30=+'@2321B $ OU R$AbDC m Abbb9 $ *=<;:$#9.9$_$-E;K?>M@$OE;M=<=@>7J<$?E>M Z $ JMI$5;?X;;M Z FO;7>;F$NJL>J?>=M$>M$<;JK$;H;L@;M7;$>M$J$H>Y;I Z I;7>IG=GF$X==I GH:$ !9"9%9:$/JFHJEJOJ?LJ:$^9^9:$VJF7=;:$,9/9:$/JN;6:$\9V9:$VE >5<;6:$ ,9:$ 45+03; $ ABCA9$+G??;LK<6$@;M=H;$L;N;JF7G=GF$;Y7EJM@;$=K$H>H>7L6$JIJO?J?>=MF$ JH=M@$FO;7>;F9$ .05F=4 $ RWU R$Qc9 $ *=G@E<<>F:$\9"9$ABCS9$/>FF;7?>M@$?E;$L=<; $ =K$ J$MN;LF>=M$>M$<>K;$ E>F?=L6$I>N;L@;M7;$?EL=G@E=G?$?E;$( >HG;F$7=HO<;Y9$ -234@F30=+'@2321B $ Y 9 $ /JH5L=FW>:$"989$_$.;I;L:$\929$ABB`9$"=F?$O?GI; Z L;JOJGF;$NJL>J?>=M$>M$ 8EJ@=<;?>F$O=H=M;<K J7;?;I$<>K;$E>F?=L6$JIJO?J?>=M$=M$I>KK;L;M?$F?J@;F$=K$ I>JOJGF;$I;N;<=OH;M ?9$ ^2F=:03+2<+'K23F562:0=B+L62321B $ OY R$ACBC m ACCA9 $ /=;<M@$@;=@LJOE>7$NJL>J?>=M$> M$;7 <=F>=M$?>H;$JMI$?E;$@;M=H>7F$=K$E=F?$LJ7;$ K=LHJ?>=M$>M$8EJ@=<;?>F$O=H=M;< ?$K<>;F9$ '@2321B+0:A+'K23F562: $ X R$aQa m cBQ9 $ /=;<7$/>KK;L;M?>J?>=M$IGL>M@$ -O;7 >J?>=M Z X>?E Z %;M; Z .<=XR$*=HOJL>M@$ %;=@LJOE>7$JMI$"=F? Z 8;J?>=M$>M $ />N;L@;M?$2>K;$">F?=L6$,IJO?J?>=M$>M$ 8EJ@=<;?>F$O=H=M;<
PAGE 100

$ ! ! S` ! /L|F:$(9$_$(J<<;?:$\9$ABBA9$"=F?$LJ7;F$>M$OM@$>MF;7?F$JMI$?E;>L$>HO=L?JM7;$>M$F6HOJ?L>7$ FO;7>J? >=M9 $ ,/632728/6@03+(=0:70@562:7+2<+5/4+!2B03+*2@645B+2<+&2:A2:;+*4=647+L]+ L62 3216@03+*@64:@47 $ QSU R$c`C m cQA9 $ #@JM:$-909:$8J@7E:$-9:$ 45+03; $ ABCD9$ #YO;L>H;M?J<$;N>I;M7;$=K$@;M=H; Z X>I;$>HOJ7?$=K$;7=<=@>7J <$F; <;7?>=M$IGL>M@$;JL<6$F?J@;F$ =K$FO;7>J?>=M Z X>?E Z @;M; Z K<=X9$ '@2321B+&4554=7 $ NW R$SC` m SAD9 $ #?@;F:$V9\9:$'<>N;>LJ:$*9*9/9:$&==L:$(9,9.9$_$8>?7E>;:$(9%9$ABCB9$%;M;?>7F$=K$)M7>O>;M?$ -O;7>J?>=M$>M$ /L=F=OE>F9$)>>9$2>K; Z ">F?=L6$/>N;L@;M7;$>M$,<<=OJ?L 6$JM I$ 8;OL=IG7?>N;$)F==M9$ 'K23F562: $ TR R$aDcQ m aDbQ9 $ #X>M@:$#909$CQ`Q9$%;M;?>7$3JL>J?>=M$>M$J$";?;L=@;M;=GF$#MN>L=MH;M?$3))9$!;HO=LJ<$JMI$-OJ?>J<$ ";?;L=@;M;>?6$>M$)MK>M>?;$0=OG=MF9$ (/4+#9 4=6@0:+.05F=03675 $ NNR R$CQ` m ACA9 $ .;I;L:$\929:$+;L<=7E;L:$-9"9:$8 =;?E ;<;:$\9+9:$/JH5L=FW>:$"9:$-H>?E:$\9\9:$0;LL6:$V929:$ 45+03; $ ABBaJ9$ ,<<=OJ?L>7$@;M;?>7$=L>@>MF$K=L$F6HOJ?L>7$E=F? Z OK?F$JMI$LJ7;$K=LHJ?>=M$>M$ 8EJ@=<;?>F9$ ,=2@44A6:17+2<+5/4+.0562:03+#@ 0A49B+2<+*@64:@47 $ NYY R$CBaCc m CBaCQ9 $ .;I;L:$\929:$+;L<=7E;L:$-9" 9:$8 =;?E;<;:$\9+9:$/JH5L=FW>:$"9:$-H>?E:$\9\9:$0;LL6:$V929:$ 45+03; $ ABBa59$ ,<<=OJ?L>7$@;M;?>7$=L>@>MF$K=L$F6HOJ?L>7$E=F? Z OK?F$JMI$LJ7;$K=LHJ?>=M$>M$ 8EJ@=<;?>F9$ ,.#* $ NYY R$CBaCc m CBaCQ9 $ .;I ;L:$\929$_$+GFE:$%929$CQSQ9$%;M;$KL;PG;M76$7<>M;F$K=L$E=F?$LJ7; F$=K $ 8EJ@=<;?>F$O=H=M;<M$ ?E;$(>IX;F?;LM$1M>?;I$-?J?;F9$ "4=4A65B $ TQ R$AcD m Abb9 $ .;I;L:$\929:$*E><7=?;:$*9,9$_$+GFE:$%929$CQSS9$%;M;?>7$I>KK;L;M?>J?>=M$5;?X;;M$F6HOJ?L>7$E=F?$ LJ7;F$=K$?E;$JOO<; $ HJ@@=?$K<6$8EJ@=<;?>F$O=H=M;<<:$09$ABCA9$!E;$@;M=H>7F$=K$FO;7>J?>=M Z X>?E Z @;M; Z K<=X9$ (=4:A7+6:+ $4:456@7 $ OW R$acA m aDB9 $ .;I;L:$\929:$"GM?:$!9,9$_$+GFE:$29$CQQa9$!E;$;KK;7?F$=K$7<>HJ?;:$E=F?$OI;<>?6$=M$?E;$@;M;?>7F$=K$JOO<;$JMI$EJX?E=LM$>MK;F?> M@$L J7;F$=K$8EJ@=<;?>F$O=H=M;<<:$09$ABBQ9$*EL=H=F=HJ<$>MN;LF>=MF$JMI$FO;7>;F$I>KK;L;M7;FR$XE;M$JL;$@;M;F$ JKK;7?>M@$JIJ O?>N;$I>N;L@;M7;$JMI$L;OL=IG7?>N;$>F==M$;YO;7?;I$?=$L;F>I;$ X>?E >M$ >MN;LF>=MFj$ 'K23F562: $ TQ R$aBbC m aB`D9 $ .;I;L:$\929:$'OO:$-9+9:$VFJW:$-9$CQQc9$"=F?$K>I;<>?6$>F$JM$ ;KK;7?>N;$OL;HJ?>M@$5JLL>;L$5;?X;;M$F6HOJ?L>7$LJ7;F$= K$?E;$JOO<;$HJ@@=?$K<69$ ,=2@44A6:17+ 2<+5/4+.0562:03+#@0A49B+2<+ *@64 :@47 $ XN R$`QQB m `QQc9 $ .;I;L:$\929:$8=;?E;<;:$\9+9:$.><7EJW:$^9#9:$&>;I5J :$\9$_$8=H;L= Z -;N;LF=M:$\9$ABBa79$#N>I;M7;$ K=L$>MN;LF>=M$O=<6H=LOE>FH$L;7$E=F?$LJ7;$K=LHJ?>=M$>M$?E;$JOO<;$HJ@@=?$ K<6:$ + !/01234567+8292:4330+ 9$ $4:456@7 $ NTQ R$QaQ m QDa9 > $

PAGE 101

$ ! ! SS ! .;I;L:$\929:$8=;?E;<;:$\9+9:$V N;$HJ>M?;MJM7;$=K$ J<<=f6H;$I>KK;L;M7;F$JH=M@$F6HOJ?L>7$E=F?$LJ7;F$=K$?E;$JOO<;$HJ@@=?$K<69$ ,=2@44A6:17+2<+ 5/4+.0562:03+#@0A49B+2<+*@64:@47 $ XR R$CCcC` m CCcAC9 $ .;I;L:$\929:$8=;?E;<;: $ \9+ 9:$VN;$HJ>M?;MJM7;$=K$ J<<=f6H;$I >KK;L;M7;F$JH=M@$F6HOJ?L>7$E=F?$LJ7;F$=K$?E;$JOO<;$HJ@@=?$K<69$ ,=2@44A6:17+2<+ 5/4+.0562:03+#@0A49B+2<+*@64:@47 $ XR R$CCcC` m CCcAC9 $ .;I;L:$\929:$d>;:$d9:$8G<<:$\9:$3;<;f:$-9:$.=L5;F: $ ,9: $ 2;GM@:$+9:$ 45+03; $ ABBD9$(J6L:$/=5fEJMFW6:$ JMI$+GFE$JMI$?E;$7=HO<;Y>?>;F$= K$F6HOJ?L>7$FO;7>J?>=M$>M$8EJ@=<;?>F9$ ,.#* $ NYO R$bD`a m bDSB9 $ .=GM?J>M:$!9:$&>;H>M;M:$(9:$->LM:$\9:$V=M@:$-9*9:$2;E?=M;M:$89$_$"JMFW>:$)9$ABCb9$0L;I>7?J5<;$ J<<;<;$KL;PG;M76$7EJM@;F $ IG; $ ?=$EJ5>?J?$KLJ@H;M?J?>=M$>M$?E;$%<<;$KL>?><=MJL6$*=MF?LJ>M?$JMI$#7=<=@>7J<$*=MF;PG;M7;F9$ 'K23F562: $ TR R$CSbD m CSSc9 $ %LJM?:$0989$_$%LJM?:$+989$ABBA9$1MOL;I>7?J5<;$#N==M$>M$J$aB Z 4;JL $ -?G I6$=K$/JLX>M]F$ .>M7E;F9$ *@64:@4 $ OXT R$`B` m `CC9 $ ";LH>FF=M:$\9$_$0;MM>M@F :$09-9$ABBD9$-=K?$-X;;OFR$(=<;7G=M$%;M;?>7F$=K$,IJO?J?>=M$ .L=H$-?JMI>M@$%;M;?>7$3JL>J?>=M9$ $4:456@7 $ NTX R$AaaD m AaDA9 $ "=55F:$&9!9$_$"==?;M:$(9+9$ABCD9$ L0B4760:+-2A437]+#+75 0567 56@03+8=694=+<2=+4@23216757 9$ 0L>M7;?=M$1M>N;LF>?6$0L;FF:$0L>M7;?=M:$&\ 9 $ "=KKHJMM:$,9,9$_$V;;WF:$,989$ABBb9$*<>HJ?>7$F;<;7?>=M$=M$@;M;F$JMI$?LJ>?F$JK?;L$J$CBB $ 6;JL Z =MNJF>=MR$J$7L>?>7J<$<==W$J?$?E;$?;HO;LJ?; Z ?L=O>7J<$7<>M;F$>M$/L=F=OE>J9$ $4:456@0 $ NOX R$Caa9 $ "=LM;L:$\9/9:$*LJ>@:$!909$_$)? JH>:$\9^9$CQQQ9$!E;$>MKO=F>?>=M$OE;M=<=@6$=M$FGLN>NJ<$ >M$E=F?$LJ7;F$=K$#GL=F?J$F=<>IJ@>M>F9$ ':529232160+'E84=694:50367+45+#8836@050 $ XQ R$CAC m CAQ9 $ \=M;F:$.9*9:$%LJ5E;LL:$( 9%9: $ *EJM:$49.9:$8GFF;<<:$09:$(JG7;<>:$#9:$\=EMF=M:$\9:$ 45+03; $ ABCA9$!E;$ @ ;M=H>7$5JF>F$=K$JIJO?>N;$;N==M$>M$?EL;;FO>M;$F?>7W<;5J7WF9$ .05F=4 $ RWR R$DD m bC9 $ ^>LWOJ?L>7W:$(9$_$+JL?=M:$&9$ABBb9$*EL=H=F=H;$)MN;LF>=MF:$2=7J<$,IJO?J?>=M$JMI$-O;7>J?>=M9$ $4:456@7 $ NUQ R $ cCQ m cac9 $ ^=LM;<>GFF;M:$!9-9:$,<5L;7E?F;M:$,9$_$&>;F$=K$&;Y?$%;M;LJ?>=M$ -;PG;M7>M@$/J?J9$ L-O+L626:<2=9056@7 $ NS R$aDb9 $ ^=z?{<:$39$ABBb9$#7= Z OE6F>=<=@>7J<$OEJF;F$=K$>MF;7?$I>JOJGF;9$ ^2F=:03+2<+):74@5+,/B762321B $ SO R$ CCa m CA`9 $

PAGE 102

$ ! ! SQ ! ^= z?{< :$39:$€??>MJ:$!9:$0=GOJLI>M:$89:$^=L5;<=N{:$\9$_$+LG7;:$,9V9$ABC`9$*= M7;O?GJ<$KLJH;X=LW$ =K$?E;$;7= Z OE6F>=<=@>7J<$OEJF;F$=K$>MF;7?$I>JOJGF;$I;N;<=OH;M?$[GF?>K>;I$56$ ?LJMF7L>O?=H>7$OL=K><>M@9$ ,.#* $ NNR R$SDaA m SDa`9 $ 2JH>7EEJM;6:$-9:$+;L@M;f Z +JLL>=:$,9:$ 45+ 03; $ ABCD9$#N==M $ =K$/JLX>M]F$K>M7E;F$JMI$?E;>L$5;JWF$L;N;J<;I$56$@;M=H;$F;PG;M7>M@9$ .05F=4 $ SNW R$a`C m a`D9 $ 2JMI;:$89$_$,LM==M$=M$*=LL; FF7E;L:$09:$0=F<;I=N>7E:$/9:$*JLO>I$H;?J5=<>FH$IGL>M@$I>L;7?$JMI$I>JOJGF;$I;N;<=OH;M?$>M$J$O>;L>I$ 5G??;LK<69$ ^2F=:03+2<+'E84=694:503+L62321B $ [;59CcAbS`9 $ 2>:$"9$_$/GL5>M:$89$ABBQ9$.JF?$JMI$J77GL J?;$ FE=L?$L;JI$J<>@MH;M?$X>?E$+GLL=XF m VE;;<;L$ ?LJMFK=LH9$ L626:<2=9056@7 $ OS R$C`Dc m C`bB9 $ 2>:$"9:$"JMIFJW;L:$+9:$V6F=W;L:$,9:$.;MM;<<:$!9:$8GJM:$\9:$"=H;L:$&9:$ 45+03; $ ABBQ9$!E;$-;PG;M7;$ ,<>@MH;M?h(JO$K=LHJ?$JMI$-,(?==MM:$*9 :$.; I;L:$\929:$&=[>HJ:$-9:$/JH5L=FW>:$"989:$+;L<=7E;L:$-9"9$_$8=;<=KF:$V9$ ABBa9$.LG>?$ =I=L$I>F7L>H>MJ?>=M$JMI$F6HOJ?L>7$E=F?$LJ7;$K=LHJ?>=M$>M$8EJ@=<;?>F9$ ,=2@44A6:17+2<+5/4+ .0562:03+#@0A49B+2<+*@64:@47 $ NYY R$CCcQB m CCcQa9 $ 2>MM:$*9#9:$/JH5L=FW>:$"989:$.;I;L: $ \92 9:$+;L<=7E;L:$-9"9:$&=[>HJ:$-9$_$8=;<=KF :$V929$ABBc9$ 0=F?f6@=?>7$>F=M@$KJ7?=L$>M$F6HOJ?L>7$FO;7>J?>=M$>M$8EJ@=<;?>F$K<>;FR$L;IG7;I$L;FO=MF;$ =K$E65L>IF$?=$OJL;M?J<$E=F? Z KLG>?$=I=LF9$ ,=2@44A6:17+2<+5/4+.0562:03+#@0A49B+2<+*@64:@47+ 2<+5/4+_:654A+*5054 7+2< + #94=6@0 $ NYN R$C``Da m C``DS9 $ 2>MM;M:$*989$ ABCS9$0L;I>7?>M@$;N==MJL6$OL;I>7?J5><>?69$ -234@F30=+'@2321B $ OU R$Abc` m AbDB9 $ 2=XL6:$/9+9:$"=5JM:$-9:$^;<<;6:$\929:$2=??;LE=F:$^9#9:$8;;I:$29^9:$,M?=<>M:$(9.9:$ 45+03; $ ABC`9$ +L;JW>M@$8,/R$JM$;NJ=M$=K$?E;$G?> <>?6 $ =K$L;F?L>7?>=M$F>?; Z JFF=7>J?;I$/&,$F;PG ;M7>M@$ K=L$@;M=H;$F7JMF$=K$JIJO?J?>=M9$ -23+'@23+!472F= $ NU R$CcA m CDA9 $ (J7EJI=:$"9:$+;L@7$FJHO<>M@$L;N;J7?J5<;$JMI$O;LNJF> N;$F ;JF=MJ<$JIJO?J?>=M$>M$/L=F=OE>R$CB9CCBChaa`Dca9 $ (J7EJI=:$"9#9:$+;L@;M:$^989:$+;ELHJM:$#929:$-7EH>I?:$09-9$_$0;?L=N:$/9,9$ ABCb9$*=HOJLJ?>N;$O=OG=M$@;M=H>7F$=K$?GI>MJ<$NJL>J?>=M$>M$/L=F=OE>HG
PAGE 103

$ ! ! QB ! (JLPG;F:$/9,9:$\=M;F:$.9*9:$0JM@F<;6:$/9(9$_$8;>H7E;M :$!9#9$ABCS9$#YO;L>H;M?J<$ ;N>I;M7;$K=L$LJO>I$@;M=H>7$JIJO?J?>=M$?=$J$M;X$M>7E;$>M$JM$JIJO?>N;$LJI>J?>=M9$ .05F=4+ '@2321B+\+'K23F562: $ O R$CCAS m CC aS9 $ (JLPG;F:$/9,9:$(;>;L:$\9)9$_$-;;EJGF;M:$'9$ABCQ9$,$*=H5>MJ?=L>J<$3>;X$=M$-O;7>J?>=M$JMI$ ,IJO?>N;$8JI>J?>=M9$ (= 4:A7+6:+'@2321B+\+'K23F562: :$I=>R$CB9CBCbh[9?L;;9ABCQ9BA9BBS9 $ (JL?>M:$-9"9:$/JFHJEJOJ?LJ:$^9^9:$&JI;JG:$&9\9:$-JHO F=M: $ .9:$ 45+03; $ ABCa9$%;M=H; Z X>I;$;N>I;M7;$K=L$FO;7>J?>=M$X>?E$@;M;$K<=X$>M$ "436@2:6F7 $ 5G??;LK<>;F9$ $4:294+!4740=@ / $ OQ R$CSC` m CSAS9 $ (7^;MMJ:$,9:$"JMMJ:$(9:$+JMWF:$#9:$->NJ7E;MW=:$,9:$*>5GF:$^9:$^;LM6?FW6:$,9:$ 45+03; $ ABCB9$ !E;$%;M=H;$,MJ<6F>F$!==?R$,$ (JO8 ;IG7;$KLJH;X=LW$K=L$JMJ<6f>M@$M;Y? Z @;M;LJ?>=M$ /&,$F;PG;M7>M@$IJ?J9$ $4:294+!47; $ OY R$CAQ` m CaBa9 $ (70E;L=M:$+9,9:$ -H>?E:$/9*9$_$+;L<=7E;L:$-9"9$CQSS9$%;M;?>7$I>KK;L;M7;F$5;?X;;M$E=F?$LJ7;F$=K$ 8EJ@=<;?>F$O=H=M;<;K;L;7W;:$,9\9:$.;I;L:$\929:$"JEM:$/9,9:$ 45+03; $ ABCb9$/>N;L@;M7;$=K$?E;$I>JOJGF;$?LJMF7L>O ?=H;$>M$JOO<;$HJ@@=?$K<>;FR$X>M?;L$L;@G=M$ JMI$O=F? Z X>M?;L$?LJMF7L>O?>=MJ<$L;OL;FF>=M9$ (/4+^2F=:03+2<+'E84=694:503+L62321B $ ONX R$ AbCa m AbAA9 $ (>7E ;<:$,909:$->H:$-9:$0=X;<<:$!9"9g9:$!J6<=L:$(9-9:$&=F><:$09$_$.;I;L:$\929$ABCB9$V>I;FOL;JI$ @;M=H>7$I>N;L@;M7;$I GL>M@$F6HOJ?L>7$FO;7>J?>=M9$ ,=2@44A6:17+2<+5/4+.0562:03+#@0A49B+ 2<+*@64:@47 $ NYU R$Q`Ac m Q`AQ9 $ (>7E;:$8939$CQQC9$ )I;M ?>K>7J?>=M$=K$HJLW;LF$<>MW;I$?=$I>F;JF; Z L;F>F?JM7;$@;M;F$56$5GFR$J$LJO>I$H;?E=I$?=$I;?;7 ?$HJLW;LF$>M$ FO;7>K>7$@;M=H>7$L;@>=MF$56$GF>M@$F;@L;@J?>M@$O=OG=MF9$ ,=2@44A6:17+2<+5/4+:0562:03+ 0@0A49B+2<+7@64:@47 $ WW R$QSAS m QSaA9 $ (GM7E:$ -9+9 $ _$-J<>MJF:$-9$ABBQ9$2J?>?GI>MJ<$NJL>J?>=M$>M$<>K;FOJM$X>?E>M$FO;7>;F$>F$;YOM;I$56$ ?E;$H;?J5=<>7$?E;=L6$=K$ ;7=<=@69$ ,.#* $ NYT R$CaSbB m CaSbc9 $ &JNJLL=:$,9$_$+JL?=M:$&9"9$ABBa9$*EL=H=F=HJ<$-O;7>J?>=M$JMI$(=<;7GN;L@;M7; ZZ ,77;<;LJ?;I$#N==M$>M$8;J LLJM @;I$*EL=H=F=H;F9$ *@64:@4 $ QYY R$aAC m aAc9 $ &=F><:$09:$3><<=G?L;>Y:$89:$*JLNJJ Z *JLL JF7=:$39:$.;I;L:$\929:$ 45+03; $ ABCS9$&J?GLJ<$F;<;7?>=M$JMI$?E;$OL;I>7?J5><>?6$=K$;N==M$>M$!>H;HJ$F?>7W$>MF;7?F9$ *@64:@4 $ QSX R$`bD m ``B9 $ 'LF>M >:$2 9:$-OJM>;L:$^9)9$_$(;;F?;L:$29/9$ABCA9$%;M=H>7$F>@MJ?GL;$=K$MJ?GLJ<$JMI$JM?EL=O=@;M>7$ F?L;FF$>M$X>= MF$=K$?E;$XJ?;LK<;J$/JOEM>J$HJ@MJR$NJ<>IJ?>=M$>M$FOJ7;:$?>H;$JMI$ ;YO;L>H;M?J<$;N==M9$ -234@F30=+'@2321B $ ON R$ACbB m AC`D9 $ 0;JF;:$\9+9:$"JJW:$/ 9*9: $ "JEM:$(9V9$_$(=6<;:$29*9$ABCb9$0E6<=@;M=H>7F $ L;N;JN;$NJL>J?>=M$IGL>M@$J$LJO>I$LJI>J?>=M9$ ,&2*+L623 $ NR R$;CBBAa`Q9 $

PAGE 104

$ ! ! QC ! 0;>7E;<:$*929$_$(JLPG;F:$/9,9$ABC`9$!E;$@;M;?>7$JMI$H=<;7G?;7?GL;$=K$OE;M=?6O>7$ I>N;LF>?6$>M$F?>7W<;5J7 WF9$ ,/63;+(=0:7;+!;+*2@;+L $ QUO R$ABCDBcSb9 $ 0KL;MI; L:$(9#9$ABCA9$!L>JM@GM@$?E;$@;M;?>7$5JF>F$=K$JIJO?J?>=M$?=$HGKJL>=GF$F;<;7?>=MR$ &#V-$,&/$3)#V-R$0#8-0#*!)3#9$ -234@F30=+'@2321B $ ON R$ABDC m ABDa9 $ 0==<:$\9#9$ABCb9$%;M;?>7$(JOO>M@$56$+G F$>M $ /L=F=OE>H;M?J<$ /;F>@M$JMI$->HG =M Z +JF;I$)MK;L;M7;9$ $4:456@7 $ OYR R$CAQD m CaBb9 $ gG>M5<;$FG>?;$=K$G?><>?>;F$K=L$7=HOJL>M@$@;M=H>7$ K;J?GL;F9$ L626:<2=9056@7 $ OT R$ScC m ScA9 $ 8J@7$H=IG?6$JH=M@$<>K; Z E>F?=L6$JIJO?J?>=MF$OL=H=?>M@$FO;7>J?>=M$ X>?E$@;M;$K<=X9$ -234@F30=+'@2321B :$I=>R$CB9CCCChH;79CcC`S9 $ 8J@OEJF>7$H;?J5=<>7$LJ?;$?LJ[;7?=L6$=K$ OGOJ<$I>JOJGF;$?;LH>MJ?>=M$JMI$O=F? Z I>JOJGF;$I;N;<=OH;M?$>M$J$?;OEL>?>I$K<69$ ^2F=:03+2<+ ):74@5+,/B762321B $ SS R$acc m aDB9 $ 8;;I:$89/9:$0JOJ:$89:$(JL?>M:$,9:$">M;F:$"9(9:$*=GM?;LHJM:$+9,9:$0JLI= Z />Jf:$*9:$ 45+03; $ ABCC 9$ =O?>Y$/L>N;F$?E;$8;O;J?;I$*=MN;L@;M?$#N==M$=K$+G??;LK<6$V>M@$0J??;LM$(>H>7L69$ *@64:@4 $ QQQ R$CCa` m CCcC9 $ 8;MJG?:$-9:$%LJFFJ:$*9\9:$4;JHJM:$-9:$(=6;LF:$+9!9:$2J>:$v9:$^JM;:$&9*9:$ 45+03; $ ABCa9$%;M=H>7$ >FN;L@;M7;$JL;$M=?$JKK;7?;I$56$@;=@LJOE 6$=K $ FO;7>J?>=M$>M$FGMK<=X;LF9$ .05F=4+ O299F:6@056 2:7 $ R R$CSA`9 $ 8=7WHJM:$(939$ABCA9$!"#$g!&$08'%8,($,&/$!"#$,22#2#-$!",!$(,!!#8$.'8$ #3'21!)'&R$,22$!",!]-$%'2/$/'#-$&'!$%2)!!#89$ 'K23F562: $ TT R$C m C`9 $ 8G;@@:$^9:$,MI;LF=M:$#9*9:$+==M;:$\9:$0=G?E:$!9+9 $ ABC c9$,$L=<;$K=L$H>@LJ?>=M Z <>MW;I$ @;M;F$JMI$@;M= H>7$>FM$I>N;L@;M7;$=K$J$F=M@5>LI9$ -234@F30=+'@2321B $ OQ R$c`D` m c`bQ9 $ -7EN;$8JI>J?>=M$,<=M@$%;M;?>7$2>M;F$=K$2;JF?$8;F>F?JM7;9$ 'K23F562: $ SY R$ C`bb9 $ -7EH>I?:$09-9:$(J?fW>M:$29:$)OO=<> ?=:$ (9$_$#JM;F:$V9.9$ABBDJ9$%;=@LJOE>7$3JL>J?>=M$ >M$/>JOJGF;$ )M7>I;M7;:$2>K; Z ">F?=L6$!LJ>?F:$JMI$*<>HJ?>7$,IJO?J?>=M$>M$/L=F=OE>I?:$09-9$_$0JJ56:$,9+9$ABBS9$8;OL=IG7?>N;$/>JOJGF;$JMI$2>K; Z ">F?=L6$*<>M;F$>M$&=L ?E$ , H;L>7JM$0=OG=MF$=K$/L=F=OE>I?:$09-9:$0JJ56:$,9+9$_$";F7E;<:$(9-9$ABBD59$%;M;?>7$NJL>JM7;$K=L$I>JOJGF;$;YOL;FF>=M$ JMI$JFF=7>J?;I$<>K;$E>F?=L>;F$>M$/L=F=OE>
PAGE 105

$ ! ! QA ! -;;EJ GF;M :$'9$ABBQ9$0L=@L;FF>N;$<;N;?$I>N;L@ ;M7;$J<=M@$J$iFO;7>J?>=M$?LJMF;7?]$>M$?E;$ 2JW;$3>7?=L>J$7>7E<>I$K>FE$ + ,F:A096360+ 9$)MR$ *84@60562:+0:A+,0554=:7+2<+G6K4=765B $ T89$^9$ +G?<>M:$\9$+L>I<;:$_$/9$-7EI@;$1M>N;LF>?6$0L;FF:$*JH5L>I@ ;9 $ ;;EJGF;M:$'9:$+G?<>M:$89^9:$^;<<;L:$)9:$VJ@M; L:$*9#9:$+=G@EHJM:$\9V9:$"=E;M<=E;:$09,9:$ 45+03; $ ABCc9$%;M=H>7F$JMI$?E;$=L>@>M$=K$FO;7>;F9$ .05F=4+!4K64M7+$4:456@7 $ NS R$C`b m CQA9 $ -;;EJGF;M:$'9:$!;LJ>:$49:$(J@J6J @>:$ 89:$ 45+03; $ ABBS9$-O;7>J?>=M$?EL=G@E$F;MF=L6$IL>N;$>M$7>7E<>I$K>FE9$ .05F=4 $ RSS R$bAB m bAb9 $ ->H:$*9$_$/;M<>M@;L:$/929$ABCa9$)MFG<>M$F>@MJ<>M@$JMI$?E;$L;@G=M$=K$>MF;7?$I>JOJGF;9$ H=2:5;+ ,/B7623; $ R 9 $ -H>?E:$/9*9$CQSS9$";L>?J5<;$I>N;L@;M7;$=K$8EJ@=<;?>F$O=H =M;< J Z *JLLJF7=:$39:$%=HO;L?:$v9:$*=H;JG7W$)MF;7?$%;M=H;F$8;N;J<$&J?GLJ <$-;<;7?>=M]F$8=<;$>M$0JLJ<<;<$-O;7>J?>=M9$ *@64:@4 $ QRR R$ `aS m `cA9 $ -?JMW=XFW>:$-9:$*EJF;:$(9,9:$.G>?;M:$,9(9:$8JFK;MW;I$F;<;7?>=MR$;H;L@;M7;$=K$J$E;?;L=@;M;=GF$@;M=H>7$M@$J$L;7;M?$ LJI>J?>=M$=K$H=MW ;6K<=X;LF9$ I62!E6K $ acAaDA9 $ -?;>M;L:$*9*9:$V;5;L:$\9&9$_$ "=;W F?LJ:$"9#9$ABB`9$,IJO?>N;$3JL>J?>=M$>M$+;J7E$(>7;$0L=IG7;I$ 56$!X=$)M?;LJ7?>M@$0>@H;M?J?>=M$%;M;F9$ ,&%*+L62321B $ S R$;ACQ9 $ -?>M7E7=H5;:$\989$_$"=;WF?LJ:$"9#9$ABB`9$*=H5>M>M@$O=OG=M$@;M=H>7F$JMI$P GJM?>?J?>N;$ @;M;?>7FR$K>MI>M@$?E;$@;M;F$GMI;L<6>M@$;7=<= @>7J <<6$>HO=L?JM?$?LJ>?F9$ "4=4A65B $ NYY R$CDS m C`B9 $ !JG5;L:$(9\9$_$!JG5;L:$*9,9$CQ`b9$)MF;7?$-;JF=MJ<>?6R$/>JOJGF;$(J>M?;MJM7;:$!;LH>MJ?>=M:$JMI$ 0=F?I>JOJGF;$/;N;<=OH;M?9$ #::F03+!4K64M+2<+':5292321B $ ON R$ SC m CB`9 $ !J6<=L:$(9+9$_$#EL;ML;>7E:$)9(9$ABCD9$">@E;L Z =LI ;L$@ ;M;?>7$>M?;LJ7?>=MF$JMI$?E;>L$7=M?L>5G?>=M$ ?=$7=HO<;Y$?LJ>?F9$ (=4:A7+6:+$4:456@7 $ QN R$ac m cB9 $ !L=?E:$,9:$0Gf;6:$\989:$^>H:$89-9:$V><<>F:$\9"9$_$^;<<6:$\9^9$ABCS9$-;<;7?>N;$?LJI; Z =KKF$HJ>M?J>M$ J<<;<; F$GMI;LO>MM>M@$7=HO<;Y$?LJ>?$NJL>J?>=M$>M$OM:$-939$ABBD9$%;M=H>7$)FJ?>=M$>M$,M=OE;<;F$ @JH5>J;9$ ,&2*+L62321B $ Q R$;ASD9 $ 3>J:$-9:$*=M?;:$%9:$(JF=Mƒ.=<;6:$*9$_$(><f>M @$.-!$=G?<>;LF$=M$J$g!2$HJO$ L;N;JI;M7;$K=L$7$L;@>=MF$=K$L;IG7;I$@;M;$;Y7EJM@;$IGL>M@$FO;7>J?>=M Z X>?E Z @;M; Z K<=X9$ -234@F30=+'@2321B $ ON R$DDcb m DDbB9 $

PAGE 106

$ ! ! Qa ! 3>J:$-9$_$V;F?:$\9$ABBS9$!E;$@ ;M;?>7$H=FJ>7$FG@@;F?F$J$M;X$L=<;$K=L$E>?7EE>W>M@$>M$;7=<=@>7J< $ FO;7>J?>=M9$ -234@F30=+'@2321B $ NU R$caac m cacD9 $ 3>M;F:$!9"9:$/J;<:$,9*9:$,<5;L?:$,949^9:$3;;M:$!9:$-7EGM;$ 7=GO<>M@$JMI$GM7=GO<>M@$>M$J$F?>7W<;5J7W$E65L>I$f=M; 9$ 'K23F562: $ UY R$CBAa m CBaS9 $ VJ=MJL6$%;M=H>7F$=K$*EL=H=F=HJ<$ )MN;LF>=MF9$ (=4:A7+6:+'@2321B+\+'K23F562: $ Y 9 $ V =IJLf:$,9$_$&GFF;:$89$CQQS9$(;7EJM>FHF$=K$XM?$F>@MJ<>M@$>M$I;N; <=OH;M?9$ #::F;+!4K;+O433+ G4K;+L623; $ NR R$DQ m SS9 $ V==I:$!9^9$_$%G??HJM:$-9)9$CQSA9$#7=<=@>7J<$JMI$+;EJN>=LJ<$+JF>F$K=L$8;OL=IG7?>N;$)F==M$ >M$?E;$-6HOJ?L>7$#M7E;M=OJ$5>M=?J?J$*=HO<;Y$T"=H=O?;LJ R$(;H5LJ7>IJ;U9$ 'K23F562: $ QT R$Aaa m AcA9 $ 4;JHJM:$-9$ABCD9$2=7J<$, IJO?J?>=M$56$,<<;<;F$=K$-HJ<<$#KK;7?9$ (/4+#94=6@0:+.05F=03675 $ NWT R$ -`c m -SQ9 $ vE=G:$d9:$*JL5=M;??=:$09$_$-?;OE;MF:$(9$ABCa9$0=<6@;M>7$H=I;<>M@$X>?E$+J6;F>JM$FOJLF;$<>M;JL$ H>Y;I$H=I;
PAGE 107

$ ! ! Qc ! ! ZZ-).1C ' ! P ' *E JO?;L$C$ />JOJGF;$ )M?;MF>?6$OE;M=?6O>7$IJ?J $ $ #9HHB<@<45AB'$ADB<'1E' 8JX$IJ?J$KL=H$ABBS$1. Z (#!$;YO;L>H;M?9$0GOJ;$X;L;$F;OJLJ?;I$>M?=$ 5<=7WF$=K$aB$JMI$L;FO>L=H;?L>7J<<6$H;JFGL;I$=M$F;OJLJ?;$IJ6F$=K$ ?E;$X;JW9$'M<6$K<>;F$?EJ?$ FG77; FFKG<<6$;7<=F;I$=L$X;L;$J<>N;$JK?;L$L;HJ>M>M@$5; >M@$7M$?E;$/),$@L=GO$X;L;$GF;I$>M$ ?E;$K>MJ<$JMJ<6F>F9$&GH5;LF$=K$I;JI$OGOJ;:$OJLJF>?>f;I$OGOJ;:$H>FF>M@$OGOJ;$TL;F;JL7E;L$;LL=LU:$ ;HO?6$OGOJ<$7JF;FTH;JM>M@$?E;$;H;L@;I$J MI$;F7JO;I$KL=H$?E;$;YO;L>H;M?J <$F6L>M@;FU:$W><<;I$ OGOJ;$TL;F;JL7E;L$;LL=LU:$OG OJ;$X>?E$JM$JH5>@G=GF$N>?J<$F?J?GF:$I;JI$K<>;F:$JMI$?E;$?=?J<$J<>N;$ >MI>N>IGJM$F$JL;$L;7=LI;I9$ $ +<=7W $ !=?J< $ /;JI $ 0JLJ9 $ (>FF>M@ $ #HO?6 $ ^><<;I $ ,H59 $ /;JI$ K<6 $ , <>N; $ ., $ aB $ a $ b $ C $ B $ B $ C $ B $ AB $ . + $ aB $ c $ a $ B $ C $ B $ A $ C $ AA $ .* $ aB $ A $ Q $ B $ C $ C $ B $ B $ C` $ ./ $ aB $ b $ S $ A $ B $ B $ B $ C $ CA $ 8, $ aB $ A $ D $ B $ B $ C $ C $ B $ AA $ 8+ $ aB $ c $ S $ B $ A $ B $ C $ B $ C` $ 8* $ aB $ D $ CA $ B $ A $ B $ B $ B $ CA $ 8/ $ aB $ ` $ Cc $ B $ C $ B $ B $ B $ ` $ !, $ aB $ a $ Cc $ B $ B $ B $ B $ B $ CA $ !+ $ aB $ C $ AB $ B $ B $ B $ B $ B $ Q $ !* $ aB $ C $ Ac $ B $ B $ B $ B $ B $ D $ V, $ aB $ a $ CC $ C $ B $ C $ B $ B $ Cc $ V+ $ aB $ ` $ ` $ B $ B $ B $ B $ B $ Cc $ V* $ aB $ ` $ S $ B $ C $ B $ B $ C $ Cc $ V/ $ aB $ Q $ CA $ A $ C $ B $ B $ B $ b $ $75AB ' RSY ' TR ' NTN ' T ' X ' Q ' S ' Q ' OYQ ' $

PAGE 108

$ ! ! QD ! ! $ #9HHB<@<45AB'2;M96<' N R$(;?J5=<>7$LJ?;$ ?LJ[;7?=L>;F$=K$OGOJ;$;YO=F;I$?=$<=M@$OL; Z X>M?;L$ 7=MI>?>=MF9$/J?J$7=LL;FO=MIF$X>?E$MGH5;L$L;O=L?;I$>M$-GOO<;H;M?J< $ ?J5<;$)9$%L;;M$<>M;F$>MI>7J?;$ >MI>N>IGJJOJGF>M@$T&/U:$5M;F$>MI>7J?;$>MI>N>IGJJOJGF;$T-/U:$J MI$L;I$<>M;F$>MI>7J?;$>MI>N>IGJJOJGF;$T/),U9 $ ! !

PAGE 109

$ ! ! Qb ! #9HHB<@<45AB' 2;M96<' O R$">F?=@LJH$=K$EJX$JIGH;F$X>?E>M$?E;$&/ Z #*2$ ;YO;L>H;M?9$%L;;M$5>MF$JL;$>MI>N>IGJMF $ JL;$>MI>N>IGJF$;YO;L>H;M?$I=$?=$GM7;L?J>M?6$>M$?E;>L$I>JOJGF;$7M;F$ JL;$> MI>N>IGJ
PAGE 110

$ ! ! Q` ! !ZZ-).1C ' " ' *EJO?;L$C $ -GOO<;H;M?J<$ (;?E=IF $ ! #YO=M$JMI$GF;KGJM$-OJLF;$2>M;JL$(>Y ;I$H=I;<$ $ )M$J<<$%V,-$X;$M;7;FFJL><6$LGM$>M?=$?E;$>FFG;$?EJ?$O$uu$M9$ T"= 55F$_$"==?;M:$ABCDU $ 7=H;$GO$ X>?E$F=H;$M=N;<$XJ6F$?=$I;J<$X>?E$?E>F$OL=5< ;H:$H=F?$M=?J5<6$56R$ $ CU$@>N>M@$?E;$5;?JF $ T<=7GF$;KK;7?$F>f;$O JLJH;?;LU $ J$H>Y;I$M=LHJ< $ I>F?L>5G?>=M :$ $ AU$>M7=LO=LJ?>M@$>MI>7J?=L$NJL>J5<;F $ T"=55 F$_$"==?;M:$ABCDU 9 $ aU$L;OJLJH;?L>f>M@$?E;$<>M;JL$H=I;<$>M$?;LHF$=K$J$H;JFGL;$X;]L;$>M?;L;F?;I$>M : $ O;L7;M?$NJL>JM7; $ >M$ OE;M=?6O;$;YOM;I$56$?E;$@;M=?6O;$T03#U $ cU$;F?>HJ?>M@$?E ;$E6O;L$OJLJH;?;LF$KL=H$?E;$IJ?J :$LJ?E;L$?EJM$GF>M@$GM>K=LH$I>F?L>5G?>=MF9$ $ V ;$X><<$I>F7GFF$?E;F;$K=GL$O=>M?F$>M$H=L;$I;O?E$5;<=X9$ $ $ CU ! %>N>M@$?E;$5;?JF$J$H>Y;I$I>F?L>5G?>=M$J<<=XF$GF$?=$>HO<;H;M?$ =GL$JFFGHO?>=M$?EJ?$=GL$ OE;M=?6O;$EJF$J$H=M= Z h=<>@=@;M>7$5JF>F $ m $ H;JM>M@$?EJ?$=M<6$J$}FOJLF;~$JH=GM?$=K$?E;$ <=7>$OL;F;M?$>M$?E;$F?GI6$X><<$ 7=M?L>5G?; $ J$H;JFGLJ5<;$;KK;7? $ ?=$?E;$OE;M=?6O;$=K$>M?;L;F?9$ !E;$H>Y;I$M=LHJ<$@>N;F$GF$J$H>Y?GL;$=K$J$O=>M?$HJFF$J?$f ;L=$TH=F?$<=7>U$JMI$J$M=LHJ<$ I>F?L>5G?>=M$=K$;KK;7?$F>f;F $ K=L$ ?E=F;$<=7>$?EJ?$7=M?L>5G?;$J$H;JFGL;J5<;$;KK;7? 9$ $ $ $ $ $ $

PAGE 111

$ ! ! QS ! AU ! !E;$ >M7=LO=LJ?>=M$=K$>MI>7J?=L$NJL>J5<;F$F;LN;F$?X=$OGLO=F; Fe $ ?=$>I;M?>K6$?E=F;$5;?JF$ XE>7E$JL;$7=M?L>5G?>M@$JM$;KK;7?$JMI$?=$FJN;$=M$7=H OG?J?>=MJ<$;KK>7>;M769$,F$X><<$5;$ I>F7GFF;I$5;<=X:$?E;$>MI>7J? =L$NJL>J5<;F$JL;$FJHO<;I$KL=H$J$LJMW>M@$=K$-&0 $ ;KK;7?$F>f;F $ 5 JF;I$=M$J$F>HO<;L $ <>M;JL$H>Y;I$H=I;<$T2((U $ >HO<;H;M?;I$X>?E>M$?E;$ gemma $ F=K?XJL;9$ !E;$LJMW Z 5JF;I$OL=O=FJ<$EJF?;MF$7=HOG?J?>=M$?>H;$ XE ><;$J<<=X>M@ $ GF$?=$;YJH>M;$ I>KK;L;M?$7=H5>MJ?>=MF$=K$?E;$<=7>$ ?EJ?$X;$?E>MW$7=GHO=L?JM?9$ !E>F$H;?E=I$ ;HOEJF>f;F $ @L=GOF$=K$<=7>$=N;L$>MI>N>IGJ<$;F?>HJ?>=MF$=K$?E;>L$;KK;7?9$ $ aU ! !E;$+J6;F>JM$FOJLF;$<>M;JL$H>Y;I$H=I;<:$>F$JF$>?F$MJH;$>HO<>;F:$ >F$ J$<>M;JL$ H=I;<$?=$ ;YJ H>M;$?E;$7=M?L>5G?>=MF$=K$FO;7>K>7$@;M=?6O;F$=M$?E ;$;YOL;FF>=M$=K$?E;$OE;M=?6O;$=K$ >M?;L;F?R$ $ $ $ $ "=X;N;L:$X;$M;;I$?=$L;F?LG7?GL;$NJL>J5<;F$>M$?E>F$;PGJ?>=M$?=$;F?>HJ?;$XEJ?$X;]L;$ >M?;L;F?;I$>M:$O;L7;M?$NJL>JM7;$;YOM;IR$ $ $ $ +;7JGF;$03#$JMI$0 %#$JL;$KGM7? >=M$=K$+;?J:$1:$JMI$?JG$EJN;$I>F?L>5G?>=MF$?EJ?$I; O;MI$=M$ „:$… A J$: $ … A 5$ $ JMI$JL;$=M$?E;>L$OL>=LF:$vE=G$;?$J<9 $ TABCaU $ OL=O=F;I$?E;$K=<<=X>M@$L; Z OJLJH;?;L>fJ?>=M$=K$F=$?EJ?$>MIG7;I$OL>=LF$=M$03#$JMI$0%#$JL;$5;?X;;M$B$JMI$CR$ $ $ $ $

PAGE 112

$ ! ! QQ ! ";L;:$E$JMI$O$JL;$OL>=LF$=M$03 #$JMI$0%#:$L;FO;7?>N;<69$$J$ >F$JN;LJ@;$NJL>JM7;$= K$?E;$@;M=?6O;F$ J7L=FF$HJLW;LF:$JMI$5 $ >F$?E;$H;JM$=K$?E;$I>J@=MJ<$;<;H;M?F$>M$^$TF=H;?>H;F$J$7=NJL>JM7;$ HJ?L>Y:$F=H;?>H;F$J$L;Y$ m $ I;O;MIF$=M$XEJ?$IJ?J$6=G$EJN;$JNJ>7$NJL>JM7;$7=M?L >5G?;I$56$?E;$5;?JF:$JMI$5 … A 5$ $ 7JO?GL;F$ ?E;$@;M;?>7$NJL>JM7;$7=M?L>5G?;I$56$?E;$LJMI=H$;KK;7?F9$ $ $ cU ! !E;$E6O;L$OJLJH;?;LF:$E:$O:$ , :$JMI$ $ JL;$;F?>HJ?;I$KL=H$?E;$IJ?J$K>LF?$5;K=L;$5;>M@$GF;I$?=$ FJHO<;$K=L$FO JLF;$JMI$LJMI=H$;KK;7?F$?=$@>N;$JOOL=OL>J?;$OL>=L$ I>F?L>5G?>=MF$K=L$?E;$?;LHF$ =K$>M?;L;F?$>M$=GL$H=I;<9$!E;F;$7=GN;$OL>=LF9$,F$FG7E$?E;$O=F?;L>=L$ FJHO<;$F7E;H;$K=<<=XF$GF>M@$J$H;?L=O=<>F$EJF?>M@$J<@=L>?EHR $ $ $ #5'7['5=<'@<567H7B;> \ =A>5; 4M>'ABM76;5=@E' ' ' vE=G$;?$J<9$ TABCaU$ ?JW;$JINJM?J@; $ =K$?E;$KJ7?$?EJ?:$†:$1:$JMI$‡$7JM$5;$>M?;@LJ?;I$=G?9$ $ $ VE;M$;NJM@$8$>M$?E;$H;?L=O=<>F$ m $ EJF?>M@F$ m $ 8$k$ . / # 0 # 1 2 3 2 2 2 2 4 2 5 # . 1 2 3 2 2 5 . 2 4 2 5 6 . / 5 # . / # 0 # 1 2 3 2 2 2 2 4 2 5 # . 1 2 3 2 2 5 . 2 4 2 5 6 . / 5 # $ :$ ?E;$F?;OF$JL;$JF$ K=<<=XFR $ C9 ! /LJX$O=F?;L>=L$FJ HO<;F$=K$?E;$E6O;LOJLJH;?;LF$TE: $ O:$ , :$ U$=M$?E;$OL=IG7?F$FOJ7;$TB:CU$Y$ TB:CU$Y$TB:CU$Y$ˆB:C‰ O $ @>N;M$56$?E;$HJL@>MJ<$<>W;<>E==IR $ $ 0T E: $ O:$ , :$ $ Š$ ] U$ 7 $ 0T$ ] $ Š$ E: $ O:$ , :$ U$0TEU$0TOU$0T$ $ Š$ , U$0T , U $ $ >9 ! ,$M=?;$=M$?E;$J5=N;R$E$JMI$O$JMI$ , $ JL;$J<<$ILJXM$KL =H$GM>K=LH$ I>F?L>5G?>=MF$F=$?E;>L$OL=5J5><>?>;F$X><<$;PGJ<$C$K=L$;N;L6$>?;LJ?>=M$=K$?E;$ H=I;<9$"=X;N;L:$?E;$OL=5J5><>?6$=K$$ $ Š$ , $ X><<$7EJM@;$;N;L6$>?;LJ?>=M9$-=: $ >M$;J7E$>?;LJ?>=M$X;]L;$;NJM@$?E;$OL=5J5><>?>;F$=K$I>KK;L;M?$@JHHJ$ N;7?=LF:$=L$>M$=?E; L$X=LIF:$I>KK;L;M?$7=<<;7?>=MF$=K$5;?JF9$ $ 59 ! 8JMW$5JF;$OL=O=FJ<$I>F?L>5G?>=M$K=L$@JHHJ$>F$@;M;LJ?;I$GF>M@ $ ?E; $ 2(($?=$=5?J>M$ F>M@<;$-&0$O Z NJF$OG?F$X;>@E?F$=M$-&0F$?EJ?$JL;$LJMW;I$E>@E;L$>M$F>M@<;$ -&0$?;F?F$ $ 79 ! '?E;L$E6O;LOJLJH;?;LF$JL;$GOIJ?;I$56$JII>M@$ J$LJMI=H$NJL>J5<;$KL=H$1T Z B9C:$B9CU$ ?=$?E;$7GLL;M?$NJF$JHOL=N;$?E;=L;?>7J<$(*(*$ 7=MN;L@;M7;9$V>?E$OL=5J5<6$B9aa$>M$;N;L6$M;X$ILJX:$?E;6$HJW;$J$<=M@;L$LJM@;$ OL=O=FJ<$56$7=HO=GMI>M@$HJM6$<=7J<$H=N;F9$ m $ MGH5;L$=K$7=HO=GMI;I$<=7J<$ H=N;F$>F$ILJXM$GM>K=LH<6$KL=H$C$?=$AB9$ $

PAGE 113

$ ! ! CBB ! A9 ! *J<7G=L$I>F?L>5 G?>=MyHJL@>MJ<$<>W;<>E==I$=K$?E;$7GLL;M?$JMI$ OL=O=F;I$E6O;L$OJLJH;?;L$NJK=LH$I>F?L>5G?>=M$I;K>M;I$=M$TB:CU9$ $ c9 ! )K$8$ u$G:$W;;O$?E;$OL=O=FJ<$JF$M;Y?$NJM$7EJ>M:$=?E;LX>F;$L;?J>M$?E;$7GLL;M?$NJM;I$JL;$ =5?J>M;I$GF>M@$?E;$7=MI>?>=MJ<$I>F?L>5G?>=MFR$ $ J9 ! 0T?JGŠ ] :$ E: $ O:$ , :$ U$ $ 59 ! 0T5;?JŠ$ ] :$ E: $ O:$ , :$ $ ?JGU9$ $ 79 ! 0T1Š$ ] :$ E: $ O:$ , :$ $ ?JG:$5;?JU $ b9 ! !E;F;$FJHO<;I$NJHJ?;F$ $ $ !=$H;JFGL;$7<>MJ<$NJL>J?>=M$>M$-&0F$F>@M>K>7JM?<6$JFF=7>J?;I$X>?E$;>?E;L$I>JOJGF;$ ?;LH>MJ?>=M$=L$I>JOJGF$>M?;MF>?6 :$H;JM$J<<;<;$KL;PG;M7>;F$X;L;$7J<7G$X>?E>M$ ;J7E$E=F?$LJ7;$J?$;J7E$F6HOJ?L>7$F>?;9$!E;$H;JM$J< <;<;$KL;PG;M76$XJF$7J<7GM@$?E;$ H;JM$@;M=?6O;$F7=L;F$K=L$J<<$>MI>N>IGJ?E>M$J$@>N;M$E=F?$LJ7;$J?$J$@>N;M$F>?;$K=L$<=7>$?EJ?$ X;L;$ F>@M>K>7JM?<6$JFF=7>J?;I$X>?E$;>?E;L$I>JOJGF;$?;LH>MJ?>=M$=L$I>JOJGF;$>M?;MF>?69$ $ 0;LHG?J?>=M$?;F?F $ $ !;F?F$K =L$J<<;<;$KL;PG;M76$I>KK;L;M7;F$X;L;$O;LK=LH;I $ GF>M@$J$M=MOJLJH;?L>7$(=M?;$*JL<=$ JOOL=J7E$5;?X;;M$FJHO<;$O==F$H;?E=I$ ;F?J5<>FE;I$J$MG<<$I>F?L>5G?>=M$=K$J<<;<;$KL;PG;M76$ I>KK;L;M7;F$J?$;J7E$-&0$K=L$J$@>N;M$OJ>L$=K$FJHO<;$O==<$7=HOJL>F=MF$T;9@9$;JL<6$ m $ JOJGF;$ ?;LH>MJ?>=M:$-/ Z &/h/),:$,OO<; Z "JX:$%LJM? Z 1L5JMJ:$;?79U$56$@;M;LJ?>M@$J$F;?$=K$CB:BBB$ LJMI=H>f;I$J<<;<;$KL;PG ;M76$I>KK;L;M7;$7J<7G=MF $ K=L$;J7E$<=7GF9$!=$I=$?E>F:$J$OJ>L$=K$ LJMI=H>f;I$FJHO<;F$X;L;$@;M;LJ?;I$56$7=H5>M>M@$?E;$?X=$FJHO<;$O== M?=$=M;$JMI$LJMI=H<6$ILJX>M@$X>?E$L;O f;$JF$?E;$=L>@>MJ<:$GMO;LHG?;I$O==<9$,M$J<<;<;$KL;PG;M76$I>KK;L;M7;$XJF$?E;M$7J<7G?E$JM$ ;HO>L>7J<$J<<;<;$KL;PG;M76$I>KK;L;M7;$?EJ?$;Y7>I;I$

PAGE 114

$ ! ! CBC ! ?E;$GOO;L$QDt$PGJM?><;$=K$?E;$MG<<$(=M?;$*JL<=$I>F?L>5G?>=M$XJF$?JW;M$JF$ ;N>I;M7;$?E;$<=7>$XJF$ F>@M>K>7JM?<6$I>KK;L;M?$5;?X;;M$?E;$O==@M>K>7JM7;$?;F?F$K=L$<>M;JL$L;@L; FF>=M$JMJ<6F;F$ GF>M@ $ J$(=M?;$*JL<=$ L;FJHO<>M@$JOOL=J7E9$VE;M$7=HOJL>M@$L;FO=MF;$KL=H$?X=$;YO;L>H;M?F:$J$MG<<$I>F?L>5G?>=M$=K $ CB:BBB$ J<<;<;$KL;PG;M76$I>KK;L;M7;$7=LL;=MF$XJF$7J<7GLF?$O ;LHG?>M@$J$F;?$=K$J<<;<;$ KL;PG;M76$I>KK;L;M?$X>?E>M$;J7E$7 =HOJL>F=M$JF$J5=N;$JMI$?E;M$7J<7GM@$J$7=LL;=M$ 7=;KK>7>;M?$5;?X;;M$?E;$L;FJHO<;I$J<<;<;$KL;PG;M76$I>KK;L;M7;F9$#HO>L> 7J<$7=LL;=M$7=;KK>7>;M?F$ ?EJ?$;Y7;;I;I$?E;$GOO;L$QDt$PGJM?><;$=K$O;LHG?;I$7=LL;=M$7=;KK>7>;M?F$X;L;$?JW;M$JF$ F>@M>K>7JM?$JFF =7>J?>=MF9$$ $ d Z K=$JL;$F?L=M@<6$I>KK;L;M?>J?;I$>M$?X=$7=HOJL>F=MF$5G?$J?$L;N;<6$GM>K=LH$HJ@M>?GI; F$ T;9@9:$JFF=7>J?;I$X>?E$I>JOJGF;$?;LH>MJ?>=M$JMI$>M>?>J?>=MU:$?E;$J5=N;$7=LL;=M$JMJ<6F>F$HJ6$KJ><$?=$I;?;7?$ J$L;=MFE>O9$!=$ J77=GM?$K=L$?E>F:$X;$JHO<;H;M?;I$?E;$d Z K=5;I$>M$ T*EJ?GLN;I>$;?$J<9$ ABCS e$YYFGOO<;H;M? U 9$!E>F$JOOL=J7E$?;F?F$XE; ?E;L$H=L;$<=7>$?EJ?$;YO;7?;I$56$7EJM7;$;YE>5>?$?E;$FJH;$=L$ =OO=F>?;$F>@M$J<<;<;$KL;PG;M76$I>KK;L;M7;F$K=L$?X=$ 7=HOJL>F=MF$TE;L;:$I>KK;L;M7;F$5;?X;;M$;7<=F>=M$5GKK;L;M7;F$5;?X;;M$I>JOJGF;$>M?;MF>?6$7K$?E;$MGH5;L$=K$<=7>$;YE>5>?>M@ $ F>@M$ 7=M7=LIJM7;$5;?X;;M$?E;$?X=$%V,-$XJF$@L;J?;L$?EJM$;YO;7?;I$56$7EJM7;$X;$O;LHG?;I$XE=<;$@;M=?6O;F$ JMI$7J< 7GKK;L;M7;F$K=L$;J7E$%V,-$?=$OL=IG7;$J$MG<<$I>F?L>5G?>=M$=K$F>@M$ 7=M7=LIJM7;9$)K$?E;$;HO>L>7J<$MGH5;L$=K$<=7>$X>?E$F> @M$7=M7=LIJM7;$K=L$J$@>N;M$2/ Z 7EL=H=F=H;$@L=GO$ XJF$@L;J?;L$?E;$QD ?E $ O;L7;M?><;$=K$?E;$MG<<$I>F?L>5G?>=M:$?E;$< ;N;<$F>@M$7=M7=LIJM7;$XJF$JFFGH;I$?=$5;$ @L;J?;L$?EJM$XEJ?$X=G
PAGE 115

$ ! ! CBA ! !ZZ-).1C' & ' *EJO?;L$C $ -GO O<;H;M?J<$8;FG7$HJLW;LF$X>?E>M$;J7E$2/$JMI$7EL=H=F=H;$@L=GO$ JMJ<6f;I$>M$*EJO?;L$C9$ $ ! ! $ $ 7EL$C$ $ $ $$ 7EL$A$ $ $ $$ 7EL$a$ $ $ $$ 7EL$c$ $ $$$$ $ $$ 7EL$D $ $ $ 7ELC Z D$ $ $ $ $ $ $ $ $ ' $ $ $ $ $ $$$$ ,<<$-&0F $ bQB $ ' cbb $ ' `Db $ ' aCb $ $ $ QcC $ $ a : CbQ $ $ $$$ ">@E$2/ $ ABS $ ' ' SC $ ' C`b $ ' aD $ $ $ AQb $ $ `Qb $ $$$$ )M?9 $ 2/ $ aSa $ ' aAc $ ' caS $ ' CC` $ $ $ cb` $ $ C : `AQ $ $$$$ 2=X$2/ $ QQ $ ' $$$ bC $ ' Ccc $ ' Cbc $ $ $ C`S $ $ bcb $

PAGE 116

$ ! ! CBa ! ! #9HHB<@<45AB'[;M96<'OP ' 8;=MFE>OF$5;?X;;M$?E;$F?L;M@?E$=K$@;M;?>7$JFF=7>J?>=MF$THJ@M>?GI;$ =K$J<<;<;$KL;PG;M76$I>KK;L;M7;F U$X>?E$I>JOJGF;$OE;M=?6O;F$JMI $ E=F?$LJ7;$I>KK;L;M7;F:$>M7M@$ I>JOJGF;$>M?;MF>?6$T-/$ m $ /),w/U$NF9$E=F?$LJ7;$I>KK;L;M7;F$TJOO<;$E=F ?$LJ7;$ m $ EJX$E=F?$LJ7;e$ ,:+U:$I>JOJGF;$?;LH>MJ?>=M$T;JL<6$ m $ =M$;YO;L>H;M?$T`$IJ6$ m $ aA$ IJ6e$# :.U:$JMI$JOO<;$K<6$F;<;7?>=M$; YO;L>H;M?$T`$IJ6$ m $ aA$IJ6e$%:"U9$2>@E?$@L;6$I=?F$L;OL;F;M? $ J<<$ `:AbD$@;M=?6O;I$-&0F$ XE><;$ 'LJM@;$I=?F$ JL;$<=X$2/$<=7>:$L;I$I=?F$JL;$>M?;LH;I>J?;$2/$<=7>:$JMI$ OGLO<;$I=?F$JL;$E>@E$2/$<=7> $ =M$7EL=H=F=H;$c$TC F? $ 7=
PAGE 117

$ ! ! CBc ! 7=$X;L;$O=f;I$?=$?E;$J<<;<;$J?$?E;$E>@E;F?$KL;PG;M76$>M$?E;$EJX?E=LM$ K<6$O=OG =M$J?$%LJM?:$()e$?EGF:$E=F?$LJ7;$I>KK;L;M7;F$>M$J<<;<;$KL;PG;M76$X;L;$J<<$O=F>?>N;9 $ ' '

PAGE 118

$ ! ! CBD ! ' ! #9HHB<@<45AB'[;M96<'QP' 'N;L;F$=K$<=7>$F>@M>K>7JM?<6$ JFF=7>J?;I$X>?E$I>JOJGF;$>M?;MF>?6$JMI$I>JOJGF;$?;LH>MJ?>=M$=M$7EL=H=F=H;F$ c$JMI$D 9$3;MM$ />J@LJHF$I>FO$F>@M>K>7JM?<6$JFF=7>J?;I$X>?E$I>JOJGF;$>M?;MF>?6$JMI$?E=F;$ JFF= 7>J?;I$X >?E$I>JOJGF;$?;LH>MJ?>=M9$!E;$ H>II<;$L=X$=K$<>M;$O<=?F$I>FOMJ<$NJL>J?>=M$>M$ H;JM$J<<;<;$KL;PG;M76$X>?E$<=7>$F>@M>K>7JM?<6$JFF=7>J?;I$X>?E$I>JOJGF;$>M?;MF>?6$K=L$7EL=H=F=H;F$ c$JMI$D 9$%;M;?>7$<=7>$X;L;$O=f;I$FG7E$?E;$J<<;<;$JFF=7>J?;I$X>? E$?E;$-/ $ OE;M=?6O;$XJF$ i7=GM?;I9]$!E;$ 5=??=H$L=X$=K$<>M;$O<=?F$I>FOMJ<$NJL>J?>=M$>M$H;JM$J<<;<;$KL;PG;M76$X>?E$ <=7>$F>@M>K>7JM?<6 $ ! !

PAGE 119

$ ! ! CBb ! !ZZ-).1C' . ' /&,$#Y?LJ7?>=M$0L=?=7=<$ $ ! 0GL; Z %;M;$OL=?=7=<$K=L$/&,$;Y?LJ7?>=M$KL=H$)MF;7?$?>FFG; F $ y-<>@E?<6$H=I>K>; I$KL=H$0GL;%;M;$HJMGJ<$56$.;I;L$?E:$?6O>7J<<6:$s$CB$ m $ aB$H@$=K$?>FFG;:$I;O;MI>M@$=M$<>K;$F?J@;$TH=L;$>F$5;??;L$K=L$JIGF$F==M $ A9 ! ,II$$CG<$OL=?;JF;$^9 $ a9 ! "=H=@;M>f;:$O7; $ c9 ! )M7G5J?;$>M $ XJ?;L$5J?E$J?$bD*$K=L$s$C$E=GL9$)K$<; JN>M@$?E;$FJHO<;$>M$?E;$5J?E$=N;LM>@E?:$OM$0L;7>O>?J?>=M$F==M9 $ b9 ! 3=L?;Y$;J7E$FJHO<;$K=L$ABF$JMI$O7;$K=L$D$H>MG?;F $ T<=M@;L$7=M7G5 J?>=M$HJ6$>M7L;JF;$ 6>;KG@;$Tc*U$K=L$D$H>MG?;F$TE>@E$80(U9 $ S9 ! 0=GL$T=L$O>O;?$=KKU$FGO;LMJ?JM?$>M?=$M;X$C9`$H<$?G5;9$!E>F$7=M?J>MF$6=GL$/&,$T?=FF$?E;$=L>@>MJF=OL=OJM=<$TA Z OL=OJM=7; Z 7=F=OL=OJM=<$HJ6$>M7L;JF;$ 6>;Y$FJHO<;$56$>MN;L?>M@ $ DB$?>H;F$JMI$7=KG@;$K=L$D$H>MG?;F9 $ CC9 ! 0=GL$=KK$TI>F7JLIU$FGO;LMJ?JM?9$/&,$FE=G;KK>7GF?>M@G>FEU9 $ CA9 ! ,II$CBBG<$`Bt$;?EJM=<$?=$;J7E$FJHO< ; :$>MN;L?$AB$?>H;F:$JMI$7=KG@;$K=L$a$H>MG?;F9 $ Ca9 ! 0= GL$=KK$;?EJM=<$JMI$J<<=X$FJHO<;$?=$J>L$IL6$=N;LM>@E?9 $ Cc9 ! 'M7;$J<<$;?EJM=<$EJF$;NJO=LJ?;I:$;M$6=GL$KJN=L>?;$5GKK;L9$TX;$=K?;M$GF;$B9Dd$!#$=L$g>J@;M$ #+$5GKK;L9$)K$6=G$?E>MW$6=G$HJ6$M;;I$?=$7=M7;M?LJ ? ;:$GF;$GMF?;JIU9 $ CD9 ! )M7G5J?;$=N;LM>@E?$J?$ L==H$?;HO;LJ?GL;$?=$L; Z FGFO;MI:$=L$J?$bD*$K=L$=M;$E=GL9 $ $ $ 0GL;@;M;$L;J@;M?F$T*GLL;M?<6$KL=H$g>J@;MU $ $ 8;J@;M? $ $ $ $ g>J@;M$M=9 $ $ *;<<$26F>F$-==M $ $ $ CDSQBb$TCADHM$0L;7>O>?J?> = M$-==M $ CDSQCB$TDBH
PAGE 120

$ ! ! CB` ! !ZZ-).1C' ' *EJO?;L$A$-GOO<;H;M?J<$8;FG7$HJLW;LF$X>?E>M$;J7E$2/$JMI$7EL=H=F=H;$@L=GO$ JMJ<6f;I$>M$*EJO?;L$A9$ $ ! $ $ $ $ 7EL$C$ $ $ $$ 7EL$A$ $ $ $$ 7EL$a$ $ $ $$ 7EL$c$ $ $$$$ $ $$ 7EL$D $ $ $ 7ELC Z D$ $ $ $ $ $ $ $ $ ' $ $ $ $ $ $$$$ ,<<$-&0F $ AB:CAS $ ' Ca:c`c $ ' Aa:CDS $ ' Q:ASc $ $ $ CD:`QC $ $ SC:SaD $ $$$$ ">@E$2/ $ c:bcB $ ' ' C:QDD $ ' a:SbC $ ' b`a $ $ $ D:CQQ $ $ Cc:AQc $ $$$$ )M?9 $ 2/ $ CC:`c` $ ' Q:cCB $ ' Cc:QQ` $ ' a:CDA $ $ $ `:CAa $ $ cb:cAQ $ $$$$ 2=X$2/ $ a:`cC $ ' $ A:CBQ $ ' c:aBB $ ' D:cDQ $ $ $ a:DcQ $ $ CQ:CDS $